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Abstract. This paper is about a computer application for planning maintenance of aircraft fleet 
in what regards allocation of skilled technicians. The formalization for this planning is a 
mathematical programming problem written as a minimizing one. The decision variables are 
the allocation of the skilled technicians. The data are the number of available technicians, the 
working hours needed to accomplish maintenance, the costs due to the daily operation of 
facilities, and due to the fleet downtime. Although, the formalization is of a non-linear integer-
programming problem, a transformation of variables from positive integer ones to Boolean 
ones is conceivable and allows a reformulation as a pure integer linear programming problem. 
Also, a relaxation of the integer variables to continuous ones allows for a relaxed formulation 
as a convex non-linear programming problem. A case study of two fleets illustrates both 
formulations: solved by the pyomo library calling the GLPK for the pure linear integer 
programming problem and calling solvers in Scipy library for the relaxed formulation. An 
inference presented about the results of the case study addresses the issue of using nonlinear 
programming to emulate the solution of linear integer programming. 

1.  Introduction 
Airline companies must face the impact of a highly regulated and monitored air transport business 

settings and regulatory frameworks that impact operation, and, therefore, on the industry’s efficiency 
due to the time required for the aircraft to stay in the hangar, i.e., the hangar downtime [1-3]. Airlines 
that develop a competitive advantage in aircraft maintenance, repair, and overhaul (MRO) not only 
have an advantage in terms of fares, but also in an enhanced rotation, shorter lead times, and reduced 
hangar downtime to improve aircraft availability and lower overall operating cost [4]. Hence, the 
importance of a support information system for planning of MRO in yielding safe and airworthy 
aircraft is crucial to business survival, not only by diminishing the probability of incidents, accidents, 
and augmenting safety but also by attaining the highest availability while maintaining work 
performance.  MROs must develop strategies to optimize the use of the workforce, meet maintenance 
requirements and minimize costs. These strategies may involve reviewing the distribution of shifts and 
the duration of the work week [5], optimizing line maintenance task scheduling [6], better predicting 
the amount of maintenance unscheduled work [7], scheduling individual tasks to maximize 
maintenance flexibility [8] or reducing the long term number of maintenance checks by an efficient 
maintenance planning [9]. To take timely decisions, MRO management must have an appropriate data 
system [10] and customized support software systems to take decisions about the allocation of skilled 
technicians. This paper presents a practical programming methodology to achieve minimum total 
maintenance cost by a convenient allocation of technicians. Python is an object-oriented computer 
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language and from all software languages a convenient one, having software packages with friendly 
interfaces to address mathematical computational problems. The Pyomo is one of those open-source 
software packages used in this paper to model and solve mathematical programming problems by the 
calling of solvers [11]. GLPK is one of these solvers, an ANSI C freeware linear mixed-integer 
programming solver [12]. Another package used in this paper is SciPy Python library of routines for 
modeling and solving scientific problems [13-15]. 
 

2.  Problem formulation 
The setting for the mathematical programming problem of planning maintenance in this paper is 

the following. Let the MRO have a set F of fleets f to go under maintenance. The fleet f is a set 𝐾𝐾𝑓𝑓 of 
aircraft k to go under check c belonging to a set of feasible checks C. Consider that an aircraft k of a 
fleet f under check c has a maintenance cost 𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 . Besides the cost due to labor (𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 ), the 

maintenance cost (𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 ) has three main parcels: the cost of materials and services needed for the 

check (𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 ), the cost associated with facilities, and the opportunity cost associated with hangar 

downtime. These last two costs are from data usually given per day, respectively, for facilities (𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
𝑓𝑓 ) 

and for downtime (𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 ). The goal is to minimize 𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓  written as a function of the allocation of 
maintenance teams with the appropriate number of technicians of each skill, and subjected to labor, 
technical and operational constraints. The maintenance cost (𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 ) is a function of the time the 
aircraft stays in the hangar, given as follows: 

𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 + (𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘

𝑓𝑓 + 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘
𝑓𝑓 ) 𝑡𝑡𝑘𝑘𝑘𝑘

𝑓𝑓  (1) 

