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Abstract: This paper presents a neural-network based nonlinear behavioral modelling of I/O buffer
that accounts for timing distortion introduced by nonlinear switching behavior of the predriver
electrical circuit under power and ground supply voltage (PGSV) variations. Model structure
and I/O device characterization along with extraction procedure were described. The last stage
of the I/O buffer is modelled as nonlinear current-voltage (I-V) and capacitance voltage (C-V)
functions capturing the nonlinear dynamic impedances of the pull-up and pull-down transistors.
The mathematical model structure of the predriver was derived from the analysis of the large-signal
electrical circuit switching behavior. Accordingly, a generic and surrogate multilayer neural network
(NN) structure was considered in this work. Timing series data which reflects the nonlinear switching
behavior of the multistage predriver’s circuit PGSV variations, were used to train the NN model. The
proposed model was implemented in the time-domain solver and validated against the reference
transistor level (TL) model and the state-of-the-art input-output buffer information specification
(IBIS) behavioral model under different scenarios. The analysis of jitter was performed using the eye
diagrams plotted at different metrics values.

Keywords: VLSI; I/O; behavioral modelling; IBIS; power supply induced jitter; nonlinear dynamic
circuits; neural network; parametric modelling; system identification

1. Introduction

Signal and power integrity (SPI) simulation of high-speed mixed-signal I/O links is
a fundamental task that designers perform and iterate until meeting the specification of
timing and amplitude distortions. SPI involves the prediction of the impact of the supply
voltage variations on the timing and amplitude distortions of the output signal propagating
on package and PCB interconnects [1].

A behavioral model based on input-output buffer information specifications (IBIS) or
other parametric and enhanced equivalent circuit approaches can be used in SPI simulation
flow that balances the tradeoff between simulation time and computational resources with
good accuracy [2,3]. Nevertheless, previous nonlinear behavioral modelling methodologies
focus mainly on improving the modelling of the last-stage of the I/O buffer [4–7]. In fact,
voltage-time (V-t) tables capturing the predriver’s I/O timing distortions are extracted
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under fixed predriver’s power and ground supply voltage (PGSV) Vdd/Vss DC voltage. For
this reason, an equivalent circuit or parametric behavioral modelling, which are generated
under the above V-t conditions, will not accurately predict the predriver’s output timing
distortions, which are the input of the last-stage driver model. Moreover, this shortcoming
limits the usage of the behavioral models when they are subjected to supply ripple voltage
derived from frequency domain simulations [8–12].

For instance, PGSV variations at the predriver and last stage would distort the timing
and the amplitude vg(t) and v2(t), respectively, of the output voltage, as is illustrated in
Figure 1. The arrows in Figure 1 highlight the nonlinear dynamic effects showed by the
predriver and last stage since they are designed based on transistors. The black dashed
arrows present the induced jitter by vddn(t) and vssdn(t) on vg(t), and the output voltage of
the predriver and the blue dashed arrows present the induced jitter by vddqn(t) and vssqn(t)
on v2(t), the output voltage of the driver.
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Figure 1. I/O buffer block diagram with separate supply domains for predriver and last stage in-
dependently impacting the output timing and amplitude distortion. 

The extrinsic linear PDN network effects can be simulated in frequency domains, 
while the nonlinear distortion effects induced by the I/O buffer currents are simulated in 
time-domain analysis. Therefore, Figure 2 depicts the integrated transient simulation flow 
of PGSIJ based on the determination of supply ripple noise from frequency domain anal-
ysis. 
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Figure 2. Combined flow for PGSIJ transient simulation based on the determination of PGSV rip-
ple noise from the frequency domain analysis. 

By assuming that the switching current at the predriver, ൛𝑖ு,௣(𝑡), 𝑖௅,௣(𝑡)ൟ, and at the 
last stage level, {𝑖ு(𝑡), 𝑖௅(𝑡)}, flow through the power delivery network (PDN) impedance, 𝑍௉஽ே,௣ and 𝑍௉஽ே, supply ripple can be determined in the frequency domain: 𝑣ௗௗ_௡(𝑓) = 𝑍௉஽ே,௣(𝑓) ∙  𝑖ு௣(𝑓) and 𝑣ௗௗ௤_௡(𝑓) =  𝑍௉஽ே(𝑓) ∙  𝑖ு(𝑓). Then, the time-domain supply noise 
waveform can be determined via inverse fast Fourier transform (i.e., 𝐹𝐹𝑇ିଵ): 

Figure 1. I/O buffer block diagram with separate supply domains for predriver and last stage
independently impacting the output timing and amplitude distortion.

