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Abstract

Initial fibre misalignment is recognised to be one of the precursors leading to longitudinal compressive

failure in fibre-reinforced composites. Thus, to properly model their mechanical behaviour, an accurate spa-

tial representation of the fibrous reinforcements must be assured. This work presents a three-dimensional

micromechanical framework that is capable of analysing in detail the longitudinal tensile and compressive

failure mechanisms which are inherent in unidirectional composites. This is achieved through the incorpo-

ration of initial fibre waviness via a combination of a stochastic process and an optimisation procedure. A

robust micro-scale framework is developed by assigning, to both constituents and their interface, proper ther-

modynamically consistent damage models. Several microstructures having different degrees of misalignment

are modelled and a clear trend is observed for the longitudinal compressive load case, i.e. by increasing initial

fibre misalignment, the overall performance of the material decreases. In contrast, the models subjected to

longitudinal tension exhibit a similar overall response, despite the misalignment. However, local mechanisms

seem to change with the degree of friction and fibre misalignment, but these smaller-scale mechanisms do

not play a decisive role on the overall longitudinal tensile performance of the material.

Keywords: Composite materials, Fibre misalignment, Fracture, Micromechanics, Stochastic

1. Introduction1

As a direct consequence of increasing computational power, in the last decade, computational microme-2

chanics has emerged as an accurate and reliable numerical tool to evaluate both linear and non-linear geo-3

metrical and material behaviour of heterogenous materials. Unlike analytical/semi-analytical methods, the4

several complex dissipative phenomena, including local plastic deformation and degradation of the matrix5

constituent, fibre-matrix interface debonding, and fibre fracture, are accounted for and their interaction can6

be evaluated.7



Compressive failure of composite materials caused by fibre kinking is classified as a complex, multi-staged8

phenomenon, due to the interacting mechanisms and instabilities present at peak load, which span over several9

length-scales of the material (Argon, 1972, Budiansky, 1983, Budiansky, Fleck, 1993, 1994, Moran et al.,10

1995, Jumahat et al., 2010, Costa et al., 2020). There is compelling evidence that this mode of failure is11

mostly driven by not only the initial misalignment of the fibres, but also by the shear yield strength of12

the matrix (Moran et al., 1995, Bažant et al., 1999, Vogler et al., 2001, Gutkin et al., 2010b, Pinho et al.,13

2012). The material is loaded elastically until the first appearance of non-linearity, which is due to the initial14

rotation of the fibres, permitted by the plastic response of the matrix. This is also known as “incipient15

kinking” (Moran et al., 1995). Due to this rotation and to the formation of microcracks in the resin, the16

peak load (instability) is reached, forming an initial kink-band. The progressive shearing/bending stresses in17

the material causes its continuous degradation, until this fibre rotation is halted, through a process referred18

as fibre lock-up, which eventually leads to the steady-state broadening of the kink-band, causing a constant19

stress plateau under compression, referred as the residual compressive strength of the material (Moran et al.,20

1995, Zobeiry et al., 2015, Dalli et al., 2020). Kink-bands are characterised by an angle, βkb, with respect21

to the through-thickness direction (normal to the load), a certain width, wkb, having the fibres rotated from22

an angle, ϕkb, to the global longitudinal direction. Figure 1 shows a micrograph of a formed kink-band in23

an UD cross-ply laminate, as well as a schematic representation of a longitudinal compressive stress-strain24

curve, highlighting the main load level stages.25

[Figure 1 about here.]26

Several computational micromechanical models have been reported, in an attempt to model longitu-27

dinal compressive failure in UD composite materials by fibre kinking. Initial insights were provided us-28

ing two-dimensional (2D) models, namely on the types of failure mechanisms associated with compres-29

sive failure (Gutkin et al., 2010a), the interaction between fibre kinking and fibre-matrix interface debond-30

ing (Prabhakar, Waas, 2013), and on the estimation of the kink-band angle and compressive strength of31

the material (Kyriakides et al., 1995, Vogler et al., 2001). The limitations of 2D models were addressed32

by Hsu et al. (1998), where a bigger degree of discrepancy between 2D and three-dimensional (3D) models33

was observed in the post-peak regime. Fortunately, modern computational resources have enabled the gen-34

eration of 3D high-fidelity numerical models. Yerramalli, Waas (2004) conducted 3D Finite Element (FE)35

