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Abstract

Background: With the rapid adoption of electronic medical records (EMRs), there is an ever-increasing opportunity to collect
data and extract knowledge from EMRs to support patient-centered stroke management.

Objective: This study aims to compare the effectiveness of state-of-the-art automatic text classification methods in classifying
data to support the prediction of clinical patient outcomes and the extraction of patient characteristics from EMRs.

Methods: Our study addressed the computational problems of information extraction and automatic text classification. We
identified essential tasks to be considered in an ischemic stroke value-based program. The 30 selected tasks were classified
(manually labeled by specialists) according to the following value agenda: tier 1 (achieved health care status), tier 2 (recovery
process), care related (clinical management and risk scores), and baseline characteristics. The analyzed data set was retrospectively
extracted from the EMRs of patients with stroke from a private Brazilian hospital between 2018 and 2019. A total of 44,206
sentences from free-text medical records in Portuguese were used to train and develop 10 supervised computational machine
learning methods, including state-of-the-art neural and nonneural methods, along with ontological rules. As an experimental
protocol, we used a 5-fold cross-validation procedure repeated 6 times, along with subject-wise sampling. A heatmap was used
to display comparative result analyses according to the best algorithmic effectiveness (F1 score), supported by statistical significance
tests. A feature importance analysis was conducted to provide insights into the results.

Results: The top-performing models were support vector machines trained with lexical and semantic textual features, showing
the importance of dealing with noise in EMR textual representations. The support vector machine models produced statistically
superior results in 71% (17/24) of tasks, with an F1 score >80% regarding care-related tasks (patient treatment location, fall risk,
thrombolytic therapy, and pressure ulcer risk), the process of recovery (ability to feed orally or ambulate and communicate),
health care status achieved (mortality), and baseline characteristics (diabetes, obesity, dyslipidemia, and smoking status). Neural
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methods were largely outperformed by more traditional nonneural methods, given the characteristics of the data set. Ontological
rules were also effective in tasks such as baseline characteristics (alcoholism, atrial fibrillation, and coronary artery disease) and
the Rankin scale. The complementarity in effectiveness among models suggests that a combination of models could enhance the
results and cover more tasks in the future.

Conclusions: Advances in information technology capacity are essential for scalability and agility in measuring health status
outcomes. This study allowed us to measure effectiveness and identify opportunities for automating the classification of outcomes
of specific tasks related to clinical conditions of stroke victims, and thus ultimately assess the possibility of proactively using
these machine learning techniques in real-world situations.

(JMIR Med Inform 2021;9(11):e29120) doi: 10.2196/29120
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Introduction

Background
Stroke is the second leading cause of mortality and
disability-adjusted life years globally [1,2]. The outcomes of
stroke can vary greatly, and timely assessment is essential for
optimal management. As such, there has been an increasing
interest in the use of automated machine learning (ML)
techniques to track stroke outcomes, with the hope that such
methods could make use of large, routinely collected data sets
and deliver accurate, personalized prognoses [3]. However,
studies applying ML methods to stroke, although published
regularly, have focused mostly on stroke imaging applications
[4-6] and structured data retrieval [3]. Few studies have
addressed the unstructured textual portion of electronic medical
records (EMRs) as the primary source of information.

Indeed, the use of EMR data in the last decade has led to
promising findings in population health research, such as
patient-use stratification [7], treatment-effectiveness evaluation
[8], early detection of diseases [9], and predictive modeling
[10]. However, dealing with EMR data is often labor intensive
[11] and challenging because of the lack of standardization in
data entry, changes in coding procedures over time, and the
impact of missing information [9,12-14]. The information
technology (IT) gap between automated data collection from
EMRs and improving the quality of care has been described in
the literature as a decelerator of value initiatives [15-18].

With recent advances in IT, several groups have attempted to
apply natural language processing (NLP) to the text analysis of
EMRs to achieve early diagnosis of multiple conditions, such

as peripheral arterial disease [19], asthma [20], multiple sclerosis
[21], and heart failure [22]. In these studies, NLP was used to
find specific words or phrases in a predefined dictionary that
described the symptoms or signs of each disease [14,21,23].

Objectives
Generating value for the patient as the central guide requires
advances in strategies to automate the capturing of data that
will allow managers to assess the quality of service delivery to
patients [24,25]. Accordingly, our research aims to compare the
effectiveness of state-of-the-art automatic text classification
methods in classifying data to support the prediction of clinical
patient outcomes and the extraction of patient characteristics
from EMR sentences. With stroke as our case study application,
our specific goal is to investigate the capability of these methods
to automatically identify, with reasonable effectiveness, the
outcomes and clinical characteristics of patients from EMRs
that may be considered in a stroke outcome measurement
program.

Methods

Overview
This study faced a computational problem related to information
extraction and free-text classification. As presented in Figure
1, the dotted lines represent the union of the text representative
technique that was used with each classifier in the two-phase
experiments. Our study was generally organized into four stages:
(1) task selection; (2) study design, preprocessing, and data
annotation; (3) definition of automatic text classification
methods; and (4) experimental evaluation (experimental
protocol, setup, and analysis of results).
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Figure 1. Study architecture. BERT: bidirectional encoder representation from transformers; CNN: convolutional neural network; EHR: electronic
health record; KNN: K-nearest neighbor; SVM: support vector machine; TF-IDF: term frequency-inverted document frequency.

Task Selection
A literature review and multidisciplinary expert interviews (n=8)
were used to define specific outcome dimensions and measures
that may be considered in an outcome measurement program
for ischemic stroke. The outcome identification step was based
on adhering to value agenda element dimensions to cover the
tiers of the outcome hierarchy [26], such as functionality
dimensions, the recovery process, and outcomes that matter to
patients. These dimensions included risk events, achieved health
care status, and stroke outcome scales, such as the National
Institutes of Health Stroke Scale (NIHSS) and the modified
Rankin scale (mRS) [27,28].

Study Design and Data Annotation
We retrospectively built a database of medical records from a
digital hospital system. The database covered 2 years of patients
hospitalized for ischemic stroke. The hospital is a private
institution of excellence in southern Brazil. The EMR system
used was the MV Soul (Recife). Since 2017, the hospital has
introduced the ICHOM standard sets’ data collection routine
for different clinical pathways and created an office for
institutional values. To examine the stroke pathway, data were
collected on October 15, 2015. In 2019, the hospital incorporated
the Angel Awards Program [29], which was certified as a
platinum category at the end of the first year. This study was

approved by the hospital ethics committee (CAAE:
29694720000005330).

Medical records of patients were submitted to preprocessing
using the spaCy Python library (Python Software Foundation;
Python Language Reference, version 2.7) [30] to stratify texts
into sentences. A total of 44,206 EMR sentences were obtained
from 188 patients. The approach followed a hypothesis for
managing unbalanced data, such as electronic health records,
which assumes that relevant information to be retrieved from
EMRs encompasses a small space of words delimited as
sentences, and the residual is noise [31-33]. During the text
stratification process, spaCy [30] uses rule-based algorithms
that set the sentence limits according to the patterns of
characters, thereby delimiting its beginning and end. The names
of patients and medical staff were identified, thus removing all
confidential information from the data set. The preprocessed
textual sentence was represented in a vector of words that
disregarded grammar and word order but maintained their
multiplicity.

For sentence annotation (intratask class labeling), we developed
annotation guidelines that provided an explicit definition of
each task, its classes (response options), and examples to be
identified in the documents. This guideline is written in
Portuguese and is available upon request.

Two annotators independently reviewed the preprocessed text
documents (44,206 sentences) and had the percent agreement
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between them measured by κ, which was higher than 0.61
(substantial agreement) [34]. Task-level disagreements were
resolved by consensus determination by 2 annotators, with
assistance from a committee composed of experts (APE, ACS,
MP, KBR, and CAP).

Each task could have two or more output answers, depending
on the meaning of the sentence. Examples of an EMR and the
annotation process can be seen in Multimedia Appendices 1
and 2. Task details in terms of class and sentence distribution
are shown in Multimedia Appendix 3 and demonstrate the highly
imbalanced nature of the tasks with most of the sentences
belonging to the NI (noninformative) class. This makes it a very
hard endeavor from an ML perspective. Subsequently, we
evaluated the impact of this imbalance in the experimental
results.

Automatic Text Classification Methods
As presented in the study design, the ML methods were divided
into two categories: two-phase methods and end-to-end (E2E)
methods [35]. The first category of methods consisted of
approaches whose document (ie, sentence) representation was
intrinsically independent of the classification algorithm used to
predict the class. In other words, the classifier used to predict
the class of documents was not used in the construction phase
of the document representation. In terms of text representations,
we considered three alternatives, namely traditional
term-weighting alternatives (term frequency-inverted document
frequency [TFIDF]); weighting based on word and character
(n-gram) frequency; and recent representations based on
meta-features, which capture statistical information from a
document’s neighborhood and have obtained state-of-the-art
effectiveness in recent benchmarks [35-39].

As two-phase classification algorithms, we exploited support
vector machines (SVMs), which are still considered the most
robust nonneural network text classification algorithm
[35,39,40], random forests (RF), K-nearest neighbor (KNN),
and naïve Bayes classifier (NBC), to address the most popular
algorithms in terms of classification and retrieval of text
information [41-44].

In contrast, E2E methods use a discriminative classifier function
to transform the document representation space into a new and
more informed (usually more reduced and compact) space and
use this classifier to predict the document class. In general, these
approaches use an iterative process of representation,
classification, evaluation, and parameter adaptation (eg,
transform, predict, evaluate loss function, and backpropagate,
respectively). For E2E classifiers, we exploited two neural
architectures, namely convolutional neural networks (CNNs),
which exploit textual patterns such as word co-occurrences, and
bidirectional encoder representation from transformers (BERT),
which exploits attention mechanisms and constitute the current
state-of-the-art in many NLP tasks.

