
remote sensing  

Article

Global Spatial and Temporal Variation of the Combined Effect
of Aerosol and Water Vapour on Solar Radiation

María Ángeles Obregón 1,2,* , Antonio Serrano 1 , Maria João Costa 2,3,4 and Ana Maria Silva 2

����������
�������

Citation: Obregón, M.Á.; Serrano, A.;

Costa, M.J.; Silva, A.M. Global Spatial

and Temporal Variation of the

Combined Effect of Aerosol and

Water Vapour on Solar Radiation.

Remote Sens. 2021, 13, 708.

https://doi.org/10.3390/rs13040708

Academic Editor: Eleni Marinou

Received: 13 January 2021

Accepted: 12 February 2021

Published: 15 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics, University of Extremadura, 06006 Badajoz, Spain; asp@unex.es
2 Institute of Earth Sciences, Institute for Advanced Studies and Research, University of Évora,

7000-671 Évora, Portugal; mjcosta@uevora.pt (M.J.C.); asilva@uevora.pt (A.M.S.)
3 Department of Physics, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
4 EaRSLab–Earth Remote Sensing Laboratory, University of Évora, 7000-671 Évora, Portugal
* Correspondence: nines@unex.es

Abstract: This study aims to calculate the combined and individual effects of the optical thickness
of aerosols (AOT) and precipitable water vapour (PWV) on the solar radiation reaching the Earth’s
surface at a global scale and to analyse its spatial and temporal variation. For that purpose, a novel
but validated methodology is applied to CERES SYN1deg products for the period 2000–2019. Spatial
distributions of AOT and PWV effects, both individually and combined, show a close link with the
spatial distributions of AOT and PWV. The spatially averaged combined effect results in a −13.9%
reduction in irradiance, while the average AOT effect is −2.3%, and the PWV effect is −12.1%. The
temporal analysis focuses on detecting trends in the anomalies. The results show overall positive
trends for AOT and PWV. Consequently, significant negative overall trends are found for the effects.
However, significant positive trends for the individual AOT and the combined AOT-PWV effects are
found in specific regions, such as the eastern United States, Europe or Asia, indicating successful
emission control policies in these areas. This study contributes to a better understanding of the
individual and combined effects of aerosols and water vapour on solar radiation at a global scale.

Keywords: global radiative effects; aerosol optical depth; precipitable water vapour; combined
effects; CERES

1. Introduction

Solar radiation reaching the Earth’s surface plays a fundamental role in the surface
energy balance [1]. Changes in the atmospheric composition can alter the downwelling
surface solar radiation, and, therefore, the balance between incoming and outgoing ra-
diation fluxes, resulting in changes in the temperature at the surface [2]. Aerosols and
water vapour are two major atmospheric components that alter the radiation that reaches
the Earth’s surface on clear-sky days through scattering and absorption processes [3–5].
Their effects on the surface solar radiation are assorted, causing, for example, diurnal and
seasonal temperature oscillations [6], changes in the surface energy balance [7] or the water
cycle [8–11]. In addition, atmospheric water vapour influences the radiometric properties
of the aerosol and, therefore, their effects on the downwelling surface solar radiation,
impacting climate and climate change. Consequently, global and long-term assessment of
the effects of aerosols and water vapour on solar radiation is essential for climatological
studies [12].

The effects of aerosols on the downwelling shortwave (SW) irradiance have been
extensively analysed (e.g., [13–23]). Most of the studies were carried out at the local or
regional scale or focused on short periods (e.g., [13,14,16,18,19,21,22]). Additionally, other
studies have taken profit from the global coverage and high temporal frequency of satellites
to infer the aerosol effects upon the shortwave irradiance from measurements performed
at the top of the atmosphere (e.g., [15,20,23]). Some of them have focused on oceanic
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environments, benefiting from a high space–time resolution and homogeneous aerosol
background, and others over landmasses (e.g., [24,25]). Regarding the effect of water
vapour upon the downwelling SW radiation, studies are scarcer, although its interest is
recently increasing (e.g., [26–29]).

In fact, since aerosols and water vapour are always present in the atmosphere and
interact with each other, it is their combined effect that gives a complete description of
their impact on downwelling radiation. Despite its great interest, this topic has been
poorly studied so far (e.g., [29,30]). In this sense, Obregón et al. [30] took an interesting
step by proposing and validating a new methodology to estimate this combined effect.
Furthermore, Obregón et al. [29] applied the proposed methodology to the Mediterranean
area showing it to be suitable for large areas. However, no study has been conducted at a
global scale. Hence, in this study, we propose to apply this methodology to the entire globe.