The extrinsic linear PDN network effects can be simulated in frequency domains, while
the nonlinear distortion effects induced by the I/O buffer currents are simulated in time-
domain analysis. Therefore, Figure 2 depicts the integrated transient simulation flow of
PGSIJ based on the determination of supply ripple noise from frequency domain analysis.
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By assuming that the switching current at the predriver,
{

iH,p(t), iL,p(t)
}

, and at the
last stage level, {iH(t), iL(t)}, flow through the power delivery network (PDN) impedance,
ZPDN,p and ZPDN , supply ripple can be determined in the frequency domain: vdd_n( f ) =
ZPDN,p( f )· iHp( f ) and vddq_n( f ) = ZPDN( f )· iH( f ). Then, the time-domain supply noise
waveform can be determined via inverse fast Fourier transform (i.e., FFT−1):{

vdd_n(t) = FFT−1[vdd_n( f )]
vddq_n(t) = FFT−1

[
vddq_n( f )

] (1)
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Then, these voltages in (1) are injected to the I/O buffer behavioral model supply
terminals at both predriver and last stage for predicting the SPI distortion of high-speed
I/O links.

An example of the frequency domain analysis of the PDN impedance is shown in
Figure 3a. The PDN is modelled as an RLC circuit representing the package and PCB RL
model along with the die decoupling capacitance (i.e., C). The magnitude of the impedance
plot shown in Figure 3b serves to identify the PDN resonance frequency and the bandwidth
as well. Basically, PDN acts as a band-pass filter to the current activity generated by the
random input bit sequence.
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This work aimed to provide improved IBIS predriver’s modelling accounting for the
worst-case P/G supply variations at the predriver stage. Accordingly, the highest P/G
supply amplitude variations occurs as the period of bit pattern or current activity (i.e.,
iHp(t) and iLp(t)) hits the PDN resonance frequency of P/G supplies. For instance, the
transient simulation setup, as shown in Figure 4a, illustrates the worst-case supply ripple
time domain waveform induced by the IO buffer current activity modeled as a pulse signal
with a 20 ns period (i.e., T ∼= 1/ fres).
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As seen in Figure 4b, the worst-case supply voltage waveform leading to the highest
peak-to-peak jitter performance was a sinusoidal like signal. Although, the worst P/G
supply waveform and frequency contents also depend on PDN characteristics such as
the bandwidth and whether it presents several resonance frequencies; this paper mainly
focused on developing an enhanced parametric predriver nonlinear dynamic behavior
modelling for capturing the amplitude and timing distortions, as PGSV shows multi-tone
sinusoidal waveforms with the highest frequency and amplitude variations leading to the
worst-case jitter distortions [13–16]. Experimental measurement and simulation of power
integrity test-benches show that worst-case steady-state supply ripple waveforms behave
as a distorted sinusoidal voltage waveform [13–16].

Hence, the proposed modelling methodology can be used in conjunction with fre-
quency domain approaches for PGSIJ determination as depicted by integrated frequency
and time domains flow as shown in Figure 2.

This work addressed the challenge of capturing the effect of PGSV noise applied on the
stages of the driver (e.g., predriver and last stage) by investigating a neural-network (NN)-
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based parametric model for modelling the predriver’s timing and amplitude distortions,
as it is powered independently from the last-stage one. The rest of the paper is organized
as follows. Section 2 details the problem formulation. Section 3 describes the proposed
modelling methodology. Section 4 presents the model implementation and validation
results of the proposed model’s interpolation and extrapolation under several test-case
scenarios. Summary and conclusions are drawn in Section 5.

2. Problem Formulation

The I/O device under modelling is composed of two stages: predriver and last
stage. The predriver is composed by three cascaded CMOS inverters and the last stage
is represented by one inverter. The predriver is separately powered by supply voltages
(Vdd/Vss) from the last-stage ones (Vddq/Vssq). Both I/O buffer stages P/G supplies are
assumed to allow ±10% Vdc of ripple noise variations.

For illustration purposes, the I/O buffer transistor level (TL) circuit was simulated
under two conditions. The first scenario assumed that I/O device is powered by a nominal
(fixed voltage) PGSV, as shown in Figure 5a. The second scenario simulated the case
where a sum of two tones of sinusoidal voltage signal sources are only connected at the
predriver’s stage PGSV terminals while last stage supplies are kept constant, as shown
in Figure 5b. This analysis clearly demonstrates that the effect of timing and amplitude
distortion of PGSV are induced by the predriver stage. The resulting driver output voltage,
v2(t), under the above-described conditions is presented in Figure 6 and their respective
eye diagrams are shown in Figure 7. The peak-to-peak (p2p) jitter under nominal and noisy
cases are 17.15 ps and 197.519 ps, respectively. The eye height values under nominal and
noisy cases are 2.38 V and 2.33 V, respectively.
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The difference between the reference TL model and tow-piece IBIS-like behavioral
models in predicting the output voltage timing distortion is due to the fact that the IBIS
model mathematical formulation does not include the predriver’s PGSV variations and,
consequently, it fails to predict the predriver’s I/O timing distortion under PGSV noise.
Accordingly, the development of an improved parametric behavioral model of the active
predriver’s circuit was addressed in this work based on nonlinear dynamic NN, which
extends the two-piece IBIS behavioral model to also account for the predriver’s distortions
under PGSV variations.

