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Abstract

With the increase in usage and dependence on the internet for gathering
information, it’s now essential to efficiently retrieve information according
to users’ needs. Question Answering (QA) systems aim to fulfill this need
by trying to provide the most relevant answer for a user’s query expressed
in natural language text or speech. Virtual assistants like Apple Siri and
automated FAQ systems have become very popular and with this the con-
stant rush of developing an efficient, advanced and expedient QA system is
reaching new limits.

In the field of QA systems, this thesis addresses the problem of finding the
FAQ question that is most similar to a user’s query. Finding semantic sim-
ilarities between database question banks and natural language text is its
foremost step. The work aims at exploring unsupervised approaches for
measuring semantic similarities for developing a closed domain QA system.
To meet this objective modern sentence representation techniques, such as
BERT and FLAIR GloVe, are coupled with various similarity measures (co-
sine, Euclidean and Manhattan) to identify the best model. The developed
models were tested with three FAQs and SemEval 2015 datasets for English
language; the best results were obtained from the coupling of BERT em-
bedding with Euclidean distance similarity measure with a performance of
85.956% on a FAQ dataset. The model is also tested for Portuguese language
with Portuguese Health support phone line SNS24 dataset.

Keywords: Question Answering, Closed Domain QA systems, Similarity
Measures, Sentence Embedding, BERT, Unsupervised Learning, Machine
Learning
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Sumario

Um sistema de pergunta-resposta de aprendizagem
automatica para FAQs

Com o aumento da utilizagdo e da dependéncia da internet para a recolha
de informacao, tornou-se essencial recuperar a informagao de forma eficiente
de acordo com as necessidades dos utilizadores. Os Sistemas de Pergunta-
Resposta (PR) visam responder a essa necessidade, tentando fornecer a re-
sposta mais relevante para a consulta de um utilizador expressa em texto em
linguagem natural escrita ou falada. Os assistentes virtuais como o Apple
Siri e sistemas automatizados de perguntas frequentes tornaram-se muito
populares aumentando a necessidade de desenvolver um sistema de controle
de qualidade eficiente, avancado e conveniente.

No campo dos sistemas de PR, esta dissertagao aborda o problema de encon-
trar a pergunta que mais se assemelha & consulta de um utilizador. Encon-
trar semelhangas seménticas entre a base de dados de perguntas e o texto em
linguagem natural é a sua etapa mais importante. Neste sentido, esta dis-
sertagao tem como objetivo explorar abordagens nao supervisionadas para
medir similaridades seménticas para o desenvolvimento de um sistema de
pergunta-resposta de dominio fechado. Neste sentido, técnicas modernas
de representagao de frases como o BERT e FLAIR GloVe sao utilizadas em
conjunto com varias medidas de similaridade (cosseno, Euclidiana e Manhat-
tan) para identificar os melhores modelos. Os modelos desenvolvidos foram
testados com conjuntos de dados de trés FAQ e o SemEval 2015; os mel-
hores resultados foram obtidos da combinagao entre modelos de embedding
BERT e a distancia euclidiana, tendo-se obtido um desempenho maximo de
85,956% num conjunto de dados FAQ. O modelo também é testado para a
lingua portuguesa com o conjunto de dados SNS24 da linha telefénica de
suporte de satide em portugués.

Palavras chave: Pergunta-Resposta, sistemas de Pergunta-Resposta de
dominio fechado, Medidas de similaridade, Embbeding de frases, BERT,

Xix
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Chapter 1

Introduction

A Question is a sentence or expression that requests specific information. An
Answer is a specific and reliable information about a question. A question is
always asked for gathering knowledge; on the other hand, the answer is the
knowledge.

Before the age of the internet, finding an answer was difficult, but the internet
seems to make life easier. There’s a need to find an answer on a question?
Just search it on the internet, and lots of answers will be presented. Now the
problem is that there are so many answers on every possible question, that
finding the desired answer is sometimes difficult. Search engines like Google,
present the desired answer for a specific questions like "Capital of Angola’
or 'what is the bitcoin price?’; but a question like ’what is the bus ticket
price from Lisbon to Porto?’ will give countless website links and not the
desired answer. The main reason is that a search engine is not a Question
Answering(QA) system. To solve this problem Question Answering(QA)
systems come to the scene.

A system that can automatically present relevant answers to a natural lan-
guage query is known as a QA System. Based on the answering domain, a
QA system can be divided into two types: open domain, and closed domain.
An open domain QA system can answer any kind of question; a closed do-
main one answers only for a specific domain. Though, open domain systems
can accept and answer all types of questions, they are less accurate and more
costly (memory, time) when compared to a closed domain one.

Closed domain QA systems are popular for asking Frequently Asked Ques-
tions (FAQ). FAQs collate the set of questions and answers that are most
important (key questions) for a service provider. For example, the answer
to the question ’the ticket price from Lisbon to Porto?’, can be found on
most FAQ section websites that provide bus services. Nonetheless, finding
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the desired question from a FAQ can be time consuming and tedious. That’s
why many organizations are getting interested in closed domain QA systems
for providing answers to their FAQs. This thesis proposes a system for a
closed domain QA.

1.1 Motivation

The motivation for this thesis is the study and development of a QA model
for Botschool'. Botschool is a project from Altice Labs? that provides a
framework of virtual assistants for various enterprises. In 2019 Altice Labs
collaborated with the University of Evora for improving the Botschool frame-
work. The system was initially supervised and the challenge of this project
was to formulate an unsupervised approach for closed domain QA Systems.
This project gave me an opportunity to work on Altice Labs’ Botschool.

1.2 Objectives

The aim of this thesis is to propose an unsupervised closed domain QA
system for FAQ. To achieve this objective the following tasks are pursued:

e study different sentence representation techniques and similarity ap-
proaches;

e survey existing approaches for developing an unsupervised closed do-
main QA system;

e propose an unsupervised closed domain QA system using modern sen-
tence representation techniques and similarity measures;

e develop an unsupervised closed domain QA system by implementing
the proposed approaches;

e test the developed system using datasets of different domains for En-
glish and Portuguese languages and,

e identify the best performing model with best test results.

"https://botschool.ai/
Zhttps://www.alticelabs.com/
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1.3 Approach

This work presents an approach for developing an automatic FAQ answering
system. To achieve the objective mentioned in the previous section, an
unsupervised machine learning approach is proposed. It comprises of two
modules:

e sentence representation using BERT and FLAIR embedding;

e similarity measurement between the (embedded) query asked by the
user and the (embedded) frequently asked questions using a similar-
ity measure (cosine similarity, Euclidean distance and Manhattan dis-
tance).

1.4 Main contributions

The main contributions of this work are:

e a survey and analysis on different state-of-art approaches on sentence
representation;

e a survey and analysis of different state-of-art approaches on similarity
measures;

e aset of closed QA models (using different sentence representation tech-
niques and similarity measures) and their analysis.

1.5 Thesis Outline

This thesis is comprised of six chapters. Chapter 2 describes the QA system:
section 2.1 contains the details and architecture of the QA system and 2.2
and 2.3 describe different sentence representation techniques and similarity
measures, respectively. Chapter 3 presents the related work on similarity
measurement with different approaches and

Chapter 4 describes the proposed model architecture and the tools used
for its development; Chapter 5 presents the results obtained along with a
discussion and Chapter 6 is the concluding chapter of this thesis: it comprises
a short summary and future work.






Chapter 2

Question Answering

Question Answering is a branch of artificial intelligence in NLP. It aims at
building a system that can automatically provide an answer to the user’s
question expressed in natural language. This chapter aims at describing
Question Answering system along with two NLP techniques: sentence rep-
resentation and similarity measure, which are used for building a question
answering system.

2.1 Question Answering System

"The purpose of an QA system is to provide correct answers to user ques-
tions in both structured and non-structured collection of data.” In Natural
Language Processing, Question Answering (QA) is a big research field. The
increasing demands of Question Answering(QA) Systems are creating more
research opportunities. We are using QA System almost every day either
passively or actively.

From telecommunications to websites QA Systems are very popular. There
was a time when we used to look for "Frequently Asked Questions’ for general
information but it is now outdated. Whenever we want to use a service, a bot
popups and asks "how can I help you?". The bot is actually an Artificial
Intelligence (AI) QA System. The current challenge for researchers is to
improve the bot's ability to answer general queries such that, when a human
interacts with a QA System bot, the humans experience is as rich as it is
when conversing with another human at the service desk.

)
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2.1.1 Types of Question Answering (QA) Systems

The QA System is generally defined as an Al system that takes question
from human in natural language then process the question to give the best fit
corresponding answer. A QA System usually returns more than one answer.
The retrieved answers are sorted on the scale of relevance to the question by
ranking / similarity algorithms.

Based on answering domain, a QA system can be of two types: (1) Open
Domain and (2) Close Domain.

Open Domain

An Open Domain QA system as the name suggests, is a QA system that
accepts all types of questions as input and, tries to find best suited answer
for it. A user has the freedom to ask any questions, from "how are you?" to
"what is today's stock exchange rates?" to this system. Open Domain QA
system generally uses a large collection of database for searching answers. As
these systems can answer any kind of question, their database is exceptionally
huge. The recent open domain QA systems use internet as their database,
such as Wikipedia, Yahoo Answer, etc. Apple Siri, Amazon Alexa are some
good examples of the same. This kind of QA system usually takes users
query in voice input mode, then converts it to text, and searches it on the
internet and presents the result.