This study aims to calculate and analyse the spatial and temporal variation at a global
scale of the combined effect of aerosols and water vapour on the solar radiation reaching
the Earth’s surface. For this purpose, the new methodology proposed and validated by
Obregón et al. [30] has been applied at a global scale for the first time. For this aim, aerosol
and water vapour data provided by SYN1deg Ed4 CERES (Clouds and the Earth’s Radiant
Energy System) product are used. These data have already been used to monitor aerosols
(e.g., [23]) and water vapour (e.g., [31]), but the combined effect of both components has not
been addressed yet. Another important aspect in the present study is the period considered
(2000–2019) that represents two decades of climate data derived from remote sensing. The
long period and global scale allow performing a complete and significant analysis of the
spatial and temporal variability of the combined effects of aerosol and water vapour on the
downwelling SW irradiance, essential for evaluating climatic effects. The individual effects
of aerosols and water vapour have also been calculated to compare the results with other
studies at the global scale.

The paper is structured as follows: Section 2 describes the dataset and the methodology,
the results obtained are presented and discussed in Section 3, and some conclusions are
given in Section 4.

2. Dataset and Methodology

The combined effect of aerosols and water vapour on SW irradiance at ground level was
calculated using the methodology recently developed and validated by Obregón et al. [30].
According to this methodology, aerosols are characterised by one of the most important
aerosol optical quantities, the aerosol optical thickness (AOT), and water vapour by the
precipitable water vapour (PWV).

In this study, global coverage AOT and PWV data provided by CERES (SYN1deg
Ed4A) [32] have been used. The SYN1deg product combines Terra and Aqua CERES,
MODIS and geostationary satellite observations, and Earth System model data. In particu-
lar, aerosol data came from the NASA/GSFC MODIS MOD04_L2/MYD04_L2 products and
were assimilated by the Model for Atmospheric Transport and Chemistry (MATCH) [33].
The MATCH model assimilates and spatially and temporally interpolates MODIS aerosol
optical thickness to the CERES resolutions. PWV data were obtained from the Global
Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System Data As-
similation System (GEOS-DAS V5.4.1) product [34]. Products provided by CERES were
adapted to the same temporal and spatial resolution, facilitating global studies. The
acronym “SYN” (Synoptic Radiative Fluxes and Clouds) means that this version provides
radiation data on clear and all-sky conditions, and “1deg” means it has a 1-degree spatial
resolution. CERES samples 1-km MODIS data every four pixels and every two scan lines
to result in an effective nominal resolution of 8 km2 (2 km × 4 km) [35]. Cloud masking is
performed at this spatial resolution, ensuring proper management of small clouds. At the
end of the process, this high spatial resolution is then degraded to also provide products at
lower spatial resolutions, such as the 1-degree products used in the present study. Despite
being coarser than the initial resolution, it is suitable for global-scale studies, such as the
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present one. In addition to the radiation flux, this version provides MODIS cloud properties
and aerosols information. Regarding the cloud masking process, CERES Edition 4 (Ed4)
used in this study represents a substantial improvement over the previous edition 2, mainly
in terms of its MODIS cloud mask [36] The use of revised algorithms and input data to
Terra and Aqua MODIS radiances greatly improve the accuracy of cloud amount. The Ed4
cloud mask employs 5–7 additional channels, new models for the clear sky, ocean and
snow/ice surface radiances, and revised Terra MODIS calibrations. As a result, excellent
consistency is obtained between the Aqua and Terra cloud fraction. Comparisons with
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) confirm
that Ed4 cloud amounts are more or as accurate as other cloud mask systems available. Its
mask product correctly identifies cloudy or clear areas 90%–96% of the time during the
day and 88%–95% during the night over non-polar areas [35]. MODIS retrievals of AOT
have been thoroughly validated by comparison to Aerosol Robotic Network (AERONET)
data worldwide (e.g., [37–41]). PWV has also been validated by comparison to AERONET
and GPS data [42–44]. Although no uncertainties for AOT and PWV as provided by the
SYN1deg Ed4 CERES product have been reported, some uncertainties may be given for the
original MODIS data from which they are derived. Thus, MODIS derived AOT uncertainty
is estimated to be ±0.03±0.05*AOT over ocean and ±0.05±0.15*AOT over land [39]. The
relative uncertainty of MODIS PWV values ranges between 5% and 10% [45]. The CERES
consists of three-hourly, daily, and monthly data. In this study, daily AOT and PWV prod-
ucts from 1 March 2000 to 31 December 2019 were used to calculate the aerosol and water
vapour combined effects on the downwelling SW irradiance. Only CERES measurements
registered under clear sky conditions were selected for the calculation.