analyses to show the importance of fibre bending stiffness on the overall compressive strength of the mate-36

rial, as well as the presence of a complex triaxial stress state in the matrix region. Later, Bai et al. (2015),37

incorporating a more robust elasto-plastic damage model for the resin (Melro et al., 2013a), subjected dif-38

ferent Representative Volume Elements (RVEs) to several loading conditions, i.e. transverse on- and off-axis39

compression, and pure longitudinal compression. They were able to obtain some preliminary results con-40

cerning kink-band widths and fibre rotation angles, concluding that the interplay between the shear stresses,41

presented in the matrix material, and microbuckling, caused by the initial, idealised fibre misalignment,42

provides a sound explanation to the fibre kinking failure mode. Bishara et al. (2017) conducted simpler mi-43
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cromechanical simulations, considering a single array of fibres, in order to assess the influence of the artificial44

imperfection type on the resulting kinking mechanism, the effective determination of the kink-band angle,45

and the effect of different fibre strengths on the kink-band angle. Recent studies using a sinusoidal swept46

single fibre model, subjected to Periodic Boundary Conditions (PBCs), were undertaken (Naya et al., 2017,47

Herráez et al., 2018, 2020) to give more insight into the effect of the initial fibre misalignment angle on the48

kink-band width and fibre rotation angles, by comparing the results with well known analytical models.49

As remarked by Hill (1963), an RVE is a medium which characterises the microstructure of the material,50

being statistically representative of the mixture of constituents. It has a dimension that contains a sufficient51

number of inclusions/reinforcements, making a single fibre model non-representative of the actual material.52

Moreover, the application of such PBCs force the kink-band angle to be zero, i.e. βkb = 0. Finally, the use53

of the maximum homogenised stress, obtained by using First Order Homogenisation Techniques (FOHT),54

may not be a proper way to measure the actual strength of the material, since, as strain localisation occurs,55

the separation of scales (Hashin, 1983) is intrinsically violated, making the solution dependent on both BCs56

applied and size of the considered medium. For a concise review on the analytical, semi-analytical, and nu-57

merical methodologies which treat longitudinal compressive failure in fibre-reinforced composites, addressing58

both phenomenology and failure mechanisms involved, the reader is referred to Daum et al. (2019).59

Modelling fibre-dominated damage, in UD composites, is a complex task due to the acting damage mech-60

anisms which arise when submitted to a longitudinal tensile loading scenario. There are several important61

factors when modelling the longitudinal tensile behaviour of a composite, namely: i) capture the formation62

of fibre break clusters, which later leads to the unstable final failure of the material (Scott et al., 2011, 2012,63

Thionnet et al., 2014); ii) capture the stochastic nature of the tensile strength of carbon fibres (Lamon, 2007,64

Tanaka et al., 2014, Torres et al., 2017); iii) capture the complete ineffective and debond length of a bro-65

ken fibre; and iv) treat fibre fracture as a dynamic event, where the internal strain energy released by the66

reinforcements is converted into kinetic energy (Swolfs et al., 2015a, Tavares et al., 2019b). Figure 2 shows67

a computed tomography (CT) image of a cross-ply laminate, which failed under longitudinal tension, high-68

lighting the pulled-out 0◦ fibres and the corresponding perpendicular fracture plane (Laffan et al., 2010), and69

a synchrotron radiation computed tomography (SRCT) image of disperse and co-planar clusters of broken70

fibres (Swolfs et al., 2015a).71

[Figure 2 about here.]72

There are several models which are available in literature that are capable of estimating the longitudinal73

tensile strength of UD carbon fibre-reinforced composite materials, hybridised or not, being able to tackle most74

(if not all) of the aforementioned features governing longitudinal tensile failure (Swolfs et al., 2015c,b, 2016,75

Tavares et al., 2016, 2017, St-Pierre et al., 2017, Guerrero et al., 2018, Tavares et al., 2019b). These often rely76

on simpler micromechanical models, where fibre fracture is taken into account using maximum stress criteria.77