Open Domain QA system can answer from any domain of question, but
it has few drawback also. Finding answer from a very big database(ex:
Wikipedia) is very challenging, time consuming and costly. Due to this
reason it usually presents short answer to the user. Researcher always face
two major challenges when they are working on Open Domain QA system.
First, the system may not retrieve the document(golden document) that
contain the correct answer, and second, rank algorithm was not able to give
top rank to the correct answer. In the second case even though the correct
answer is already retrieved but the user gets false result.

Closed Domain

QA Systems build for a specific domain are known as closed domain QA
System. Unlike Open domain, Closed domain QA System is dedicated to
only certain types of question and answering. For example the chat bot that
appears on banking or credit card websites are closed domain QA. Nowadays
almost all the websites have this kind of QA System, they are majorly used
for answering simple FAQ or user queries regarding the particular website
and its services. BASEBALL [22] is the first closed domain QA System which
was built in 1961. Since then there were many remarkable work done in the
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field of closed domain QA System including LUNAR, ELIZA, etc. [80, 78|

Closed domain question answering system deals with the queries of a specific
domain hence their database is relatively smaller. Therefore, they are faster,
and give higher accuracy than open domain QA system.

2.1.2 Architecture of Question Answering (QA) System

To understand the architecture of a QA System it is important to know the
terminologies associated with it. They are as follows:

e question phrase is referred to the part of the question which tells what
is looked for,

e question type is the classification of the questions into different cate-
gories based on its purpose,

e answer type refers to the class or set of answers that are sought for the
question,

o candidate passage is defined as a unit that is retrieved by the system
in order to answer the question. The retrieved unit can be anything
from sentences to documents or even multimedia,

e candidate answer is the set of answers ranked according to its relevance
as potential answers. [53]

How many
moons does
Saturn have?

Saturn has 82
moons.

Question Answer
Processing Document — > Processing
Unit Processing Unit Unit

Figure 2.1: QA System Architecture

Figure 2.1 shows the general architecture of a QA system. It contains three
major components, namely:
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e Question Processing from users input.

e Document Processing according to user’s question in order to generate
all possible answers.

o Answer processing to present the most reliable answer.

The Question Processing Unit receives the question as input from the
user in natural language in order to analyze and classify it. Firstly, the ques-
tion is analyzed to find its type. Questions are generalized on the basis of
types of answer they expect, they are factoid, list, definition and complex
question [52| . The questions that ask about simple fact and it can be an-
swered in few words like, Farth has how many moons?, as knows as factoid
questions. The questions that expect group of entities as answers are list
questions, for example, who were the Presidents of USA from 1980 to 20207.
Definition questions ask for a summary or short passage / paragraph as an
answer, like what is the process of photosynthesis?. A complex question is
the one that is about the information in context and may not have a di-
rect answer, for example Does Jack has a son?. For such questions usually
merging of passages or sentences are required. Algorithms like Round-Robin,
Raw Scoring and Logistic Regression are used for merging the passages [11].
Question classification is a major step in question processing. There are
two approaches for question classification, manual and automatic [81]. Hand
crafted rules are used in manual classification of the questions. Though clas-
sification by hand crafted rules are accurate but its tedious and not flexible.
The automatic classification of questions is done using machine learning al-
gorithms by feature extraction. Automatic classification is more flexible, and
provides reasonable accuracy with enough training data.

The task of Document Processing unit is to extract relevant set of doc-
uments, paragraphs or sentences based on the question phrase and question
type. This is done with the help of natural language processing techniques.
This unit can result a dataset or a neural model that serves as a pool from
which the final answer is extracted.

The Answer Processing unit extracts the answers from the retrieved
dataset or neural model. It may rank the answer by using ranking algorithm,
based on its relevance on the question. It is important to extract short and
meaningfully answers to the question thus various extraction techniques [42,
79, 34] are applied in order to deal with ambiguities and get the best fit
answer.

Apart from the general architecture, a QA System is also defined by the
models that are used for answer extraction, they are as follows:
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e Natural language processing (NLP) QA system uses NLP techniques
like POS tagging, embedding and other machine learning methods to
extract answers from the retrieved result of document processing unit.

e Information Retrieval (IR) QA system uses search engine to retrieve
answers and then apply filters and ranking algorithm on the retrieved
dataset to get the best suited answer. It generally follow three steps,
they are: retrieve relevant document from huge database, extract can-
didates answers from retrieved data, and finally rank the candidate
answers to detect the most accurate answer. A retriever is used for
retrieving and ranking documents. The task of the retriever is to re-
trieve the data according to the users question, after that the retriever
score and rank that data to give the best fit result. To retrieve and
rank the data different Information Retrieval (IR) techniques, such as,
TF-IDF, Okapi BM25, etc and, rank algorithms are used. Finally a
ranker ranks the candidate answer and determine the final answer. For
ranking the answers, neural network is used. Neural Network is most
efficient than other ranking algorithm, because neural network rank
the answer based on the question and its context.

e Knowledge Base (KB) QA system is used when a structured dataset
is available to find the answers. For example, finding an answer from
a well defined entity and relation ontology of medical domain. Ontol-
ogy can be considered a more refined knowledge base than relational
database [5]. In this type of QA System, database queries are used for
extracting the answers. To perform database queries on an ontology,
structured languages like SPARQL [74] are used.

o Hybrid QA system is the one that takes advantage of all the resources
available to find and extract the correct answer for the user’s question.
It is the combination of IR, NLP and KB QA [17]. IBM Watson [50]
is a most popular example of this approach.

2.2 Sentence Representation

Sentence representation is a very important task in Natural Language Pro-
cessing (NLP). It greatly helps in understanding the context of a sentence.
It is recognized as one of the core task in NLP. Sentence representation
is vastly used in document summarization, machine translation, sentiment
analysis, dialogue system, etc. The aim of sentence representation is to en-
code valuable semantic information of a sentence into real valued vectors.
The vector representation of sentences are also used in matching learning
and deep learning approach for sentence classification.
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Before deep learning approaches emerged, two methods of sentence repre-
sentation were popularly used, namely: Term Frequency-Inverse Document
Frequency(TF-IDF) and Bag-of-Word(BoW). These two methods convert a
sentence into a vector depending on the size of the vocabulary. The ma-
jor drawback of these methods were the huge vector size, sometimes it can
even reach millions. The reason for huge vector size is its reliance on the
vocabulary size, and, large vocabulary mean more information. Another
major drawback is, these methods ignore the structural information and the
sequence of words in a sentence, which plays an important role in understand-
ing the context of the sentences. Recent methods for sentence representation
solve these problems by using deep learning models such as embedding. TF-
IDF, BoW and Embeddings are discussed in this section.

2.2.1 TF-IDF

TF-IDF [31, 57, 58, 56] method computes the vector from a document using
two parts, Term Frequency (TF) and Inverse Document Frequency (IDF).

Term Frequency (TF) is measured by counting the occurrences of a term in
a document. The probability of a term to be present in a document is higher
for large documents than that of short length documents. To normalize
this, the frequency of a term is divided by the total number of term of the
document.

TF — Number of times term appears in the document

Total number of terms in the document

Inverse Document Frequency (IDF) on the other hand measures the impor-
tance of a specific term. TF gives equal importance to all the terms however,
stop words such as: "are", "it", "the", etc. have higher occurrence than the
terms that posses more meaning. To deal with this IDF assigns weights to
the terms, lowers weights are assigned to frequent terms and higher weights
are assigned to the terms that occur rarely. The formula to compute IDF is,

Total number of documents

IDF =1
Oge(Number of documents with a specific term in it

2.2.2 BoW

The Bag of Word (BoW) [23] is the simplest method for representing a
sentence as a vector. BoW first makes a vocabulary list from the given
document and then assigns 1 to the position of the word where it occurs in
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the vocabulary and 0 if the term is not present in a sentence. For example,
consider a three sentence document, where,

e S1: I like to watch action movies.’
e S2: T also like to watch football.’

e S3: I dont like horror movies.’

All the unique words are selected for building a vocabulary list thus, the
vocabulary list contains 10 words whereas the document contain 19 words.
Based on this the vocabulary of the given sentences would be:

vocabulary = {1, like,to, watch, action, movies, also, football, don’t, horror}

Table 2.1 shows the vector representation of the example sentence with BowW
model.

I like to watch action movies also football don’t horror

S1 1 1 1 1 1 1 0 0 0 0
21 1 1 1 0 0 1 1 0 0
31 1 0 0 0 1 0 0 1 1

Table 2.1: BoW vector representation

2.2.3 Embeddings

Embeddings are a modern approach for sentence representation. It is a
technique that represents word in a vector space. The words that have similar
meaning are given similar representation using deep learning methods.

Word2vec

Word2vec is one of the most popular embedding that is used in Natural
Language Processing. Word2vec was created by Google research team led
by Tomas Mikolo. It learns vector representation of words by constructing
a vocabulary from the training text datasets. The output vector file can
be used in future as features for the input text corpus. To find the similar
words distance measuring algorithms can be performed in the word vectors.
Word2vec has two main algorithms for learning the text corpus namely: (1)
Continuous Bag of Words (CBOW) [45] and, (2) Skip gram [45].

