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Abstract: This article presents an assessment of the most suitable compressed air energy storage
(CAES) reservoirs and facilities to better integrate renewable energy into the electricity grid. The
novelty of this study resides in selecting the best CAES reservoir sites through the application of
a multi-criteria decision aid (MCDA) tool, specifically the simple additive weighting (SAW) method.
Besides using geographic information systems (GIS) spatial representation of potential reservoir
areas, for the MCDA method, several spatial criteria, environmental and social constraints, and
positive incentives (e.g., the proximity to existing power generation facilities of renewable energy
sources) were contemplated. As a result, sixty-two alternatives or potential reservoir sites were
identified, and thirteen criteria (seven constraints and six incentives) were considered. The final
stage of this study consisted of conducting a sensitivity analysis to determine the robustness of the
solutions obtained and giving insights regarding each criterion’s influence on the reservoir sites
selected. The three best suitable reservoir sites obtained were the Monte Real salt dome, Sines Massif,
and the Campina de Cima—Loulé salt mine. The results show that this GIS-MCDA methodological
framework, integrating spatial and non-spatial information, proved to provide a multidimensional
view of the potential reservoir CAES systems incorporating both constraints and incentives.

Keywords: compressed air energy storage; potential underground reservoirs; economic-social-
environmental concerns; multi-criteria decision analysis; simple additive weighting; sensibility analysis

1. Introduction

Portugal has one of the highest shares of renewable energy production within the
European Union (EU), with more than half of the electricity consumed in 2019 coming
from renewable energy sources (RES). RES was responsible for the production of 27.3 TWh,
contributing to 56.10% of the electricity mix [1]. With the increasing use of intermittent RES
and their integration into the national electricity system, challenges are being constantly
brought into the grid, and solutions must mitigate intermittency and load variation. Energy
storage (ES) is one of the most interesting options since it increases the flexibility of
generating, delivering, and consuming electricity. In addition, ES provides the ability to
balance power supply and demand, making power networks more resilient, efficient, and
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cleaner than before [2]. Portugal has pumped hydro energy storage (PHES) systems, but
a large-scale ES system not dependent on weather conditions could add flexibility to the
grid in dry years. Compressed air energy storage (CAES) is an alternative not dependent
on weather or topography, having a relatively lower environmental impact than PHES [3].
CAES is a bulk storage technology with the ability to store tens to hundreds of MW of
power capacity for long-term and utility-scale applications in underground caverns in the
form of pressurized air. Apart from PHES, CAES is also one of the lowest-cost utility-scale
storage technologies currently available [3,4].

This study was based on the potential geological sites for large-scale CAES in mainland
Portugal obtained from the Energy Storage Mapping and Planning (ESTMAP) studies—an EU
Horizon 2020 project—described in [5]. While this latter project focuses on the several
possible underground ES technologies available for Europe, the present study explicitly
addressed CAES in Portugal, including potential reservoirs not previously considered [5].
Moreover, the novelties of this study are threefold: it suggests the use of a multi-criteria
decision aid (MCDA) method to select the best specific CAES sites available in Portugal; it
establishes suitable case studies; and it carries out sensitivity analyses (SA) to evaluate the
robustness of solutions selected as the best reservoir sites, also giving insights regarding
the impacts of each criterion on the final decision reached.

According to Belton & Stewart [6], MCDA can be viewed as “formal approaches
which seek to take explicit account of multiple criteria in helping individuals and groups
explore decisions that matter.” MCDA methods have been applied across a broad spectrum
of disciplines [7] and are often used to deal with the difficulties that decision-makers
(DMs) face when they have to handle large amounts of complex information [6,8]. These
methods have been used to tackle geographic problems involving many alternatives
and often conflicting evaluation criteria [9,10]. Combining a GIS and MCDA method
produces excellent analysis tools, creating extensive spatial and non-spatial databases,
which can simplify and solve problems while promoting the use of multiple criteria [11].
GIS and MCDA methods have been widely employed in the selection of the most suitable
locations for RES facilities [8,10] [12–17]. Several studies [18–20] used SAW in a web-based
GIS environment to identify preferable locations for wind farms and solar power plants.
Silva et al. [21] coupled GIS and MCDA methods to select biomass plants in a Portuguese
region. In a similar vein, Perpiña et al. [22] used an MCDA method to identify suitable areas
for locating biomass plants. Marques-Perez et al. [16] used a GIS-based approach combined
with a multi-criteria evaluation methodology for the territorial planning of photovoltaic
power plants. In contrast, Mokarram et al. [17] defined a novel optimal placing of solar
farms utilizing MDCA and GIS. Sánchez-Lozano et al. [23] used MCDA techniques to
evaluate GIS-based photovoltaic solar farms’ site selection. Finally, Rediske et al. [20]
utilized GIS-MCDA tools for the decision location of photovoltaic power plants’ installation
in Brazil. In the context of location problems, several spatial variables are usually involved,
such as environmental protection areas, proximity to rivers, roads, populations, and spatial
characteristics of the region, like geology or even slope issues [21,24].

The present study applied MCDA in a GIS environment to select the most suitable
CAES reservoir sites using the simple additive weighting (SAW) MCDA method. The SAW
method was chosen because it has been largely employed in management and engineering
problems, such as facility location problems [25,26], especially for RES site selection [10] and
also for ES purposes [27]. Finally, a robust assessment of the results found was conducted
through a sensibility analysis (SA).
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2. Compressed Air Energy Storage Reservoirs and GIS

In a large-scale CAES plant, the off-peak power from the grid or the electricity gener-
ated from RES is used to compress ambient air stored under pressure in an underground
geological reservoir. Later, when power demand requirements are high, the pressurized
air is released back up to the surface, where it is heated and expanded, rushing through
a turbine and driving a generator to produce electricity [2,4,28,29].

The suitable geological reservoirs for CAES technologies are (a) host rocks (engineered
caverns and abandoned mines), (b) caverns in salt formations (salt domes or bedded salt), and
(c) porous rocks (saline aquifers or depleted hydrocarbon reservoirs) [30]. CAES usage in salt
caverns is demonstrated at the industrial scale in two large-scale facilities: Huntorf (Germany)
and McIntosh (USA) [30,31]. Porous rocks appear to be the lowest cost option, but these have
not been studied at an industrial scale. Cavities in host rocks are a more expensive alternative
due to the cost of mining a new reservoir unless abandoned mines are possible [30,31].

This study mainly addressed CAES underground reservoirs in Portugal, and, besides
considering the potential geological formations suitable for these reservoirs identified in
ESTMAP [5], it also considered deep mines. Hence, these reservoirs were obtained through
the inspection of public access data collected from geological surveys, geological maps,
scientific publications, drilling records, and borehole logs, as well as data collected from
companies and governmental and regulatory authorities, such as the Directorate-General
for Energy and Geology (DGEG), the National Laboratory of Energy and Geology (LNEG),
the Nacional Entity for the Energy Sector (ENMC), the Mining Development Company
(EDM), National Energy Networks (REN), CUF Industrial Chemicals SA, and Solvay
Portugal. The potential reservoirs considered were igneous host rocks, deep mines, salt
formations, and saline aquifers. However, since there are no depleted hydrocarbon fields
in Portugal, these reservoirs were not considered. Instead, a spatial database was compiled
with the publicly available information for each reservoir type in a GIS environment
(ArcGIS software, Évora, Portugal). Then, it was cross-checked with the pre-selected
criteria for CAES potential reservoirs (available in [32]) and spatial, environmental, and
social constraints and positive incentives.

GIS technologies are widely used to collect, store, manage, calculate, analyze, display,
and describe geo-referenced data. Thus, they are valuable tools for assisting planning and
decision-making in multiple contexts in which geo-referenced information plays a relevant
role [10]. Subsequently, GIS data can generate inputs to spatial decision-making analysis [9],
utilizing functions of overlay analysis [10].

The identified potential reservoirs are represented in the GIS environment by an ArcGIS
attribute map (Figure 1), showing a total of six-ty-two potential sites with geological
characteristics suitable for CAES, namely twenty, host rocks, nine deep mines, eighteen
salt formations, nine salt caverns, and six saline aquifers.