In contrast, the work of Tavares et al. (2016) reports the usage and implementation of thermodynamically78
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consistent damage models, providing enough detail to capture the micro-scale failure mechanisms which79

govern longitudinal tensile failure.80

Most of the aforementioned micromechanical models make reference to an implicitly assumed, constant81

in space, initial fibre misalignment, making such predictions unsuitable for real case scenarios, since to em-82

pirically quantify fibre misalignment, a statistically representative parameter is needed. Variable, spatially83

distributed fibre waviness, has long been recognised as an important consideration, and investigations into the84

stochastic properties of its magnitude and distribution have been reported (Hillig, 1994, Clarke et al., 1995,85

Creighton et al., 2001, Requena et al., 2009, Sutcliffe et al., 2012, Pain, Drinkwater, 2013, Mizukami et al.,86

2016, Wilhelmsson, Asp, 2018). Recently, Sebaey et al. (2019) developed an integrated approach to statisti-87

cally represent fibre misalignment at the scale of the constituents, where the deviations in fibre angles and88

corresponding footprints are first determined using CT scans, and then the data is statistically fitted fol-89

lowing a von Mises distribution, characterised by the corresponding concentration parameter. A post-study90

conducted by Catalanotti, Sebaey (2019) involved the proposal of a semi-stochastic algorithm where initial91

fibre misalignment is taken into account by combining the stochastic process and an optimisation procedure.92

Here, a 3D FE micromechanical framework is built to analyse in detail, the longitudinal failure of com-93

posite materials. To describe the non-linear behaviour of the constituents and their interface, appropriate94

constitutive material models are implemented along with an algorithm for the generation of high-fidelity95

RVEs, accounting for a stochastic-based fibre misalignment. To the authors’ knowledge, this is the first time96

that a numerical micromechanical framework is built together, to investigate the effect of a stochastic-based97

initial fibre waviness on the longitudinal failure of unidirectional carbon fibre-reinforced composite materials.98

Additional analyses are undertaken to investigate the effect of considering frictional cohesive surfaces on the99

damage tolerance of the composite.100

2. Computational framework101

The developed 3D FE micromechanical framework is composed of detailed micromechanical representa-102

tions of the material, henceforth described as RVEs, having different degrees of fibre misalignment and the103

same fibre volume fraction, ωf . For brevity, only pertinent aspects of the RVE generation and the constitutive104

material models used, are presented, where several important considerations are discussed.105

2.1. Generation of the RVEs106

The generation of the RVEs involves the measurement of the angle between the projection of the tangent107

vector of the fibres and a given direction (Catalanotti, Sebaey, 2019). Figure 3 shows the three spatial108

descriptors, which the algorithm makes use of, that characterise fibre misalignment, where x, y, and z109

represent the longitudinal, transverse, and through-thickness directions of a typical UD lamina, respectively,110

and ~i, ~j, and ~k the unit vectors in each corresponding direction.111

[Figure 3 about here.]112
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The three spatial descriptors, shown in Figure 3, are the three misalignment angles, which are defined113

as: φyx, the angle between ~i and the projection of the tangent vector to the fibre, ~ν, onto the Oxz plane;114

φzx, the angle between ~i and the projection of the tangent vector to the fibre, ~ν, onto the Oxy plane;115

and αxy, the angle between ~j and the the projection of the tangent vector to the fibre, ~ν, onto the Oyz116

plane (Catalanotti, Sebaey, 2019). Both in-plane and out-of-plane misalignment angles, φyx and φzx, re-117

spectively, are of importance when conducting RVE-based numerical simulations, and may be experimentally118

characterised using appropriate experimental techniques (Sutcliffe et al., 2012, Sebaey et al., 2019). However,119

there is no relevance on characterising the remaining misalignment angle, αxy, since, in principle, it does not120

have any practical importance when submitting the RVEs to the stress states mentioned in this work.121

For introducing the waviness of the fibres via a stochastic process, the fibres are modelled as Bézier curves,122

whose initial control points are determined by using a 2D fibre distribution algorithm (Catalanotti, 2016).123

These control points can then be moved in a random fashion, for a desired number of times, in a plane124

perpendicular to ~i, creating the 3D geometrical variability, i.e. fibre waviness. Periodicity of the virtual125

microstructure is also achieved by computing the proper distance between the control points of different126

fibres and assuring continuity between the first and last control point of the same fibre, when translated in127

the longitudinal direction by the length of the RVE (Catalanotti, Sebaey, 2019). The radial coordinates are128

chosen in order to ensure that the distribution of the misalignment angles match the empirical/theoretical129

ones (Sebaey et al., 2019). It was assumed the distribution follows the general von Mises distribution, whose130

probability density function (pdf) reads:131

ě(φ, µ, κ) =
1

2πI0(κ)
eκcos(φ)−µ, (1)

where φ is equal either to the in-plane or out-of-plane misalignment angle, µ is the mean direction, κ is the132

concentration parameter, and I0 is the modified Bessel function of the first kind and order 0. Since the mean133

direction represents the longitudinal (x-direction) direction of the composite, µ is assumed to be equal to134