The CBOW model is developed as, it uses continuous distributed represen-
tation of the context [45]. This model tries to predict the next word using
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context of each word given as input. The context can be any arbitrary num-
ber of words. This arbitrary number is determined by the context window.
The context window represents the length of neighbour of a given word that
will be used as a context.

CBOW model uses a Neural Network (NN) to convert word into vectors.
The input layer of this NN takes the context word as input. The size of
input vector is same as the size of vocabulary and it is represented as V.
The single hidden layer takes the weighted sum from input layer as input.
The hidden layer does not have any activation functions, and it consists of N
neurons. The output layer takes input from hidden layer's output. Output
layer is the only layer where softmax is used as an activation function.

The architecture of Skip Gram is similar to that of CBOW. However, un-
like CBOW, skip gram attempts to predict the context of the word instead
of trying to predict the word in a given context. During the training process,
Skip Gram generates different errors for every context word. In order to ob-
tain the resulting vector, an element wise addition is performed on each error
vector, which is used during the back propagation process. Another major
difference that Skip Gram holds is the working of context window. Skip
Gram uses random window size that ranges between one to the maximum
window size.

GloVe

Global Vector (GloVe) is an unsupervised machine learning algorithm for
getting vector representation of words. It was released in 2014 and is devel-
oped by researches from Stanford University.[49] GloVe captures the meaning
of words by using word co-occurrence method. Word co-occurrence statis-
tics defines the meaning to words by tacking into account how often two
words appear together is a document. For example word ’ice’ occurs more
frequently with 'solid’ then it does with 'gas’ and the word ’water’ co occurs
more frequently with ’liguid’ then with ’solid’.

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a meth-
ods of pre-training language representations to create a model for "general
purpose language understanding" [14]. The created models are then used
for various NLP tasks, like question answering. BERT was first released
in 2018 by Google. It is the first unsupervised, bidirectional deep learning
embedding model.

As the name suggest, BERT tries to understand the context of the word
from both the directions (left and right). For example, in a sentence ’I made
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a bank deposit’, the context of the word ’bank’ is based on both left context
(I made a..) and right context (deposit). BERT outperforms the previous
models for word embedding, including word2vec and GloVe as they generate
single representation of each word in vocabulary, meaning, the word ’bank’
for both ’river bank’ and "bank transfer’ have the same representation.

BERT model is pre-trained using large text corpus like wikipedia. The model
is trained by masking approximately 15% of the words in an input sentence,
and then aims at predicting the masked word. For example:

Input Sentence : I made a [MASK1] deposit. Then I went [MASK?2]. Label:
[MASK1] = bank, [MASK2] = home

Masking of the words is done through a deep bidirectional Transformer en-
coder. BERT can also be trained on single language corpus to learn the
co-relation between sentences for predicting the next input sentence.

FLAIR

FLAIR text embedding library was proposed in 2018 [4]. It allows the user to
combine various character, word and document embeddings including Flair,
BERT and ELMo. Flair embedding is referred to as Contextual string em-
bedding which is based on character level language modelling. It represents
words as a sequence of characters. The word representation is obtained by its
surrounding context, meaning, words in different context like in the phrases
"eye ball’ and ’base ball’, the word ’ball’ has different representation.

2.3 Similarity Measures

The measures of finding how close two pieces of text are is known as text
similarity measures. Text similarity is an important task in the building
applications like, question answering, essay scoring, topic detection, infor-
mation retrieval, text classification, etc. Texts can be close or similar to
each other in two behaviours, lexical or semantic. Words are lexically sim-
ilar to each other if they have the same character sequence, like, eat and
ate. Words are semantically similar to each other if they possess the same
meaning or often used in same context, like, amazing and wonderful. Both
lexical and semantic similarity are used depending on the nature of the task.
For instance, finding words that rhyme with each other, character similarity
in words is required, like, top, shop, pop, mop, etc. However, for text under-
standing semantic similarity is more significant. For instance, the sentence
"What are the tourist attraction in Rome?" and "What are the best places to
visit in Rome?" only have "Rome" in common but expect the same answer.
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There are multiple algorithms that help in finding text similarity. Based on
their nature, they are divided into three major types, namely:

e String Based Similarity,
o Knowledge Based Similarity,
e Corpus Based Similarity.

There are various algorithms in all the categories, some of the popular ones
are discussed in their respective section.

2.3.1 String Based Similarity Methods

String based similarity measures work on string or character sequences. A
metric is used to calculate the distance between two text for approximate
string matching or comparison, the metric is called string similarity metric
or string distance metric. Based on their operation, string based similarity
is further divided into two categories, namely: character based and token
based similarity measure.

Character Based Similarity Measures

Character based similarity measure algorithms are the ones that work on
character sequences for finding the similarity / dissimilarity between text.
Some of the famous character based similarity measure are discussed under
this section.

The Longest Common Substring (LCS) algorithm [73] finds the longest
common chain of characters between two strings. It computes the similarity
between two text by comparing their longest common sub-sequence. It is
calculated by the following equation:

LOS’LLbStT(Sl, 52) = ma$1§i§m71§j§nLCSuff(511727,_.1', 32172,.4‘)

here m and n are the length of the string S7 and S5 respectively, and LC'Suf f
is a function to find the longest common suffix of every probable prefixes of
S1 and Ss.

Jaro [68, 20] is an algorithm to calculate the distance for measuring sim-
ilarity between two strings. It is based both on number and order of the
common character sequences between two strings. The Jaro distance score
is 0 if there is no similarity and 1 if the complete match is found. It takes
into account spelling variation and majorly used for record linkage. The
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Jaro distance (d;) between two string S; and Ss is defined by the following
equation:

; {0 if m =0,
j = —t .
1/3 (% + ‘S—”;' + %) otherwise
where m is the number of matching character, ¢ is half of number transpo-
sition. Two characters of string S; and So are matched only when they are

same and positioned close to each other. The distance between characters
should be not more than M _1.

Jaro winkler [68, 20| is an extension of Jaro distance algorithm. It is
semantic similarity measure for two strings, that is useful for short string
matching. It makes use of prefix scale to compute the rating of the strings
that are matched from the beginning for defined prefix length. The higher
the Jaro Winker distance (d;,,) between the two strings the more similar
they are. It is calculated by the following equation:

djw = dj + (Ip(1 — dj)),

where [ is the prefix length and p is the prefix scale.

Damerau-Levenshtein |33, 25] is an algorithm to find the distance between
two strings by calculating the number of transformations that are required
to convert one string to another. The conversion is done by operations like,
insertion, deletion or substitution of one character or changing the position
of two adjacent characters. The least number of operations required the
closer the strings are.

Needleman-Wunsch [15, 76] is a dynamic programming algorithm and
the first of its kind for biological sequence matching. It is an alignment
method that applies global alignment to find the best fit arrangement over
two biological sequences. It is an optimal matching algorithm. It is used
when the two sequences are of same length, and posses considerable level of
similarity.

Smith-Waterman [15, 12] is a variant of Needleman-Wunsch algorithm. Tt
is also a dynamic programming algorithm for finding the alignment of bio-
logical sequences, but instead of global it uses local alignment over conserved
domain to find the best fit arrangement in sequences. To find the similarity
it compares parts of the string and optimizes the results. It is useful for very
large dissimilar sequences that contain chunks of similarity.

N-gram [32, 82] is a probabilistic language algorithm majorly used for pre-
dicting the next term in the sequence. It generates the sequence of n items
for a given text. N-gram can be used for segmenting both characters and
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tokens. For example, bi-gram consists of two items in a sequence of text,
character bi-grams of "work’ are 'wo’, ’or’, ’rk’. Similarly, token bi-grams of
"I work for fun’ are ’I work’, *work for’, ’for fun’. The similarity is calculated
by dividing the similar number of n grams by the total number of n grams.

Token Based Similarity Measures

Token or term based similarity measure algorithms work on term or word
sequences for text matching. Some of the famous token based similarity
measures are discussed in this section.

