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From the Constructal Theory standpoint, living systems are those where there
is a flow with a purpose. Concerning their shapes, a great variety may be encoun-
tered, and, often, the artificial seeks its inspiration in the natural. Analogous pat-
terns and shapes in animate systems are numerous, from the honeycomb config-
uration in tissues and cells to the tree-shaped configuration of lightning, neurons,
roots, and branches of plants, blood circulatory systems, and watersheds [1]. The
internal flow of fluids through tree-shaped systems has been an important object of
investigation due to its importance in understanding natural systems’ behavior and
designing artificial systems [1-4]. For a fluid transport system, the best configura-
tion, which connects a point-to-volume or volume-to-point, occurs in the shape of
a tree, and an optimal ratio between the large and the small duct is the unknown
to be specified [1-6]. For the vascular system, assuming a Hagen-Poiseuille flow
through the vessels, Hess [7] and Murray [8] determined the optimal branching
diameter. For symmetrical vessels, the ratio between the daughter and parent di-
ameters (aDi

) is aDi
= 2−1/3 (Hess-Murray’s law). Although first derived from

the principle of minimum work, the Hess-Murray law can be obtained in the light
of the constructal law of design in Nature [2,5,6]. In accord with this law. For
a finite-size open system to persist in time (to live), it must evolve such that it
provides easier access to the imposed (global) currents that flow through it [1].
The shape (design) is the constructal way to transport fluid, heat, mass, or infor-
mation to achieve its purpose under global restrictions. This work is about fluid
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networks to provide easy access to fluid flow. We address the effect of the network
size-limiting constraints on the optimal design. The optimal design of a symmet-
rical dichotomous tree structure with several branching levels for laminar flow
of a Newtonian fluid is studied numerically. For optimal flow design to emerge,
it is necessary to include size constraints in the study. In several studies, only
the volume occupied by the network is preferred [5,7-11]. Here, the volume of
each branching level is fixed. Among other results, we showed that the network
designed according to the Hess-Murray law does not represent the design with
minimum resistance, but the network built on this law is the one with the most
uniform resistances at the different levels of bifurcation. Another outcome of our
study is that freedom inside a fixed size flow system is needed for preventing non-
optimal designs from appearing, which corroborates the constructal thinking of
”freedom is good for design.”
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1. INTRODUCTION

From the Constructal Theory standpoint, living systems are those

where there is a flow with a purpose. Concerning their shapes, a great

variety may be encountered, and, often, the artificial seeks its inspiration

in the natural. Analogous patterns and shapes on animate systems are

numerous, from the honeycomb configuration in tissues and cells to the

tree-shaped configuration of lightning, neurons, roots, and branches of

plants, blood circulatory systems, and watersheds [1]. The internal flow of

fluids through tree-shaped systems has been an important investigation

object due to its importance in understanding natural systems' behavior

and designing artificial systems [1-4]. For a fluid transport system, the

best configuration, which connects a point-to-volume or volume-to-point,

occurs in the shape of a tree, and an optimal ratio between the large and

the small duct is the unknown to be specified [1-6]. For the vascular

system, assuming a Hagen-Poiseuille flow through the vessels, Hess [7]

and Murray [8] determined the optimal branching diameter. For

symmetrical vessels, the ratio between the daughter and parent diameters

(aDi) is aDi = 2-1/3 (Hess-Murray's law). Although first derived from the

principle of minimum work, the Hess-Murray law can be obtained in the

light of the constructal law of design in Nature [2,5,6].

2.METHODS

The system has the global geometric constant, which is defined by the

ducts' volume at each branch level (Vi), which is kept fixed for the

different cases studied. The degree of freedom of the system is defined by

the ratio between the diameter of the daughter and parent ducts (aDi).

Thus, fluidic structures with Tree-shaped bifurcations are determined by

Eqs. (1) to (4):

𝑉𝑖 = 𝑉𝑖+1 = 𝑉𝑖+2 = 𝑉𝑖+3 (1)

𝑉𝑖 =
𝜋

4
2𝑖 𝐷𝑖

2𝐿𝑖 = 𝑐𝑜𝑛𝑠𝑡 (2)

𝑉𝑇 =
𝜋

4
𝐷0

2𝐿0 + 2𝐷1
2𝐿1 + 4𝐷2

2𝐿2 (3)

𝑎𝐷𝑖 = 𝐷𝑖+1 ⁄ 𝐷𝑖 (4)

where D is the diameter, L is the length and aDi is the ratio between the

diameters and the indices i and i+1 signify the parent and child ducts

respectively. The index i ranges from 0 to 2, thus informing the branch’s

level, where a larger index means that the network is more branched.

Thus, the balances of mass and momentum applied to the system under

study are defined according to Eq. (5), respectively.

𝛻𝒖 = 0 and −𝛻𝑝 + 𝜇𝛻2𝒖 = 0 (5)

where u is the velocity vector, p is the pressure and μ is the dynamic

viscosity.

The objective of the work is to evaluate different geometric configurations

in the search for a system that minimizes losses and facilitates the access

of fluid flow. In view of this, the parameter used to quantify this objective

is the overall resistance (RT) of the flow determined by Eq. (6).

𝑅𝑖 = ∆𝑝𝑖 ⁄  𝑚𝑖 and 𝑅𝑇 =  𝑅𝑖 (6)

where, Ri is the level flow resistance, Δpi is the partial drop pressure, ṁ is

the mass flow, and RT is the overall resistance. HMR is the ratio of Hess-

Murray resistances, RT the total flow resistance defined as the sum of the

resistances at each branch level, and RHess-Murray the tree-shaped structure

resistance numerically simulated and projected according to the geometric

aDi = 2-1/3.

𝐻𝑀𝑅 = 𝑅𝑇 ⁄ 𝑅𝐻𝑒𝑠𝑠−𝑀𝑢𝑟𝑟𝑎𝑦 (7)

Fig. 1 shows the dichotomous fluid structure in the form of a tree with two

levels of branching and a circular section.

Figure 1: Schematic representation of a branched structure in two shape

The governing Eq. (5) were solved using a finite volume method and

employing the segregated method with implicit formulation. A constant

mass flow rate and an outflow boundary condition are used at the inlet and

at the outlet, respectively. No-slip boundary conditions were applied at

walls. The residual values of the governing Eqs. (5) were all set to 10-6.

Details can be found in [10].

3. RESULTS E REMARKS

Fig. 2 shows the ratio of Hess-Murray resistances (HMR) and the

resistance ratio at each branch level (Ri/RT) as a function of the diameter

ratio (aDi).

(a)                                                                           (b)

Figure 2: (a) HMR x aDi and (b) Ri/RT x aDi for Newtonian fluid flow with ReD = 10²

It can be seen that the curve in Fig. 2(a) presents a behavior where the

minimum point where the ratio of diameters aDi = 1, which does not

correspond to the optimal diameter ratio proposed according to the Hess-

Murray Law. In Fig. 2(b), it is possible to observe that the structure with

relation to aDi = 0.80 presents the most homogeneous distribution of the

flow resistance between the branching levels.

Here, the volume of each branching level is fixed, Eq. (1) . Among

other results, we showed that the network designed according to the Hess-

Murray law does not represent the design with minimum resistance, but

the network built on this law is the one with the most uniform resistances

at the different levels of bifurcation (Figure 2). Another outcome of our

study is that freedom inside a fixed size flow system is needed for

preventing non-optimal designs from appearing, which corroborates the

constructal thinking of "freedom is good for design."
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