Then, the selection of the most suitable reservoirs for CAES was obtained by applying
the SAW methodology to these sixty-two potential geological sites (Figure 1).
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Figure 1. Potential CAES reservoirs in mainland Portugal are represented in an ArcGIS map.

3. Methodology

The SAW method, also called the weighted linear combination (WLC) method, is
a widely known and often used MCDA technique [25,27,33], integrating criteria values
and weights into a single framework [34] due to its reliability and proven results. The
SAW method is based on a weighted average, calculating a score for each alternative by
multiplying the scaled value given to the alternative of that attribute by the weights of
relative importance directly assigned by the decision-makers [25].

This method was chosen because it is reliable and has the advantage of allowing
a proportional linear transformation of raw data, meaning that the relative order of magni-
tude of standardized scores remains equal [25]. The chosen method is based on the MCDA
method selection tool [35] developed by Wątróbski et al. [7].

Figure 2 illustrates the different phases of this MCDA method.
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Figure 2. Schematic representation of the MCDA-GIS process for site selection of CAES reservoirs.

3.1. Problem Definition and Alternatives

The approach followed herein aimed to identify the best and most suitable potential
reservoir sites for the possible installation of a CAES facility to better integrate RES into
the Portuguese electricity grid. In this case, the generated alternatives are the sixty-two
potential geological reservoirs depicted in Figure 1, according to CAES suitability analysis
for Portugal based on the criteria established by [32]. These alternatives are listed in Tables
in Appendix A, namely: twenty igneous host rocks (Table A1), nine deep mines (Table A2),
eighteen salt formations and nine salt caverns (Table A3), and six saline aquifers (Table A4).

3.2. Criteria Definition: Constraints and Factors

The second SAW phase selects and evaluates the criteria that directly influence the
CAES facility site choice. In this study, thirteen criteria were adopted and subdivided into
constraints and incentives. All the presented criteria are based on measures and legislation
used for Portugal’s natural gas (NG) storage safety [36]. Although compressed air does not
have the same explosive potential as NG, assuming a conservative stance, it was decided to
adopt the same criteria regarding distances to infrastructures since there is still subsidence
risk due to potential underground caverns.

Constraints stand for the criteria that can limit or restrict the placement of a CAES
reservoir at a particular location. For this study, seven constraints were identified (Table 1),
overlaid individually with the identified reservoirs, and cross-checked with the defined
criteria, resorting to basic GIS operations such as buffering and overlapping.

Incentives are the criteria that may be beneficial to the implementation of a CAES
reservoir and facility. In this research, six incentives were identified (Table 2) and overlaid
with the sixty-two reservoirs.

Table 1. Description of the constraints defined as criteria for the suitable CAES reservoirs analysis.

Constraints Description

Sensitive areas Environmental sensitive areas, including Natura 2000 areas, sites of community importance,
and special protection areas.

Groundwater Groundwater protection zones.
Populated Areas Distance to populated areas of less than 200 m.

Roads Distance to roadways or highways of less than 100 m.
Land Slope Terrain slope of above 12%.

Neotectonics Known active faults.
Seismic risk High seismic risk.
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Table 2. Description of the incentives defined as criteria for the suitability CAES reservoirs analysis.

Incentives Description
Renewable energy sources (RES) Proximity to existing RES (wind, solar, hydro) power generation facilities

High-voltage (HV) network Proximity to high-voltage electricity lines
Natural gas (NG) network Proximity to natural gas pipelines (only for diabatic CAES technologies)

Deep geological data Availability of deep geological data
Technology maturity Maturity of the technology according to the type of reservoir

Existence of proven caverns Existence of already proved caverns as a storage mean

The thirteen criteria were divided by decision-makers into three classes (Table 3):
(a) environmental, (b) social, and (c) economic.

Table 3. Scheme of the classification of each criterion (constraints and incentives) and their objectives.

Type Criteria Name Objective
Environmental Sensitive areas J1 Minimize

Groundwater J2 Minimize
Neotectonics J3 Minimize
Seismic risk J4 Minimize

Social Populated areas J5 Minimize
Economic Land slope J6 Minimize

Roads J7 Minimize
Renewable energy sources (RES) J8 Maximize

High voltage (HV) network J9 Maximize
Natural gas (NG) network J10 Maximize

Deep geo data J11 Maximize
Maturity of the technology J12 Maximize
Existence of proven caverns J13 Maximize

Constraints are non-beneficial criteria to be minimized, while incentives are beneficial
criteria to be maximized, as depicted in Table 4. Although SAW may be used if all the
criteria are being maximized [34], there are ways of converting minimizing into maximizing
criteria, just by using a simple inversion of the scale for the minimizing criteria, as explained
in the following sub-section.

Table 4. Maturity of the CAES technology according to the type of geological reservoir (based on [32]).

STORAGES Reservoirs CAES
Salt formations Salt caverns Mature technology, widely implemented

Host rocks Engineered cavities Prospective technology, pre-commercial pilots, and conceptual designs
Abandoned mines Prospective technology, pre-commercial pilots, and conceptual designs

Porous Media Aquifers and traps Prospective technology, pre-commercial pilots, and conceptual designs
Depleted hydrocarbons reservoirs Prospective technology, pre-commercial pilots, and conceptual designs

On the one hand, a CAES facility should be as far away as possible from sensitive
areas, such as ecological and agricultural value, like special protection areas, Natura
2000 areas, and sites of community importance, to protect the environment and reduce
any risk. On the other hand, proximity to energy sources (RES, HV networks, or even
NG networks), proximity to roads, and land slope are important factors when considering
the economic feasibility of any candidate site. Last but not least, social factors such as
distance to populated areas should also be considered since a CAES plant can impact the
population living within proximity to the chosen site due to noise, safety, or even a decrease
in property value.

Some incentives are related to the proximity to energy sources. RES are used to store
energy provided by renewable sources; transmission grid high-voltage (HV) networks
are used for transmission and distribution purposes; and NG networks are used since
natural gas is usually the fossil fuel used in the diabatic CAES expansion phase [30]. Other
incentives are the availability of deep geological data, proven caverns for storage, and the
technology’s maturity depending on the type of geological reservoir. Table 4 depicts this
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last incentive showing that salt caverns are the most mature and implemented type of
reservoirs. They are implemented in two diabatic CAES plants (Huntorf and McIntosh)
and are widely implemented for NG storage and hydrogen worldwide [32].

3.3. Normalization Process

The next step is the normalization process since some criteria are qualitative, and
others are quantitative. Normalization in MCDA is a transformation process to obtain
numerical and comparable input data using a common scale [37]. Normalization (or
transformation) of the initial data is generally used so that the best criterion value (the
largest one for a maximizing criterion and the smallest one for a minimizing criterion)
would obtain the largest value equal to unity [34]. There are several normalization methods,
but given the subjectivity of the qualitative criteria, a simplification was done by the experts
using a rating scale and attributing values. The chosen rating scale is comparable for all
criteria and sets in the interval (0, 1) with intervals of 0.25, and a linear normalization
method was used, where:

(a) For non-beneficial criteria or constraints

Xij = 1 − Xij
XjMax

(1)

(b) For beneficial criteria or incentives

Xij =
Xij

XjMax
(2)

Constraints were normalized and transformed into maximizing criteria by inverting
their scale through Equation (1). Hence, constraints were rated from 0 to 1 with intervals
of 0.25, where 0 means the most favorable situation, and 1 depicts the most unfavorable
situation. However, the rating scale was inverted, and 0 became the most unfavorable
situation and 1 the most favorable (Table 5). Incentives (already maximizing criteria) were
also rated from 0 to 1 (with intervals of 0.25) and normalized according to Equation (2),
where 0 means the most unfavorable situation, and 1 represents the most favorable situation
(Table 5).

Table 5. Normalized rating scale (0,1) attributed to all the criteria (constraints and incentives).

Criteria Rating Scale—Normalized
1 0.75 0.5 0.25 0

J1 Absence of constraint Presence of constraint not
limiting more than 25% area.

Presence of constraint not
limiting more than 50% area.

Presence of constraint not
limiting more than 75% area.

Presence of constraint
limiting the area.