The methodology proposed by Obregón et al. [30] to estimate the combined effects
of AOT and PWV is based on simulating the downwelling SW irradiance reaching the
Earth’s surface under cloud-free conditions and different values of AOT and PWV. These
simulations were performed using the libRadtran (Version 1.7) radiative transfer model.
Thus, a look-up-table with 100 simulation runs performed with AOT ranging from 0 to
1.5 and PWV from 0 to 60 mm, was obtained. The combined effect of AOT and PWV was
calculated as the relative difference (Rel.Dif, %) of the SW irradiances with respect to an
atmosphere with no aerosol and no water vapour (AOT = 0 and PWV = 0). The expression
used to calculate the combined effect is [30]:

Rel.Dif. (AOT-PWV) = 100% ∗ (I(AOT,PWV) − Iref (0,0))/Iref (0,0) (1)

where I is the simulated SW irradiance for AOT and PWV values, and Iref is the simulated
SW irradiance for the case of AOT and PWV equal to 0. A look-up table of Rel.Dif. (AOT-
PWV) as a function of AOT and PWV was calculated according to Equation (1). Figure 1
illustrates the relationship between the mentioned variables.

Remote Sens. 2021, 13, 708 4 of 21 
 

 

Similar to the case of the combined effect, two look-up tables were built for the indi-
vidual AOT and PWV effects according to Equations (2) and (3), respectively. The depend-
ence of the relative difference with AOT and PWV values is shown in Figures 2 and 3. As 
can be seen in Figure 2, AOT relative difference values were more negative as AOT in-
creased (reaching values beyond −23.10%) and slightly depended on PWV values. Figure 
3 shows that PWV relative difference values were also negative and were more negative 
as the PWV increased (reaching values beyond −18.48%). In this case, a large gradient in 
relative difference values for low PWV values (between 0 and 10 mm) was observed. 

Obregón et al. [30] validated this methodology using irradiance measurements at 
nine stations scattered around the world and obtained differences lower than 3% in 84% 
of the cases. The sensitivity of the model to different input variables was also analysed by 
Obregón et al. [30], obtaining high robustness against changes in the aerosol type, vertical 
profiles of the thermodynamic variables, main gases and aerosols, and the surface albedo. 

The combined and individual effects of aerosols and water vapour on the SW irradi-
ance for specific values of AOT and PWV were obtained by linear interpolation of the 
values of the look-up-tables. This procedure was applied to a grid of 360 pixels latitude × 
180 pixels longitude with daily AOT and PWV values provided by CERES. Thus, daily 
relative differences (Rel.Dif (AOT, PWV), Rel.Dif (AOT) and Rel.Dif (PWV)) for the globe 
were obtained, and their spatial and temporal variability was analysed. For temporal anal-
ysis, Sen’s method [46] was applied to estimate the magnitude of the trend and the Mann–
Kendall test [47,48] at 95% confidence level to estimate its statistical significance. Before 
trend detection, the time series were monthly-averaged and deseasonalised to eliminate 
the large influence of the annual cycle. Therefore, time series of AOT, PWV, AOT effects, 
PWV effects and AOT-PWV effects corresponded to monthly anomalies, i.e., differences 
between the monthly average for a particular year and the mean over all the period of 
study for that specific month. 

 
Figure 1. Aerosols–precipitable water vapour (AOT-PWV) effect (Rel.Dif (AOT-PWV), %) esti-
mated by Obregón et al. [24] for each combination of AOT and PWV values. 

Figure 1. Aerosols–precipitable water vapour (AOT-PWV) effect (Rel.Dif (AOT-PWV), %) estimated by Obregón et al. [24]
for each combination of AOT and PWV values.



Remote Sens. 2021, 13, 708 4 of 20

Additionally, the individual effects of aerosols and water vapour were calculated
to compare the results with other studies. The methodology applied to calculate the
individual effects was the same as above, but, in this case, only one variable was allowed
to vary. The variable fixed took the actual value of the variable in each location and time.
The expression for AOT follows:

Rel.Dif. (AOT) = 100% ∗ (I(AOT,PWV) − Iref (0,PWV))/Iref (0,PWV) (2)

where I is the simulated SW irradiance for an AOT value and Iref is the simulated SW
irradiance for AOT equal to 0, while PWV value remains constant.

Similarly, for PWV, the following expression is obtained:

Rel.Dif. (PWV) = 100% ∗ (I(AOT,PWV) − Ief (AOT,0))/Iref (AOT,0) (3)

Similar to the case of the combined effect, two look-up tables were built for the individ-
ual AOT and PWV effects according to Equations (2) and (3), respectively. The dependence
of the relative difference with AOT and PWV values is shown in Figures 2 and 3. As can
be seen in Figure 2, AOT relative difference values were more negative as AOT increased
(reaching values beyond −23.10%) and slightly depended on PWV values. Figure 3 shows
that PWV relative difference values were also negative and were more negative as the
PWV increased (reaching values beyond −18.48%). In this case, a large gradient in relative
difference values for low PWV values (between 0 and 10 mm) was observed.
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Obregón et al. [30] validated this methodology using irradiance measurements at nine
stations scattered around the world and obtained differences lower than 3% in 84% of
the cases. The sensitivity of the model to different input variables was also analysed by
Obregón et al. [30], obtaining high robustness against changes in the aerosol type, vertical
profiles of the thermodynamic variables, main gases and aerosols, and the surface albedo.