Moreover, the NN-based behavioral model enables surrogate approximation of non-
linear dynamic function with a good accuracy level. Indeed, the mathematical structure of
a dynamic NN approach [5,17–19] has been explored in modeling a nonlinear I/O driver
circuit defined by nonlinear differential equations, which is important for transient SPI
analysis. For example, NN parametric models based on nonlinear system identification
theory have been used to improve IBIS model for the last stage [19]. Furthermore, this
modeling methodology accurately approximates the observed nonlinear dynamic mem-
ory effects from the identification electrical I/O signals without assuming a predefined
equivalent circuit model template. This provides high modelling flexibility to cover a
wide range of I/O buffer model design structures while disregarding the electrical physi-
cal details of the predriver or last-stage circuits. Moreover, several research works have
demonstrated that the NN can yield better computational efficiency than traditional SPICE
models [5,10–12,17,18].

3. Proposed Modelling Methodology

This section describes the generation of behavioral model of I/O buffer both stages
under distinct PGSV variations. The block diagram of the proposed nonlinear behavioral
modelling methodology of the predriver and last stage is presented in Figure 8. It shows
the separate modelling steps of both drivers’ stages and the interaction between them in
collecting the identification signals for training the NN model to model the predriver’s
electrical behavior under PGSV variations. Accordingly, the global I/O buffer model struc-
ture is presented in Section 3.1. Sections 3.2 and 3.3 describe the modelling methodology of
the equivalent-circuit last stage model and the NN-based predriver model to accurately
predict the predriver’s output STS under PGSV variations, respectively.
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3.1. Model Structure

The standard multiport two-piece behavioral model structure, which describes the
nonlinear dynamic electrical behaviors of the I/O buffer circuit, can be formulated mathe-
matically by (2) and (3). 

i2(t) = ∑
k=L,H

Wk(t)·Ik(t)

Ik(t) = Fk

[
xk(t),

dxk(t)
dt

]
, k = L, H

(2)

The output current, i2(t), is expressed as a summation of two submodels modelling
the pull-up (PU) and pull-down (PD) switching activities. Each submodel is formed
by multiplying the last stage current extracted at dc input stage, Ik(t), by the switching
time signal (STS), Wk(t), capturing the I/O predriver’s timing distortions under fixed
P/G supply. The PU and PD output voltage differences are defined as xL(t) = v2(t)−
vssq_n(t) and xH(t) = vddq_n(t) − v2(t), respectively. They are applied to the FL(·) and
FH(·) functions that model the nonlinear dynamic output admittances of the driver’s last
stage under “L” and “H” input logic levels, respectively.

The large-signal equivalent circuit of the three-stage CMOS predriver’s circuit is
presented in Figure 9a. It is composed of cascaded I-V and C-V functions of each CMOS
inverter. The output gate voltage, vg(t), of predriver’s stage under PGSV variations can be
formulated in continuous time domain as follows.

vg(t) = G1

(
G2

(
G3

(
v1(t),

dv1

dt
, vdd_n(t),

dvdd_n(t)
dt

, vss_n(t),
dvss_n(t)

dt
,

dvg

dt

)))
(3)

where G1(·), G2(·), and G3(·) are multi-input single-output nonlinear functions that math-
ematically represent the nonlinear distortion induced by the each of the CMOS inverter
stage forming the predriver’s circuit. The derivative accounts for the capacitive coupling
between input, output, and power/ground supply terminals. The continuous time domain
formulation can be discretized (i.e., dx/dt ∼= (x(nTs)− x((n− 1)Ts))/Ts and approxi-
mated as a direct formulation for a finite memory of the predriver’s circuit. Accordingly,
Figure 9b presents the proposed multilayer NN parametric model for the PU and PD
predriver’s switching activities under PGSV variations, which are also formulated in (4).
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The predriver model structure relating the STS, Wk(t), to v1(n), vdd_n(n), and vss_n(n)
that mimic the I/O timing behavior of the predriver stage.

Wk(n) = GNNk

 v1(n− D) v1(n− D− 1) v1(n− D−m),
vdd_n(n− D) vdd_n(n− D− 1) vdd_n(n− D−m),
vss_n(n− D) vss_n(n− D− 1) vss_n(n− D−m) ,

 k = H, L (4)

where GNNk(·) is a multiple-input single output nonlinear function that maps the relation-
ship between Wk(t) and the instantaneous and previous samples of the v1(n), vdd_n(n), and
vss_n(n). m represents the number of the delay steps considered for NN inputs and D rep-
resents the dead time difference determined between the output STS and the input voltage.
The dead time D should be adequately identified to ensure the causality of the model.

Furthermore, NN multi-layer structure can be defined by the CMOS stage forming
the predriver’s circuit. For instance, if the number of the predriver’s CMOS stage circuit
is known a priori, the number of hidden layers can be determined. NN training can be
an iterative process to optimize the number of hidden layers and their respective neurons
while ensuring the convergence nonlinear optimization algorithm with the simplest NN
structure with fewer neurons.