Finally, we exploited a rule-based classifier specialized for the
tasks at hand (stroke tasks, represented in the ontology web
language [OWL]). The rule-based knowledge model was
developed using logical conditions built alongside domain
specialists [45]. This technique has shown effectiveness

equivalent to that of some ML classification models in certain
domains without the need for a large amount of data and training
time, which are commonly required by supervised methods
[46-49]. In contrast, it is heavily dependent on the specialists
and the coverage of the rules on the text expressions. More
details about each of the exploited algorithms are provided in
Multimedia Appendix 4 [3,35,37,39,41-45,50-63].

The two-phase methods used in this research are referred to as
the representation technique combined with the classification
algorithm, as follows: word-TFIDF and character-TFIDF
combined with SVM (SVM+W+C), Bag-of-Words (BoW)
combined with SVM (SVM+BoW), meta-features combined
with SVM (meta-features), word-TFIDF combined with SVM
(SVM+Word-TFIDF), character-TFIDF combined with SVM
(SVM+Chard-TFIDF), Word-TFIDF combined with random
forest (RF+Word-TFIDF), word-TFIDF combined with KNN
(KNN+Word-TFIDF), and word-TFIDF combined with naïve
Bayes (Naïve Bayes+Word-TFIDF). In contrast to TFIDF, BoW
explores only the frequency of terms (term frequency) and not
the frequency of terms in the collection (IDF component). The
E2E methods are simply called CNN and BERT, and the
ontological method is called OWL.

Experimental Evaluation

Overview
The experimental process consisted of testing different
classification methods with sets of annotated data to assess and
compare their performances (effectiveness). The experimental
procedure, described in Multimedia Appendix 5, consisted of
four phases: (1) representing the free-text sentences as numerical
vectors, (2) the training and tuning process (in a validation set)
by means of a folded cross-validation procedure, (3) the
execution of the classification algorithms in the test set and
effectiveness assessment, and (4) the synthesis of the results in
a heatmap table.

A classification model was developed for each task. Each task
resulted in an individual automatic classification model for the
training and testing process of the model. As an experimental
protocol, we used a five-fold cross-validation procedure repeated
six times (resulting in 30 test samples). We also exploited
subject-wise cross-validation in the sense that the information
from the same patient was always assigned to the same fold to
test the ability of the model to predict new data that was not
used in the learning process. These procedures address potential
problems, such as overfitting and selection bias [64], and
produce results that are more reliable.

To evaluate the ability to classify the relevant
Brazilian-Portuguese medical free-text records correctly, we
used the Macro-F1 score (equation 1). This metric is based on
a confusion matrix and is defined as follows:

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Precision (positive predictive
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value) = TP / TP + FP = the number of returned hits that were
true positive. Recall (sensibility) = TP / TP + FN = is the fraction
of the total number of true positives retrieved.

The F1 measure is calculated for each class. Macro-F1
summarizes the classification effectiveness by averaging F1
values for all classes. Macro-F1 is one of the most popular
aggregated evaluation metrics for the classifier evaluation of
unbalanced or skewed data sets [42,65,66]. Macro-F1 is
especially suitable for imbalanced data sets, as the effectiveness
of each individual class contributes equally to producing a final
score. For instance, in a task with four classes, in which one of
them is NI, if all classes are predicted as NI, the Macro-F1 score
will be no higher than 0.25 (F1 of 1 for NI and 0 for the three
other classes). Accuracy or any other evaluation measure
focused on the instance, instead of the class effectiveness, would
produce a very high score (close to 1 in this particular case).

To compare the average results of our cross-validation
experiments, we assessed statistical significance by using a
paired two-tailed t test with 95% CIs. To account for multiple
tests, we adopted the Friedman-Nemenyi test [67] with
Bonferroni correction for multiple comparisons of mean rank
sums. The Friedman test was used to compare multiple methods.

We consider that making the data and the code used in our
experimental protocol available to others is potentially useful
for reproducibility and for use in other studies. Both the code
and data will be available upon request. The mood-specific
parameter tuning details are presented in Multimedia Appendix
6.

Experimental Analysis
The experiments aimed to provide relationships between the
classification methods and the tasks, allowing for connecting
the best methods with each outcome measure or patient
characteristics. Considering that the model’s results can
influence health decision-making in some way, the F1 score
thresholds may vary depending on the type of class and the
imbalance of the data. We reported the results by means of a
heatmap, adopting a red color for F1<20%, a gradual color scale
from orange to yellow for 21%<F1<79%, and green for F1>80%
[68-71]. Tasks (represented by the lines) were ordered by the
average of the performed models, whereas the ordering of the
columns shows the rank position of each method according to
the statistical analysis.

For the sake of the fairness of the comparison, the OWL
technique should not be and is not directly compared and ranked
herein along with the other ML models described above that
require a combination of text representations with trained
classification algorithms. OWL rules were designed to work
with the entire corpus (including the test) and were not designed
for generalization. Instead, they are built to work well in the
specific domain or task for which they were created. In any
case, for reasons of practical application and as a research
exercise, as a secondary analysis, we compared (later) the OWL
technique with the ML model ranked as the best based on the
Friedman test. This analysis allowed us to identify the

weaknesses and strengths of both approaches (generalized ML
models vs domain or task-specific ontological rules) in the
contrasting tasks.

Moreover, we performed a feature selection analysis [72,73].
This technique is used to rank the most informative features of
each task according to the information theory criteria. In
particular, we used SelectKBest (Python Software Foundation;
Python Language Reference, version 2.7) with the chi-square,
which is independent of the classification algorithms used [74].
This final analysis helps in understanding how ML can help
with outcome measurements for the stroke care pathway,
potentially boosting advances in quality indicator automation.

Finally, to complete the analysis and evaluate the impact of the
highly skewed distribution, especially toward the NI class, we
ran an experiment in which we performed a random
undersampling process for all considered tasks (we used the
RandomUnderSampler Phyton library [75]). In detail, we
randomly selected the same number of training random
examples of the NI as the number of instances of the second
largest (non-NI) class of a given task. We then reran all ML
classifiers (the ontology method is not affected by this process
as it has no training) in all 24 tasks, considering as the training
set the reduced (undersampled) NI training samples along with
the same (unchanged) previous samples for the other classes.
We did that for all six rounds of five-fold cross-validation of
our experimental procedure, changing the seed for selection in
each round, resulting in six different NI reduced training sets.
The test folds in all cases remain unchanged, meaning that we
keep the same skewed distribution as in the original data set,
as we do not know the class of the test instances.

Results

Tasks Selection
Discussions with experts in the stroke care pathway allowed us
to define 30 tasks that were considered feasible to extract from
EMRs. For the first tier, the standard sets were usually defined
to evaluate the clinical stroke outcomes that were used, including
the mRS [27] and the NIHSS scales [76], in addition to
traditional outcomes such as mortality and pain level. For tier
2, the ICHOM standard set developed for ischemic stroke was
used [77], which considers measures of mobility, ability to
communicate, ability to feed orally, the ability to understand,
and measures and scales of strength level. Indicators of the
hospitalization care process used in the institution were also
included, such as rating scales and risk events tracked by fall
risk, pressure ulcer risk, fall events during hospitalization,
infection indicators, intracranial hemorrhage, therapy care
(thrombolytic, thrombectomy, or both), and the location of the
patient during the inpatient path [78]. Finally, baseline
characteristics important for tracking the population and further
risk-adjusted analysis were included [79], such as high blood
pressure, smoking status, coronary artery disease, atrial
fibrillation, diabetes, prior stroke, active cancer, alcoholism,
obesity, and dyslipidemia. Each category, containing the tasks
and their respective classes, is presented in Table 1.
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Table 1. Eligible tasks for analysis and classification rules.

Supporting information for classesNumber of classesTasks

Health care status achieved (tier 1)

8Rankin • 0-6
• NIa

42National Institutes of Health Stroke Scale • 1-41
• NI

3Death • Absence of vital signs
• Vital signs present
• NI

Process of recovery (tier 2)

16Mobility level • 1-15
• NI

3Self-care • Able
• Unable
• NI

4Pain • No pain
• Low to intermediate pain
• Intense pain
• NI

7Strength • 0-5
• NI

3Paresis • Yes
• No
• NI

3Ability to feed orally • Yes
• No
• NI

4Ability to communicate • Yes
• No
• Poorly or symptomatic
• NI

4Ability of understanding • Yes
• No
• Poorly or symptomatic
• NI

4Ability to ambulate • Yes
• No
• Poorly or symptomatic
• NI

Treatment or care related

3Thrombolytic therapy • No delta
• Yes
• NI

3Thrombectomy • No delta
• Yes
• NI
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Supporting information for classesNumber of classesTasks

• Emergency room
• ICUb

• Inpatient unit
• NI

4Location

• Yes
• No
• NI

3Infection indication

• Yes
• No
• NI

3Intracranial hemorrhage

• Low risk
• Moderate risk
• High risk
• NI

4Fall risk

• Low risk
• Moderate risk
• High risk
• NI

4Pressure ulcer risk

• Yes
• No
• NI

3Fall event during inpatient

Baseline characteristics
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Supporting information for classesNumber of classesTasks

• Yes
• No
• NI

3High blood pressure

• Yes
• No
• Former
• NI

4Smoking status

• Yes
• No
• NI

3Coronary artery disease

• Yes
• No
• NI

3Atrial fibrillation

• Yes
• No
• NI

3Diabetes

• Yes
• No
• NI

3Prior stroke

• Yes
• No
• NI

3Cancer

• Yes
• No
• Former
• NI

4Alcoholism

• Yes
• No
• NI

3Obesity

• Yes
• No
• NI

3Dyslipidemia

aNI: noninformative.
bICU: intensive care unit.

After the identification of all tasks and the annotation process,
the analysis proceeded only with tasks that had substantial
(0.61>κ>0.80) and almost perfect (κ≥0.81) agreement between
annotators [34]. A total of six tasks were excluded from the
final analysis because of moderate or fair agreement or
disagreement: (1) active cancer information, (2) strength level,
(3) intracranial hemorrhage, (4) ability to understand, (5)
self-care, and (6) fall events during inpatient visits. All

documents were labeled by the annotators, and the median κ
regarding the 24 remaining tasks was 0.74 (IQR 0.65-0.89;
substantial agreement).