Cosine similarity measure [59, 51] is the similarity between two non zero
vectors. It finds the angle of cosine between them, if the two vectors have
same direction their cosine similarity is 1 and if vectors are at 90° their
similarity is 0. Euclidean dot product is used to measure the cosine of vectors,
the following equation shows the formula for the same.

a-b=||al||bl| cosb.
For two vectors A and B the cosine similarity is defined by the following

equation:

AB Yo AiB;
AllllB| n
Al Bl \/ZizlAZ?\/Z?Zle

here A; and B; are the components of A and B vectors.

cosf =

Block Distance |70] is also known as Manhattan distance, city block dis-
tance, snake distance or L1. It is defined as the distance that needs to be
covered while moving from one data point to another, if grid path is followed.
The block distance (d;) between two points (a and b) is calculated by adding
the difference of their components, as shown in the following equation:

di(a,b) = lla—blly = _|a; — bi|
=1

Euclidean distance [59] or L2 distance is the measure of distance between
two points in Euclidean space!. The position of points are Euclidean vectors
and distance is the square root of the sum of squared differences between

'Buclidean space is an elemental space in geometry and can have any non negative
integer dimensions.
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corresponding elements. The Euclidean distance (dz) for two points (a and
b) is defined as following equation:

dy = d(a,b) = d(b,a) =

The Jaccard Similarity Coefficient |21, 59| is also known as the Jaccard
index. It is used to find the similarity and dissimilarity between two finite set
of strings. The similarity via Jaccard coefficient is calculated as the common
terms, or intersection of terms that are divided by the union of terms in the
two strings. The dissimilarity is computed by subtracting the Jaccard index
of similarity from 1. For two set of strings(P and @), Jaccard index (J) is
defined as following equation:

_lPn@l_ |PnQ|
PUQ| [P+ Q- [PUQ]

J(P,Q)

Simple matching coefficient [59] is also a vector based approach for com-
puting similarity and dissimilarity between two strings. It counts the number
of terms which are non zero vectors. It accepts strings as a collection of n
binary attributes and calculates the squared Euclidean distance between two
binary vectors. The SMC for string .S and T is defined as following equation:

Number of matching attributes

M =
SMC Total number of attributes

. Sp0 1 S11
Sp0 + So1 + S10 + S11

where sgg are the total attributes as 0 in S and T, s1;1 are the total attributes
as 1 in S and T, sp1 are the total attributes as 0’s and 1’s in S and T" and
likewise, s1g are the total attributes as 1’s and 0’s in .S and T'.

Dice’s Coefficient [46] is also known as Sorensen-Dice index or Sorensen
index. It is majorly used to find the presence or absence of data in the
dataset. It is calculated as twice the count of similar terms divided by the
total terms of the compared set / string. The following equation shows Dice’s
coefficient for set X and Y.

_2lXnY]

QS =2
[X|+ Y]

| X| and |Y| are the number of elements of set X and Y, @S is the quotient
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of similarity that ranges between 0 and 1. To calculate the similarity of two
strings (P and @), the Dice’s coefficient is computed by bigrams as shown
in the following equation:

. 2ny
sim = ————
Np + Nyg
where, n; is the count of common bigram, and n, and n, are the total number
of bigrams in string P and Q.

2.3.2 Knowledge Based Similarity Methods

Knowledge based similarity methods are majorly used for finding the se-
mantic similarity between two strings. It is called knowledge based as it
makes the use of underlying information sources for measuring similarity.
Information source may consist of ontology, dictionaries, thesauri, or lexical
databases like WordNet, Wiktionary, etc. These fundamental data sources
help in finding structured representation of concepts, terms along with their
meanings and semantic relations. Thus, providing highly efficient and un-
ambiguous semantic measure |72]. Based on the types of approaches used,
Knowledge based similarity measure is further divided into three categories
namely: feature based, edge counting based and information content based
methods. They are discussed in the sections respectively.

Edge Counting Methods

Edge counting methods are based on counting the edges of an ontology graph
to calculate the similarity between them. An ontology graph is a graph
which connects words taxonomically. The distance between terms / words
define their similarity, the less the distance the more similar they are. Path
measure [52] finds the similarity via edge counting methods based on two
deductions. First, the words that are present at deep down in the graph
hierarchy contain more specific meanings, and second, the words from first
deduction are more likely to be similar to each other even if they have same
distance as the other pairs that represent more generic concepts. Thus,
claiming that similarity is inversely proportional to the shortest path length
between two terms [11].

A Least Common Subsumer (LCS) is a common ancestor that is shared
between two terms in an ontology graph. Wup measure [81] is the one take
into account the depth of the terms along with the depth of their LCS in the
graph and count the edges between each term to compute the similarity. In
this measure the shortest path(simp.n) between two words (wy and wo) is
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defined as:

. 1
SiMpath (W1, W2) = 1+ min_len(w,ws)

and the wup measure(simy,y) defined as:

S-m ( ) _ 2d6pth(wlcs)
HThwup 0L, W02) = depth(wy) + depth(ws)

where, wj.s is the LCS of wy and ws.

Feature Based Methods

Feature based methods take in consideration word / term features to calcu-
late the semantic similarity between them. Both common and not common
features are taken into account. The alike features add to the increase in
similarity, and the contrasting features add to the dissimilarity of the terms.
In the context of knowledge based methods, features are properties of words,
like its meaning, neighbouring concepts, etc. [72]. The meaning of a word
defined in a dictionary is known as word’s gloss. Gloss based similarity mea-
sures take into account a glossary / dictionary to find similar terms by the
overlap of words in gloss. The more common words in gloss the more similar
two terms are. The Leak measure [6], calculate the similarity between terms
by calculating the overlap of words in their gloss and concept gloss to ex-
ploit their relatedness in WordNet ontology. The relatedness score is defined
as the sum of the squares of the overlap lengths. Similarly [29] proposed a
method of feature based semantic similarity that calculates the overlap of
words in respective Wikipedia pages to find similar words. A Vector pair
approach also uses WordNet to find the similarity. It creates a cooccurrence
matrix for every word from the dataset that occur in the WordNet gloss.
Then every gloss / concept is represented with a vector that is the average
of these cooccurrence vectors.

Feature based similarity measures are heavily dependent on ontology which
contain required feature information. This dependency has both advantages
and disadvantages. The system will be very efficient and accurate if the
ontology is fully incorporated with semantic features, however, most of the
ontology only provide taxonomic relations in the context of semantic features
which leads to reduced efficiency [72].

Information Content Based Methods

Information Content (IC) is referred to the information that is derived from
the word when it appears in context of something [71]. IC defines the speci-
ficity of the words by using Inverse Document Frequency (IDF). IDF is estab-
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lished on an information theory principle that says that, the more specific
the word is, the less they appear in a document. Based upon this IC is
defined as:

IC(c) = log™ " p(c)

where p(c) is the probability of encountering the term ’¢’ in a document
'C” |42]. The higher the IC the more specific and well described the term is.
Information content based methods take advantage of IC to determine the
similarity. The res measure [55] finds the similarity based on the concept
that if two terms share a LCS then they posses more information as the IC
of LCS is higher. It means IC of the terms is equal to that of their LCS and
hence is always greater than or equal to zero. Then for terms (c; and ¢3) res
measure (res) is define as:

res(cy, cg) = IC)cs.

Lin [38], and Jiang and Conrath [28| proposed the extensions of res measure.
Lin measure takes into account the twice the IC value of LCS for two terms
and divides it with the combined IC values of the terms. This is done to
exploit the attributes of individual information from both terms along with
the common information they share with LCS. However, the jen measure
by Jiang and Conrath calculates the distance between terms by adding up
the IC values of the two terms and then subtracting it with the twice of 1C
value of their LCS. After that the similarity is computed using the following
equation:

. 1
jen(er, e2) = 1+ disjen(c1,c2)’

where disjen(c1, c2) is defined as:

disjcn(clv CQ) = ICcl + [CCQ - 2IC’lcs

One or more ontologies can be used in information content based methods,
thus depending on IC methods can be categorized as mono or multi onto-
logical methods.
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2.3.3 Corpus Based Similarity Methods

A corpus is a large collection of texts (written or spoken). Corpus based
similarity methods exploit the information from a large corpus or dataset
to measure the semantic similarity. These methods work on the deduction
that similar words occur together in a document more frequently, rather than
utilizing any external ontology or dictionary for finding semantic relatedness.
Word embedding is widely used in these methods to identify the underlying
similarities between words in training corpus. There are many methods for
calculating corpus based similarity. Some of the famous ones are discussed
under this sections.

Latent Semantic Analysis

Latent Semantic Analysis (LSA) [34] is the most popular corpus based se-
mantic similarity measure. It works on the principle that words that appear
in similar context or among same piece of texts share common meaning. To
calculate the similarity first a co-occurrence matrix is constructed where,
rows represent unique words, columns represent paragraphs and their cor-
responding cell represent the word count in respective paragraph. As the
matrix is formulated with a large corpus its dimensions are huge. Thus,
a mathematical technique, singular value decomposition (SVD) [79] is used
for reducing the matrix’s dimensions. SVD preserves the similarity structure
among the words by only reducing the number of columns and retaining the
rows. Then each word is represented as a vector and the similarity is calcu-
lated by finding the cosine angel between them.

Generalized Latent Semantic Analysis

Generalized Latent Semantic Analysis (GLSA) [43] is an extension of LSA.
When the word vectors are generated from the corpus which is heterogeneous
in nature, then the performance of LSA degrades [5]. GLSA method was
proposed to overcome this problem. It is based on semantically motivated
pair-wise term for finding the word, sentence or document vector. This
approach can combine any type of measure for semantic association of terms
along with different dimensionality reduction techniques. To give the final
result, term document matrix is computed by combining the weights of the
term vectors in a linear fashion.

Explicit Semantic Analysis

The Explicit Semantic Analysis (ESA) [18] method is based on measuring
similarity with the aid of Wikipedia concepts. This method is useful when
working on arbitrary or unrestricted natural language text [17|. It uses
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machine learning techniques to represent terms as high dimensional vectors.
All the Wikipedia concepts are represented as an attribute vector of the
words that comprise the concept. Then TF-IDF is used to link every vector
with its associated concepts. A threshold is set for linking the concepts
with vectors. By this, the input text is converted into a weighted vector
of concepts called "interpretation vectors" and similarity between them is
calculated using the cosine measure.