In (1), 𝑡𝑡𝑘𝑘𝑘𝑘
𝑓𝑓  is the time duration of the check in the hangar, which depends on the workloads of the 

required skills and the respective number of technicians allocated; 𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
𝑓𝑓  aggregates the costs of the 

daily operations and maintenance in the hangar, for example, the general support equipment, the tools, 
the hydraulic and pneumatic power supply, maintenance of buildings, heating and lighting; 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓  is the 
daily revenue loss for having the aircraft at the hangar instead of flying paying passengers. Thus, there 
are maintenance costs incurred in function of the time duration of the check in the hangar. The 
allocation of the maintenance team is relevant for the time-dependent parcels of equation (1), 
i.e. 𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘

𝑓𝑓 𝑡𝑡𝑘𝑘𝑘𝑘
𝑓𝑓  and 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 𝑡𝑡𝑘𝑘𝑘𝑘
𝑓𝑓 , as 𝑡𝑡𝑘𝑘𝑘𝑘

𝑓𝑓  depends on the total person-hours for the particular skill and the 
number of technicians allocated to the check as follows: 

𝑡𝑡𝑘𝑘𝑘𝑘
𝑓𝑓 = 1

𝑑𝑑
∑ 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘

𝑓𝑓

     𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑓𝑓

𝑆𝑆
𝑠𝑠=1  (2) 

In (2), 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓  and 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠

𝑓𝑓  are respectively total person-hours and the number of technicians of the 
technical skill s required to the maintenance check c; d is the number of daily hours of labor a 
technician does on a aircraft; and time 𝑡𝑡𝑘𝑘𝑘𝑘

𝑓𝑓  is expressed in days. The 𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
𝑓𝑓  plus 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓  is the 
maintenance cost per day of work incurred by fleets f aircraft k to go under check c and the total 
maintenance cost TMC is as follows: 

𝑇𝑇𝑀𝑀𝑀𝑀 = 1
𝑑𝑑

 ∑ ∑ ∑ (𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
𝑓𝑓 + 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 )𝐶𝐶𝑘𝑘
𝑘𝑘=1

𝐾𝐾𝑓𝑓
𝑘𝑘=1

𝐹𝐹
𝑓𝑓=1 ∑ 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘

𝑓𝑓

𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑓𝑓

𝑆𝑆
𝑠𝑠=1  (3) 

MRO companies have only access to a limited workforce, so the number of technicians must be 
constrained to the available technicians for the aircraft maintenance as follows: 

∑ ∑ ∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓𝐶𝐶𝑘𝑘

𝑘𝑘=1
𝐾𝐾𝑓𝑓
𝑘𝑘=1

𝐹𝐹
𝑓𝑓=1 ≤ 𝑋𝑋𝑠𝑠    𝑠𝑠 ∈ (1, … , 𝑀𝑀) (4) 
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In (4), 𝑋𝑋𝑠𝑠 is the number of technicians with skill s available for the maintenance of the fleets.  Also, 
the working space for the maintenance in the neighborhood of an aircraft has area constraint, imposing 
that only is possible at the same maintenance check to allocate a limited number of technicians given 
as follows: 

∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓𝑆𝑆

𝑠𝑠=1 ≤  𝐴𝐴𝑘𝑘𝑘𝑘
𝑓𝑓        𝑓𝑓 = 1, … ,𝐹𝐹;  𝑘𝑘 = 1, … ,𝐾𝐾𝑓𝑓;  𝐹𝐹 = 1, … ,𝑀𝑀𝑘𝑘   , 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠

𝑓𝑓 ∈ {1, … ,𝑋𝑋𝑠𝑠 } (5) 

In (4) and (5) the restriction of limited workforce with the skill s is imposed and the constraint of only 
a feasible number of technicians is possible to allocate to fleets f aircraft k to go under check c.  

In (5), 𝐴𝐴𝑘𝑘𝑘𝑘
𝑓𝑓  is maximum number of technicians at work in fleet f aircraft k under check c. The goal is to 

minimize the cost TMC (3) by choosing the aircraft check maintenance team with the appropriate 
number of skilled technicians. From (3) the team with the appropriate number of skilled technicians 
does not depend on d, i.e., the optimum decision is independent of the number of daily hours of labor 
on the aircraft as long as the value of d is the same at every workday. So, the formalization for this 
planning of maintenance is the mathematical programming problem written as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ∑ ∑ (𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
𝑓𝑓 + 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 )𝐶𝐶𝑘𝑘
𝑘𝑘=1

𝐾𝐾𝑓𝑓
𝑘𝑘=1

𝐹𝐹
𝑓𝑓=1 ∑ 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘

𝑓𝑓

𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘
𝑓𝑓

𝑆𝑆
𝑠𝑠=1  (6) 

    s.t. 

𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓 ∈ {1, … ,𝑋𝑋𝑠𝑠 }        𝑠𝑠 ∈ (1, … , 𝑀𝑀) (7) 

∑ ∑ ∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓𝐶𝐶𝑘𝑘

𝑘𝑘=1
𝐾𝐾𝑓𝑓
𝑘𝑘=1

𝐹𝐹
𝑓𝑓=1 ≤ 𝑋𝑋𝑠𝑠      𝑠𝑠 ∈ (1, … , 𝑀𝑀) (8) 

∑ 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓𝑆𝑆

𝑠𝑠=1 ≤  𝐴𝐴𝑘𝑘𝑘𝑘
𝑓𝑓        𝑓𝑓 = 1, … ,𝐹𝐹;  𝑘𝑘 = 1, … ,𝐾𝐾𝑓𝑓; 𝐹𝐹 = 1, … ,𝑀𝑀𝑘𝑘 (9) 

In the problem formulation (6) to (9), the number of technicians 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
 𝑓𝑓  are the decisions positive integer 

variables and the time duration of the check in the hangar for a fleet f (2) is thus a discrete dependent 
variable. As stated by the formulation (6) to (9), the problem has only positive integer decisions and is 
a non-linear integer-programming one due to the non-linearity of the objective function. But the 
formulation (6) to (9) admits an equivalent formulation as a pure linear integer programming problem, 
applying a transformation of variables. The transformation from positive integer decisions to Boolean 
decisions variables is as follows: 

𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓 = ∑ 𝑗𝑗 𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘

𝑓𝑓𝑋𝑋𝑘𝑘
𝑘𝑘=1  (10) 

�𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓 �

−1
=  ∑ 𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘

𝑓𝑓  / 𝑗𝑗𝑋𝑋𝑘𝑘
𝑘𝑘=1      (11) 

with 𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘
𝑓𝑓 ∈ �0,  1�  and  ∑  𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘

𝑓𝑓𝑋𝑋𝑘𝑘
𝑘𝑘=1 = 1 

The inverse transformation is as follows: 

𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘
𝑓𝑓 = �

1 , 𝑚𝑚𝑓𝑓  𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓 = 𝑗𝑗  

0 , 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑠𝑠𝑒𝑒  
 (12) 

with 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠 
𝑓𝑓 , 𝑗𝑗 ∈ {1, … ,𝑋𝑋𝑠𝑠 }  

In (12) the number of Boolean decision variables associated with a discrete integer variable for a skill 
s is equal to the maximum number of skilled technicians available in that skill. So, while the number 
of discrete integer decisions is S per aircraft for the formulation (6) to (9), the number of Boolean 
decisions per aircraft using (10) is as follows: 

𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∑ 𝑋𝑋𝑠𝑠− 𝑀𝑀 (∑ 𝐾𝐾𝑓𝑓− 1)𝐹𝐹
𝑓𝑓=1

𝑆𝑆
𝑠𝑠=1   and  𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/𝑀𝑀 ≤ 𝑚𝑚𝐹𝐹𝑥𝑥 {𝑋𝑋𝑠𝑠 }s=1,…,𝑆𝑆 −  ∑ 𝐾𝐾𝑓𝑓 +  1𝐹𝐹

𝑓𝑓=1  (13) 
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Substituting equations (10) and (11) in (6) to (9), the problem is as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ∑ ∑ (𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘
𝑓𝑓 + 𝐷𝐷𝑀𝑀𝑘𝑘𝑘𝑘

𝑓𝑓 )∑ 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓  ∑  𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘

𝑓𝑓  / 𝑗𝑗𝑋𝑋𝑘𝑘
𝑘𝑘=1

𝑆𝑆
𝑠𝑠=1

𝐶𝐶𝑘𝑘
𝑘𝑘=1

𝐾𝐾𝑓𝑓
𝑘𝑘=1

𝐹𝐹
𝑓𝑓=1  (14) 

    s.t. 