Patient Characteristics
The descriptive characteristics of patients, including previous
comorbidities, NIHSS score, and clinical care, are presented in
Table 2.
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Table 2. Descriptive characteristics of the patients.

Patients with ischemic stroke evaluated (n=188)Characteristics

Values, n (%)Values, median (range)

N/Aa79 (68-87)Age (years)

N/A6 (4-12)LOSb (days)

Sex

100 (53)N/AFemale

88 (47)N/AMale

Comorbidities

38 (20)N/APrevious stroke

12 (6)N/APrevious coronary artery disease

33 (18)N/AAtrial fibrillation

53 (28)N/ADiabetes

125 (66)N/AHypertension

15 (8)N/ASmoking status

4 (2)N/AAlcoholism

Treatment and care related

131 (70)N/AAntithrombotic therapy

38 (20)N/AThrombolysis with rtPAc

12 (6)N/AThrombectomy

7(4)N/AThrombolysis and thrombectomy

NIHSSd

147 (78)N/A<8

24 (13)N/A>8 and <15

17 (9)N/A>15

aN/A: not applicable.
bLOS: length of stay.
crtPA: alteplase.
dNIHSS: National Institutes of Health Stroke Scale.

Experimental Results
The Macro-F1 values for each of the 24 tasks using the 10
compared models are shown in Figure 2. Considering each task
separately, there is no single method that always dominates,
and there is no agreement on a unique category of tasks that
perform better. The ML models SVM+W+C and SVM+BoW
were the best and most consistent techniques used in this data
set. Both techniques use term-weighting representations that

are used alongside SVM classifiers. The latter simply exploits
within-document word term frequencies (term frequency),
whereas the former, in addition to exploiting data set–oriented
term statistics (IDF), also builds character-based n-gram
representations of the words in the vocabulary. The
character-based n-grams, despite increasing the vocabulary size
and sparsity, help to deal with misspellings and word variations
that are common in EMRs, which might explain the SVM+W+C
good results.
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Figure 2. Results of Macro-F1 for each task and comparative models (expressed in percentage). BERT: bidirectional encoder representation from
transformers; CNN: convolutional neural network; mRS: Modified Rankin Score; NIHSS: National Institutes of Health Stroke Scale; SVM+BoW:
support vector machine plus Bag-of-Words; TFIDF: term frequency-inverted document frequency; W+C+SVM: word-term frequency-inverted document
frequency and character-term frequency-inverted document frequency combined with support vector machine.

The SVM+W+C model excels in tasks belonging to different
categories, such as the ability to feed orally (Tier 2: the process
of recovery), with an F1 score of 89.5% (95% CI 89.2%-89.8%);
death (tier 1: health care status achieved), with an F1 score of
89.5% (95% CI 87.5%-92.5%); and high blood pressure and
dyslipidemia (the baseline characteristics of patients), with F1
scores of 86% (95% CI 83.8%-88.2%) and 83.2% (95% CI
77%-89%), respectively. SVM+BoW, in turn, excels in tasks
belonging to the treatment- or care-related categories, such as
patient location during treatment (F1 score 89.4%; 95% CI
88%-91%), fall risk (F1 score 91.1%; 95% CI 90.1%-92.1%),
and pressure ulcer risk (F1 score 92.5; 95% CI 91.5%-93.5%).
The meta-features model, which also exploits SVM as a
classifier but uses a completely different text representation,
was on average, the third-best placed ML model to cover more
tasks with good effectiveness, except in tasks such as diabetes
(F1 score 90.1%; 95% CI 88.8%-91.4%) and thrombolytic
therapy (F1 score 88.6%; 95% CI 87.5%-90.1%), in which it
was the sole winner model (best performer with no ties). The
models that used SVM but exploited either only word- or
character-based representations came in the fourth and fifth
places, losing to methods that exploited both representations in
a conjugated way.

The neural methods CNN and BERT were grouped in the
middle, with only moderate effectiveness in most tasks. This
outcome is mostly due to the lack of sufficient training data for
the optimal deployment of these methods. Indeed, previous
work has demonstrated that neural solutions are not adequate
for tasks with low to moderate training data, and they can only
outperform other more traditional ML methods in text
classification tasks when presented with massive amounts of
training [35,39], which is generally uncommon in the health
domain.

Regarding the effectiveness of the tasks, patient characteristics
and care-related process tasks produced better effectiveness.
Five of them are examples of good adherence with multiple
models, including patient treatment location, fall risk,
thrombolytic therapy, diabetes, and paresis, all with multiple
models with high effectiveness. Tasks related to measures of
mobility, ability to communicate, ability to ambulate, and pain
did not achieve high Macro-F1 values in most models.

The tasks with many classes, such as NIHSS (42 classes),
mobility level (n=16), and Rankin (n=8), performed worse,
regardless of the model. This outcome is mostly due to issues
related to the very skewed distribution (high imbalance) found
in our unstructured real-life data set. Indeed, the high percentage
of NI in the document penalizes effectiveness, mainly for the
minor classes, which are captured more faithfully by the
Macro-F1 score. However, properly dealing with such an
imbalance is not a simple task, as discussed next. Finally, as
the sentence length was very similar across tasks and classes,
this factor did not affect the results, that is, we could not infer
any significant relationship between the mean number of words
per sentence and the Macro-F1 scores of the models.

Figure 3 provides information regarding the effectiveness of
the OWL classifier. In general, the OWL effectiveness is similar
to that of the best ML models, with 11 tasks having a Macro-F1
score higher than 80%. The most interesting issue is that most
of the best-performing tasks by OWL do not coincide with the
best ones produced by the ML models in Figure 2. For instance,
the OWL classifier performed very well on the patient's baseline
characteristics tasks, such as NIHSS and mRS scale, precisely
the ones in which the ML models performed poorly. Overall,
the OWL strategy was more robust in the tasks in which the
ML models suffered from a scarcity of examples and high
imbalance. On the contrary, OWL suffered on tasks that were
much more passible in interpretation and had more text
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representations from those for which they were built [49,80].
For instance, in the death task, despite good within-annotator
agreement, we believe that due to a variety of clinical terms in
the clinical text used to describe multiple clinical concepts, the

rules initially created failed to reflect the understanding of a
noninformative sentence versus a sentence that reports the vital
signs of patients, which penalized the OWL model.

Figure 3. Effectiveness results for the ontology-based model. mRS: Modified Rankin Score; NIHSS: National Institutes of Health Stroke Scale.

A direct comparison between OWL and the best ML method is
presented in Figures 4 and 5, in which Figure 4 represents the
tasks in which OWL performed better than the best ML model
for the same tasks and Figure 5 represents the tasks with higher
F1 scores in the ML model against OWL. SVM+W+C has a

considerable advantage over the other ML strategies, as the
strategy of choice to be compared in the vast majority of cases.
The best tasks performed by the best model in each case, either
SVM+W+C or OWL, do not coincide. Indeed, there is a
potential complementarity between ML and alternatives.
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Figure 4. Best performed tasks in Ontology versus top-ranked model. mRS: Modified Rankin Score; NIHSS: National Institutes of Health Stroke Scale;
SVM: support vector machine; W+C+SVM: word- term frequency-inverted document frequency and character- term frequency-inverted document
frequency combined with support vector machine.

Figure 5. Best performed tasks in the top-ranked model versus Ontology. SVM: support vector machine; W+C: word-term frequency-inverted document
frequency and character-term frequency-inverted document frequency.
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Effect of Class Imbalance on the
Results—Undersampling
As we have discussed, all our tasks are extremely skewed, in
the sense that the NI (noninformed; majority) class dominates
over the other (minority) classes, where the useful information
really lies. This imbalance occurs in a proportion that can
achieve 1:1000 examples in the minority class to the majority
class for some tasks.

This imbalance may cause bias in the training data set
influencing some of the experimented ML algorithms toward
giving priority to NI class, ultimately undermining the

classification of the minority classes on which predictions are
most important. One approach to addressing the problem of
class imbalance is to randomly resample the training data set.
A simple, yet effective approach to deal with the problem is to
randomly delete examples from the majority class, a technique
known as random undersampling [81].

The results of this experiment are shown in Figure 6, which
compares the performance of the classifiers in scenarios with
and without undersampling. For the sake of space, we only show
the results for the best nonneural (W+C+SVM) and neural
(BERT) classifiers, but the results are similar for all tested
classifiers (Multimedia Appendix 7).

Figure 6. Results of Macro-F1 score in the undersampling sample, expressed by percentage. mRS: Modified Rankin Score; NIHSS: National Institutes
of Health Stroke Scale; SVM: support vector machine; W+C: word- term frequency-inverted document frequency and character- term frequency-inverted
document frequency.

As it can been seen, the undersampling process caused major
losses in both classifiers. Such losses occurred across all tasks,
varying from 5% of Macro-F1 score reduction (death) to 58%
(NIHSS) for W+C+SVM, and 11% (death) to 98% (NIHSS) of
Macro-F1 effectiveness loss in BERT. The largest losses for
the neural method were expected, as this type of classifier is
more sensitive to the amount of training. However, to a certain
degree, all the classifiers suffered major losses after the
undersampling process. These results may be attributed to the
largest difference in class distribution between training and
testing and the inevitable loss of information that comes after
the removal of training instances after undersampling.

These phenomena can be better seen when we look at the
individual values of F1, precision, and recall of the classes of
the tasks. Table 3 shows an example of the tasks of infection
indication, thrombolytic therapy, and ability to communicate

with the W+C+SVM classifier. As we can see, all classes have
a reduced F1 in the undersampling scenario. This is mainly due
to a large reduction in the precision of the classes. This happens
because W+C+SVM misclassifies NI instances as belonging to
some of the relevant classes. As the classifier is obliged to
categorize a sentence in one of the existing classes, the lack of
information about the fact that a sentence does not have useful
information for assigning the sentence in one of the classes of
interest confounds the classifier. In other words, the negative
information about the NI (eg, frequent words in NI sentences
that help to characterize this class but that are also shared by
some non-NI instances, and whose frequency was altered by
the undersampling) is in fact useful information for avoiding
false positives, which may cause many problems in a real
scenario, including false alarms, waste of resources, and distrust
of the automatic methods.
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Table 3. Comparison of undersampling and original sampling in terms of precision, recall, and Macro-F1 score (W+C+SVM model).