The combined and individual effects of aerosols and water vapour on the SW irra-
diance for specific values of AOT and PWV were obtained by linear interpolation of the
values of the look-up-tables. This procedure was applied to a grid of 360 pixels latitude
× 180 pixels longitude with daily AOT and PWV values provided by CERES. Thus, daily
relative differences (Rel.Dif (AOT, PWV), Rel.Dif (AOT) and Rel.Dif (PWV)) for the globe
were obtained, and their spatial and temporal variability was analysed. For temporal
analysis, Sen’s method [46] was applied to estimate the magnitude of the trend and the
Mann–Kendall test [47,48] at 95% confidence level to estimate its statistical significance.
Before trend detection, the time series were monthly-averaged and deseasonalised to
eliminate the large influence of the annual cycle. Therefore, time series of AOT, PWV,
AOT effects, PWV effects and AOT-PWV effects corresponded to monthly anomalies, i.e.,
differences between the monthly average for a particular year and the mean over all the
period of study for that specific month.

3. Results and Discussion
3.1. Spatial Analysis

Before analysing the combined effect of AOT-PWV on SW irradiance at ground level,
the individual effects of AOT and PWV were analysed. Analysis of individual effects
facilitates understanding of the combined effect, as well as allows comparing the results
with other studies.

3.1.1. AOT Individual Effect

The spatial distribution of AOT and average values of the AOT effect for the study
period are shown in Figure 4. The AOT values shown in Figure 4a reveal a significant
spatial variability, with larger AOT over the Northern Hemisphere than over the Southern,
and also over land with respect to oceanic regions. Only in oceanic areas close to land
regions, with high aerosol concentrations, the AOT values became as large as over land.
AOT ranged between 0 and 1.1 approximately. The values lower than 0.1 were found in 51%
of the global surface, specifically in latitudes above 60◦ and ocean regions. However, the
highest values (higher than 0.5) were concentrated in 2% of the global surface. Specifically,
they were found above east China (AOT up to 0.8), India and the Arabian and Sahara
Deserts. The high concentration of aerosols in these regions is due, on the one hand, to
the influence of the deserts and, on the other hand, to the rapid economic expansion of
these areas, increasing fossil fuel demand and causing an increase in AOT. Although AOT
values are usually lower over oceans, it should be noted that the oceanic areas surrounding
these regions are affected by high concentrations of aerosols. An example is the Atlantic
Ocean near Central and South America, likely due to the transport of mineral dust [49].
Moderate AOT values were found over some countries in South America, such as Brazil,
due to the seasonal deforestation and sugarcane burning [50]. This spatial distribution was
also described by other authors (e.g., [51–53]) and coincided with the spatial distribution
of the AOT effect (Figure 4b). The absolute AOT effect on SW irradiance at ground level
was higher in those regions where the concentration of aerosols was higher. As can be
seen in this figure, AOT effect values were negative, indicating a decrease in downwelling
SW irradiance, that is, a surface radiative cooling due to the presence of aerosols in the
atmosphere. This decrease ranged between 0% and −18%, with an average of −2.3%. In
the regions with the highest concentration of aerosols (east China, the Arabian and Sahara
Deserts and India, as shown in Figure 4a), the reduction in SW irradiance ranged between
−8% and −18 %, while in the regions with AOT lower than 0.1, this reduction did not
exceed −2%.
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Figure 5 shows the spatial distribution of seasonally averaged AOT effects on down-
welling SW irradiance during the period 2000–2019. A high seasonal variation was evident,
with more negative values during spring and summer than in autumn and winter. These
high AOT effect values in summer and spring were due to a combination of factors, such
as an increment in dust outbreaks and forest fires or the lack of precipitation. Precipitation
results in a scavenging of atmospheric aerosols reducing the aerosol load and, consequently,
the AOT effect. Its impact extends for several days after the precipitation event until new
aerosols are incorporated from the soil or by air mass advection. Thus, the lack of precipita-
tion in summer and spring, along with other factors, such as the frequent dust outbreaks,
the forest fires and the expansion of the atmospheric boundary layer, contributes to an
increase in the AOT effect. It should be noted that the regions with the most negative AOT
effect values remained in all seasons. These regions were east China, India, and the Arabian
and Sahara Deserts. They coincided with the regions most affected by high AOT values
when the global spatial distribution of the AOT effects averaged was analysed (Figure
4). Unlike what happens in most regions of the planet, in the middle of South America,
AOT effects were very high in autumn due to the seasonal deforestation activities [50].
In southwestern Africa, high absolute AOT effects have been found during summer and
autumn due to Savanna wildfires [54].
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3.1.2. PWV Individual Effect