Hyperspace Analogue to Language

Hyperspace Analogue to Language (HAL) [40, 41] method is built using word
co-occurrence matrix in semantic space. A group of words is considered
as a "window". The rows and columns of the matrix correspond to the
words and the associated cells represent the association weight between the
words. Associated weight between words is calculated by sliding the window
size which can vary depending upon the corpus. The association weight is
inversely proportional to the distance from the focused word. This is done
based on the deduction that words that are at close neighbours to the focused
word tends to provide more semantic to the focused word then the words
that are farther. Dimensionality of the matrix can be reduced by dropping
the columns with low entropy and the similarity is measured using Euclidean
or Block distance between word vectors.

Normalized Google Distance

Normalized Google Distance (NGD) [13] method is based on Google search
engine. It calculates the similarity by taking into consideration the results
obtained when a set of keywords are queried with Google search engine.
This method is built on the deduction that words that occur together more
frequently in web pages are close / similar to each other. Thus, the words
that have similar meaning have shorter Google distance between them then
to those that have different meanings or used in different context. Normalized
Google distance is defined as:

_ maz {log f(t1),log f(t2) —log f(t1,t2)}
NGpiht2) = log G — min{log f(t1),1og f(t2)}

where,tjand ty are the two terms, functions f(¢1) and f(¢2) return the num-
ber of hits from the Google search engine when the respective term is searched,
function f(t1,t2) returns the number of hits when the terms ¢jand to are
searched together and G is the total number of pages searched by the Google.
Hence if the two terms occur independently but never occur together then
the NGD between them is infinite, and if they always occur together then
the distance between them is zero, or equivalent to the coefficient between
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x and y squared.

Apart from these some methods for finding corpus based similarity are Word-
Alignment models [69], Pointwise Mutual Information - Information Re-
trieval (PMI-IR) [74], Second-order co-occurrence pointwise mutual informa-
tion (SCO-PMI) [26, 27|, Latent Dirichlet Allocation (LDA) [66], Dependency-
based models [3], Word-attention models [36] and The cross-language explicit
semantic analysis (CLESA) [8].






Chapter 3

State of the Art

In the early days of textual similarity, two pieces of text were assumed to be
similar if they contained the same character sequence. With the advance-
ment of technology, it was understood that two snippet of text can be sim-
ilar even when they don’t posses the same alphabetic order, like synonyms.
Bag of Words (BOW) and Term Frequency - Inverted Document Frequency
(TF-IDF) are accounted as early works in finding similarity between words,
sentences and documents. These measures led the path for machine learning
and deep learning methods to find semantic similarity in text. Before this,
core mathematical formulas were used to accomplish this task [1, 37, 55].
This chapter reviews some related work which use deep learning and hybrid
methods for finding textual similarity.

3.1 Deep Learning Methods

Neural Networks (NN) have shown very good potential in the field of Nat-
ural Language Processing. They are also used in finding similarity between
texts. This section discusses in details about the sate of art work for deter-
mining semantic similarity between sentences using recurrent, recursive, and
convolutional neural network.

3.1.1 Recurrent and Recursive Neural Networks

To study the effectiveness of recurrent and recursive neural networks, [60]
combines these neural networks with word vector representations to predict
the semantic similarity of sentence and phrase pairs. Both the neural net-
works take structured set of words or tokens as input, but both the models

25



26 CHAPTER 3. STATE OF THE ART

treat its input differently. For word (w) to vector L(w) conversion, GolVe
embedding is used. The dimension of vectors for per-trained GolVe is ei-
ther 50 or 100, and it uses Wikipedia and Gigaword for training the model.
SemEval 2015 data was used for testing the system.

Recurrent Neural Networks

Recurrent Neural Networks are very powerful deep learning model. It takes
sequence of tokens as input. [60] uses every token sequence to update the
hidden state. The formula of hidden state (h;) for a sequence of tokens
(w1, we, w3, ...wy,) is:

h; = /(U.hi_l + WL[’UJZ] + b)
Where,

e U,Wand b are parameters learned by the model.

e [ is a non-linear function, applied element-wise to the vector of its
arguments.

For each training example, the hg is set to zero vector. For two sequences
of tokens, (wy,ws, ...wy) and (v1, ve, ...y, the above equation generates two
hidden vectors hq(zw) and h(mv). These two vectors then produce a vector of
probability (p) that determines if the sentence pair belongs to a correspond-
ing similarity category or not, the following equation is used for the same:

w

h
p= softma:c(Ws.[h—;L] + bs)

m

where

e W, and b, are parameters learned by model.

e softmax is the function defined on k-dimensional vectors x by:

eri

Z?:l et

[softmaz(x)]; =

Finally the proposed model is trained using the cross-entropy loss, given
a vector of probabilities p for a training pair of sentences. If the correct
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similarity category corresponds to index ¢ of p, the model will incur the loss
L = —log(p;).

U, Wand Wy are initialised using a random Gaussian in the interval of [-0.01,
+0.01], and b and by are initialised as zero vector.

Recursive Neural Network

Recursive Neural Networks(RNN) are used in most of the NLP tasks because
it can take advantages of known linguistic structure. Rather than working
on a sequence of tokens, RNN takes binary tree as an input. For this NN
to be able to generate a parse tree, [60] have trained "CKY parser on the
QuestionBank and Penn treebanks using pyStatParser". Then, the parse
trees are converted to binary tree using simple heuristics. For each leaf of
binary tree with word w the GloVe vector L[w] is assigned. A vector is
calculated for each node N with left child Ny, and right child N using the
formula:

hy = /(WL-hNL + WR-hNR + b)
where,

e Wi, Wpg and b are parameters learned by the model.

e [ is a non-linear function, applied element-wise to the vector of its
arguments.

Using the above equation [60] generates two vector hg,and hg, for two sen-
tences Siand Se. The rest of the model is designed exactly similar to the
Recurrent Neural Network, as mentioned in 3.1.1 with the replacement of
hwith hg, and h{Y with hg,.

3.1.2 Convolutional Neural Networks

Yang Shao [65] uses convolutional neural network (CNN) to determine Se-
mantic Textural Similarity (STS). Five components of a convolutional neural
network (CNN) are proposed to accomplish this task, they are:

e Enhance GloVe word vectors by adding handcrafted features.

e Transfer the enhanced word vectors to a more proper form by a con-
volutional neural network.
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e Max pooling over every dimension of all word vectors to generate se-
mantic vector.

e Generate semantic difference vector by concatenating the element-wise
absolute difference and the element-wise multiplication of two semantic
vectors.

e Transfer the semantic difference vector to the probability distribution
over similarity scores by a fully-connected neural network.

Operation performed for data pre-processing are, tokenisation by Natural
Language Toolkit (NLTK) [10], punctuation removal, converting all words
to lower-case, and all sentences are given a static length (I = 30) with zero
vectors [24]. After pre-processing the data, word to vector conversion was
done using pre-trained GloVe [48] embedding system. If a word does not
exist in the pre-trained embedding system, then it set to the zero vector.
After sentence embedding, three features were added to the sentences vector.
They are as follows:

e If both sentence have common word, a TRUFE flag is added to that
specific word vector, otherwise a FALSFE flag is added.

e If a word is a number and the same number appears in the other
sentence, add a T'RU E flag to the word vector of the matching number
in each sentence, otherwise add FALSFE flag.

e The part-of-speech (POS) tag of every word according to NLTK is

added as a one-hot vector.

After features enhancing, the vectors are feed to a one layer convolutional
Neural Network (CNN). This CNN has n = 300 one dimensional filters.
This dimension is the same as of the enhanced word vectors. Relu [47]
activation function, and max pooling [61] are used in CNN to transform
word embedding to sentence embedding.

Then|65] creates a semantic difference vector by the following formula:
SDV = (|SV1— 5V2[,5V1e5V?2)
Where,

e SDV — the semantic difference vector.

e SV1,5V2 = the semantic vectors of the two sentences.
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e o — Hadamard product which generate the element-wise multiplication
of two semantic vectors.

This semantic difference vector (600 dimension) is fed to a two layer fully-
connected neural network (FCNN) for probability distribution over six sim-
ilarity lanes used by STS. The first layer of FCNN uses 300 units and its
activation function is tanh. The second layer of FCNN produces the simi-
larity label probability distribution with six units, using softmax activation
function and calculating the similarity score.

CNN for finding textual similarity is also used in [77]|. In this work, to cal-
culate similarity for words that are semantically related but possess different
spelling, like: ’irrelevant’, and ’not related’, each word is represented by a
distributed vector . A semantic matching vector is calculated for each word
vector based on all the word vectors in the other sentences. Then a semantic
matching vector is used to decompose all the word vectors into similar and
dissimilar components. Then CNN is used for feature extraction from similar
and dissimilar vectors. Lastly, similarity assessment function is applied to
get the final similarity score over feature vectors.

In [77], given a pair of sentences S and T, the task is to calculate a sim-
ilarity score sim(S,T"). The pre-trained embedding of Mikolov(2013) is
used to transform the sentences (S and T') into sentence matrices S =
(81, ..y 81y ooy Sy} and T = [tq, ..., 1}, ..., t,] where, s; and t; are d-dimension
vectors of the corresponding words, and m and n are sentence length of .S
and T respectively.