∑ ∑ ∑ ∑ 𝑗𝑗 𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘
𝑓𝑓𝑋𝑋𝑘𝑘

𝑘𝑘=1
𝐶𝐶𝑘𝑘
𝑘𝑘=1

𝐾𝐾𝑓𝑓
𝑘𝑘=1

𝐹𝐹
𝑓𝑓=1 ≤ 𝑋𝑋𝑠𝑠     𝑠𝑠 = 1, … , 𝑀𝑀 (15) 

∑ ∑ 𝑗𝑗 𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘
𝑓𝑓𝑋𝑋𝑘𝑘

𝑘𝑘=1
𝑆𝑆
𝑠𝑠=1 ≤  𝐴𝐴𝑘𝑘𝑘𝑘

𝑓𝑓     𝑓𝑓 = 1, … ,𝐹𝐹;  𝑘𝑘 = 1, … ,𝐾𝐾𝑓𝑓; 𝐹𝐹 = 1, … ,𝑀𝑀𝑘𝑘 (16) 

𝑢𝑢𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘
𝑓𝑓 ∈ �0,  1�  𝑓𝑓 = 1, … ,𝐹𝐹;  𝑘𝑘 = 1, … ,𝐾𝐾𝑓𝑓; 𝐹𝐹 = 1, … ,𝑀𝑀𝑘𝑘;  𝑠𝑠 = 1, … , 𝑀𝑀;   𝑗𝑗 = 1, … ,𝑋𝑋𝑠𝑠 (17) 

In (14) to (17) the objective function and the constraints are linear function of the binary decision 
variables. So, this formulation is a pure linear integer programming problem. 

3.  Case study 
An airline company has one medium-range and one long-range aircraft to go under maintenance 

check. The loss of revenue per aircraft per day due to maintenance downtime is of 30 k€ and 70 k€ for 
medium-range and long-range, respectively. The work package of the manufacturer estimates values 
of 1150 person-hours for the medium-range aircraft and 2900 person-hours for the long-range aircraft 
checks. The person-hours by skills allocated in percentage of the estimated values, the facilities daily 
cost and the confines on support teams the working space for the maintenance in the neighborhood of 
an aircraft are in Table 1. 

Table 1. Maintenance by skill, Fac daily cost, and confines on support team 

Aircraft type Systems (%) Structures (%) Avionics (%) Facilities cost 
(k€) 

Confines on 
support team 

medium-range 60 30 10 5.0 25 
long-range 40 35 25 6.5 40 

The maximum number of skilled technicians available to carry out the maintenance work on the fleets 
are in Table 2. 

Table 2. Available skilled technicians 
Skills Systems Structures Avionics 

No. Technicians 30 15 10 
 
The airline has two fleets: F=2 and has one aircraft on each fleet under maintenance, so 𝐾𝐾1 = 𝐾𝐾2 = 1. 
The aircraft is performing the first base maintenance check C, so Ck =1 and for simplicity in what 
follows the indices k and c having permanently the value 1 are discarded. There are three skills s, so 
S=3 and the total number of positive integer variables is S F = 6. The total number of Boolean 
variables is (29+14+9) F = 104. Nevertheless, the non-linear integer-programming problem (6) to (9) 
is not friendly enough to solve but can be convexified with a relaxation on the constraint (7), allowing 
for continuous decision variables. This relaxation on the formulation (6) to (9) is the substitution of (7) 
by the constraint as follows: 

1 ≤ 𝑥𝑥𝑘𝑘𝑘𝑘𝑠𝑠
𝑓𝑓        𝑠𝑠 ∈ (1, … , 𝑀𝑀) (18) 

In (18) and (8) gives an implicit formalization for the box constraints associated with the relaxed 
variables. So, the relaxed problem formulated by (6), (18) to (9) has a convex objective function and is 
a convex optimization problem with linear constraints. So, this formulation is friendly approachable to 
find acceptable commercial or even free-software solvers.  
As mentioned, the solvers applied for this case study are the scipy.optimize solvers, namely, 
COBYLA, SLSQP, Trust-Constr. The convex optimization problem solved by these solvers with the 
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same point of initialization, given by  𝑥𝑥11 = 𝑥𝑥12 = 10 and 𝑥𝑥21 = 𝑥𝑥22 = 𝑥𝑥31 = 𝑥𝑥32 = 5, gives the output 
shown in Table 3.  
 