Original samplingUndersamplingClass

F1 (%)aRecallPrecisionF1 (%)aRecallPrecision

Infection indicative

9910.99980.961−1

810.750.88540.890.390

590.530.68420.820.281

Thrombolytic therapy

10011990.981−1

590.520.69420.620.320

900.910.89470.910.311

Ability to communicate

10010.99980.961−1

400.260.9440.630.340

690.640.76490.810.351

810.80.82480.930.322

aMacro-F1 score (W+C+SVM model).

Feature Importance
For the tasks presented in Textbox 1 (alcoholism, atrial
fibrillation, coronary artery disease, dyslipidemia, obesity,
NIHSS, Rankin [mRs], infection indicators, high blood pressure,
death, ability to feed orally, and ability to communicate), we
present the top 10 clinical features (ie, words) used in the task
prediction in Textbox 1, which means the 10 features with higher
contribution to task prediction. This analysis helps to better
understand the divergence between approaches. It is worth
noting that in the tasks in which the ML models performed
better (second column), the top-ranked features were all related
to the semantics of the task. For instance, considering the death
task as an example, the ML model was able to identify important

features for the task, which produced a higher information gain
than the OWL model. Indeed, for death, only three features of
the 10 most relevant explicitly use the word death, but most
features are somewhat related to this outcome. This finding
suggests data quality issues (vocabulary coverage) that may
drastically influence the effectiveness of the OWL strategy,
which exploits only rules that explicitly contain the word death
(or related ones) but no other terms. However, for the features
in the first column, in which the OWL models were better, there
were still features with considerable contributions that were not
directly related to the information sought. For example, to
mention the NIHSS task, rule-based knowledge models built
alongside clinical domain vocabulary specialists may be the
best alternative.
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Textbox 1. Top 10 clinical indicators for task prediction models and feature importance. In parenthesis, the translation to English language is indicated,
where there may be misspellings in the original writing that are also indicated.

Alcoholism

• etilismo (alcoholism)

• etilista (alcoholic)

• fumo (smoke)

• históira (story with misspelling in the original)

• álcool (alcohol)

• cart

• osteoartrose (osteoarthritis)

• ttu (short for transurethral resection of the prostate)

• tabagismo (smoking)

• cesária (cesarean)

Atrial fibrillation

• fa (short for atrial fibrillation)

• comorbidades (comorbidities)

• acfa (short for atrial fibrillation)

• paroxística (paroxysmal)

• has (short for high blood pressure)

• anticoagulado (anticoagulated)

• depressão (depression)

• indeterminado (indeterminate)

• digoxina (digoxin)

• institucionalizada (institutionalized)

Coronary artery disease

• cardiopatia (heart disease)

• isquêmica (ischemic)

• actp (short for percutaneous transluminal coronary angioplasty)

• dp

• crm (short for myocardial revascularization surgery)

• iam (short for acute myocardial infarction)

• 2014

• infarto (short for acute myocardial infarction)

• mm

• sf

Dyslipidemia

• dislipidemia (dyslipidemia)

• comorbidades (comorbidities)

• 1hora

• cesária (cesarean)

• morbidades (morbidities)

• puerpera (puerperal)

• has (short for high blood pressure)
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fêmur (fêmur)•

• tep

• previas (previous)

Obesity

• BMI (short for body mass index)

• obesidade (obesity)

• m²

• 1994

• lipschitz

• eutrofia

• altura (height)

• peso (weight)

• estatura (stature)

• obesa (obese)

National Institutes of Health Stroke Scale

• nihss

• súbito (sudden)

• asistolia (asystolia)

• sens

• territ

• suboclusiva (subocclusive)

• perg

• mecania (mecanic with mispelling in the original)

• severo (severe)

• visto (seen)

Ability to communicate

• afasia (afasia)

• comunicativa (talkative)

• disartria (dysarthria)

• comunicativo (talkative)

• colóquio (colloquium)

• verbalizando (verbalizing)

• alerta (alert)

• verbaliza (verbalizes)

• expressão (expression)

• hemiparesia (hemiparesis)

Ability to feed orally

• vo (short for orally)

• sne (short for nasoenteral probe)

• dieta (diet)

• pastosa (pasty)

• gastrostomia (gastrostomy)
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enteral (enteral)•

• aceitação (acceptance)

• semi (semi)

• exclusiva (exclusive)

• polimérica (polymeric diet)

Death

• óbito (death)

• constato (i’ve verified)

• leito (bed)

• ar (air)

• estável (stable)

• ambiente (environment or room)

• no

• doação (donation)

• obito (death with misspelling in the original)

• óbito (death with misspelling in the original)

High blood pressure

• has (short for high blood pressure)

• dm (short for diabetes)

• dislipidemia (dyslipidemia)

• dm2 (short for diabetes type 2)

• comorbidades (comorbidities)

• fa (short for atrial fibrillation)

• artrite (arthritis)

• definitivo (definitive)

• reumatoide (rheumatoid)

• demencial (dementia)

Infection indication

• afebril (afebrile)

• flogísticos (phlogistic)

• sinais (signs)

• cefuroxima (cefuroxime)

• inserção (insertion)

• tax

• klebsiella (klebsiella)

• d0 (short for day 0)

• atb (short for antibiotics)

• azitromicina (azithromycin)

Modified Rankin Score

• rankin

• mrankin

• demência (dementia)
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caminha (walks)•

• corversa (talks)

• alimenta (feed)

• alzheimer

• aparentes (apparent)

• comer (eat)

• mrk (mrs with misspelling in the original)

Discussion

Principal Findings
The study intended to recognize the path and opportunities that
may be advanced in terms of the technological capacity to
support the outcome measurement process for the stroke care
pathway. Real-world sentences from ischemic stroke EMRs
were used to develop automatic models using ML and NLP
techniques. It was possible to identify that SVM+W+C and
SVM+BoW were the most effective models to be used to
classify characteristics of a patient and process of care based
on the extraction of Brazilian-Portuguese free-text data from
the EMRs of patients. Ontological rules were also effective in
this task, and perhaps even more importantly, most of the
best-performing tasks with the OWL and ML models did not
coincide. This outcome opens up the opportunity to exploit such
complementarities to improve the coverage of tasks when
implementing a real solution for outcome management or even
to improve the individual effectiveness of each alternative by
means of ensemble techniques such as stacking [82].

One of the good practices that the literature has demonstrated
to increase the success of ML algorithms applied to health care
is the inclusion of a clinical background in the annotation
process [83]. The availability of training data is critical in
obtaining good results, thus indicating that variations in clinical
terms found in the clinical text could be specific to the type and
source of clinical notes that may not have been captured in an
available resource. The results from our feature importance
analysis are consistent with other study results [21,68,76,83-85]
concerning many clinical terms applied to multiple clinical
concepts, although there are specific patterns based on semantic
types that can help. In general, it is difficult to determine the
correct concept when a clinical term normalizes to multiple
concepts, and this issue can penalize the effectiveness of the
model [86,87].

Our effectiveness results agree with the literature [83,88], in
which a Macro-F1 score >80% is considered a successful
extraction of medical records. Even though there is still a need
to cover more tasks related to ICHOM patient-reported outcome
measures [3,74,76,85], we hypothesized that these tasks
comprise a feeling state, and the lack of normalization of data
contained in EMRs may explain the fact that these task
categories did not perform very well [70,89]. Medical records
related to baseline characteristics and care processes typically
contain much more structured data (eg, numerical values for
tasks) than medical patient-reported outcomes, which focus

more on unstructured data [83,90]. This issue has been explored
in previous studies on EMR-based clinical quality measures
[22,82], in which it is suggested that these kinds of data (for
baseline characteristics and care-related processes) have the
potential to be scaled in other clinical conditions, such as
cardiovascular and endocrine conditions [83].

Previous studies have found various advantages of EMR
compared with traditional paper records [91]. However, as
reported by Ausserhofer et al [12], care workers do not find
them useful for guaranteeing safe care and treatment because
of the difficulty of tracking clinical and quality measures. The
same authors have discussed the importance of having IT
capability to track care workers’documentation while increasing
safety and quality of care. They emphasized that this approach
is important for addressing EMR data collection issues that have
been historically extracted via manual review by clinical experts,
leading to scalability and cost issues [83,85,90]. In our study,
it was possible to demonstrate that for the stroke care pathway,
the use of ML models to measure clinical outcomes remains a
challenge, but the technology has the potential to support the
extraction of relevant patient characteristics and care-process
information.

Despite the challenges regarding the accuracy of the outcome
measures, promising approaches regarding baseline
characteristics and care-related process data have been achieved.
This may be the first step toward unlocking the full potential
of EMR data [83]. The usefulness of having baseline
characteristics tracked is to assist disease prevalence studies
and identify opportunities to guide political decisions about the
public health sector [13,92,93], automatize eligibility of patients
for clinical research [84], and feed risk assessment tools [94].
On the contrary, care-related process metrics boost the
opportunity to improve decision-making with new technologies,
maintain the effectiveness of treatments, and encourage
alternative remuneration models [17,92,95].

The next step would be to invest in the automation of tasks at
the patient level that support the control of the progression of
patients in real-time during stroke episodes. In a similar manner,
it would be useful to identify opportunities to improve the EMR
data quality, such as the implementation of quality software
with dynamic autocompletes with normalized terms register.
The use of NLP for quality measures also adds to the capture
of large amounts of clinical data from EMRs [82]. The products
of NLP and mixed methods pipelines could potentially impact
a number of clinical areas and could facilitate appropriate care
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by feeding hospital outcome indicators and data to support
epidemiological studies or value-based programs [82].