J2 Absence of constraint Presence of constraint not
limiting more than 25% area.

Presence of constraint not
limiting more than 50% area.

Presence of constraint not
limiting more than 75% area.

Presence of constraint
limiting the area.

J3 Absence of constraint Presence of constraint not
limiting more than 25% area.

Presence of constraint not
limiting more than 50% area.

Presence of constraint not
limiting more than 75% area.

Presence of constraint
limiting the area.

J4 IV ≤ Seismic risk ≤ VII VII < Seismic risk ≤ VIII VIII < Seismic risk ≤ IX IX < Seismic risk ≤ X Seismic risk > X

J5 Absence of constraint Presence of constraint not
limiting more than 25% area.

Presence of constraint not
limiting more than 50% area.

Presence of constraint not
limiting more than 75% area.

Presence of constraint
limiting the area.

J6 Land slope < 12% n.a. Land slope ≥12% not
limiting all the area. n.a. Land slope ≥12% limiting

the area

J7 Roads not present Roads not crossing more
than 25% of the area.

Roads not crossing more
than 50% of the area.

Roads not crossing more
than 50% of the area.

Roads crossing and limiting
the use of the area.

J8 Presence of RES Proximity of RES of less than
5 km.

Proximity of RES of
approximately 5 km.

Proximity of RES of more
than 5 km. Absence of RES.

J9 Presence of HV network Proximity of HV network of
less than 5 km.

Proximity of HV network
of approximately 5 km.

Proximity of HV network of
more than 5 km. Absence of HV network.

J10 Presence of HG network Proximity of NG network of
less than 5 km.

Proximity of NG network
of approximately 5 km.

Proximity of NG network of
more than 5 km. Absence of NG network.

J11 Availability of deep
geological data

Availability of 75% deep
geological data but without

enough data.

Availability of 50% deep
geological data but

without enough data.

Availability of 25% of deep
geological data but without

enough data.

Absence of deep
geological data.

J12 Mature technology Proven technology without
installed facilities. Proven technology. Prospective technology with

proven research. Prospective technology.

J13 Existence of proven
caverns for storage

Presence of caverns with bad
conditions for storage. Presence of caverns. Projected caverns. Absence of proven caverns.
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Despite the equal rating scale, there is always some arbitrariness in this conversion
and normalization process. It depends on the analysis of the overlaying layers of reservoirs;
each of the criteria; and the scale that GIS maps are analyzed with.

3.4. Assigning Weights to the Criteria

An essential step of the methodology is the assignment of weights to the criteria.
A weight can be defined as a value assigned to an evaluation criterion that indicates its
importance relative to other criteria under consideration [8]. Such assigned weights are
based on experts’ judgments and should provide a general priority set to evaluate and
compare the alternatives.

Two research team members, experts on underground energy storage, were responsi-
ble for this decision-making process. First, the experts (i.e., decision-makers) individually
assigned the weights according to their experience to identify Portugal’s most suitable
CAES sites. This methodology considered all the environmental, social, and economic cri-
teria (Table 3) and weighted together all the constraints and incentives. Then, the two experts
were engaged in a discussion to reach a consensus and assign the weights in Table 6.

Table 6. Weights assigned to the criteria (constraints and incentives) for CAES potential reservoirs.

Criteria Constraints & Incentives Weights (%)
J1 Sensitive areas 10%
J2 Groundwater 10%
J3 Neotectonics 5%
J4 Seismic risk 7.5%
J5 Populated areas 5%
J6 Land slope 7.5%
J7 Roads 5%
J8 Renewable energy sources (RES) 12.5%
J9 High-voltage (HV) network 12.5%
J10 Natural gas (NG) network 5%
J11 Deep geological data 7.5%
J12 Maturity of technology 7.5%
J13 Existence of proven caverns 5%

Total 100%

The weights of constraints and incentives (Table 6) were attributed according to the
level of importance, limitation, or motivation for the CAES purposes that each criterion
can impose on an area.

Environmental criteria such as sensitive areas and groundwater constraints have
higher weights since they can completely limit a potential site if they are overlapped
with the potential reservoir. Sensitive areas are fundamental constraints in respecting
environmental, conservative, and protectionist policies (flora, fauna, heritage, and natural
reserves). Groundwater resources are also a significant constraint since underground reser-
voirs should be placed in areas with the minimum risk of contamination for groundwater,
including natural springs and geothermal resources.

The land slope is important because slopes greater than 12% can increase the instability
for surface CAES facilities, and their correction can also increase the project’s capital costs.
So, areas with slopes from 0% to 12% are the most suitable for a CAES plant due to lower
economic costs and minimum morphological problems.

Portugal is a country with significant seismic risk due to its location near the bound-
aries of the European and African tectonic plates. Thus, the seismic risk may be an essential
constraint for selecting CAES potential reservoirs where the risk is lower in the north of
the country and higher in the south (according to Portugal’s seismic risk map).

Lastly, constraints such as neotectonic structures, populated areas, and roads should
also be considered. However, their attributed weights are lower since they are not
disabling factors.
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According to Costa [36], for safety reasons (mainly subsidence risk), the distance
between populated areas and CAES facilities should be at least 200 m, and the distance
between roads or highways should be at least 100 m. So, a buffer was used in ArcGIS to
determine the safety area around these constraints and visualize the site free of constraint.

RES and HV have higher weights because they are the most important energy sources
for a large-scale CAES facility. However, HV networks have a slightly bigger weight than
RES because HV lines can work as sources supplying energy from the grid to feed the
CAES plant in periods of electricity shortage from RES or high energy demand.

NG has a lower weight than the previous two since NG pipelines proximity only mat-
ters for diabatic CAES facilities, which need fossil fuels for the expansion phase. Although
the only two CAES facilities in the world are diabatic systems (Huntorf—Germany, and
McIntosh—USA) [4,6], this criterion is not disabling because it is possible to build a more
efficient system with Adiabatic CAES technology.

Deep geological data and technology maturity have similar weights to those assigned
to NG networks. They are important factors to consider since they both can increase the
capital costs of a CAES project. Deep geological data are scarce in Portugal, and acquiring
such information is extremely expensive, meaning that potential areas with deep data
are favored. CAES technology maturity depends on the type of geological reservoir. For
instance, salt is the lithology where CAES technology is already proven and mature.

Lastly, proven caverns for storage have the lowest weight of all the incentives, demon-
strating the area can support that type of underground caverns and decreasing the initial
cost of a project if those caverns could be reused.

3.5. Obtaining SAW Results

SAW results were obtained by analyzing local conditions of the different criteria at the
alternative locations in the GIS database and applying Equation (3) to each alternative and
each criterion (constraints and incentives individually):

S(ai) =
n

∑
j=1

wj·vj(ai) (3)

where ai is the alternative, S(ai) is the suitability level of alternative i or the result of
the weighted sum for alternative ai, wj is the weight of criterion j, and vj is the value of
alternative ai in criterion j.

Therefore, the last steps of this MCDA methodology consist of sorting and applying
the evaluation method and selecting the best alternatives after classifying and ordering
them. Thus, Equation (3) was applied directly to all of the criteria. Therefore, the higher
the total score, the better the alternative for CAES purposes, meaning the highest results
obtained indicate the best alternatives and chose the best potential CAES reservoir sites in
mainland Portugal.

3.6. Sensibility Analysis

Saltelli et al. [38,39] state that sensibility analysis aims to ascertain how much the
uncertainty in input factors influences the uncertainty in a model’s output. So, MCDA
methods usually resort to sensibility analysis as the last step of evaluation in all decision
problems [22] because the majority of data in MCDA problems are unstable and change-
able [40], and model outcomes are open to multiple types of uncertainty [41]. That is
why doing a sensibility analysis after problem-solving can effectively contribute to make
robust decisions [42]. A “what if” sensibility analysis is recommended to check the stability
of results against the subjectivity of the experts [11], explaining how much the decision-
makers judgements bias the assessment of an MCDA study [43]. The sensibility analysis
helps in the validation of results and enables assessing its robustness [44]. The aim is
to ensure that results are more reliable and to identify the criteria that can significantly
influence them [22].
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The most common sensibility analysis method for MDCA is to modify the weighting
obtained from the experts’ judgment [11,27,42]. Thus, in this study, sensibility analysis was
done using an approach based on Memariani et al. [42], where the effect of change in the
weight of one attribute or criteria on the weight of other criteria was evaluated and the
change in the final score of alternatives when a change occurred in the weight of criteria
was calculated.