Table 3. Solvers output 
 
 
 
 
 
 

 
 
 

Table 3 shows that the solver SLSQP exited with the initial values of the variables, because more 
technical information about the bounds of the variables, than the required by other two solvers is 
necessary for processing the solution. In addition, for any solver, integer decisions are not guaranteed 
due to the relaxation and rounding to integers is prone to be unfeasible decisions and as expected the 
other two solvers run for the same final decision continuous variables. The pure linear integer 
programming problem (14) to (17) solved by the GLPK delivers the required integer decision for 
technicians allocation to the aircraft maintenance teams shown in Table 4. 
 

 
Table 4. Teams allocation, via GLPK 

Aircraft type Systems Structures Avionics 
medium-range 10 4 2 

long-range 20 11 8 

A comparison between Table 3 and Table 4 shows that the rounding of the output of the COBYLA, 
and Trust-Constr equal the required integer decision, but this is not always a fact even if feasibility 
occurs providentially after rounding. The advantage of the implementation of these two methods, 
relative to the GLPK, is fewer decision variables: 6 while the latter has 104. The number of decision 
variables per aircraft and skill for the pure linear integer programming problem (14) to (17) is limited 
by the inequality shown in (13). A study of the impact in the cost of not taking the optimal decisions 
identified by T8, but feasible ones is in Figure 1. 

 
Figure 1. Relative cost increment. 
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In Figure 1, the allocations for the study of the impact in the cost are around the optimal one in 
decreasing order of technician allocated to the fleet f = 1 as shown in Table 5. 

Table 5. T1 to T9 feasible technician allocations 

Allocations T1 T2 T3 T4 T5 T6 T7 T8 T9 

Te
ch

ni
ci

an
s 

fle
et

 1
 x1

1 14 14 13 12 12 11 11 10 9 
x1

2 7 6 5 5 5 5 4 4 4 
x1

3 4 3 3 3 2 2 2 2 2 

fle
et

 2
 x2

1 16 16 17 18 18 19 19 20 21 
x2

2 8 9 10 10 10 10 11 11 11 
x2

3 6 7 7 7 8 8 8 8 8 
 
In Figure 1, in near neighborhoods of the optimal decision, allocation T8, given by the GLPK, the 
increment in cost: changing only one system technician among the fleets, increases cost about 0.2%; 
changing one system and one structure technicians among the fleets, increases cost about 0.4%; 
changing two system and one structure technicians among the fleets, increases cost about 0.7%; 
changing two system, one structure and one avionics technicians among the fleets, increases cost about 
2%; changing three system, one structure and one avionics technicians among the fleets, increases cost 
about 2.5%; changing four system, two structure and two avionics technicians among the fleets, 
increases cost about 5 %; changing four system, three structure and two avionics technicians among 
the fleets, increases cost about 11.9%. If a feasible decision can be achieved by rounding the 
continuous optimal solution, the change by one or two technicians is small. Thus, as a first 
approximation the problem convexification is acceptable and as the objective function is a convex 
function and the feasible set is a polyhedron, the convexification is more desirable. 
The following simulations are for the assessment of the change in the allocations of skilled technicians 
in function of significant changes in the above work package. The alternative work packages for 
maintenance in what regard the workload and the skills distribution are in Table 6. 
 