3.2. Last Stage Modelling

The last-stage model consists of summation of the conduction current modelled as
current-voltage (I-V) and displacement of the current capacitance-voltage (C-V).

Fk(t) = IVk(xk(t)) + CVk(xk)
dxk(t)

dt
, k = L, H (5)

This electrical model formulation, presented in (5), considers not only the static
contribution of the PGSV fluctuation, but also the dynamic distortion introduced by the PU
and PD capacitances, which are represented by the derivatives [5,10,20]. IVk (·) functions,
that capture the PU and PD transistors in the linear and the nonlinear operating ranges,
were extracted by means of voltage DC sweep as shown in Figure 10. I/O buffer supply
voltage for both stages were kept constant while the output voltage source was swept
between

[
−·, Vddq + ·

]
for different input voltages, v1, state, v1 = 0, and then v1 = Vdd.

The last-stage model (5) only considers the nonlinear dynamic behavior of the intrinsic
effect of the active I/O buffer while the extrinsic effect of the PDN (RLC model) was
reflected in the estimated supply ripple noise, as shown in Figure 3.



Sensors 2021, 21, 6074 8 of 17

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

effect of the active I/O buffer while the extrinsic effect of the PDN (RLC model) was re-
flected in the estimated supply ripple noise, as shown in Figure 3. 

Furthermore, the capacitance voltage function𝑠 𝐶𝑉௄(∙) capture the dynamic distor-
tions, which improve jitter prediction accuracy introduced by the PGSV variations. These 
functions were extracted via bias-dependent AC simulation at the driver’s output while 
the input dc voltage was kept as low or high-logic levels as illustrated in Figure 10b. The 
AC simulation was mainly performed in two steps to identify the power capacitor 𝐶𝑉ு(·) 
and the ground capacitor 𝐶𝑉௅(·). Firstly, the AC voltage source was connected to the last 
stage ground while the input 𝑉ௗ௖ = 0𝑉. Then, it was connected to the power source of the 
driver last stage while 𝑉ௗ௖ = 𝑉ௗௗ, presented by the dashed line. 

 

iH 

iL

i2

Vdc

vg(t)

Vssq

Vddq

V2

last stage

Predriver 
stage

dcVss

Vdd +
-

+
-

+
-

+
-

 

iH 

iL i2

Vdc

vg(t)

Vssq

Vddq

last stage

Predriver 
stage

Vss

Vdd DC+AC 

AC

v2(t)

+
-

+
-

(a) (b)

v2(t)

 
Figure 10. Last-stage I-V and C-V function extraction for the PU and PD devices. (a) DC simula-
tion setup: I-V extraction. (b) AC simulation setup: C-V extraction. 

It is worth noting the perturbation assumption of the P/G voltage, where linear ap-
proximation of the I-V functions can be used because the biasing region of the PU and PD 
transistors of the driver’s last stage will not be severely affected. Therefore, a small-signal 
transistor model for P/G-induced jitter can be used by including the linear capacitive ef-
fects [19]. 

3.3. Predriver Modelling 
For the predriver’s model extraction setup, a transient simulation was performed in 

the first place. As is demonstrated in Figure 11, the input signal 𝑣ଵ(𝑡) is presented by a 
random bit sequence and the applied P/G supply, 𝑣ௗௗ_௡(𝑡) and the 𝑣௦௦_௡(𝑡), are defined as 
follows: 

⎩⎪⎨
⎪⎧𝑣ௗௗ_௡(𝑡) = 𝑉஽஼ + ෍ 𝑎ௗ௜ sin (2𝜋. 𝑓ௗ௜. 𝑡)௜𝑣௦௦_௡(𝑡) = ෍ 𝑎௦௜ sin (2𝜋. 𝑓௦௜. 𝑡)௜

 (6)

where 𝑎ௗ௜ and 𝑎௦௜ are the amplitudes and 𝑓ௗ௜ and 𝑓௦௜ are the noise frequencies. While the 
driver last stage supplies were kept constant to retrieve only switching identification time 
series signals {𝑣ଵ(𝑡), 𝑣ௗௗ_௡ (𝑡), 𝑣௦௦_௡ (𝑡), 𝑖ଶ(𝑡), 𝑣ଶ(𝑡)} under two loading conditions (i.e., load 
(a) is 𝑉ௗ௖ =  𝑉஽஽ and load (b) 𝑉ௗ௖ = 0𝑉) that reflect the predriver’s timing distortion under 
PGSV variations. 
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Furthermore, the capacitance voltage functions s CVK(·) capture the dynamic distor-
tions, which improve jitter prediction accuracy introduced by the PGSV variations. These
functions were extracted via bias-dependent AC simulation at the driver’s output while
the input dc voltage was kept as low or high-logic levels as illustrated in Figure 10b. The
AC simulation was mainly performed in two steps to identify the power capacitor CVH(·)
and the ground capacitor CVL(·). Firstly, the AC voltage source was connected to the last
stage ground while the input Vdc = 0V. Then, it was connected to the power source of the
driver last stage while Vdc = Vdd, presented by the dashed line.