Within the scope of this work, two different sensibility analyses were developed to
ensure that the results of the SAW method were robust. The first was based on the variation
of the weights of two defined main clusters of criteria: constraints and incentives. The
second one was developed with four new criteria sub-clusters. Then, the results obtained
in both sensibility analyses were evaluated and compared with the original SAW results.

The first step of sensibility analysis is to determine the assumptions for the changes in
criteria weights. After that, the computation must be executed, and the results are checked
and compared.

For the first sensibility analysis, a uniform distribution of weights was used with
variations of 5%. Since thirteen criteria were distributed in two main clusters (constraints
and incentives), the variation of weights was done by cluster. It starts and ends with
extreme cases, such as 100% weight for constraints and 0% weight for incentives, applying
variations of 5% until the opposite percentage of 0% weight for constraints and 100%
weight for incentives were reached (Table A5, in Appendix A). The criteria variations’
computation was executed in Excel for each of the percentages, evaluating the change
in the final score of alternatives (in light of criteria weight changes) and observing the
influence of the weights’ variation on the results.

For this step, the weighted linear summation represented by Equation (3) was used.
As a matter of sensibility analysis comparison, the previous clusters were subdivided

into sub-clusters. Constraints were divided into (a) surface and (b) sub-surface constraints.
Incentives were divided into (c) energy sources and (d) technology/reservoirs maturity
and data. Then, a new sensibility analysis was executed with weight variations of 0%, 25%,
50%, 75%, and 100% distributed by the new sub-clusters, according to the assumptions
depicted in Table A3 (Tables A6 and A7, in Appendix A).

All the sensibility analyses results were cross-checked with the obtained SAW results,
and the changes in the final score of alternatives were observed.

4. Results and Discussion
4.1. Results of the MCDA

In this MCDA-SAW method, the results obtained did not rely only on selecting one
alternative, usually classified as the best. However, since choosing the best case studies for
CAES was desired, it was decided to select several best alternatives.

The ranking of the best ten results is depicted in Table 7. The complete final results
are represented in Table A8 (Appendix A) with a color gradation from green to red (from
the best to the less good).

Table 7. MCDA-SAW final results, ranking the best ten alternatives and identifying them by their
reservoir name, set, and type of reservoirs. The columns “score” and “ranking have a greenish
color gradation from darkest greens to lighter tones representing the decreasing gradation of the
alternatives scores and ranking. The blue colors in the column “set of reservoirs” represent the
gradation of each set of reservoirs according to their ranking since several alternatives can correspond
to the same set of reservoirs.

Ranking of the Best Ten Alternatives

Score Ranking Alternative Reservoir Set of
Reservoirs

Type of
Reservoirs

0.844 1 a34 Carriço—1S
0.844 1 a35 Carriço—2
0.844 1 a36 Carriço—3
0.844 1 a37 Carriço—4
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Table 7. Cont.

Ranking of the Best Ten Alternatives

Score Ranking Alternative Reservoir Set of
Reservoirs

Type of
Reservoirs

0.844 1 a38 Carriço—5 1 Salt Rocks
0.844 1 a39 Carriço—6
0.806 2 a40 Carriço—7
0.806 2 a41 Carriço—8
0.806 2 a42 Carriço—9
0.800 3 a29 Loulé—Campina de Cima 2
0.744 4 a19 LPG_Sines 3 Host Rock
0.731 5 a33 Monte Real salt dome 1
0.731 5 a52 Matacães salt dome 4
0.694 6 a26 Matacães Mine
0.663 7 a55 Loulé salt dome 2 Salt Rocks
0.631 8 a53 Pinhal Novo salt dome 5
0.625 9 a30 Verride salt dome 6
0.625 9 a49 Bolhos salt dome 7
0.613 10 a47 Caldas da Rainha diapir 8

The chosen final results are the three best sets of potential reservoirs for CAES in
Portugal (Table 7), depicted in Figure 1, and also in a higher detail, from north to south in
Figures 3–5. They are:

(a) Alternatives 34 to 42 are Carriço NG storage caverns belonging to Monte Real salt
dome (alternative 33). Together they are the Monte Real salt dome set (Figure 3);

(b) Alternative 19 corresponds to the Sines liquid petroleum gas (LPG) reservoir located
in Sines host rock massif (Figure 4).

(c) Alternative 29 corresponds to the Campina de Cima salt mine located in the Loulé
salt dome (Figure 5).
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Other alternatives or potential CAES reservoirs with good SAW scores and a high
potential for CAES could be considered: the Matacães salt mine and salt dome, or the
Pinhal Novo, Loulé, and Bolhos salt domes. However, the Matacães salt mine is abandoned
and has severe stability issues (according to Solvay Portugal), and the other mentioned salt
domes lack deep geological data that are very sparse or inexistent.

The chosen alternatives for CAES potential reservoirs are generally located in the
western and southern part of the country (Figures 3–5), having the most favorable locations
with fewer constraints and more incentives.
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Alternative 33 corresponds to the Monte Real salt dome, and alternatives 34 to 42
are six dissolution salt caverns and three other planned ones (Figure 3), held by REN
Armazenagem in Carriço (Pombal). On the one hand, these salt caverns are being used to
store NG in that geological formation, meaning that the Monte Real salt dome has already
proved its suitability for storing energy underground. On the other hand, REN storage
facilities have infrastructure like HV lines and NG networks available on-site, decreasing
the costs of a possible CAES project. Thus, joining the absence of limiting constraints, deep
geological data availability, and the proximity to the sea, Monte Real/Carriço would be
a great suitable location for settling new salt caverns to a CAES system in Portugal.

Alternative 19 corresponds to the Sines LPG reservoir, an engineered cavern to store
LPG built in Sines’ sub-volcanic massif (Figure 4). This potential underground reservoir
has deep geological data and a proven storage capacity, both a plus when considering
a CAES geological reservoir. It is located in the coastal line and has special wind conditions
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for installing wind parks. Sines is one of the most important Portuguese seaports and
is the country’s principal port of energy supply (oil and by-products, coal, and natural
gas) [45]. So, it already has energy surface infrastructures such as HV lines and gas pipelines
(necessary in case of potential diabatic CAES facilities), and it still has the potential to grow.

Alternative 29 corresponds to the Campina de Cima—Loulé salt mine (Figure 5). This
mine is settled in Loulé diapir and has several salt excavated galleries, which could host
CAES underground reservoirs, decreasing the initial costs of a possible CAES project.

4.2. Results of the Sensitivity Analysis

The sensibility analysis provides information about the influence that criteria and
clusters may have on the final score of alternatives and how the variation in weights of
criteria may change the final results in terms of the chosen reservoirs for CAES purposes,
contributing to accurate decisions.

The first sensibility analysis was done considering cluster weights with variations of
5%, analyzing twenty-one scenarios. The summary depicting only the main results (with
intervals of 25%) is shown in Table A9 (Appendix A).

The results comparison did not show significant differences between scenarios, even
in the extreme and improbable ones where 100% of the weight was attributed to one cluster.
Thus, the possible reservoirs with the best scores remain the same throughout the various
analyses: (a) the Monte Real/Carriço NG storages and salt dome, (b) the LPG Sines in the
Sines Sub-Volcanic Complex, and (c) the Campina de Cima—Loulé salt mine.