The 20-year mean global spatial distributions of PWV and PWV effects are shown in
Figure 6a,b, respectively. Both figures show predominantly zonal patterns along latitude
lines. Figure 6a shows that the highest PWV values (around 35–60 mm) were located
around the Intertropical Convergence Zone (ITCZ), mainly over the oceans, particularly
Western Pacific and sea areas near Indonesia; over land, in central Africa and northern
South America. The lowest PWV values (less than 10 mm) were found over regions with
latitudes greater than 60◦, such as Antarctica and Greenland, and mountainous regions,
such as the Himalayas, Andes, and the Rocky Mountains. In the rest of the planet, PWV
ranged between 10 and 35 mm. A similar global spatial distribution of PWV was described
by Wang et al. [55]. In regard to regions previously identified to have high concentrations
of aerosols (east China, the Arabian and Sahara Deserts and India), only east China and
India showed high PWV values. Conversely, PWV values were low in the Arabian and
Sahara Deserts due to the extremely dry atmosphere in these regions.

The global spatial distribution of PWV effects is shown in Figure 6b. As can be seen,
the higher the PWV, the higher its effect on solar radiation at the surface. The sign of
these effects was negative, indicating a reduction in downwelling SW irradiance due to
the presence of water vapour in the atmosphere. The PWV effect ranged between 0% and
−18%, with an average of −12.1%. The absolute value of this average was notably higher
than the average AOT value mentioned. Therefore, it can be said that, on average, the
effect of vapour on downwelling SW irradiance is greater than the effect of aerosols.

Figure 7 illustrates the spatial distribution of the PWV effect for different seasons,
where the North–South displacement of the General Atmospheric Circulation can be
observed. The PWV effect showed less variability over the ocean than over land. Equatorial
regions showed very little variation linked to the seasonal displacement of the ITCZ, and
the effect of PWV on solar radiation was high all year round. At middle and high latitudes,
PWV over land and, consequently, the PWV effect showed a higher seasonal variability
due to the relationship between PWV and surface temperature [56,57]. This fact was more
evident in regions such as Siberia and Greenland. However, there were also land regions,
such as Antarctica, desert and mountainous regions, where the seasonal variability of the
PWV effect was low due to the extremely dry atmosphere in these regions all the year
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round. In general, the most negative values were found in summer, while the least negative
values were obtained in winter. Spring and autumn showed similar values. Thus, the area
with PWV effect was more negative than the mean value (which is −12.1%), varied from
65% of the global surface in summer to 54% in spring and autumn, and 50% in winter.
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3.1.3. AOT-PWV Combined Effect

After analysing the individual effects of aerosols and water vapour on downwelling
solar irradiance, the combined effect of both atmospheric quantities was also calculated.
The study of the combined effects of AOT and PWV is of great interest because it can
also help to understand how aerosols and water vapour interact, affecting each other
in the atmosphere, and complement other existing studies in this field. For example,
Sun et al. [58] showed the effect of dust on PWV, and Zhao et al. [59] showed the PWV
effect on the growth of aerosol particles and then on the AOT.

Figure 8a shows the global spatial distribution of averaged AOT-PWV combined effect
during the period 2000–2019. As can be seen in this figure, the AOT-PWV effect was also
negative, as in the case of the individual effects, indicating a decrease in downwelling
SW irradiance. However, the reduction in downwelling SW irradiance had increased,
ranging between 0% and −31%, while the reductions for individual effects were limited
to the range between 0% and −18%. Likewise, the global average AOT-PWV effect was
more negative (−13.9%), while the average AOT effect was −2.3% and the average PWV
effect −12.1%. From these values, it is concluded that the combined effect AOT-PWV
is less intense than the sum of the individual effects. The difference is due to the fact
that the interaction between water vapour and aerosols was not considered when the
individual effects wer4e estimated. This interaction determines the aerosol properties in
the atmosphere and, therefore, their effects on the downwelling solar radiation on the
surface. As mentioned before, this study aimed to calculate the combined AOT-PWV effect
(Figure 8), and the individual AOT (Figures 4b and 5) and PWV (Figures 6b and 7) effects
on solar radiation, and to demonstrate that the combined effect cannot be solely derived
adding the individual effects. For this aim, Figure 8b illustrates the difference between
the combined AOT-PWV effect, as calculated by Equation (1), and the sum of the AOT
and PWV individual effects, as calculated by Equations (2) and (3), respectively. As can
be seen, this difference was not equal to zero in most parts of the globe, ranging from 0
in Antarctica to −4% (highest absolute value) in areas of east China, India and the Sahara
Desert. These regions combined the highest AOT values on the planet (Figure 4) with PWV
values greater than 30 mm (Figure 6). Under these conditions, aerosols with a high affinity
for water adsorb moisture, increasing their size and their ability to scatter solar radiation,
causing an increase in multiple scattering and, consequently, enhancing the downwelling
diffuse component of the radiation. This increase in diffuse radiation would compensate
for the reduction in direct solar radiation reaching the surface due to the effect of aerosols
and water vapour, resulting in a less negative AOT-PWV effect. This comparison between
individual and combined effects highlights the importance of analysing the combined effect
of aerosols and water vapour on solar radiation, mainly in regions with high concentrations
of aerosols and water vapour.