It is worth noting the perturbation assumption of the P/G voltage, where linear
approximation of the I-V functions can be used because the biasing region of the PU
and PD transistors of the driver’s last stage will not be severely affected. Therefore, a
small-signal transistor model for P/G-induced jitter can be used by including the linear
capacitive effects [19].

3.3. Predriver Modelling

For the predriver’s model extraction setup, a transient simulation was performed in
the first place. As is demonstrated in Figure 11, the input signal v1(t) is presented by a
random bit sequence and the applied P/G supply, vdd_n(t) and the vss_n(t), are defined
as follows: 

vdd_n(t) = VDC + ∑
i

adi sin(2π· fdi·t)

vss_n(t) = ∑
i

asi sin(2π· fsi·t)
(6)

where adi and asi are the amplitudes and fdi and fsi are the noise frequencies. While the
driver last stage supplies were kept constant to retrieve only switching identification time
series signals {v1(t) , vdd_n (t), vss_n (t), i2(t), v2(t)} under two loading conditions (i.e., load
(a) is Vdc = VDD and load (b) Vdc = 0V) that reflect the predriver’s timing distortion under
PGSV variations.
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After causing the STS to reflect the predriver’s distortions under PGSV variations, 
NN-model’s parameters or coefficients were identified based on non nonlinear optimiza-
tion back-propagation algorithm (i.e., Levenberg-Marquart) [5,6,17]. 

4. Model Implementation and Validation Results 
The proposed modelling framework was validated with extracted data from I/O 

buffer TL circuit dc, ac, and transient simulations. Two I/O buffer’s technologies and to-
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To ensure a good modeling process, it is crucial to verify the coverage area of the
vdd_n(t) voltage variations vs. the vss_n (t) voltage variations. Once the driver’s last model
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(5) was generated, time series data recorded under two loading conditions from Figure 11
were used to determine the STS, WH(t), and WL(t) by linear inversion presented in (7):[

WH(t)
WL(t)

]
=

[
FLa(t) FH a(t)
FLb(t) FHb(t)

]−1 [ ia(t)
ib(t)

]
(7)

where FLa , FHa , and ia are the extracted data corresponding to the load (a) and FLb , FHb , and
ib correspond to the load (b).

After causing the STS to reflect the predriver’s distortions under PGSV variations, NN-
model’s parameters or coefficients were identified based on non nonlinear optimization
back-propagation algorithm (i.e., Levenberg-Marquart) [5,6,17].

4. Model Implementation and Validation Results

The proposed modelling framework was validated with extracted data from I/O
buffer TL circuit dc, ac, and transient simulations. Two I/O buffer’s technologies and
topologies were considered in this validation. For the predriver’s model validation, a
0.35 µm TSMC CMOS multistage I/O buffer was considered to perform model’s extraction
and validation. In this case, last stag’s PGSV are kept constant; therefore, only the PSIJ from
the predriver is considered. Additionally, I/O buffer circuit with slew rate control based on
fully depleted silicon on insulator (FDSOI) 28-nm technology was used to extract behavioral
models and validate the global model performance under PSIJ from both predriver’s and
last-stage electrical circuits.

Look-up tables (LUTs) were used to implement the last-stage PU and PD, I-V and
C-V functions. Extracted coefficient of the NN-based parametric model using hyperbolic
tangent activation functions was implemented in the MATLAB Simulink time-domain
solver tool as shown in Figure 12. Two NN-based parametric submodel structures, GNNk(·),
were trained to extract the coefficient (e.g., parameters) of the multilayer NN algorithm.
The NN structure is mainly composed by two hidden layers with four neurons in each
layer. The different parameters used for the NN-based model construction is presented in
Table 1.
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Figure 12. I/O buffer implementation in Simulink considering PGSV variations applied on the
predriver and on the last stage separately.

During the identification stage of the NN-based parametric model, a different number
of hidden layers and a different number of neurons per layer were tested in order to ensure
better tradeoff between model’s complexity and accuracy. Moreover, to evaluate the model
accuracy and performance, different validation setups were performed and are detailed in
the next subsections.
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Table 1. NN-based model parameters.

Parameters Values

Ts: sampling time (ps) 8

m (ps) 3.Ts

D (ps) 150.Ts

Training epochs 200

4.1. Predriver Model Validation

The first validation setup consists of evaluating the performance of the proposed
driver’s modelling. Therefore, we carried out a comparative study between the extracted
Wk(t) from TL circuit V-t data and the estimated one using the current modeling methodol-
ogy in two different conditions. Two test cases of validation data were used to evaluate
the interpolation and extrapolation capabilities of the extracted model, and Figure 13
illustrates the coverage area of the vdd_n(t) vs. vss_n(t) data used in the extraction along
with both interpolation and extrapolation test cases. Table 2 presents the used data in the
two different validation scenarios.
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Table 2. PGSV parameters used to validate the proposed model under interpolation (test case 1) and
extrapolation (test case 2).