The second sensibility analysis dividing each main cluster into sub-clusters evaluated
seven scenarios (even the most extreme and improbable ones) to determine which sub-
cluster had the most influence on the results. Those results are shown in Table A10 (in
Appendix A). The results of scenarios one to three did not significantly change the previous
GIS-SAW results. Thus, the case studies selected for CAES purposes were the same as
before. However, this selection varied when extreme cases were contemplated. The
best results for scenario four (placing 100% of the weight on the sub-cluster of surface
constraints) were Sines LPG, Ervideira, the Loulé salt mine, the Carriço salt caverns, and
the S. Pedro de Moel and Várzea da Rainha salt domes. Scenario five’s (with 100% of
the weight on the sub-cluster of subsurface constraints) best results were four host rocks
(Vila Verde de Raia, Vila Nova de Covelo, Celorico da Beira, and Capinha) and five deep
mines (Jales, Borralha, Pejão-Germunde, S. Pedro da Cova, and Panasqueira) followed
by Soure, Ervideira, the S. Pedro de Moel saline domes, the Carriço salt caverns, and
also the Lusitanian On_A3 aquifer. Scenario six’s (with 100% of the weight in the sub-
cluster of energy sources) best results were the Lusitanian On_J1 and Lusitanian On_A1
saline aquifers. Finally, scenario seven’s (placing 100% of the weight in the sub-cluster of
technology/reservoir maturity and data) best results were the Carriço salt caverns, the
Monte Real and Matacães salt domes, and the Loulé salt mine.

Both sensibility analyses were done with different weights for clusters, sub-clusters,
and criteria. In the first SA, there were minor variations in potential reservoirs with better
scores. Still, there were no significant changes in the results with the highest scores, which
gives robustness to the initial combination of GIS and SAW results and suggests they are
correct. It also indicates that weight variation influence was not significant and did not
drastically alter the outcome of the chosen case studies. Despite the first three scenarios
maintaining the same highest score reservoirs in the second sensibility analysis, the last four
scenarios changed the highest-score potential reservoirs. However, those four scenarios
were based on extreme, unlikely, and unreal assumptions, where the entire weight of the
criteria was placed only in one cluster or sub-cluster. They serve to understand the types
of criteria that value certain reservoirs at the expense of others and the possible influence
that each sub-cluster may have on the final decision of case studies for CAES.

Therefore, according to the analysis carried out through GIS-MDCA and corroborated
by the sensibility analysis, the criteria that seem to have greater weight and influence in
the three chosen case studies were:
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(a) For Monte Real/Carriço, the maturity and data availability on the reservoirs were
predominant factors, but other criteria such as a lower absence of constraints and
proximity of energy sources were also important;

(b) For LPG—Sines, the lower absence of surface constraints;
(c) For Campina de Cima-Loulé, the less lower of constraints and the reservoir’s maturity

and data availability.

However, it is mandatory to mention that these choices result from evaluating all
the criteria, clusters, and sub-clusters together since, in reality, they are essential and take
a significant part in the final decision.

5. Conclusions

The grouping of GIS-MCDA and sensibility analysis methods is a powerful tool for
selecting sites for different installations, representing a promising research line in large-
scale ES, especially for selecting the best location of facilities.

This study is not comparable to others since the combined techniques of GIS and
MCDA were never used, as far as we know, to select the most suitable CAES potential
reservoirs in Portugal. Thus, it represents an innovation since, apart from the ESTMAP
European project (which had a different scope), no exclusively CAES studies in Portugal
could select and determine the three best reservoir case studies to store the excess RES.

Some uncertainties can be held since this method yields a certain degree of arbitrari-
ness, where the most significant one is the decision-makers’ subjective choices. Specifically,
the criteria evaluation, the process of normalization, or attributing weights to the criteria
are subjective, having a considerable effect on the entire evaluation process. However, most
of the selection processes commonly used in the literature also present arbitrariness and
are mainly dependent on the decision-makers’ choices, turning them subjective. Thus, this
well-known MCDA-SAW method was chosen since it can be straightforward and efficient
to serve the defined purpose and provide the expected results.

In total, for sixty-two potential reservoirs for CAES represented in a GIS environment,
thirteen criteria (seven constraints and six incentives) were identified. First, criteria and
potential reservoir sites (the alternatives) were cross-checked using GIS techniques and
the MCDA-SAW method, and the best results were chosen. Then, two sensibility analyses
were conducted to check the robustness of previous results.

The most suitable reservoir sites for a possible CAES facility were Monte Real-Carriço
Sines LPG and Campina de Cima-Loulé. The Monte Real salt dome holds NG reserves
for the country in REN Armazenagem salt caverns, and Sines has an LPG engineered
cavern. So, these two suitable sites have the advantage of being already proven capacity.
Furthermore, Campina de Cima in Loulé salt dome is an out-of-labor salt mine with
several salt galleries that could be reused for storage. Thus, these three sites have the
highest potential and best location for a CAES system regarding lower constraints and
proximity/overlapping positive incentives.

These results are important for the Portuguese electricity grid because they show
the best potential CAES sites for large-scale ES of RES, adding flexibility to the grid and
an alternative to the country’s weather and topography-dependent PHES.

The results also show that this GIS-based and MCDA-SAW method integrating spatial
and non-spatial information provided a multidimensional view of the potential reservoir
CAES systems.

Techno-economic studies need to be done for further work, including more detailed
studies about these three selected reservoirs.
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Appendix A

Table A1. Alternatives represented by the igneous host rocks’ potential reservoirs.

Alternative (a) Reservoir’s Name Reservoir’s Type
1 Monção
2 Peneda
3 Gerês
4 Vila Verde da Raia
5 Vila Pouca de Aguiar
6 Vila Real—Alvão
7 Vila Nova de Gaia
8 Fiães
9 Vila Nova de Foz Côa Host
10 Penedono rocks
11 Moimenta da Beira
12 Esmolfe
13 Vila Nova de Covelo
14 Celorico da Beira
15 Linhares
16 Capinha
17 Sintra
18 Sines
19 LPG_Sines
20 Monchique

Table A2. Alternatives represented by deep mines’ potential reservoirs, including salt mines.

Alternative (a) Reservoir’s Name Reservoir’s Type
21 Jales
22 Borralha
23 Pejão-Germunde
24 S. Pedro da Cova
25 Panasqueira Deep
26 Matacães mines
27 Aljustrel
28 Neves-Corvo
29 Loulé—Campina de Cima
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Table A3. Alternatives represented by salt formations and salt domes potential reservoirs, including
salt caverns.

Alternative (a) Reservoir’s Name Reservoir’s Type
30 Verride salt dome
31 Soure salt dome
32 Ervideira salt dome
33 Monte Real salt dome
34 Carriço—1S
35 Carriço—2
36 Carriço—3
37 Carriço—4
38 Carriço—5
39 Carriço—6
40 Carriço—7
41 Carriço—8
42 Carriço—9
43 S. Pedro de Moel salt dome Salt
44 Parceiros (Leiria) salt dome formations
45 Porto de Mós salt dome
46 Fonte da Bica (Rio Maior) salt dome
47 Caldas da Rainha diapir
48 Várzea da Rainha salt dome
49 Bolhos salt dome
50 Maceira (Vimeiro) salt dome
51 Santa Cruz salt dome
52 Matacães salt dome
53 Pinhal Novo salt dome
54 Sesimbra salt dome
55 Loulé salt dome
56 Faro salt dome

Table A4. Alternatives represented by saline aquifers’ potential reservoirs.

Alternative (a) Reservoir’s Name Reservoir’s Type
57 Lusitanian On_A1
58 Lusitanian On_A2
59 Lusitanian On_A3 Saline
60 Lusitanian On_A4 aquifers
61 Lusitanian On_C1
62 Lusitanian On_J1
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Table A5. Assumptions table for the first sensitivity analysis with variation in criteria weights for the ratio of clusters constraints/incentives with intervals of 5%, from 100% to 0% (in
constraints weights and 0% to 100% in incentives weights).