To check if the sentences are a paraphrases of each other, every word is
treated as a primitive semantic unit, and a semantic matching vector si for
each word s; is calculated by composing part, or full word vectors in the
other sentence (7'). Then a similarity matrix A,,x,, where each element
a(; j)€Amxn is calculated by the cosine similarity between words s; and ;.
Three different semantic matching functions were used over A,,x,, namely:
Global, local-w and max are used to calculate the semantic matching vector.
Here, (w is the size of the window that is consider to be centered at k (the
most similar word position)

To calculate the word similarity of phrases, [77] considers all the words in
a phrase. For example: ’‘sockeye’ means ’red salmon’, and when ’sockeye’
goes to this system it will be matched with ’salmon’ only. To solve this
problem [77]| has proposed a Decomposition method. Decomposition is the
breaking of semantic matching vectors of a phrase into two components.
They are identified as: similar component s; + (or ¢;4), and dissimilar com-
ponent s; — (or t;—). The Decomposition function is as follows:
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sl = [ )
decomp

[t5it;]= / (t, £5)
decomp

The significance of the dissimilar parts alone between two sentences has a
great effect of their similarity [67]. Taking this into consideration, the similar
component matrix and dissimilar component matrix were composed into a
feature vector. To generate this feature vector two-channel convolutional
neural networks(CNN) has been used with max pooling and for the filters
various order of n-grams are used such as, unigram, bigram and trigram.

To compute similarity from two feature vectors the following formula is used:

sim(S,T) = / (S,T)

sim

where,

e S and T are a pair of sentence.

e A linear function used for sum up all the features and sigmoid function
used to calculate similarity score between 0 to 1.

3.2 Hybrid Methods

3.2.1 Combining statistical and supervised methods

In [7] authors propose a system to measure Semantic Textual Similarity (STS)
by combining various methods for similarity measurement. Usage of multi-
ple methods for STS based on surface-level and has been proposed in 2007
by [44], [35], [19]. Authors have proposed two major limitations of these
methods, namely, 1. Measures are typically used in separation. Thereby, the
assumption is made that a single measure inherently captures all text charac-
teristics which are necessary for computing similarity. 2. existing measures
typically exclude similarity features beyond content per se, thereby implying
that similarity can be computed by comparing text content exclusively, leav-
ing out any other text characteristics. In this research authors are focusing
on second issue.
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The system is based on DKPro!. In the data pre-processing phase, data
is tokenised and lemmatised using Tree-Tagger implementation [62]. After
that multiple similarity methods are applied in the pre-processed data to
generate the results. The methods are: Character / word n-grams where n =
2,3,..15 is used, Longest common subsequence, Longest common substring.
Vector space model such as Explicit Semantic Analysis(ESA) [19] is used.
For the vector space model to calculate textural similarity, Jaccad similarity
method has been used. Lexical Substitution System based on supervised
word sense disambiguation [9] is used.

After that the feature combination step uses the pre-computed similarity
scores and combines their log-transformed values using linear regression clas-
sifier from the WEKA tool [3| with 10-fold cross validation.

3.2.2 Combining lexical semantic net with deep learning se-
mantic model

In [2] authors have presented three systems for measuring the semantic simi-
larity between two sentence. For testing the system English semantic textual
similarity (STS) dataset of 2015 and 2016 were used. The first system de-
pends on corpus statistics with lexical database and the second system on
deep learning semantic model. The third system is a linear combination
of first and second system. Authors have used five dataset for testing the
systems. They are: answer-answer, headlines, plagiarism, post editing and
question-question. For the data pre-processing, contractions like URL, e-
mail addresses and parenthetical expressions using WordNet antonyms were
removed. Also, the stops word were removed and the data was lemmatized.
But, stop words for answer-answer and question-question data-set were not
removed, because many pairs only contain stop words, for eg: ’Can you do
this?, You can do this too.’

Method 1. First method calculates similarity between sentence by the
combination of semantic similarity and syntactic similarity. After pre-processing,
firstly word vector are joined (JWYV') by collecting unique words that occur

in the sentence pair. For computing semantic similarity each sentence is
mapped into a vector as: if ith word in JWYV is present in the sentence
assign value 1 to the ¢th entry, otherwise calculate the semantic similarity
score between the ith word and each word in the sentence and then select
the highest score to the ith entry using WordNet with the equation:

'DKPro is a collection of software components for natural language processing based
on the apache UIMA framework.
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a €M —e P
S(Wth) = € m

Where [ is the length of shortest path between words w; and wj, which
returns a measure of depth in WordNet, and «, 3 are constant with the
value of 0.2 and 0.45 respectively.

If s(w;,w;) is greater than threshold value 0.2 than a value has been set to
the score, otherwise 0 has been set to score. Then the ¢th entry is normalized
by the equation:

log(n + 1)

IW)y=1- ——-+=
(W) log(N + 1)

Where N is the total number of words in the corpus and n is the frequency

of the word W in the corpus. After that semantic similarity (Ssen,) has been

calculated by cosine similarity.

To compute syntactic similarity, each sentence is mapped to a syntactic
vector. The dimension of syntactic vector is same as the size of JWV. If the
ith word in the JWV occurs at the jth position in the sentence, then the
value of the ith entry in the vector is j. If the ith word does not exist in the
sentence, the value of the ith entry is the position of the most similar word
obtained from WordNet using s(wj,ws). Syntactic similarity is calculated
by the following equation:

o1 — 09

Seyn =1 —
o o1 + 02

Where 01 and oy represent syntactic vector for sentences s; and sg respec-
tively.

Final sentence pair similarity is defined by combining semantic similarity
and syntactic similarity as follows:

S(s1,52) = wSsem + (1 —w)Ssyn

The value of w = 0.85 has been used.

Method 2. The second method is built on a Deep Structured Semantic
Model (DSSM). This approach is a deep learning method and it maps short
textual strings, such as sentences, to feature vector in a low dimensional
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semantic space. DSSM used deep neural network architecture to represent a
sentence in the semantic vector space. To reduce dimension of bag of word
vector, DSSM employs a novel word hashing method. The hashing method
attach a starting and an ending mark for each word and split the word into
letter trigrams. For example: girl-> #girl# -> #gi, gir, irl, rl#. Then each
word represented by a vector of letter trigrams is used as input to the deep
neural network. The deep neural network layers divided into three parts,
they are: word hashing layer, hidden layers and top layer and the layer
functions are follows:

ll = Wlx
I :/(Wizu +bi)yi=2,3,..N—1
and
y= /(WNlN1 +bn)

where,

e r — is the input term vector

e y = the output vector

li(t=1,2,...N — 1) = is the hidden layers

W; = is the i1th weight matrix
e b, = is the ¢th bias, and

° f() = is the tan activation function.

The word hashing layer generates the feature vector then feed to the hidden
layers and top layer generate the semantic feature vector. The cosine sim-
ilarity has been performed on each pair of texts semantic feature vector to
measure the semantic similarity between the pair.

Method 3. The third method is the linear combination of method 1 and
method 2 as follows:

Smethod3 = a-Smethodl + ﬁ“smethon

Where a and § are constant with the value of 0.5.






Chapter 4

Proposed Methodology

This chapter proposes the system architecture of a closed domain Question
Answering system along with the tools and techniques that were analysed
and used for building the same.

4.1 System Architecture

The proposed system architecture consists of six modules namely: embedded
corpus, input, question processing unit, similarity measuring unit, answer
database and output. Figure 4.1 shows the system architecture diagram.

Embedding Corpus. This unit acts as the database of the targeted vec-
tored question sets. For example, if the system is used for the University
of Evora FAQ system, firstly, the system requires a set of sample questions
and their corresponding answer. Secondly, the system embeds all the ques-
tions using the Question Processing Unit. Thirdly, embedded questions are
mapped to their corresponding vector according to the question serial num-
ber. Finally it saves this information in the disk. This is a one time task,
meaning, it is done once when the system is established in a device.

Input. Inputis natural language text that is taken from the user as a ques-
tion. Pre-processing of the input text, such as tokenization and stop word
removal (between others), should be avoided. This is because sometimes
stop words play a vital roll in short questions and by removing them this
valuable information can be erased. For example, in the question 'What if 1
am not available?’, after removing stop words, the question becomes ‘what
available?’ changing the meaning of the question.

35
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Question
Processing Unit

v

. - . I p— I
Similarity pP——d{
Measuring — | «—{ Embedding Corpus
Unit —

Answer
Presenting Unit

Figure 4.1: Diagram of System Architecture

Question Processing Unit. The Question Processing Unit takes the orig-
inal text as input and feeds it to an embedder to convert into its vector rep-
resentation. The main task of this unit is to convert a sentence into a m xn
dimension vector using the context of the sentence, where m is the number
of questions and n is the number of dimensional space.

Similarity Measuring Unit. The output of the Question Processing unit
is fed as the input to this unit. This unit calculates the similarity between
the query vector and the embedded questions using similarity measurement
methods. The query vectors similarity is calculated to every question vector
resulting into a similarity score. The best scored vector is presumed as the
desired question.

Answer presenting Unit. The answer presenting unit takes the index
of best scored questions from Similarity Measuring unit as its input and
presents the answer according to the index number (The question and its
corresponding answer have same index number).
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4.2 Tools and Approaches

The proposed system was developed using Python(v3.7.5). The vast libraries
and ease of use has made the Python programming language popular not
only among developers but also among researchers. Artificial Intelligence
technologies such as Neural Networks, Embeddings, Image processing, etc
are easy to implement using Python.