Limitations
This study had several limitations. For clinical NLP method
development to advance further globally and to become an
integral part of clinical outcome research or have a natural place
in clinical practice, there are still challenges ahead. Our work
is based on the EMR of a single center, with a limited number
of annotated patients. Thus, further work is needed to test this
approach in EMRs from different centers with different patients,
who may use different languages for clinical documentation.
We have no access to data from exams or hospital indicators,
which is the reason why our infection identification, for
example, was based on any report of antibiotic use, typical
symptoms of infection, or tests described. We were unable to
find data samples that included all the risk factors that were
discovered in the literature. It would be worth conducting a
future study with a larger and different data set with more
features to examine whether the findings of this research are
still valid. Finally, the design focused on sentences can be
significantly influenced by the NI data volume—if a patient
smokes, this will probably be reflected in just one sentence,
maybe two, and for all of the others, you will have NI. One
possible approach would be to use hierarchy models to first
classify whether a sentence is relevant and then evolve to
classification algorithms to predict classes. Then, the entire

record can inform the prediction of the outcome of patients,
instead of saying whether a specific sentence indicates a task.

Regarding the undersampling experiment, more intelligent
strategies such as choosing the most positive of the negative
samples or Tomek links [81] should be tested for better
effectiveness. We leave this for future work and suggest
practical purposes to maintain the original distribution, whereas
more effective strategies are not further studied.

Conclusions
This study is innovative in that it considered many and diverse
types of automatic classifiers (neural, nonneural, and
ontological) using a large real-world data set containing
thousands of textual sentences from real-world EMRs and a
large number of tasks (n=24) with multiple classes using
Brazilian-Portuguese unstructured free-text EMR databases.
The effectiveness of these models demonstrated a better result
when used to classify care processes and patient characteristics
than patient-reported outcomes, which suggests that advances
in intelligence in informational technology for clinical outcomes
are still a gap in the scalability of outcome measurements in
health care. Future research should explore the development of
mixed methods to increase task effectiveness. Advances in IT
capacity have proved to be essential for the scalability and
agility of the ability to measure health outcomes and how it
reflects on its external validation to support health real-time
quality measurement indicators.

Conflicts of Interest
The authors disclose receipt of the following financial support for the research, authorship, and publication of this paper: this
research was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code
001 and National Council for Scientific and Technological Development (CNPq 465518/2014-1 and others), Research Support
Foundation of the State of Minas Gerais (FAPEMIG), Google, and NVIDIA Corporation.

Multimedia Appendix 1
Example of an evolution on the electronic medical record.
[DOCX File , 14 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Example of the annotation process.
[DOCX File , 19 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Data set characteristics.
[DOCX File , 20 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Details of the automatic text classification methods.
[DOCX File , 28 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Experimental procedure.
[PNG File , 97 KB-Multimedia Appendix 5]

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e29120 | p. 19https://medinform.jmir.org/2021/11/e29120
(page number not for citation purposes)

Zanotto et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app1.docx&filename=48d8808ebaf4abe385fd59939c575b6a.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app1.docx&filename=48d8808ebaf4abe385fd59939c575b6a.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app2.docx&filename=97dfd6e5065b06e12f13ef033021dea1.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app2.docx&filename=97dfd6e5065b06e12f13ef033021dea1.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app3.docx&filename=62c55cbac75a620e16d6ad1d8cc980ca.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app3.docx&filename=62c55cbac75a620e16d6ad1d8cc980ca.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app4.docx&filename=4d18ab31937bf05af61e69115012bbba.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app4.docx&filename=4d18ab31937bf05af61e69115012bbba.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app5.png&filename=864bedd1a5dbd85b336996c96add74da.png
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app5.png&filename=864bedd1a5dbd85b336996c96add74da.png
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 6
Experimental protocol details—specific parameter tuning.
[DOCX File , 15 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Results of F1 score from the random undersampling experiment. BERT: bidirectional encoder representation from transformers;
BoW: Bag-of-Words; KNN: K-nearest neighbor; mRS: Modified Rankin Score; NIHSS: National Institutes of Health Stroke
Scale; SVM: support vector machine; TFIDF: term frequency-inverted document frequency; W+C: word- term frequency-inverted
document frequency and character- term frequency-inverted document frequency.
[PNG File , 308 KB-Multimedia Appendix 7]

References

1. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the
Global Burden of Disease Study 2016. Lancet Neurol 2019 May;18(5):439-458 [FREE Full text] [doi:
10.1016/S1474-4422(19)30034-1] [Medline: 30871944]

2. Findings From the Global Burden of Disease Study 2017. Institute for Health Metrics and Evaluation (IHME). 2018. URL:
http://www.healthdata.org/sites/default/files/files/policy_report/2019/GBD_2017_Booklet.pdf [accessed 2021-10-11]

3. Wang W, Kiik M, Peek N, Curcin V, Marshall I, Rudd A, et al. A systematic review of machine learning models for
predicting outcomes of stroke with structured data. PLoS One 2020 Jun 12;15(6):e0234722 [FREE Full text] [doi:
10.1371/journal.pone.0234722] [Medline: 32530947]

4. Kamal H, Lopez V, Sheth SA. Machine learning in acute ischemic stroke neuroimaging. Front Neurol 2018 Nov 8;9:945
[FREE Full text] [doi: 10.3389/fneur.2018.00945] [Medline: 30467491]

5. Feng R, Badgeley M, Mocco J, Oermann EK. Deep learning guided stroke management: a review of clinical applications.
J Neurointerv Surg 2018 Apr;10(4):358-362 [FREE Full text] [doi: 10.1136/neurintsurg-2017-013355] [Medline: 28954825]

6. Lee E, Kim Y, Kim N, Kang D. Deep into the brain: artificial intelligence in stroke imaging. J Stroke 2017 Sep;19(3):277-285
[FREE Full text] [doi: 10.5853/jos.2017.02054] [Medline: 29037014]

7. Wodchis WP, Austin PC, Henry DA. A 3-year study of high-cost users of health care. Can Med Asso J 2016 Feb
16;188(3):182-188 [FREE Full text] [doi: 10.1503/cmaj.150064] [Medline: 26755672]

8. Markatou M, Don PK, Hu J, Wang F, Sun J, Sorrentino R, et al. Case-based reasoning in comparative effectiveness research.
IBM J Res Dev 2012 Sep;56(5):4:1-4:12. [doi: 10.1147/JRD.2012.2198311]

9. Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning
approaches. Med Care 2010 Jun;48(6 Suppl):106-113. [doi: 10.1097/MLR.0b013e3181de9e17] [Medline: 20473190]

10. Chechulin Y, Nazerian A, Rais S, Malikov K. Predicting patients with high risk of becoming high-cost healthcare users in
Ontario (Canada). Health Care Policy 2014 Feb 26;9(3):68-79. [doi: 10.12927/hcpol.2014.23710]

11. Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D. Learning a health knowledge graph from electronic medical
records. Sci Rep 2017 Jul 20;7(1):5994 [FREE Full text] [doi: 10.1038/s41598-017-05778-z] [Medline: 28729710]

12. Ausserhofer D, Favez L, Simon M, Zúñiga F. Electronic health record use in Swiss nursing homes and its association with
implicit rationing of nursing care documentation: multicenter cross-sectional survey study. JMIR Med Inform 2021 Mar
02;9(3):e22974 [FREE Full text] [doi: 10.2196/22974] [Medline: 33650983]

13. Casey JA, Schwartz BS, Stewart WF, Adler NE. Using electronic health records for population health research: a review
of methods and applications. Annu Rev Public Health 2016;37:61-81 [FREE Full text] [doi:
10.1146/annurev-publhealth-032315-021353] [Medline: 26667605]

14. Fernandes M, Sun H, Jain A, Alabsi HS, Brenner LN, Ye E, et al. Classification of the disposition of patients hospitalized
with COVID-19: reading discharge summaries using natural language processing. JMIR Med Inform 2021 Mar 10;9(2):e25457
[FREE Full text] [doi: 10.2196/25457] [Medline: 33449908]

15. Porter M, Lee T. The strategy that will fix health care. Harvard Business Review. 2013. URL: https://hbr.org/2013/10/
the-strategy-that-will-fix-health-care [accessed 2021-09-07]

16. Golas SB, Shibahara T, Agboola S, Otaki H, Sato J, Nakae T, et al. A machine learning model to predict the risk of 30-day
readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Med Inform
Decis Mak 2018 Jun 22;18(1):44 [FREE Full text] [doi: 10.1186/s12911-018-0620-z] [Medline: 29929496]

17. Glaser J. It’s time for a new kind of electronic health record. Harvard Bussiness Review. 2020. URL: https://hbr.org/2020/
06/its-time-for-a-new-kind-of-electronic-health-record [accessed 2021-09-07]

18. Carberry K, Landman Z, Xie M, Feeley T, Henderson J, Fraser C. Incorporating longitudinal pediatric patient-centered
outcome measurement into the clinical workflow using a commercial electronic health record: a step toward increasing
value for the patient. J Am Med Inform Assoc 2016 Jan;23(1):88-93 [FREE Full text] [doi: 10.1093/jamia/ocv125] [Medline:
26377989]

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e29120 | p. 20https://medinform.jmir.org/2021/11/e29120
(page number not for citation purposes)