Ratio of Weights of Criteria: Constraints/Incentives (%)
Criteria Classification Original SAW (100/0) (95/5) (90/10) (85/15) (80/20) (75/25) (70/30) (65/35) (60/40) 55/45) (50/50) (45/55) (40/60) (35/65) (30/70) (25/75) (20/80) (15/85) (10/90) (5/95) (0/100)

G. W. IW.
J1 Sensitive areas 10% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J2 Groundwater 10% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J3 Neotectonics 5% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J4 Seismic risk Constraints 50 7.5% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J5 Populated areas 5% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J6 Land Slope 7.5% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J7 Roads 5% 14.29 13.57 12.86 12.14 11.43 10.71 10 9.29 8.57 7.86 7.14 6.429 5.71 5.00 4.29 3.57 2.86 2.14 1.43 0.71 0.00
J8 Renewable Energy Sources (RES) 12.5% 0 0.83 1.67 2.5 3.33 4.17 5 5.83 6.67 7.5 8.33 9.167 10 10.83 11.67 12.50 13.33 14.17 15.00 15.83 16.67
J9 High-voltage (HV) network 12.5% 0 0.83 1.67 2.5 3.33 4.17 5 5.83 6.67 7.5 8.33 9.167 10 10.83 11.67 12.50 13.33 14.17 15.00 15.83 16.67

J10 Natural gas (NG) network 5% 0 0.83 1.67 2.5 3.33 4.17 5 5.83 6.67 7.5 8.33 9.167 10 10.83 11.67 12.50 13.33 14.17 15.00 15.83 16.67
J11 Deep geological data Incentives 50 7.5% 0 0.83 1.67 2.5 3.33 4.17 5 5.83 6.67 7.5 8.33 9.167 10 10.83 11.67 12.50 13.33 14.17 15.00 15.83 16.67
J12 Maturity of technology 7.5% 0 0.83 1.67 2.5 3.33 4.17 5 5.83 6.67 7.5 8.33 9.167 10 10.83 11.67 12.50 13.33 14.17 15.00 15.83 16.67
J13 Existence of proven caverns 5% 0 0.83 1.67 2.5 3.33 4.17 5 5.83 6.67 7.5 8.33 9.167 10 10.83 11.67 12.50 13.33 14.17 15.00 15.83 16.67

Total 100 100% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Where:

G.W. means group weight
I. W. means individual weights

Table A6. Assumptions table for the second sensitivity analysis with variation in criteria weights for the ratio of the four sub-clusters: (A) surface constraints; (B) sub-surface constraints;
(C) Energy sources; and (D) maturity and data of the technology/reservoirs.

Assumptions
Sub-Clusters Original Original 1 2 3 4 5 6 7

Weights Weights G. W. Clusters G. W. Clusters G. W. Clusters G. W. Clusters G. W. Clusters G. W. Clusters G. W. Clusters
A—Surface constraints 50% 27.5% 50 25 75 37.5 25 12.5 100 100 100 0 0 0 0 0

B—Sub-surface constraints 22.5% 25 37.5 12.5 0 100 0 0
C—Energy sources 50% 30% 50 25 25 12.5 75 12.5 0 0 0 0 100 100 100 0

D—Maturity and data 20% 25 12.5 12.5 0 0 0 100
Total 100% 100% 100 100 100 100 100 50 100 100 100 100 100 100 100 100

Table A7. Assumptions table for the second sensitivity analysis with variation in individual criteria weights according to the variation of the sub-clusters’ weights of Table A6.

Assumptions
Classification Clusters Original 1 2 3 4 5 6 7

SAW Weights
A 10% 6.25% 9.38% 3.125% 25.00% 0.00% 0.00% 0.00%
B 10% 8.33% 12.50% 4.167% 0.00% 33.33% 0.00% 0.00%
B 5% 8.33% 12.50% 4.167% 0.00% 33.33% 0.00% 0.00%

Constraints B 7.5% 8.33% 12.50% 4.167% 0.00% 33.33% 0.00% 0.00%
A 5% 6.25% 9.38% 3.125% 25.00% 0.00% 0.00% 0.00%
A 7.5% 6.25% 9.38% 3.125% 25.00% 0.00% 0.00% 0.00%
A 5% 6.25% 9.38% 3.125% 25.00% 0.00% 0.00% 0.00%
C 12.5% 8.33% 4.167% 4.167% 0.00% 0.00% 33.33% 0.00%
C 12.5% 8.33% 4.167% 4.167% 0.00% 0.00% 33.33% 0.00%
C 5% 8.33% 4.167% 4.167% 0.00% 0.00% 33.33% 0.00%

Incentives D 7.5% 8.33% 4.167% 4.167% 0.00% 0.00% 0.00% 33.33%
D 7.5% 8.33% 4.167% 4.167% 0.00% 0.00% 0.00% 33.33%
D 5% 8.33% 4.167% 4.167% 0.00% 0.00% 0.00% 33.33%

100% 100% 100% 100% 100% 100% 100% 100%
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Table A8. Table presenting the results from the application of Equation (3) to constraints and incentives and the final score
results with a color gradation (from green until red) and the chosen case studies highlighted in dark green.

Alternatives Constraints Incentives
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 Total Score

a1 0.1 0.075 0.038 0.038 0.038 0.025 0.075 0.063 0.063 0.025 0 0 0 0.538
a2 0 0.1 0.05 0.05 0 0.038 0.075 0 0 0 0 0 0 0.313
a3 0 0.075 0.038 0.038 0 0.025 0.075 0.125 0.031 0 0 0 0 0.406
a4 0.1 0.1 0.038 0.038 0.038 0.05 0.075 0.063 0 0 0 0 0 0.500
a5 0.075 0 0.038 0.038 0 0 0.075 0.125 0.125 0 0 0 0 0.475
a6 0 0.1 0.05 0.038 0 0.038 0.075 0.063 0 0 0 0 0 0.363
a7 0.1 0.1 0 0.025 0.075 0.025 0.075 0 0.125 0.05 0 0 0 0.575
a8 0.1 0.1 0 0.025 0.075 0.025 0.075 0 0.125 0.05 0 0 0 0.575
a9 0.1 0.1 0.05 0.038 0 0.038 0.075 0 0.031 0 0 0 0 0.431