Parameters Test Case 1 Test Case 2

ad1 (V) 0.1 0.3

fd1 (MHz) 90 75

as1 (V) 0.1 0.25

fs1 (MHz) 80 80

Test case 1: The PGSV’s amplitudes which were applied to the predriver terminals
were lower than the data used during the extraction setup. In this interpolation scenario,
the extracted STS (e.g., WH(t)) from the TL-circuit-simulated data and the predicted signal
by the proposed parametric NN-based model are compared in Figure 14. It is noticeable
that the predicted WH(t) waveform mimics the reference STS, which is determined from
the TL V-t data extracted under PGSV variations, during the rising and falling transitions,
as well as in the amplitude distortion.
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Figure 15 shows the good agreement between the predicted output voltage by the
reference TL circuit and the proposed behavioral models. Consequently, Figure 16 demon-
strates that the eye diagram of the proposed model perfectly mimics the TL output eye
diagram while the output eye diagram of the IBIS-like model fails.
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The eye-opening measurements were performed under 40–60% eye boundary, and
the eye threshold levels were set as 20% to 80% points on the rising and falling transitions.
In fact, the timing distortion induced by the predriver PGSV variations is not captured by
IBIS model because V-t data are extracted at fixed PGSV. These observations are confirmed
by the numerical value of the eye diagram metrics reported in Table 3. A difference of
8.9 ps between the p2p jitter of the proposed model and the reference TL circuit model
was observed.

Table 3. Jitter performance of the TL circuit, IBIS-like, and NN models under predriver’s PGSV
variations (test case 1).

TL Circuit NN Model IBIS-Like Model

Eye jitter (p2p) (ps) 203.99 212.86 35.48

Eye width (ps) 1835.92 1898.01 1995.56

Eye height (V) 2.58 2.59 2.62

Therefore, the relative error of the p2p eye’s jitter is 4.3% and 48%, shown by the
proposed model and the IBIS-like model, respectively. The eye height is almost the same
in the three eye diagrams. Consequently, predriver’s circuit induces, mainly, timing
distortions at the last’s stage output voltage.

Test case 2: This validation setup assesses the extrapolation capabilities of the behav-
ioral model. In fact, the PGSV amplitudes applied to the predriver terminals exceeds the
amplitude of signals used as excitation during the extraction setup. Figure 17 shows a
good match between the predicted output voltage from the proposed behavioral and the
reference TL circuit models. The prediction accuracies of the eye openings are depicted
in Figure 18 and their metrics are summarized in Table 4. The difference between the TL
reference circuit and the NN model in the extrapolation condition of p2p jitter is 45.59 ps,
which is about 9.9%. The eye height of the TL circuit and the NN model are 2.54 V and
2.53 V, respectively.

To conclude, the results of these validation setups prove that the proposed parametric
NN model presents a good accuracy level in the interpolation and extrapolation conditions.
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Table 4. Jitter performance of the TL circuit and proposed models under predriver’s PGSV variations
(test case 2).

TL Circuit NN Model

Eye jitter (p2p) (ps) 461.19 415.60

Eye width (ps) 1543.23 1617.23

Eye height (V) 2.54 2.53

4.2. Global Model Validation under PGSV Variations at the Predriver and Last-Stage

To ensure the model stability and reliability, a second validation step, illustrated
in Figure 18, was performed. Two NN structures were used to estimate the predriver’s
nonlinear memory behavior. In the current simulation, decoupled P/G supply noise
sources were applied at both predriver’s and last-stage terminals.

Test case 3: sinusoidal PGSV sources were applied at the last stage vddq_n(t) = Vddq +
adl sin(2π· fdl ·t) and vssq_n(t) = asl sin(2π· fsl ·t) with the following parameters: adl

=
0.1 V, fdl

= 70 MHz and asl = 0.2 V, fsl = 75 MHz. The amplitudes and the frequencies of
the P/G sinusoidal sources applied at the predriver stage were ad = 0.12 V, fd = 90 MHz
and as = 0.1 V, fs = 80 MHz.

Figure 19a shows the output voltage waveform prediction of CMOS 0.35 um I/O
buffer TL circuit and the NN models, of I/O buffer under distinct P/G supply noise applied
to both diver’s stages. Moreover, Figure 19b presents a zoomed version of the rising edge
transitions. For instance, at 1.25 V, the corresponding timing of the v2(t) TL circuit and the
NN models were 217.522 ps and 217.550 ps, respectively. These results are also confirmed
by the eye diagrams plot in Figure 20 and the respective numerical results are reported
in Table 5. The p2p jitter value difference between TL and proposed models was 26 ps,
corresponding to 9.82% of relative error. Moreover, the difference of the p2p jitter value
between the IBIS-like and the TL models was about 51.2 ps, corresponding to 23.3%.