Zanotto et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app6.docx&filename=00a0c3e9a139121b7f1af02e72bf6c54.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app6.docx&filename=00a0c3e9a139121b7f1af02e72bf6c54.docx
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app7.png&filename=cf68cf2d1501a5a15543f49e99543da2.png
https://jmir.org/api/download?alt_name=medinform_v9i11e29120_app7.png&filename=cf68cf2d1501a5a15543f49e99543da2.png
https://linkinghub.elsevier.com/retrieve/pii/S1474-4422(19)30034-1
http://dx.doi.org/10.1016/S1474-4422(19)30034-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30871944&dopt=Abstract
http://www.healthdata.org/sites/default/files/files/policy_report/2019/GBD_2017_Booklet.pdf
https://dx.plos.org/10.1371/journal.pone.0234722
http://dx.doi.org/10.1371/journal.pone.0234722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32530947&dopt=Abstract
https://doi.org/10.3389/fneur.2018.00945
http://dx.doi.org/10.3389/fneur.2018.00945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30467491&dopt=Abstract
https://doi.org/10.1136/neurintsurg-2017-013355
http://dx.doi.org/10.1136/neurintsurg-2017-013355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28954825&dopt=Abstract
https://dx.doi.org/10.5853/jos.2017.02054
http://dx.doi.org/10.5853/jos.2017.02054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29037014&dopt=Abstract
http://www.cmaj.ca/cgi/pmidlookup?view=long&pmid=26755672
http://dx.doi.org/10.1503/cmaj.150064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26755672&dopt=Abstract
http://dx.doi.org/10.1147/JRD.2012.2198311
http://dx.doi.org/10.1097/MLR.0b013e3181de9e17
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20473190&dopt=Abstract
http://dx.doi.org/10.12927/hcpol.2014.23710
http://dx.doi.org/10.1038/s41598-017-05778-z
http://dx.doi.org/10.1038/s41598-017-05778-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28729710&dopt=Abstract
https://medinform.jmir.org/2021/3/e22974/
http://dx.doi.org/10.2196/22974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33650983&dopt=Abstract
http://europepmc.org/abstract/MED/26667605
http://dx.doi.org/10.1146/annurev-publhealth-032315-021353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26667605&dopt=Abstract
https://medinform.jmir.org/2021/2/e25457/
http://dx.doi.org/10.2196/25457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33449908&dopt=Abstract
https://hbr.org/2013/10/the-strategy-that-will-fix-health-care
https://hbr.org/2013/10/the-strategy-that-will-fix-health-care
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0620-z
http://dx.doi.org/10.1186/s12911-018-0620-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29929496&dopt=Abstract
https://hbr.org/2020/06/its-time-for-a-new-kind-of-electronic-health-record
https://hbr.org/2020/06/its-time-for-a-new-kind-of-electronic-health-record
http://europepmc.org/abstract/MED/26377989
http://dx.doi.org/10.1093/jamia/ocv125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26377989&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


19. Afzal N, Sohn S, Abram S, Liu H, Kullo IJ, Arruda-Olson AM. Identifying peripheral arterial disease cases using natural
language processing of clinical notes. IEEE EMBS Int Conf Biomed Health Inform 2016 Feb;2016:126-131 [FREE Full
text] [doi: 10.1109/BHI.2016.7455851] [Medline: 28111640]

20. Wi C, Sohn S, Rolfes MC, Seabright A, Ryu E, Voge G, et al. Application of a natural language processing algorithm to
asthma ascertainment. An automated chart review. Am J Respir Crit Care Med 2017 Aug 15;196(4):430-437 [FREE Full
text] [doi: 10.1164/rccm.201610-2006OC] [Medline: 28375665]

21. Chase HS, Mitrani LR, Lu GG, Fulgieri DJ. Early recognition of multiple sclerosis using natural language processing of
the electronic health record. BMC Med Inform Decis Mak 2017 Feb 28;17(1):24 [FREE Full text] [doi:
10.1186/s12911-017-0418-4] [Medline: 28241760]

22. Garvin JH, Kim Y, Gobbel GT, Matheny ME, Redd A, Bray BE, et al. Automating quality measures for heart failure using
natural language processing: a descriptive study in the department of veterans affairs. JMIR Med Inform 2018 Jan 15;6(1):e5
[FREE Full text] [doi: 10.2196/medinform.9150] [Medline: 29335238]

23. Dai H, Lee Y, Nekkantti C, Jonnagaddala J. Family history information extraction with neural attention and an enhanced
relation-side scheme: algorithm development and validation. JMIR Med Inform 2020 Dec 01;8(12):e21750 [FREE Full
text] [doi: 10.2196/21750] [Medline: 33258777]

24. Lee TH. Putting the value framework to work. N Engl J Med 2010 Dec 23;363(26):2481-2483. [doi: 10.1056/NEJMp1013111]
[Medline: 21142527]

25. Blumenthal D, Tavenner M. The "meaningful use" regulation for electronic health records. N Engl J Med 2010 Aug
5;363(6):501-504. [doi: 10.1056/NEJMp1006114] [Medline: 20647183]

26. Porter ME, Larsson S, Lee TH. Standardizing patient outcomes measurement. N Engl J Med 2016 Feb 11;374(6):504-506.
[doi: 10.1056/NEJMp1511701] [Medline: 26863351]

27. Wilson JL, Hareendran A, Grant M, Baird T, Schulz UG, Muir KW, et al. Improving the assessment of outcomes in stroke:
use of a structured interview to assign grades on the modified Rankin Scale. Stroke 2002 Sep;33(9):2243-2246. [doi:
10.1161/01.str.0000027437.22450.bd] [Medline: 12215594]

28. Lyden PD, Lu M, Levine SR, Brott TG, Broderick J, NINDS rtPA Stroke Study Group. A modified National Institutes of
Health Stroke Scale for use in stroke clinical trials: preliminary reliability and validity. Stroke 2001 Jun;32(6):1310-1317.
[doi: 10.1161/01.str.32.6.1310] [Medline: 11387492]

29. Caso V, Zakaria M, Tomek A, Mikulik R, Martins S, Nguyen T, et al. Improving stroke care across the world: the ANGELS
Initiative. CNS - Oruen Ltd. 2018. URL: https://www.oruen.com/wp-content/uploads/2018/12/Review-article-4.pdf [accessed
2021-09-07]

30. Honnibal M, Montani I. Industrial-strength natural language processing. spaCy. URL: https://spacy.io [accessed 2021-09-07]
31. Klie J, Bugert M, Boullosa B, de Castilho RE, Gurevych I. The INCEpTION platform: machine-assisted and

knowledge-oriented interactive annotation. In: Proceedings of the 27th International Conference on Computational Linguistics:
System Demonstrations. 2018 Aug 01 Presented at: 27th International Conference on Computational Linguistics: System
Demonstrations; August, 2018; Santa Fe, New Mexico p. 5-9 URL: https://aclanthology.org/C18-2002/ [doi:
10.18653/v1/d18-2022]

32. Manning C, Raghawan P, Schutze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press;
2008:1-506.

33. Manning C, Schutze H. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press; 1999:1-720.
34. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005 May;37(5):360-363

[FREE Full text] [Medline: 15883903]
35. Cunha W, Mangaravite V, Gomes C, Canuto S, Resende E, Nascimento C, et al. On the cost-effectiveness of neural and

non-neural approaches and representations for text classification: a comprehensive comparative study. Inf Process Manag
2021 May;58(3):102481. [doi: 10.1016/j.ipm.2020.102481]

36. Canuto S, Salles T, Rosa TC, Couto T, Gonçalves MA. Similarity-based synthetic document representations for meta-feature
generation in text classification. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2019 Jan 01 Presented at: SIGIR '19: The 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval; Jul 21-25, 2019; Paris France p. 355-364. [doi:
10.1145/3331184.3331239]

37. Canuto S, Salles T, Gonçalves M, Rocha L, Ramos G, Gonçalves G. On efficient meta-level features for effective text
classification. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management. 2014 Jan 01 Presented at: CIKM '14: 2014 ACM Conference on Information and Knowledge Management;
Nov 3-7, 2014; Shanghai China p. 1709-1718. [doi: 10.1145/2661829.2662060]

38. Canuto S, Sousa DX, Goncalves MA, Rosa TC. A thorough evaluation of distance-based meta-features for automated text
classification. IEEE Trans Knowl Data Eng 2018 Mar 27;30(12):2242-2256. [doi: 10.1109/tkde.2018.2820051]

39. Cunha W, Canuto S, Viegas F, Salles T, Gomes C, Mangaravite V, et al. Extended pre-processing pipeline for text
classification: on the role of meta-feature representations, sparsification and selective sampling. Inf Process Manag 2020
Jul;57(4):102263. [doi: 10.1016/j.ipm.2020.102263]

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e29120 | p. 21https://medinform.jmir.org/2021/11/e29120
(page number not for citation purposes)

Zanotto et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/28111640
http://europepmc.org/abstract/MED/28111640
http://dx.doi.org/10.1109/BHI.2016.7455851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28111640&dopt=Abstract
http://europepmc.org/abstract/MED/28375665
http://europepmc.org/abstract/MED/28375665
http://dx.doi.org/10.1164/rccm.201610-2006OC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28375665&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0418-4
http://dx.doi.org/10.1186/s12911-017-0418-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28241760&dopt=Abstract
http://medinform.jmir.org/2018/1/e5/
http://dx.doi.org/10.2196/medinform.9150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29335238&dopt=Abstract
https://medinform.jmir.org/2020/12/e21750/
https://medinform.jmir.org/2020/12/e21750/
http://dx.doi.org/10.2196/21750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33258777&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp1013111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21142527&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp1006114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20647183&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp1511701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26863351&dopt=Abstract
http://dx.doi.org/10.1161/01.str.0000027437.22450.bd
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12215594&dopt=Abstract
http://dx.doi.org/10.1161/01.str.32.6.1310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11387492&dopt=Abstract
https://www.oruen.com/wp-content/uploads/2018/12/Review-article-4.pdf
https://spacy.io
https://aclanthology.org/C18-2002/
http://dx.doi.org/10.18653/v1/d18-2022
http://www.stfm.org/fmhub/fm2005/May/Anthony360.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15883903&dopt=Abstract
http://dx.doi.org/10.1016/j.ipm.2020.102481
http://dx.doi.org/10.1145/3331184.3331239
http://dx.doi.org/10.1145/2661829.2662060
http://dx.doi.org/10.1109/tkde.2018.2820051
http://dx.doi.org/10.1016/j.ipm.2020.102263
http://www.w3.org/Style/XSL
http://www.renderx.com/


40. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical information extraction applications: a
literature review. J Biomed Inform 2018 Jan;77:34-49 [FREE Full text] [doi: 10.1016/j.jbi.2017.11.011] [Medline: 29162496]

41. Breiman L. Random forests. Mach Learn 2001 Oct 1;45(1):5-32. [doi: 10.1023/A:1010933404324]
42. Kowsari K, Meimandi KJ, Heidarysafa M, Mendu S, Barnes L, Brown D. Text classification algorithms: a survey. Information

2019 Apr 23;10(4):150. [doi: 10.3390/info10040150]
43. Larson RR. Introduction to information retrieval. J Am Soc Inf Sci Technol 2009 Oct 19;61(4):852-853. [doi:

10.1002/asi.21234]
44. Li L, Weinberg CR, Darden TA, Pedersen LG. Gene selection for sample classification based on gene expression data:

study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001 Dec;17(12):1131-1142. [doi:
10.1093/bioinformatics/17.12.1131] [Medline: 11751221]

45. Almeida MB, Bax MP. Uma visão geral sobre ontologias: pesquisa sobre definições, tipos, aplicações, métodos de avaliação
e de construção. Ci Inf 2003 Dec;32(3):7-20. [doi: 10.1590/s0100-19652003000300002]

46. Allahyari M, Kochut K, Janik M. Ontology-based text classification into dynamically defined topics. In: Proceedings of
the IEEE International Conference on Semantic Computing. 2014 Jan 01 Presented at: IEEE International Conference on
Semantic Computing; Jun 16-18, 2014; Newport Beach, CA, USA p. 273-278. [doi: 10.1109/icsc.2014.51]

47. Chi N, Lin K, Hsieh S. Using ontology-based text classification to assist job hazard analysis. Adv Eng Inf 2014
Oct;28(4):381-394. [doi: 10.1016/j.aei.2014.05.001]

48. Garla VN, Brandt C. Ontology-guided feature engineering for clinical text classification. J Biomed Inform 2012
Oct;45(5):992-998 [FREE Full text] [doi: 10.1016/j.jbi.2012.04.010] [Medline: 22580178]

49. Wang B, McKay R, Abbass H, Barlow M. A comparative study for domain ontology guided feature extraction. Australian
Computer Society. 2003. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3384&rep=rep1&type=pdf
[accessed 2021-09-07]

50. Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. Inf Process Manag 1988 Jan;24(5):513-523.
[doi: 10.1016/0306-4573(88)90021-0]

51. Andrade CM, Gonçalves MA. Combining representations for effective citation classification. In: Proceedings of The
International Workshop on Mining Scientific Publications. 2020 Presented at: The International Workshop on Mining
Scientific Publications; Aug 2020; Wuhan, China.

52. Cortes EG, Woloszyn V, Barone DA. When, where, who, what or why? A hybrid model to question answering systems.
In: Computational Processing of the Portuguese Language. Cham: Springer; 2018.

53. Viegas F, Rocha L, Resende E, Salles T, Martins W, Freitas MF, et al. Exploiting efficient and effective lazy Semi-Bayesian
strategies for text classification. Neurocomput 2018 Sep 13;307:153-171. [doi: 10.1016/j.neucom.2018.04.033]

54. Fei Y. Simultaneous Support Vector selection and parameter optimization using Support Vector Machines for sentiment
classification. In: Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science
(ICSESS). 2016 Presented at: 2016 7th IEEE International Conference on Software Engineering and Service Science
(ICSESS); Aug 26-28, 2016; Beijing, China. [doi: 10.1109/ICSESS.2016.7883015]

55. Shen Y. Selection incentives in a performance-based contracting system. Health Serv Res 2003 Apr;38(2):535-552 [FREE
Full text] [doi: 10.1111/1475-6773.00132] [Medline: 12785560]

56. Georgakopoulos SV, Tasoulis SK, Vrahatis AG, Plagianakos VP. Convolutional neural networks for toxic comment
classification. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence. 2018 Presented at: SETN '18:
10th Hellenic Conference on Artificial Intelligence; Jul 9-12, 2018; Patras Greece. [doi: 10.1145/3200947.3208069]

57. Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017 Presented at: Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Jul 30 - Aug 4,
2017; Vancouver, Canada. [doi: 10.18653/v1/P17-1052]

58. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
In: Proceedings of the conference of the North American chapter of the association for computational linguistics: Human
language technologies. 2019 Presented at: Proceedings of the conference of the North American chapter of the association
for computational linguistics: Human language technologies; Jun,2019; Minneapolis, Minnesota.

59. Gomez-Perez A, Corcho O, Fernández-López M. Ontological Engineering With Examples from the Areas of Knowledge
Management, E-Commerce and the Semantic Web. London: Springer; 2004.

60. Han EH, Karypis G. Centroid-based document classification: analysis and experimental results. In: Principles of Data
Mining and Knowledge Discovery. Berlin, Heidelberg: Springer; 2000.

61. Manevitz LM, Yousef M. One-class svms for document classification. J Mach Learn Res 2002 Jan 3;2:139-154. [doi:
10.5555/944790.944808]

62. Layeghian Javan S, Sepehri MM, Aghajani H. Toward analyzing and synthesizing previous research in early prediction of
cardiac arrest using machine learning based on a multi-layered integrative framework. J Biomed Inform 2018 Dec;88:70-89
[FREE Full text] [doi: 10.1016/j.jbi.2018.10.008] [Medline: 30389440]

63. Salles T, Gonçalves M, Rodrigues V, Rocha L. Improving random forests by neighborhood projection for effective text
classification. Inf Syst 2018 Sep;77:1-21. [doi: 10.1016/j.is.2018.05.006]

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e29120 | p. 22https://medinform.jmir.org/2021/11/e29120
(page number not for citation purposes)

Zanotto et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30256-3
http://dx.doi.org/10.1016/j.jbi.2017.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29162496&dopt=Abstract
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.1002/asi.21234
http://dx.doi.org/10.1093/bioinformatics/17.12.1131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11751221&dopt=Abstract
http://dx.doi.org/10.1590/s0100-19652003000300002
http://dx.doi.org/10.1109/icsc.2014.51
http://dx.doi.org/10.1016/j.aei.2014.05.001
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(12)00063-9
http://dx.doi.org/10.1016/j.jbi.2012.04.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22580178&dopt=Abstract
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3384&rep=rep1&type=pdf
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/j.neucom.2018.04.033
http://dx.doi.org/10.1109/ICSESS.2016.7883015
http://europepmc.org/abstract/MED/12785560
http://europepmc.org/abstract/MED/12785560
http://dx.doi.org/10.1111/1475-6773.00132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12785560&dopt=Abstract
http://dx.doi.org/10.1145/3200947.3208069
http://dx.doi.org/10.18653/v1/P17-1052
http://dx.doi.org/10.5555/944790.944808
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30203-X
http://dx.doi.org/10.1016/j.jbi.2018.10.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30389440&dopt=Abstract
http://dx.doi.org/10.1016/j.is.2018.05.006
http://www.w3.org/Style/XSL
http://www.renderx.com/


64. Cawley G, Talbot N. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach
Learn Res 2010;11:2079-2107 [FREE Full text]

65. Velupillai S, Suominen H, Liakata M, Roberts A, Shah AD, Morley K, et al. Using clinical Natural Language Processing
for health outcomes research: overview and actionable suggestions for future advances. J Biomed Inform 2018 Dec;88:11-19
[FREE Full text] [doi: 10.1016/j.jbi.2018.10.005] [Medline: 30368002]

66. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers
on imbalanced datasets. PLoS One 2015 Mar 4;10(3):e0118432 [FREE Full text] [doi: 10.1371/journal.pone.0118432]
[Medline: 25738806]

67. Zar JH. Biostatistical Analysis, 5th Edition. London, UK: Pearson; 2010.
68. Reys AD, Silva D, Severo D, Pedro S, de Sousa e Sá MM, Salgado GA. Predicting multiple ICD-10 codes from

Brazilian-Portuguese clinical notes. In: Cerri R, Prati RC, editors. Intelligent Systems. Cham: Springer; 2020.
69. Lee GH, Shin S. Federated learning on clinical benchmark data: performance assessment. J Med Internet Res 2020 Oct

26;22(10):e20891 [FREE Full text] [doi: 10.2196/20891] [Medline: 33104011]
70. Kate RJ. Clinical term normalization using learned edit patterns and subconcept matching: system development and

evaluation. JMIR Med Inform 2021 Jan 14;9(1):e23104 [FREE Full text] [doi: 10.2196/23104] [Medline: 33443483]
71. Lee DH, Yetisgen M, Vanderwende L, Horvitz E. Predicting severe clinical events by learning about life-saving actions

and outcomes using distant supervision. J Biomed Inform 2020 Jul;107:103425. [doi: 10.1016/j.jbi.2020.103425] [Medline:
32348850]

72. Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MA. A survey on semi-supervised feature selection methods. Pattern
Recognit 2017 Apr;64:141-158. [doi: 10.1016/j.patcog.2016.11.003]

73. Diao X, Huo Y, Yan Z, Wang H, Yuan J, Wang Y, et al. An application of machine learning to etiological diagnosis of
secondary hypertension: retrospective study using electronic medical records. JMIR Med Inform 2021 Jan 25;9(1):e19739
[FREE Full text] [doi: 10.2196/19739] [Medline: 33492233]

74. Zhang Y, Zhou Y, Zhang D, Song W. A stroke risk detection: improving hybrid feature selection method. J Med Internet
Res 2019 Apr 02;21(4):e12437 [FREE Full text] [doi: 10.2196/12437] [Medline: 30938684]

75. Guillaume LF, Christos K, Aridas CK. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in
machine learning. J Mach Learn Res 2017 Jan;18(1):559-563. [doi: 10.5555/3122009.3122026]

76. Kogan E, Twyman K, Heap J, Milentijevic D, Lin JH, Alberts M. Assessing stroke severity using electronic health record
data: a machine learning approach. BMC Med Inform Decis Mak 2020 Jan 08;20(1):8 [FREE Full text] [doi:
10.1186/s12911-019-1010-x] [Medline: 31914991]

77. Healthcare Improvement - Patient-Reported Outcomes. ICHOM. URL: https://www.ichom.org/ [accessed 2021-09-07]
78. Freeman D, Barret K, Nordan L, Spaulding A, Kaplan R, Karney M. Lessons from Mayo clinic’s redesign of stroke care.