a10 0.1 0.1 0.025 0.038 0.038 0.038 0.075 0.063 0 0 0 0 0 0.475
a11 0.075 0.1 0.025 0.038 0.038 0.038 0.075 0.063 0 0 0 0 0 0.450
a12 0.1 0.075 0.025 0.05 0 0.05 0.075 0 0 0 0 0 0 0.375
a13 0.1 0.1 0.038 0.05 0 0.05 0.075 0 0 0 0 0 0 0.413
a14 0.1 0.1 0.013 0.025 0 0.05 0.075 0 0.063 0.025 0 0 0 0.450
a15 0.025 0 0.038 0.038 0 0.038 0.075 0 0.063 0.025 0 0 0 0.300
a16 0.1 0.1 0.05 0.038 0 0.05 0.075 0 0.063 0 0 0 0 0.475
a17 0 0.1 0.038 0.025 0 0.05 0.019 0 0 0 0 0 0 0.231
a18 0.1 0.1 0.025 0.038 0.075 0.05 0.019 0.063 0.063 0.025 0 0 0.05 0.606
a19 0.1 0.1 0.05 0.05 0.075 0.05 0.019 0.063 0.063 0.025 0.075 0 0.05 0.719
a20 0 0.05 0.025 0.038 0 0.038 0.019 0.125 0.125 0 0 0 0 0.419
a21 0.1 0.1 0.05 0.05 0.038 0.05 0.075 0.063 0.063 0 0 0 0 0.588
a22 0.1 0.1 0.038 0.05 0 0.05 0.075 0.063 0.063 0 0 0 0 0.538
a23 0.1 0.1 0.05 0.05 0 0.05 0.075 0 0.063 0 0 0 0 0.488
a24 0.1 0.1 0.025 0.05 0 0.05 0.075 0 0.063 0.025 0 0 0 0.488
a25 0.1 0.1 0.05 0.05 0 0.05 0.075 0.063 0.063 0 0 0 0 0.550
a26 0.1 0.1 0.05 0.019 0.038 0 0.038 0.063 0.063 0.013 0.075 0.075 0.025 0.656
a27 0.05 0.1 0.013 0.05 0.038 0.05 0.038 0 0.063 0 0 0 0 0.400
a28 0 0.1 0.05 0.05 0.075 0.05 0.038 0.063 0.063 0 0 0 0 0.488
a29 0.1 0.1 0.038 0.05 0.075 0.05 0.038 0.063 0.063 0 0.075 0.075 0.025 0.750
a30 0.1 0.1 0.038 0.05 0.075 0.038 0.056 0 0.031 0.013 0.038 0.075 0 0.613
a31 0.1 0.1 0.038 0.038 0.075 0.05 0.056 0 0 0.025 0.038 0.075 0 0.594
a32 0.1 0.1 0.05 0.05 0.075 0.05 0.056 0 0 0 0 0.075 0 0.556
a33 0.1 0.075 0.038 0.038 0.075 0.038 0.056 0 0.125 0.05 0.038 0.075 0.05 0.756
a34 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.05 0.844
a35 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.05 0.844
a36 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.05 0.844
a37 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.05 0.844
a38 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.05 0.844
a39 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.05 0.844
a40 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.013 0.806
a41 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.013 0.806
a42 0.1 0.1 0.038 0.05 0.075 0.05 0.056 0 0.125 0.05 0.075 0.075 0.013 0.806
a43 0.1 0.1 0.05 0.038 0.075 0.05 0.056 0 0 0 0.038 0.075 0 0.581
a44 0.1 0.05 0 0.025 0.038 0.05 0.056 0 0.125 0 0.038 0.075 0 0.556
a45 0.025 0.05 0.025 0.038 0 0 0.056 0.063 0.125 0 0.038 0.075 0 0.494
a46 0.025 0.05 0.038 0.05 0 0.013 0.038 0.063 0.125 0.025 0.038 0.075 0 0.538
a47 0.1 0.075 0.038 0.038 0.075 0.05 0.038 0.063 0 0.025 0.038 0.075 0 0.613
a48 0.1 0.1 0.038 0.05 0.075 0.05 0.038 0 0 0 0.038 0.075 0 0.563
a49 0.1 0.1 0.038 0.038 0.075 0.038 0.038 0.125 0 0 0 0.075 0 0.625
a50 0.1 0.05 0.038 0.05 0.038 0.05 0.038 0 0 0 0 0.075 0 0.438
a51 0.05 0.1 0 0.025 0.075 0.05 0.038 0 0 0 0 0.075 0 0.413
a52 0.1 0.1 0.05 0.019 0.038 0.038 0.038 0.063 0.063 0.013 0.075 0.075 0.025 0.694
a53 0.075 0.1 0.025 0.038 0.075 0.038 0.019 0 0.125 0.038 0.038 0.075 0 0.644
a54 0 0.1 0.025 0.038 0 0.038 0.019 0 0 0 0 0.075 0 0.294
a55 0.1 0.1 0.025 0.038 0.038 0.038 0.038 0.063 0.063 0 0.038 0.075 0.025 0.638
a56 0.1 0.1 0.025 0.038 0.075 0.038 0.019 0 0 0 0 0.15 0 0.544
a57 0.05 0.075 0.038 0.038 0 0.013 0.056 0.063 0.125 0.05 0.038 0 0 0.544
a58 0.1 0.075 0.025 0.038 0.038 0.038 0.056 0.031 0.031 0.05 0.038 0 0 0.519
a59 0.1 0.1 0.038 0.038 0.075 0.05 0.056 0.063 0 0 0.038 0 0 0.556
a60 0.1 0.1 0.038 0.038 0 0.05 0.038 0.031 0.094 0.05 0.038 0 0 0.575
a61 0.1 0.075 0.025 0.025 0.038 0.038 0.056 0 0.094 0.05 0.038 0 0 0.538
a62 0.1 0.075 0 0.025 0 0.038 0.038 0.125 0.125 0.05 0.038 0 0 0.613



Energies 2021, 14, 6793 19 of 22

Table A9. Summary of the first SA results with the variation of criteria weights by cluster or classification of types of criteria.

Reservoirs Original SAW
Score (100/0) (75/25) (50/50) (25/75) (0/100)

Reservoir Name Alternatives
Monção a1 0.538 0.750 0.625 0.500 0.375 0.250
Peneda a2 0.313 0.679 0.509 0.339 0.170 0.000
Gerês a3 0.406 0.536 0.454 0.372 0.290 0.208

Vila Verde da Raia a4 0.500 0.857 0.663 0.470 0.277 0.083
Vila Pouca de Aguiar a5 0.475 0.464 0.431 0.399 0.366 0.333

Vila Real—Alvão a6 0.363 0.643 0.503 0.363 0.223 0.083
Vila Nova de Gaia a7 0.575 0.715 0.619 0.524 0.429 0.333

Fiães a8 0.575 0.715 0.619 0.524 0.429 0.333
Vila Nova de Foz Côa a9 0.431 0.786 0.599 0.414 0.228 0.042

Penedono a10 0.475 0.786 0.610 0.435 0.259 0.083
Moimenta da Beira a11 0.450 0.750 0.583 0.417 0.250 0.083

Esmolfe a12 0.375 0.750 0.562 0.375 0.187 0.000
Vila Nova de Covelo a13 0.413 0.822 0.616 0.411 0.205 0.000

Celorico da Beira a14 0.450 0.679 0.550 0.423 0.295 0.167
Linhares a15 0.300 0.500 0.417 0.333 0.250 0.167
Capinha a16 0.475 0.822 0.637 0.452 0.268 0.083

Sintra a17 0.231 0.500 0.375 0.250 0.125 0.000
Sines a18 0.606 0.786 0.693 0.601 0.509 0.417

LPG_Sines a19 0.719 0.893 0.815 0.738 0.661 0.583
Monchique a20 0.419 0.393 0.378 0.363 0.348 0.333

Jales a21 0.588 0.929 0.738 0.548 0.357 0.167
Borralha a22 0.538 0.822 0.657 0.494 0.330 0.167

Pejão-Germunde a23 0.488 0.857 0.663 0.470 0.277 0.083
S. Pedro da Cova a24 0.488 0.786 0.631 0.476 0.321 0.167

Panasqueira a25 0.550 0.857 0.684 0.512 0.339 0.167
Matacães a26 0.656 0.679 0.665 0.652 0.638 0.625
Aljustrel a27 0.400 0.679 0.530 0.381 0.232 0.083

Neves-Corvo a28 0.488 0.786 0.631 0.476 0.321 0.167
Loulé—Campina de Cima a29 0.750 0.893 0.815 0.738 0.661 0.583

Verride salt dome a30 0.613 0.893 0.753 0.613 0.473 0.333
Soure salt dome a31 0.594 0.893 0.753 0.613 0.473 0.333

Ervideira salt dome a32 0.556 0.965 0.765 0.565 0.366 0.167
Monte Real salt dome a33 0.756 0.822 0.803 0.786 0.768 0.750

Carriço—1S a34 0.844 0.929 0.904 0.881 0.857 0.834
Carriço—2 a35 0.844 0.929 0.904 0.881 0.857 0.834
Carriço—3 a36 0.844 0.929 0.904 0.881 0.857 0.834
Carriço—4 a37 0.844 0.929 0.904 0.881 0.857 0.834
Carriço—5 a38 0.844 0.929 0.904 0.881 0.857 0.834
Carriço—6 a39 0.844 0.929 0.904 0.881 0.857 0.834
Carriço—7 a40 0.806 0.929 0.873 0.818 0.763 0.708
Carriço—8 a41 0.806 0.929 0.873 0.818 0.763 0.708
Carriço—9 a42 0.806 0.929 0.873 0.818 0.763 0.708

S. Pedro de Moel salt dome a43 0.581 0.929 0.759 0.589 0.420 0.250
Parceiros (Leiria) salt dome a44 0.556 0.607 0.559 0.512 0.464 0.417

Porto de Mós salt dome a45 0.494 0.393 0.420 0.446 0.473 0.500
Fonte da Bica (Rio Maior) salt dome a46 0.538 0.464 0.494 0.524 0.554 0.583

Caldas da Rainha diapir a47 0.613 0.822 0.720 0.619 0.518 0.417
Várzea da Rainha salt dome a48 0.563 0.893 0.732 0.571 0.411 0.250

Bolhos salt dome a49 0.625 0.822 0.699 0.577 0.455 0.333
Maceira (Vimeiro) salt dome a50 0.438 0.750 0.604 0.458 0.312 0.167

Santa Cruz salt dome a51 0.413 0.643 0.524 0.405 0.286 0.167
Matacães salt dome a52 0.694 0.750 0.719 0.688 0.656 0.625

Pinhal Novo salt dome a53 0.644 0.715 0.671 0.628 0.585 0.542
Sesimbra salt dome a54 0.294 0.464 0.390 0.315 0.241 0.167

Loulé salt dome a55 0.638 0.715 0.660 0.607 0.554 0.500
Faro salt dome a56 0.544 0.750 0.604 0.458 0.312 0.167

Lusitanian On_A1 a57 0.544 0.536 0.527 0.518 0.509 0.500
Lusitanian On_A2 a58 0.519 0.715 0.619 0.524 0.429 0.333
Lusitanian On_A3 a59 0.556 0.893 0.711 0.530 0.348 0.167
Lusitanian On_A4 a60 0.575 0.715 0.640 0.565 0.491 0.417
Lusitanian On_C1 a61 0.538 0.679 0.602 0.527 0.451 0.375
Lusitanian On_J1 a62 0.613 0.500 0.521 0.542 0.562 0.583
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Table A10. Summary of the second sensibility analysis results with the variation of criteria weights by sub-cluster or
classification of sub-types of criteria.