The analysis of the spatial distribution of the AOT-PWV effect showed that the highest
reductions in SW irradiance (between −25% and −32%) occurred over east China, India
and the surrounding water regions, north and central Africa and South America, coinciding
with areas with high influence of aerosols and water vapour simultaneously. There were
other regions with high concentrations of only one of them (aerosols or water vapour), and,
therefore, their combined effect on solar radiation was not so noticeable. This was the case
of the Middle East region (AOT-PWV effect between −15% and −20%), where, although
high AOT values were found, PWV values remained very low due to its extremely dry
atmosphere. The lowest reductions in SW irradiance (AOT-PWV effect between 0% and
−7%) were found in latitudes greater than 60◦ and mountainous regions and correspond
to areas with a low influence of aerosols, water vapour or both.
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Similar to individual effects, the combined effect of AOT and PWV on solar radiation
showed seasonal variability (Figure 9). This seasonal variation was higher over land
than over ocean. Over ocean, the main variations occurred in regions surrounding areas
affected by high concentrations of aerosols, such as regions next to the Arabian and Sahara
Deserts. A higher seasonal variability was found over land, with the most negative AOT-
PWV effect values in summer. High AOT-PWV effect in summer is mainly due to the
increase in atmospheric boundary layer height [60] and the surface temperature due to
solar heating favoring the vertical mixing of aerosols (e.g., [61,62]), the increase in dust
outbreaks (e.g., [63,64]) and forest fires (e.g., [65]), lack of precipitation (e.g., [66]) and the
presence of water vapour in the atmosphere (e.g., [67]).

A spatial analysis of the AOT-PWV effect in Figure 9 revealed that east China was
the region with the highest reductions in SW downwelling irradiance throughout the year,
with values ranging between −25% and −35%. Over India and north Africa, a strong
seasonal pattern was observed, with the highest effect in summer. Other regions with a
marked seasonal variability were the north and northwest of China and Canada, where the
AOT-PWV effect varied from −20% in summer to values close to 0 in winter.
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3.2. Temporal Analysis

A temporal analysis was conducted focusing on the detection of trends in the time
series of the monthly anomalies of AOT, PWV, AOT effects, PWV effects and AOT-PWV
effects, as explained in Section 2. Sen’s method was used to estimate the magnitude of
the trend, while the Mann-Kendall test was used to calculate its statistical significance.
The term significant has been used to express that the trend is statistically significant
(confidence level of 95%).

Figure 10 shows the monthly evolution of these anomalies. AOT monthly anoma-
lies showed an increase over the years, with significant slope equal to 0.0002 per year
(Figure 10a). In the case of PWV, monthly anomalies also showed an increase over the
years, with a slope equal to 0.0014 per year (Figure 10b), although the slope was not signif-
icant. Figure 10c shows the evolution of the AOT effect and PWV effect anomalies. The
higher the value of AOT or PWV, the higher its effects on solar radiation at the surface, re-
vealing a decrease throughout the study period. The slopes were significant and presented
negative values (−0.0038% and −0.0020% per year) since the AOT effect and PWV effect
values were negative. Figure 10c also shows the temporal evolution of AOT-PWV effect
anomalies, with a significant trend equal to −0.0052% per year. This negative trend also
indicated an increase in the absolute combined effect on solar radiation at the surface since
the AOT-PWV effect was also negative.