Table 6. Work packages 
Work packages  Workload  

(h) 
Systems  

(%) 
Structures  

(%) 
Avionics  

(%) 
1 medium-range 4600 35 45 20 

long-range 2900 40 35 25 
2 medium-range 8200 30 55 15 

long-range 2900 40 35 25 
3 medium-range 4600 35 45 20 

long-range 6100 35 45 20 
4 medium-range 8200 30 55 15 

long-range 6100 35 45 20 
5 medium-range 8200 30 55 15 

long-range 12300 25 55 20 
 
Table 7 shows the results for the alternative work packages using the linear programming solver 
GLPK and comparing with the solutions obtained by the three non-linear solvers (COBYLA, SLSQP 
and Trust-Constr). Where A= Alternative Work package. 
Table 7 shows that SLSQP for scenarios 1, 3 and 5 exited with the initial values, and for scenarios 2 
and 4, the output does not satisfy the constraints of the problem. SLSQP Scenario 2 provides a non-
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integer value of 32.3 systems technicians which by rounding does not satisfy the maximum of 30 
available systems technicians. SLSQP provides a non-integer value of 16.03 structures technicians 
which by rounding does not satisfy the maximum of 15 available structures technicians. SLSQP 
provides a non-integer value of 11.6 avionics technicians which by rounding does not respect the 
maximum of 10 available structures technicians. Also for scenario 4 a non feasible output is found by 
SLSQP. Both COBYLA and Trust-Constr provide non integer solutions, but for these five scenarios 
the round of the solution equals the exact solution. Even though feasible decisions are not guaranteed 
due to the relaxation and rounding to integers, these alternative work packages show that the allocation 
of skilled technicians does not change significantly when the work package has significant changes. 
 

Table 7. Teams allocation, via GLPK and non-linear solvers (Cobyla, SLSQP, Trust-Constr) 

 Linear Prog 
Solver Non-linear Programming Solvers 

 GLPK COBYLA SLSQP Trust-Constr 
A 

Sys Str Avi Sys Str Avi Sys Str Avi Sys Str Avi 

1 13 7 4 13.30 7.37 4.32 10.00 5.00 5.00 13.30 7.37 4.32 
17 8 6 16.70 7.63 5.68 10.00 5.00 5.00 16.70 7.63 5.68 

2 12 9 4 12.00 8.52 4.48 14.77 8.58 5.79 12.00 8.52 4.48 
18 6 6 18.00 6.48 5.52 17.56 7.45 5.79 18.00 6.48 5.52 

3 11 6 4 11.10 5.55 3.70 10.00 5.00 5.00 11.10 5.55 3.70 
19 9 6 18.90 9.45 6.30 10.00 5.00 5.00 18.90 9.45 6.30 

4 13 7 4 12.62 6.97 4.04 15.99 7.94 5.32 12.62 6.97 4.04 
17 8 6 17.38 8.03 5.96 18.06 8.57 6.83 17.38 8.03 5.96 

5 11 5 3 11.31 5.34 3.24 10.00 5.00 5.00 11.31 5.34 3.24 
19 10 7 18.69 9.66 6.76 10.00 5.00 5.00 18.69 9.66 6.76 

4.  Conclusion 

A survey of the literature agrees in the fact that an adequate team allocation for aircraft fleet 
maintenance has an impact in reducing the cost of MRO for airlines due to the reduction of the costs 
incurred in the operation of facilities, and in fleet downtime. So, planning maintenance of aircraft 
fleets in what regards team allocation must be carefully managed, taking into consideration the 
available technicians per skills, the working hours needed to accomplish maintenance, the costs due to 
the daily operation of facilities, and to the fleet downtime.  The planning maintenance of aircraft fleets 
in the context of taking the best decisions is an optimization problem formulated as the minimization 
of the costs incurred, having integer decision variables given by the number of technicians allocated to 
work for the maintenance of aircraft. The proposed planning maintenance has a formulation based in a 
non-linear integer-programming problem which is not friendly enough in what regards the available 
commercial solver or even free-software ones. But this formulation admits a reformulation as a pure 
linear integer programming problem, using a transformation of the decision variables to Boolean ones. 
Also, the non-linear integer-programming problem allows a convexification by relaxing the decision 
variables to be continuous ones, giving behavior that can be easily solved by commercial or even free-
software solvers. Although, the relaxation has the advantage of having fewer decision variables than 
the pure linear integer programming problem, the optimum decision given by the relaxation is not 
necessarily a feasible and an integer one. Thus, rounding to an integer one has to be carried out. But 
this rounding tends to deliver an unfeasible decision, and even if the rounding is feasible is not 
possible to faithfully guarantee the optimal solution. The simulation of allocations with a significant 



10th EASN 2020
IOP Conf. Series: Materials Science and Engineering 1024  (2021) 012102

IOP Publishing
doi:10.1088/1757-899X/1024/1/012102

8

 
 
 
 
 
 

change in the work package does not change significantly the output, i.e., the sensitivity of team 
allocation is low. 
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