This section describes the tools used for accomplishing the tasks of (1) sen-
tence to vector transformation and (2) measuring similarity between sen-
tences.

4.2.1 Tools for Sentence Transformation

Two embedding models were tested for transforming sentences into vectors,
namely: Sentence Transformer [54] and FLAIR [4].

Sentence Transformer. Sentence Transformer is a Python embedding
library. The architecture is same as BERT’s embedding. It is a very efficient
library for finding semantic text similarity and semantic search. Sentence
Transformer includes over 100 language models. English and Portuguese
models were been used for the development of this work.

It includes a set of different pre-trained models for each language. Figure 4.2
shows the top 19 most accurate models. The best four models for Semantic
Textual Similarity were selected. They are:

e roberta-large-nli-stsb-mean-tokens
e roberta-base-nli-stsb-mean-tokens
e bert-large-nli-stsb-mean-tokens

o distilbert-base-nli-stsb-mean-tokens

e neuralmind/bert-base-portuguese-cased

The stated accuracy performance for all the above mentioned models is over
85% [39]. From the above mentioned methods, roberta-base-nli-stsb-mean-
tokens was selected for English Language. This model has a performance
score of 85.44% and was previously stated that is faster than the other three
language models (2300 sent./ sec on V100 GPU) [75].

A pre-trained BERT language model neuralmind/bert-base-portuguese-cased
was used for Portuguese dataset. This model has achieved the state-of-art
performance for the Named Entity Recognition, Sentence Textual Similarity
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Figure 4.2: Top 19 BERT language model
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and Recognizing Textual Entailment. It is trained with Brazilian Portuguese
Language. [67]

FLAIR. FLAIR is a collection of NLP and embedding libraries. FLAIR
embedding library supports many embedding techniques along with pre-
trained language models. GloVe embedding with news-X English pre-train
language model is used from this library. The news-X language model is
trained with web, Wikipedia, Subtitles and News data. Over 1 billion word
corpus have been used to train this language model [16].

4.2.2 Tools for Similarity measurement

For measuring similarity between sentences, three similarity measures were
used, namely: cosine similarity, FEuclidean distance and Manhattan distance.
These measures were applied with the help of two libraries, FAISS and Scikit-
learn.

Facebook Artificial Intelligence Similarity Search (FAISS) [30] was developed
by Facebook research group, and is used for efficient similarity searching
and clustering of dense vectors. It consists of different similarity measure
algorithms. It creates a data structure from a given vector (in this case
embedded corpus) in the RAM. This data structure is called indez’. To
build an index it is mandatory to provide the dimension of the vector. Every
time a new query comes, FAISS searches the index with the given query.
This phenomena makes FAISS faster and efficient.

For testing cosine similarity and euclidean distance measures, three FAISS
index models were used, namely:

e IndexFlatL2. IndexFlatL2 calculates similarity between two vector
using euclidean distance.

o IndexFlatIP. IndexFlatIP uses cosine similarity to calculate the sim-
ilarity between two vectors.

e IndexIVFFlat. IndexIVFFlat divides the corpus vector into k& clus-
ters and performs cosine similarity for the query vector.

Scikit-learn [63] is an open source Python library for using machine learning
algorithms. It is used for calculating the Manhattan distance.






Chapter 5

Evaluation of the Proposed
System

This chapter aims at describing the results that were achieved upon perform-
ing experiments on the proposed Question Answering System. The chapter
also details the datasets that were used for the experiments and, the setup
that was required to conduct the experiments on different datasets.

5.1 Dataset overview

The experiments were designed and evaluated on Portuguese and English
Language dataset. This section briefly describes the datasets used for both
languages.

5.1.1 Portuguese dataset

The Portuguese dataset has 269,662 sentences from the Portuguese Health
support phone line SNS24, about medical symptoms of diseases which cor-
responds to 59 diseases. From this dataset 80% (215,729 sentences) data is
used for building vector model and 20% (53,933 sentences) data is used for
testing the model. 5.1 shows a few examples of the Portuguese dataset.

5.1.2 English dataset

For testing and evaluating the proposed system for the English language the
following datasets were used: SemEval 2015 and three FAQ datasets [64].

41
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No Symptoms of Diseases Diseases

1 Retengao urinéria ha 5 horas PROBLEMA URINARIO
2 Tosse ha uma semana Tosse

3  Edema facial e febre h4a 12 horas PROBLEMA NA FACE
4 Febre e tosse ha 8 dias Tosse

5 Sangue vivo na fralda PROBLEMA URINARIO

Table 5.1: Portuguese Dataset (sns24 motivo classe)

SemEval 2015 dataset. Semantic Evaluation (SemEval) is series of in-
ternational conference on NLP research that happens every year. It aims
at improving the state-of-art technologies / methods on semantic analysis
and contributing to the creation of quality dataset to address the new chal-
lenges in natural language semantics. One of the SemEval’s task is Semantic
Textual Similarity(STS), in this task researchers aim to contribute different
methods for STS task. SemEval dataset consists of two parts, one for train-
ing and another for testing. It scores the sentence on the scale of zero to
five, where, 5 means both sentence are same, and 0 means they are totally
different from each other. For the testing of the proposed system, SemEval
2015 dataset is used. SemEval 2015 dataset consists of 2012, 2013 and 2015
similarity datasets. To test the proposed system the score range of zero to
one is selected, where, score 1 means that the two sentence are most similar
with each other and 0 means that the sentences are completely different.
Table 5.2 and Table 5.3 shows few examples of SemEval’s dataset and test
dataset respectively.

g

dataset
A cat standing on tree branches
A large boat in the water at the marina
A passenger train waiting in a station
An Apple computer sitting on the floor
A jockey riding a horse

T W N =

Table 5.2: Sample Data of SemEval 2015

FAQ dataset. FAQ dataset comprises of real life frequency asked question
that were collected from different websites FAQ page. The test dataset is a
collection of question that are asked by users. Three domains of FAQ dataset
are used for testing the model, namely:

e RomeDataset: It consists of tourism FAQ for Rome, Italy.
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No Query set

A black and white cat is high up on tree branches
A large boat on the sea
A passenger train sits in the station
A Macintosh computer sitting on the floor
A jockey riding a horse in a pen

T W N =

Table 5.3: Sample Query set of SemEval 2015

e COVIDI19 dataset: FAQ on Covid19 virus, collected form World Health
Organization (WHO) website!.

e Altice Labs dataset: It was provided by Altice Labs. This dataset
consists of FAQ from their customer care services.

5.2 Experimental setup

The system returns the best n questions indexes, where n is a natural number
(n =1,2,3,... ) and 1 is the best score. The index(es) of the best ques-
tion(s) is(are) returned as output. It was tested that the desired answer is
always on the top 5 questions(n = 5). The experiments are performed using
two embedding methods: BERT(2.2.3) and FLAIR(2.2.3), and 4 similarity
methods: Cosine [59, 51|, Euclidean [59], Manhattan |70| and cosine with
cluster(4.2.2). Experiment setup comprises of coupling each embedding with
all the four similarity methods in order to find the best pair of embedding
and similarity method.

5.2.1 Portuguese dataset

For the Portuguese dataset firstly, 80% data is used to build the vector model
using BERT embedding. Then, for the rest of the 20% data, each sentence is
used to calculate the similarity with the embedded sentences using similarity
measure methods.

The experiments were performed in two ways, namely: *Topl’ and *Top3’.
Topl answer selects the first answer that was predicted by the system and
then compares it with the "Diseases". If the query sentence and the result has
the same Diseases class, then it is saved as a 'match’ section and otherwise
it is saved as 'mot match’. Top3 selects the first three answers that were

"https://www.who.int /emergencies/diseases /novel-coronavirus-2019/question-and-
answers-hub
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predicted by the system and compares each answer with Diseases class. If
any of the selected answer’s diseases class matches with the query’s diseases
class, then it is saved as 'match’ and otherwise it is saved as 'not match’.

5.2.2 English dataset

The English dataset are relatively small as compared to the Portuguese
dataset. The queries are created manually for testing.

The dataset are tested by two embedding models namely: BERT and FLAIR.
The pre-trained language model "roberta-base-nli-stsb-mean-tokens" is used
for BERT and, "news-X" language model is used for FLAIR.

5.3 Results

5.3.1 Portuguese dataset

This section comprises of the results that were achieved by performing the
experiments on the Portuguese language dataset by combining BERT and
FLAIR embedding with cosine, euclidean and, cosine with cluster similarity
measures. The results for Topl and Top3 are calculated by number of match
and not match found among the total queries.

Table 5.4 shows the results obtained by BERT embedding for Top1 and Table
5.5 shows the results obtained by BERT embedding for Top3.

Table 5.6 shows the results obtained by FLAIR embedding for Topl and,
Table 5.7 shows the results obtained by FLAIR embedding for Top3.