In addition to the detection of the general trends in the AOT and PWV anomalies and
the anomalies of their effects, it is interesting to analyse its spatial distribution throughout
the globe. Figure 11 shows the spatial distribution of the AOT linear trend per decade
(Figure 11a) and its corresponding AOT effect (Figure 11b). Pixels with levels of significance
p < 0.05 are marked with a black dot. The results obtained show an average of the linear
trend per decade over the global of 0.0017 for AOT, during the period 2000–2019, which
represents an absolute increase of almost 0.0034. A global positive trend in AOT has also
been obtained by other authors (e.g., [68,69]). Their values differ depending on the data
period used. Thus, for example, Zhang and Reid [68] estimated a trend of 0.0030 per decade
for the period 2000–2009, while Hsu et al., 2012, estimated a trend of 0.0080 per decade for
the period 1998–2010.
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Approximately 72% of the global surface showed a positive trend of AOT, and it was
significant at a 5% significance level in 50% of that surface. The highest values of significant
positive trend (up to 0.13 per decade) were found in India and its surrounding oceanic
areas. This finding is in line with recent studies that have reported significant positive
trends of AOT over the Indian region [70,71]. This trend is associated with an increase in
urban/industrial pollution due to the rapid economic expansion [72]. There was also a
significant positive trend, although with lower values (up to 0.05), in some areas of the
Sahara Desert, northern South America, and the region of the Philippines, Malaysia or
Indonesia, as well as in the west of the Middle East region. The significant positive trend
of AOT in the western Middle East is due to an increase in the frequency and intensity of
dust outbreaks from the Arabian Desert [73–75]. In contrast, significant negative trends
(up to −0.05 per decade) were found in eastern United States, Europe, the Mediterranean
basin, East Asia and South America. This negative trend could be due to the effective
enforcement of emission control policies in these regions [76–80]. This spatial distribution
agrees with the spatial distribution described by other authors (e.g., [51,53,69,76]).
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In the case of the AOT effect (Figure 11b), the average of the linear trend over the globe
was equal to −0.029% per decade during the period 2000–2019, resulting in an absolute
AOT effect increase of 0.057%. A negative trend was also estimated by Subba et al. [23] for
aerosol effects on solar radiation. The spatial distribution was similar to that of AOT. The
more positive the AOT trend, the more negative the AOT effect trend. The most negative
AOT effect trends were found in India, likely due to the increasing trend of anthropogenic
aerosols in that region [81].

Figure 12 shows the global spatial distribution of the PWV linear trend per decade
(Figure 12a) and the PWV effect (Figure 12b). An overall global trend of 0.023 mm per
decade during the period 2000–2019 was found for PWV, which represented an absolute
increase of almost 0.046 mm. This positive sign of the trend is in line with other studies
(e.g., [31,82]) and is found in almost 60% of the world. The regions with significant positive
trends were distributed all over the world. The most positive trends were found in South
America. Significant negative trends were obtained in the easternmost part of South
America, South Africa, the north of the Indian Ocean, northern Australia and Pacific Ocean
regions. While the negative trend values for these last four regions are in line with the
results reported by Chen et al. [31], the spatial distribution differs from that shown by
Mieruch et al. [83], possibly due to the different data period used in the studies. Thus,
while Mieruch et al. [83] analysed only ten years (1995–2005), in the current study, the
data period was extended to two decades (2000–2019). It is interesting to note that Polar
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Regions behave in the opposite way, i.e., while PWV was increasing in the Arctic area, it
decreased in Antarctica. This opposite pattern is consistent with other studies that indicate
the Arctic is warming faster than the global warming average [84]. Thus, this increase in
surface temperature in the Arctic would yield more evaporation and, consequently, more
PWV [85].
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In the case of the PWV effect (Figure 12b), the global trend was equal to −0.019% per
decade during the period 2000–2019, resulting in an absolute PWV effect increase of 0.039%.
The spatial distribution of the PWV effect was similar, in most of the study area, to that of
PWV. The more positive the PWV trend, the more negative the PWV effect trend becomes.
This similarity was not fulfilled in the maritime areas of Polar Regions. In these areas, the
absolute PWV trends were not high; however, the PWV effect trends showed high absolute
values. This lack of similarity is due to the fact that PWV in these regions was very small,
and any small alteration can result in a large variation in the PWV effect, as can be seen in
Figure 3.