Test case 4: The proposed modelling was validated considering a FDSOI 28 nm
CMOS driver. A new extraction setup and NN model trainings were executed. The
P/G supply noise sources of the predriver were assumed to be a superposition of two
sinusoidal signals in order to evaluate the noise in a realistic scenario. Consequently,
the used PGSV values presented as follows: Vdc = 1.5 V, ad1 = 0.11 V, fd1 = 125 MHz,
ad2 = 0.03 V, fd1 = 85 MHz and as1 = 0.1 V, fs1 = 225 MHz, as2 = 0.04 V, fs2 = 160 MHz.
The P/G supply noise sources applied at the buffer last stage are: Vdc = 1.5 V adl = 0.1 V,
fdl = 210 MHz and asl = 0.08 V, fsl = 85 MHz.
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Table 5. Jitter performance of the TL circuit, IBIS-like, and NN models under distinct PGSV variations
applied at both driver’s stages (test case 3).

TL Circuit NN Model IBIS-Like

Eye jitter (p2p) (ps) 219.72 198.12 168.51

Eye width (ps) 1809.31 1862.53 1942.35

Eye height (V) 2.31 2.34 2.38

Figure 21 shows the comparison of the predicted output voltage waveforms simulated
based on the TL circuit and the NN models. Besides, Figure 22 shows the eye diagrams as
PGSVs were applied to predriver and last-stage terminals of the TL circuit, the NN model,
and the IBIS-like model. The proposed NN-based model captures the PSIJ from both I/O
buffer stages while presenting a difference of 6.2 ps that corresponds to 7.3% of relative
error. However, the IBIS-like mode shows a p2p eye jitter of 39.21 ps, corresponding to
46.33% as reported in Table 6.

It is worth noting that validation with pure sinusoidal or distorted sinusoidal (i.e.,
two-tone) PGSV variations does not affect the predicted waveform under PGSV variations
because the model was trained with multi-tone sinusoidal voltages that cover the possible
frequency of interest within the bandwidth of the PDN.
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Table 6. Jitter performance of TL circuit, IBIS-like, and NN models under two-tone PGSV variations
applied at both driver’s stages (test case 4).

TL Circuit NN Model IBIS-Like

Eye jitter (p2p) (ps) 84.62 90.82 45.41

Eye width (ps) 1341.04 1336.35 1381.77

Eye height (V) 1.15 1.16 1.182

5. Conclusions

This paper presents an improved nonlinear dynamic I/O buffer circuit behavioral mod-
elling methodology to accurately predict the timing distortions induced by the predriver
as well as by the last stage of the driver. The NN-based parametric model was developed
to estimate the output switching time signals of the predriver under the power ground
supply variations. The proposed model demonstrates good results in estimating the PSIJ
with a decoupled supply source noise at the predriver and at the last stage of the driver.

Moreover, to evaluate the proposed model’s performance in predicting the eye dia-
gram opening and p2p jitter from transient simulation, two different I/O buffer circuit
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technologies were tested: 0.35 µm and 28 nm FD-SOI technologies. The simulation results
of the established model showed a good approximation for the p2p eye jitter value with
worst-case relative error about 9.82%

Author Contributions: Conceptualization and methodology, M.S., J.N.T., R.M. and W.D.; software
and validation, M.S., J.N.T., W.D. and H.B.; formal analysis, M.S. and J.N.T.; investigation, M.S., W.D.
and J.N.T.; data curation, M.S. and J.N.T.; writing—original draft preparation, M.S.; writing—review
and editing, M.S., R.M., W.D., J.N.T., E.M.G.R. and H.B.; supervision, R.M., J.N.T., H.B. and E.M.G.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Science and Technology (FCT) under the ICT (Institute of
Earth Sciences) project UIDB/04683/2020; Portuguese Funds through the Foundation for Science
and Technology (FCT) under the LAETA project UIDB/50022/2020.

Acknowledgments: First author would like to thank reviewers and collaborators from different Insti-
tutes and Universities for their comments and suggestions that improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fan, J.; Ye, X.; Kim, J.; Archambeault, B.; Orlandi, A. Signal integrity design for high-speed digital circuits: Progress and directions.

IEEE Trans. Electromagn. Compat. 2010, 52, 392–400. [CrossRef]
2. Oh, D.; Shim, Y. Power integrity analysis for core timing models. In Proceedings of the 2014 IEEE International Symposium on

Electromagnetic Compatibility (EMC), Raleigh, NC, USA, 4–8 August 2014; pp. 833–838.
3. Gupta, S. 3-T (8-T) Decoupling Capacitors for Improved PDN in LPDDR4/4X/5 System. In Proceedings of the 2019 IEEE 69th

Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 2097–2102.
4. Dghais, W.; Souilem, M.; Zayer, F.; Chaari, A. Power Supply and Temperature Aware I/O Buffer Model for Signal-Power Integrity

Simulation. Math. Probl. Eng. J. 2018, 2018, 1–9. [CrossRef]
5. Yu, H.; Michalka, T.; Larbi, M.; Swaminathan, M. Behavioral Modeling of Tunable I/O Drivers with Preemphasis Including

Power Supply Noise. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2020, 28, 233–242. [CrossRef]
6. Canavero, F.G.; Maio, I.A.; Stievano, I.S. M[pi]log, macromodeling via parametric identification of logic gates. IEEE Trans. Adv.