Reservoirs Original Sensibility Analysis of Clusters
SAW 1 2 3 4 5 6 7

Reservoir Name Alternatives Score
Monção a1 0.538 0.500 0.6252 0.3672 0.750 0.750 0.500 0.000
Peneda a2 0.313 0.354 0.5314 0.2083 0.500 0.917 0.000 0.000
Gerês a3 0.406 0.385 0.4740 0.3203 0.375 0.750 0.417 0.000

Vila Verde da Raia a4 0.500 0.479 0.6772 0.2813 0.750 1.000 0.167 0.000
Vila Pouca de Aguiar a5 0.475 0.391 0.4194 0.3385 0.563 0.333 0.667 0.000

Vila Real—Alvão a6 0.363 0.380 0.5287 0.2630 0.438 0.917 0.167 0.000
Vila Nova de Gaia a7 0.575 0.531 0.6303 0.4323 0.625 0.833 0.667 0.000

Fiães a8 0.575 0.531 0.6303 0.4323 0.625 0.833 0.667 0.000
Vila Nova de Foz Côa a9 0.431 0.422 0.6121 0.2318 0.688 0.917 0.083 0.000

Penedono a10 0.475 0.443 0.6225 0.2630 0.688 0.917 0.167 0.000
Moimenta da Beira a11 0.450 0.427 0.5991 0.2630 0.625 0.917 0.167 0.000

Esmolfe a12 0.375 0.385 0.5783 0.1849 0.625 0.917 0.000 0.000
Vila Nova de Covelo a13 0.413 0.422 0.6330 0.2109 0.688 1.000 0.000 0.000

Celorico da Beira a14 0.450 0.443 0.5808 0.3047 0.438 1.000 0.333 0.000
Linhares a15 0.300 0.339 0.4246 0.2448 0.438 0.583 0.333 0.000
Capinha a16 0.475 0.464 0.6538 0.2734 0.688 1.000 0.167 0.000

Sintra a17 0.231 0.266 0.3985 0.1641 0.313 0.750 0.000 0.000
Sines a18 0.606 0.599 0.6903 0.5078 0.813 0.750 0.500 0.333

LPG_Sines a19 0.719 0.729 0.8023 0.6563 1.000 0.750 0.500 0.667
Monchique a20 0.419 0.370 0.3881 0.3672 0.313 0.500 0.667 0.000

Jales a21 0.588 0.552 0.7450 0.3594 0.875 1.000 0.333 0.000
Borralha a22 0.538 0.505 0.6746 0.3359 0.688 1.000 0.333 0.000

Pejão-Germunde a23 0.488 0.479 0.6772 0.2813 0.750 1.000 0.167 0.000
S. Pedro da Cova a24 0.488 0.490 0.6512 0.3281 0.625 1.000 0.333 0.000

Panasqueira a25 0.550 0.521 0.6981 0.3438 0.750 1.000 0.333 0.000
Matacães a26 0.656 0.656 0.6720 0.6406 0.625 0.750 0.417 0.833
Aljustrel a27 0.400 0.391 0.5444 0.2526 0.563 0.833 0.167 0.000

Neves-Corvo a28 0.488 0.479 0.6356 0.3542 0.750 0.833 0.333 0.000
Loulé—Campina de Cima a29 0.750 0.734 0.8101 0.6589 0.938 0.833 0.333 0.833

Verride salt dome a30 0.613 0.609 0.7476 0.4714 0.938 0.833 0.167 0.500
Soure salt dome a31 0.594 0.615 0.7554 0.4740 0.875 0.917 0.167 0.500

Ervideira salt dome a32 0.556 0.562 0.7606 0.3646 1.000 0.917 0.000 0.333
Monte Real salt dome a33 0.756 0.781 0.7971 0.7578 0.875 0.750 0.667 0.833

Carriço—1S a34 0.844 0.880 0.9039 0.8568 0.938 0.917 0.667 1.000
Carriço—2 a35 0.844 0.880 0.9039 0.8568 0.938 0.917 0.667 1.000
Carriço—3 a36 0.844 0.880 0.9039 0.8568 0.938 0.917 0.667 1.000
Carriço—4 a37 0.844 0.880 0.9039 0.8568 0.938 0.917 0.667 1.000
Carriço—5 a38 0.844 0.880 0.9039 0.8568 0.938 0.917 0.667 1.000
Carriço—6 a39 0.844 0.880 0.9039 0.8568 0.938 0.917 0.667 1.000
Carriço—7 a40 0.806 0.818 0.8726 0.7630 0.938 0.917 0.667 0.750
Carriço—8 a41 0.806 0.818 0.8726 0.7630 0.938 0.917 0.667 0.750
Carriço—9 a42 0.806 0.818 0.8726 0.7630 0.938 0.917 0.667 0.750

S. Pedro de Moel salt dome a43 0.581 0.589 0.7580 0.4193 0.938 0.917 0.000 0.500
Parceiros (Leiria) salt dome a44 0.556 0.521 0.5730 0.4531 0.500 0.750 0.333 0.500

Porto de Mós salt dome a45 0.494 0.448 0.4220 0.4818 0.375 0.417 0.500 0.500
Fonte da Bica (Rio Maior) salt dome a46 0.538 0.521 0.4897 0.5599 0.500 0.417 0.667 0.500

Caldas da Rainha diapir a47 0.613 0.615 0.7137 0.5078 0.875 0.750 0.333 0.500
Várzea da Rainha salt dome a48 0.563 0.568 0.7268 0.4089 0.938 0.833 0.000 0.500

Bolhos salt dome a49 0.625 0.573 0.6929 0.4531 0.875 0.750 0.333 0.333
Maceira (Vimeiro) salt dome a50 0.438 0.453 0.5965 0.2943 0.813 0.667 0.000 0.333

Santa Cruz salt dome a51 0.413 0.417 0.5418 0.3073 0.500 0.833 0.000 0.333
Matacães salt dome a52 0.694 0.687 0.7189 0.6563 0.750 0.750 0.417 0.833

Pinhal Novo salt dome a53 0.644 0.625 0.6668 0.5912 0.750 0.667 0.583 0.500
Sesimbra salt dome a54 0.294 0.328 0.4089 0.2787 0.313 0.667 0.000 0.333

Loulé salt dome a55 0.638 0.609 0.6642 0.5547 0.688 0.750 0.333 0.667
Faro salt dome a56 0.544 0.453 0.5965 0.3099 0.813 0.667 0.000 0.333

Lusitanian On_A1 a57 0.544 0.521 0.5314 0.5182 0.500 0.583 0.833 0.167
Lusitanian On_A2 a58 0.519 0.526 0.6225 0.4219 0.688 0.750 0.500 0.167
Lusitanian On_A3 a59 0.556 0.531 0.7137 0.3490 0.875 0.917 0.167 0.167
Lusitanian On_A4 a60 0.575 0.573 0.6512 0.4948 0.625 0.833 0.667 0.167
Lusitanian On_C1 a61 0.538 0.531 0.6095 0.4453 0.625 0.750 0.583 0.167
Lusitanian On_J1 a62 0.613 0.552 0.5365 0.5599 0.375 0.667 1.000 0.167
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