Once the trends of the individual effects were analysed, the trends of the combined
effect was studied. A global trend in the combined AOT-PWV effect equal to −0.053% per
decade during the period 2000–2019 was found, representing a decrease of 0.11% along
the period of study. This negative trend was found in 66% of the world’s area, and it was
significant at a 5% significance level in 38% of that surface. Figure 13 shows the global
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spatial distribution of the linear trend per decade in the AOT-PWV effect. The most negative
significant trend values were obtained in India. These values were related to the positive
trend of AOT, likely due to the rapid economic expansion. Ocean waters surrounding
India, central Africa, northwest Pacific, northern South America, and the region of the
Philippines, Malaysia or Indonesia showed significant negative trends, although their
absolute values were lower. A negative trend was also obtained in the Arctic due to the
influence of the negative trend of PWV effect. Conversely, significant positive trends
were found in the eastern United States, South America, Europe, the Mediterranean Sea,
southern Africa, Antarctic, Asia, Australia, and some specific areas of the Atlantic Ocean
(regions where significant positive trends of AOT effect were obtained). In a recent study,
Obregón et al. [29] also reported significant positive trends of the AOT-PWV effect over
the Mediterranean Sea. The positive trend in these regions indicates that emission control
policies are working, something that is not happening in India due to the great economic
expansion the country is experiencing.
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4. Conclusions

The global spatial and temporal distribution of the combined effects of AOT and PWV
on solar radiation at the surface were calculated and analysed. In addition, the individual
effects of aerosols and water vapour were also calculated to compare the results with
other analyses at a global scale. For this purpose, the methodology recently developed
and validated by Obregón et al. [30] was applied at the global scale for the first time.
The analysis of the spatial distribution of individual and combined AOT and PWV effects
showed a close link with spatial distributions of AOT and PWV. These effects were negative,
indicating a decrease in downwelling SW irradiance due to the presence of aerosols and
water vapour in the atmosphere. AOT-PWV effects ranged between 0% and −31%, while
the reductions for individual effects were limited to the range between 0% and −18%.
Likewise, the global average AOT-PWV effect is more negative (−13.9%), while the average
AOT effect was −2.3% and of the average PWV effect −12.1%. From these values, it is
concluded that the combined effect AOT-PWV is less intense than the sum of the individual
effects, mainly in regions with the highest concentrations of aerosols and water vapour.
The difference between the sum of the individual effects and the combined effect is due to
the lack of consideration of the interaction between water vapour and aerosols when the
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individual effects are calculated. The most negative AOT effects were found above east
China, India, and the Arabian and Sahara Desert due to the influence of the deserts and
the rapid economic expansion. While the most negative PWV effect was located around
the Intertropical Convergence Zone. The most negative AOT-PWV effects were found in
areas with a high influence of aerosols and water vapour simultaneously. High seasonal
variability was found, with the most negative values during summer due to a combination
of factors, such as an increment in dust outbreaks and forest fires, the lack of precipitation,
and the increase in the surface temperature. This spatial analysis has contributed to a better
understanding of the individual and combined effects of AOT and PWV on downwelling
SW irradiance and highlights the importance of analysing the combined effects, mainly in
regions with high concentrations of aerosols and water vapour.

The analysis of the temporal distribution focused on the detection of trends in the AOT
and PWV anomalies and the anomalies of their effects. The results obtained show positive
global trends per decade for AOT and PWV, with values equal to 0.0017 and 0.0234 mm,
respectively. Consequently, significant negative global trends were found for individual
AOT and PWV effects and combined effects (−0.029%, −0.019% and −0.053% per decade).
These negative trends also indicate an increase in the absolute effects on solar radiation
at the surface since effects were negative. The spatial distribution of AOT effect trends
showed that the most significant negative values were found in India and its surrounding
oceanic areas due to the rapid economic expansion that this region has experienced. In
contrast, significant positive trends were found in the eastern United States, Europe, South
America or East Asia due to the effective enforcement of emission control policies. In the
case of the PWV effect, the most negative trends were found in South America, central
Africa, western Unites States and the maritime area of Arctic, and the most positive trends
were found in South Africa, northern Australia and the maritime area of the Antarctic.
The opposite pattern among the Polar Regions is consistent with temperature studies that
suggest the Arctic is warming faster than the global average. The global spatial distribution
of the AOT-PWV effect trend shows that, in general, trends in the combined AOT-PWV
effect are directly related to the trends in the individual AOT and PWV effects. However,
a comprehensive description of the aerosol and water vapour effects is only provided
by analysing the trend of the combined effects since both constituents are simultaneous
present in the atmosphere. Thus, this combined effect is the suitable one to be considered
for evaluating climatic effects. Furthermore, the study of the combined effects of AOT and
PWV may be used in future research to address how aerosols and water vapour can affect
each other in the atmosphere. This study focused on the individual and combined effects of
aerosols and water vapour on downward SW radiation, quantifying these variables using
AOT and PWV data provided by satellite products. In particular, the CERES SYN1deg Ed4
product was used. Therefore, this study is limited to cloud-free cases since AOT and PWV
can only be obtained from the satellite under these conditions. However, it should be noted
that the role of PWV also extends to cases with clouds, as it seems to be correlated with the
likelihood of clouds, which definitely have an impact on the downward SW irradiance. In
addition, aerosols contribute positively to cloud formation by acting as condensation and
ice nuclei.
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