Packag. 2004, 27, 15–23.
7. Signorini, G.; Siviero, C.; Grivet-Talocia, S.; Stievano, I.S. Power and Signal Integrity co-simulation via compressed macromodels

of high-speed transceivers. In Proceedings of the 2015 IEEE 18th Workshop on Signal and Power Integrity (SPI), Berlin, Germany,
10–13 May 2015.

8. Oh, D. System level jitter characterization of high speed I/O systems. In Proceedings of the IEEE International Symposium on
Electromagnetic Compatibility, Pittsburgh, PA, USA, 6–10 August 2012; pp. 173–178.

9. Lan, H.; Schmitt, R.; Yuan, C. Prediction and measurement of supply noise induced jitter in high-speed induced jitter in high-speed
I/O interfaces. In Proceedings of the DesignCon, Santa Clara, CA, USA, 2–5 February 2009.

10. I/O Buffer Information Specification; Version 7; IBIS Open Forum: Boston, MA, USA, 2019. Available online: https://ibis.org/ver7.0
/ver7_0.pdf (accessed on 1 September 2021).

11. Varma, A.K.; Steer, M.; Franzon, P.D. Improving Behavioral IO Buffer Modeling Based on IBIS. IEEE Trans. Adv. Packag. 2008, 31,
711–721. [CrossRef]

12. Dghais, W.; Rodriguez, J. New Multiport I/O Model for Power-Aware Signal Integrity Analysis. IEEE Trans. Compon. Packag.
Manuf. Technol 2016, 6, 447–454. [CrossRef]

13. Sandler, S.; Bogatin, E.; LeCroy, T.; Smith, L. Power Distribution Network (PDN) Impedance and Target Impedance. In Proceedings
of the Electronic Design Innovation Conference and Exhibition, Santa Clara, CA, USA, 17–19 October 2018.

14. LSmith, L.D.; Bogatin, E. Principles of Power Integrity for PDN Design—Simplified: Robust and Cost Effective Design for High-Speed
Digital Products; Prentice Hall: Hoboken, NJ, USA, 2017.

15. Sun, S.; Smith, L.D.; Boyle, P. On-Chip PDN Noise Characterization and Modeling. In Proceedings of the DesignCon, Santa Clara,
CA, USA, 1–4 February 2010.

16. Smith, L.; Sun, S.; Boyle, P.; Krsnik, B. System power distribution network theory and performance with various noise current
stimuli including impacts on chip level timing. In Proceedings of the Custom Integrated Circuits Conference, San Jose, CA, USA,
13–16 September 2009.

17. Zhang, Q.J.; Zhang, L. Neural Network Techniques for High-Speed Electronic Component Modeling. In Proceedings of the 2009
IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, Guadalajara, Mexico,
19–20 February2009; pp. 69–72. [CrossRef]

18. Cao, Y.; Erdin, I.; Zhang, Q.J. Transient Behavioral Modeling of Nonlinear I/O Drivers Combining Neural Networks and
Equivalent Circuits. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 645–647. [CrossRef]

http://doi.org/10.1109/TEMC.2010.2045381
http://doi.org/10.1155/2018/1356538
http://doi.org/10.1109/TVLSI.2019.2936815
https://ibis.org/ver7.0/ver7_0.pdf
https://ibis.org/ver7.0/ver7_0.pdf
http://doi.org/10.1109/TADVP.2008.2004995
http://doi.org/10.1109/TCPMT.2015.2512911
http://doi.org/10.1109/IMWS.2009.4814911
http://doi.org/10.1109/LMWC.2010.2080670


Sensors 2021, 21, 6074 17 of 17

19. Chu, X.; Hwang, C.; Fan, J.; Li, Y. Analytic Calculation of Jitter Induced by Power and Ground Noise Based on IBIS I/V Curve.
IEEE Trans. Electromagn. Compat. 2018, 60, 468–477. [CrossRef]

20. Souilem, M.; Tripathi, J.N.; Dghais, W.; Belgacem, H. An IBIS-like Modelling for Power/Ground Noise Induced Jitter under
Simultaneous Switching Outputs (SSO). In Proceedings of the 2019 IEEE 23rd Workshop on Signal and Power Integrity (SPI),
Chambéry, France, 18–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

http://doi.org/10.1109/TEMC.2017.2725270

	Introduction 
	Problem Formulation 
	Proposed Modelling Methodology 
	Model Structure 
	Last Stage Modelling 
	Predriver Modelling 

	Model Implementation and Validation Results 
	Predriver Model Validation 
	Global Model Validation under PGSV Variations at the Predriver and Last-Stage 

	Conclusions 
	References