Match Not Match Maitch(%) Not Match(%)

Cosine 29,170 24,763 54.086% 45.914%
Euclidean 34,925 19,008 64.756% 35.244%
Cosine with cluster 34,510 19,423 63.987% 36.013%

Table 5.4: Portuguese Dataset Result(Topl Result) - BERT

5.3.2 English dataset

The results are obtained from FAQ and SemEval dataset by combining BERT
and FLAIR embedding with cosine, euclidean, Manhattan, and cosine with
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Match Not Match Match(%) Not Match(%)

Cosine 38,087 15,846 70.619% 29.381%
Euclidean 43,102 10,831 79.918% 20.082%
Cosine with cluster 42,732 11,201 79.232% 20.768%

Table 5.5: Portuguese Dataset Result(Top3 Result) - BERT

Match Not Match Match(%) Not Match(%)

Cosine 20,593 33,340 38.183% 61.817%
Euclidean 28,003 25,930 51.922% 48.078%
Cosine with cluster 25,490 28,443 47.262% 52.738%

Table 5.6: Portuguese Dataset Result(Topl Result) - FLAIR

cluster similarity measures. The results obtained from different model sets
are evaluated in this section.

FAQ dataset: FAQ dataset consists of questions with their corresponding
answers. Based on the domain of the dataset, a sample test dataset was
created. It consist of queries that a user can have regarding the particular
topic. As the system is designed to return the most suitable answer, the
correctness of the answers are evaluated manually. The results are calculated
using the following formula:

total correct answer

result = ——
total samplequestion in the test dataset.

Table 5.8 shows the result of using BERT embedding with similarity mea-

sures.

Table 5.9 shows the result of using FLAIR GloVe embedding with the simi-
larity measures.

SemEval dataset: As SemEval dataset does not contain any specify ques-
tions and answers, the above mentioned formula does not apply in this sce-

Match Not Match Match(%) Not Match(%)

Cosine 35,140 18,793 65.155% 34.845%
Euclidean 38,724 15,209 71.800% 28.200%
Cosine with cluster 37,178 16,755 68.934% 31.066%

Table 5.7: Portuguese Dataset Result(Top3 Result) - FLAIR
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Cosine Fuclidean Manhattan cosine with
cluster
Rome dataset 78.947% 84.241% 84.241% 78.947%
Covidel9 78.261% 86.956% 82.609% 73.913%

Altice Labs dataset 70.000% 75.000% 75.000% 66.412%

Table 5.8: FAQ Dataset Result - BERT

Cosine FEuclidean Manhattan cosine with
cluster
Rome dataset 36.842% 42.105% 52.632% 36.842%
Covidel9 80.950% 71.428% 76.190% 71.428%

Altice Labs dataset 55.000% 55.000% 65.000% 50.000%

Table 5.9: FAQ Dataset Result - FLAIR with GloVe

nario. Thus, for comparing the predicted answer with the answers present
in the dataset, the assortment is done using three conditions, namely:

e Relevant sentence
e Satisfactory sentence

e Irrelevant sentence

Relevant set consists of a sentences that is most similar to the sample sen-
tence. Satisfactory set consists of two sentences that are not very similar
but, are not completely dissimilar as well with the sample sentence. If the
proposed system returns any of the sentence in Relevant set then it is scored
as 1, if it returns the sentence in Satisfactory set then it is scored as 0.5 and,
otherwise score 0 is assigned.

Table 5.10 shows three example of Relevant and Satisfactory set for SemEval
dataset.

50 sample sentences from the dataset were tested. The results are calculated

as:
Score of the sentence

result =
Total number of sentences

Table 5.11 shows the results of using BERT and FLAIR GolVe embedding
with the similarity measures on sample SemEval dataset.
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Sentence Relevant Sentence Satisfactory Sentence
A jockey riding a A jockey riding a A jockey riding a horse.
horse in a pen. horse in a pen.
A woman equestrian

Bird with a green
head and white
chest perched on
a tree branch.

A passenger train
sits in the station.

Green and white
bird perched on tree
branch.

A passenger train
waiting in a station.

riding a horse.

A small red and gray
bird perched amongst
the bare branches of a
tree.

A small bird perched on
an icy branch.

The train sits at the
train station.

A train at the train sta-
tion.

Table 5.10: An example Relevant and Satisfactory set for SemEval dataset

Cosine FEuclidean Manhattan cosine with cluster
BERT 74.242% 72.727% 74.242% 74.242%
FLAIR 69.697% 72.727% 71.212% 69.697%

Table 5.11: SemEval dataset result

5.4 Discussion

This section discusses the performance of model sets that were obtained from
FAQ and SemEval dataset for English Language and Portuguese dataset for

Portuguese language.

5.4.1 FAQ dataset

As this dataset is tightly with the proposed models, the discussion on the
performance results from this dataset will help in selecting the best model
for the proposed system. The procedure that was followed to select the best

model is:

e comparing the results between embedding,

e selecting the best performed embedding,

e comparing the results between similarity measures for the selected em-

bedding,
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e selecting the best performed similarity measure,

e selecting the best performed model.

BERT vs FLAIR

The performance results obtained by combining BERT embedding with dif-
ferent similarity measures 5.8, ranges between 70% to 86.956%. The lowest
result were obtained with Cosine similarity on Altice Labs dataset, and the
best result was with Euclidean distance on Covid 19 dataset. On the other
hand, the performance results obtained by combining FLAIR embedding
with different similarity measures range between 36.842% to 80.95%. Cosine
on Rome dataset gave considerably lower results but on the contrary, cosine
also gave the best result on Covid 19 dataset.

Based on the range and fluctuation of results it can be determined that
BERT embedding performs better then FLAIR for the proposed system.

Comparison between similarity measures

As BERT embedding has performed better than FLAIR 5.4.1, comparison
between the results of similarity measures is done with BERT embedding.

The table 5.8 shows that Euclidean distance gives the highest performance
with BERT in all the datasets. Its performance was highest with Covid 19
dataset, 86.956%, and lowest with Altice Lab’s dataset, 75%. Yet, among the
performances of other measures with Altice labs’s data, Euclidean distance
performs the best.

With BERT embedding, it can be seen that Manhattan and Euclidean per-
form equally on Rome and Altice Labs dataset. But, for Covid 19 dataset
FEuclidean distance performs better than Manhattan.

Based on the above analysis, it can be assumed that BERT + Euclidean
Distance is the best performing model for the proposed unsupervised closed
domain QA system.

5.4.2 SemkEval dataset

The results from testing the model on SemEval dataset 5.11 shows that
BERT embedding performs better than FLAIR embedding for the proposed
system. However, cosine and Manhattan similarity measures have performed
slightly better (by 1.515%) than Euclidean distance for SemEval dataset.
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5.4.3 Portuguese dataset

For Portuguese language dataset, the best result is given by BERT embed-
ding with Euclidean distance similarity measure. Hence it can be determined
that BERT embedding is better then FLAIR embedding for Portuguese lan-
guage and it works best with Euclidean distance similarity measure.

By obtaining the results from different language models, it can be deter-
mined that BERT + Euclidean distance is the best performing model for
the proposed unsupervised closed domain QA system.






Chapter 6

Conclusions and Future Work

This chapter concludes the thesis by giving a summary of the work done
followed by its future work.

6.1 Summary

The objective of the thesis was to propose and develop an optimized and
effective unsupervised closed domain QA system. To achieve this objective,
a detailed study and analysis was carried out on several techniques for de-
veloping a QA System. A survey was made on the recent techniques for
sentence representation and similarity measurement. From the extensive
survey on each of the topics, the best performing two sentence representa-
tion techniques: BERT and FLAIR with four similarity measures methods:
Cosine, Euclidean, Manhattan, and cosine with the cluster were selected for
developing the unsupervised QA system.

Then, a set of methods were developed by combining BERT and FLAIR with
similarity measures. Each model was examined with three datasets: FAQ),
SemEval and Portuguese data-set. Finally, the best performing model was
identified: BERT sentence representation along with the Euclidean distance
on Covid-19 FAQ dataset. This model gives the best performance with the
highest accuracy of 86.956%.

It was also determined that BERT embedding performs better and faster
then FLAIR and Euclidean and Manhattan similarity methods perform bet-
ter then cosine similarity.
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6.2 Future work

The proposed system can still be improved in several ways. The proposed
model is currently working with English and Portuguese queries, but it is
possible to develop a model to work with multilingual queries. To achieve
this, a study on different language models needs to be conducted. From this
thesis it was learned that if the language model is not trained with enough
data then its performance will be considerably low. In such a case, a new
language model needs to be made for that specific language.

Deep learning techniques were tried for the proposed model. Beside this deep
learning method, QA system can be developed using Knowledge based, In-
formation Retrieval, Hybrid approaches, etc. to determine the best approach
for developing an automatic closed domain QA system.

Finally, token based similarity methods are used for finding similarity be-
tween two questions. Hybrid methods [7] already show good potential for
measuring similarity between sentences. The system can be improved by
trying hybrid methods to finding question similarity.

6.3 End note

The journey of the QA system started with the BASEBALL QA system from
1961 [22]. This system was developed with an IR technique. From then until
now the technologies have evolved drastically.

Before two decades, statistical sentence representation like BoW, TF-IDF
were very popular approaches for developing a QA system, but deep learning
changed the concept of the QA system, and now we have high performance
QA systems, like IBMs Watson. With recent development on deep learning
approaches, the field of QA system is taking a new turn, and is in its way
for reaching new heights of technological advancement.
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