Harvard Business Review. 2018. URL: https://hbr.org/2018/10/lessons-from-mayo-clinics-redesign-of-stroke-care [accessed
2021-09-07]

79. Feigin VL, Krishnamurthi R. Stroke is largely preventable across the globe: where to next? Lancet 2016 Aug
20;388(10046):733-734. [doi: 10.1016/S0140-6736(16)30679-1] [Medline: 27431357]

80. Zhou P, El-Gohary N. Ontology-based multilabel text classification of construction regulatory documents. J Comput Civ
Eng 2015 Sep;30(4):04015058. [doi: 10.1061/(asce)cp.1943-5487.0000530]

81. Chawla NV. Data mining for imbalanced datasets: an overview. In: Maimon O, Rokach L, editors. Data Mining and
Knowledge Discovery Handbook. US: Springer; 2010.

82. Weiskopf NG, Khan FJ, Woodcock D, Dorr DA, Cigarroa JE, Cohen AM. A mixed methods task analysis of the
implementation and validation of EHR-based clinical quality measures. AMIA Annu Symp Proc 2017 Feb 10;2016:1229-1237
[FREE Full text] [Medline: 28269920]

83. Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural language processing of clinical notes on
chronic diseases: systematic review. JMIR Med Inform 2019 Apr 27;7(2):e12239 [FREE Full text] [doi: 10.2196/12239]
[Medline: 31066697]

84. Ling A, Kurian A, Caswell-Jin J, Sledge G, Shah N, Tamang S. Using natural language processing to construct a metastatic
breast cancer cohort from linked cancer registry and electronic medical records data. JAMIA Open 2019 Sep 18;2(4):528-537
[FREE Full text] [doi: 10.1093/jamiaopen/ooz040] [Medline: 32025650]

85. Wang SV, Rogers JR, Jin Y, Bates DW, Fischer MA. Use of electronic healthcare records to identify complex patients with
atrial fibrillation for targeted intervention. J Am Med Inform Assoc 2017 Mar 01;24(2):339-344. [doi: 10.1093/jamia/ocw082]
[Medline: 27375290]

86. Ali A, Shamsuddin S, Ralescu A. Classification with class imbalance problem: a review. Int J Advance Soft Compu Appl
2013 Nov;5(3):176-204 [FREE Full text]

87. Li D, Liu C, Hu SC. A learning method for the class imbalance problem with medical data sets. Comput Biol Med 2010
May;40(5):509-518. [doi: 10.1016/j.compbiomed.2010.03.005] [Medline: 20347072]

88. Geng W, Qin X, Yang T, Cong Z, Wang Z, Kong Q, et al. Model-based reasoning of clinical diagnosis in integrative
medicine: real-world methodological study of electronic medical records and natural language processing methods. JMIR
Med Inform 2020 Dec 21;8(12):e23082 [FREE Full text] [doi: 10.2196/23082] [Medline: 33346740]

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e29120 | p. 23https://medinform.jmir.org/2021/11/e29120
(page number not for citation purposes)

Zanotto et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30201-6
http://dx.doi.org/10.1016/j.jbi.2018.10.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30368002&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1371/journal.pone.0118432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25738806&dopt=Abstract
https://www.jmir.org/2020/10/e20891/
http://dx.doi.org/10.2196/20891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33104011&dopt=Abstract
https://medinform.jmir.org/2021/1/e23104/
http://dx.doi.org/10.2196/23104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33443483&dopt=Abstract
http://dx.doi.org/10.1016/j.jbi.2020.103425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32348850&dopt=Abstract
http://dx.doi.org/10.1016/j.patcog.2016.11.003
https://medinform.jmir.org/2021/1/e19739/
http://dx.doi.org/10.2196/19739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33492233&dopt=Abstract
https://www.jmir.org/2019/4/e12437/
http://dx.doi.org/10.2196/12437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30938684&dopt=Abstract
http://dx.doi.org/10.5555/3122009.3122026
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1010-x
http://dx.doi.org/10.1186/s12911-019-1010-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31914991&dopt=Abstract
https://www.ichom.org/
https://hbr.org/2018/10/lessons-from-mayo-clinics-redesign-of-stroke-care
http://dx.doi.org/10.1016/S0140-6736(16)30679-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27431357&dopt=Abstract
http://dx.doi.org/10.1061/(asce)cp.1943-5487.0000530
http://europepmc.org/abstract/MED/28269920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28269920&dopt=Abstract
https://medinform.jmir.org/2019/2/e12239/
http://dx.doi.org/10.2196/12239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31066697&dopt=Abstract
http://europepmc.org/abstract/MED/32025650
http://dx.doi.org/10.1093/jamiaopen/ooz040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32025650&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocw082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27375290&dopt=Abstract
https://www.researchgate.net/publication/288228469_Classification_with_class_imbalance_problem_A_review
http://dx.doi.org/10.1016/j.compbiomed.2010.03.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20347072&dopt=Abstract
https://medinform.jmir.org/2020/12/e23082/
http://dx.doi.org/10.2196/23082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33346740&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


89. Ridgway JP, Uvin A, Schmitt J, Oliwa T, Almirol E, Devlin S, et al. Natural language processing of clinical notes to identify
mental illness and substance use among people living with HIV: retrospective cohort study. JMIR Med Inform 2021 Mar
10;9(3):e23456 [FREE Full text] [doi: 10.2196/23456] [Medline: 33688848]

90. Liao KP, Ananthakrishnan AN, Kumar V, Xia Z, Cagan A, Gainer VS, et al. Methods to develop an electronic medical
record phenotype algorithm to compare the risk of coronary artery disease across 3 chronic disease cohorts. PLoS One
2015 Aug 24;10(8):e0136651 [FREE Full text] [doi: 10.1371/journal.pone.0136651] [Medline: 26301417]

91. Kruse CS, Mileski M, Alaytsev V, Carol E, Williams A. Adoption factors associated with electronic health record among
long-term care facilities: a systematic review. BMJ Open 2015 Jan 28;5(1):e006615 [FREE Full text] [doi:
10.1136/bmjopen-2014-006615] [Medline: 25631311]

92. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018 Apr 03;319(13):1317-1318. [doi:
10.1001/jama.2017.18391] [Medline: 29532063]

93. Bugnon B, Geissbuhler A, Bischoff T, Bonnabry P, von Plessen C. Improving primary care medication processes by using
shared electronic medication plans in Switzerland: lessons learned from a participatory action research study. JMIR Form
Res 2021 Jan 07;5(1):e22319 [FREE Full text] [doi: 10.2196/22319] [Medline: 33410753]

94. Nakatani H, Nakao M, Uchiyama H, Toyoshiba H, Ochiai C. Predicting inpatient falls using natural language processing
of nursing records obtained from Japanese electronic medical records: case-control study. JMIR Med Inform 2020 Apr
22;8(4):e16970 [FREE Full text] [doi: 10.2196/16970] [Medline: 32319959]

95. Dafny L, Lee T. Health care needs real competition. Harvard Business Review (Competitive Strategy). 2016. URL: https:/
/hbr.org/2016/12/health-care-needs-real-competition [accessed 2021-09-07]

Abbreviations
BERT: bidirectional encoder representation from transformers
BoW: Bag-of-Words
CNN: convolutional neural network
EMR: electronic medical record
IT: information technology
KNN: K-nearest neighbor
ML: machine learning
NIHSS: National Institutes of Health Stroke Scale
NLP: natural language processing
OWL: ontology web language
SVM: support vector machine
TFIDF: term frequency-inverted document frequency

Edited by T Hao; submitted 29.03.21; peer-reviewed by M Fernandes, X Diao; comments to author 30.05.21; revised version received
27.06.21; accepted 05.08.21; published 01.11.21

Please cite as:
Zanotto BS, Beck da Silva Etges AP, dal Bosco A, Cortes EG, Ruschel R, De Souza AC, Andrade CMV, Viegas F, Canuto S, Luiz W,
Ouriques Martins S, Vieira R, Polanczyk C, André Gonçalves M
Stroke Outcome Measurements From Electronic Medical Records: Cross-sectional Study on the Effectiveness of Neural and Nonneural
Classifiers
JMIR Med Inform 2021;9(11):e29120
URL: https://medinform.jmir.org/2021/11/e29120
doi: 10.2196/29120
PMID:

©Bruna Stella Zanotto, Ana Paula Beck da Silva Etges, Avner dal Bosco, Eduardo Gabriel Cortes, Renata Ruschel, Ana Claudia
De Souza, Claudio M V Andrade, Felipe Viegas, Sergio Canuto, Washington Luiz, Sheila Ouriques Martins, Renata Vieira, Carisi
Polanczyk, Marcos André Gonçalves. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 01.11.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e29120 | p. 24https://medinform.jmir.org/2021/11/e29120
(page number not for citation purposes)

Zanotto et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2021/3/e23456/
http://dx.doi.org/10.2196/23456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33688848&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0136651
http://dx.doi.org/10.1371/journal.pone.0136651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26301417&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=25631311
http://dx.doi.org/10.1136/bmjopen-2014-006615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25631311&dopt=Abstract
http://dx.doi.org/10.1001/jama.2017.18391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29532063&dopt=Abstract
https://formative.jmir.org/2021/1/e22319/
http://dx.doi.org/10.2196/22319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33410753&dopt=Abstract
https://medinform.jmir.org/2020/4/e16970/
http://dx.doi.org/10.2196/16970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32319959&dopt=Abstract
https://hbr.org/2016/12/health-care-needs-real-competition
https://hbr.org/2016/12/health-care-needs-real-competition
https://medinform.jmir.org/2021/11/e29120
http://dx.doi.org/10.2196/29120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