0, and therefore the concentration parameter, κ, is the only variable which characterises the distribution.135

By minimising the standard errors (likelihood and probability), it is possible to achieve a remarkable match136

between the experimental/theoretical and numerical distributions. Figure 4 shows an example of the pdf137

of theoretical and numerical distributions, the Q-Q plot, and the associated front and isometric views of a138

generated RVE with κ = 2000.139

[Figure 4 about here.]140

For modelling perfectly aligned fibres, κ is equal to ∞, and for modelling very wavy fibres, κ takes a small141

value, e.g. κ = 500. For a complete description of the algorithm used to generate 3D RVEs incorporating142

fibre waviness, the reader is referred to Catalanotti, Sebaey (2019).143
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2.2. Constitutive material models144

2.2.1. Carbon fibres145

The carbon fibres are modelled as transversely isotropic and considered to behave linear-elastically up146

to failure. Degradation of the stiffnesses of the material is defined by implementing a thermodynamically147

consistent isotropic damage model, which is only activated by the longitudinal stress component. The damage148

activation function is given as:149

F d
f = φd

f − rf =
σ̃11

Xt
f

− rf , (2)

where φd
f is the loading function, σ̃11 is the undamaged longitudinal applied stress, Xt

f is the longitudinal150

tensile strength of the fibre, and rf is an internal variable related to the damage evolution law of the fibre, df .151

As discussed by several authors (Swolfs et al., 2015c,b, Tavares et al., 2016, Swolfs et al., 2016, Tavares et al.,152

2017), the tensile strength of the carbon fibres has an intrinsic stochastic nature, mostly due to the flaws153

which are present on the surface of the fibres (Lamon, 2007, Tanaka et al., 2014, Torres et al., 2017), which154

needs to be taken into account. Here, these are accounted for through the Weibull distribution (Weibull,155

1951):156

P (σ) = 1 − exp

[

−
(

L

L0

)(

σ

σ0

)m0
]

, (3)

where P represents the failure probability at the applied stress σ, σ0 and m0 are the Weibull strength and157

parameter, respectively, and L0 and L are the reference and gauge length, respectively. Modifying equation (3)158

and generating a random scalar in the interval ]0, 1[, X , that represents the failure probability, the tensile159

strength can be estimated following:160

Xt
f = σ0

[

− L0

L
ln(1 − X )

]1/m0

. (4)

The Weibull distribution is probably the most used statistical distribution for fibre strength. How-161

ever, it has been shown that it is not the best suited for carbon and glass fibres (Gulino, Phoenix, 1991,162

Beyerlein, Phoenix, 1996, Curtin, 2000), leading to an overprediction in both tensile strength and failure163

strain (Tavares et al., 2017). The correct definition of the proper fibre tensile strength distribution is out of164

the scope of the current work, thus the Weibull distribution is used due to its simplicity in implementation.165

To avoid damage localisation and to control the energy dissipated in the fracture process, Bažant and166

Oh’s crack band model (Bažant, Oh, 1983) is implemented to regularise the computed dissipated energy:167

Ψf =

∫ ∞

1

∂Gf

∂df

∂df
∂rf

drf =
Gf
Ic

lef
, (5)

where Gf is the complementary free energy density of the fibrous material, Gf
Ic is the mode I fracture toughness168

of the fibres, and lef represents the characteristic element length.169
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The damage evolution law for the fibres is given by:170

df = 1 − eAf (1−rf )

rf
, (6)

where Af is a mesh regularisation parameter which conveys the numerical model with mesh size indepen-171

dency (Bažant, Oh, 1983) and must be computed for each finite element by solving equation (5).172

The mechanical properties of the AS4 fibres considered here are shown in Table 1 and were taken173

from Soden et al. (1998), Bai et al. (2015), Herráez et al. (2016), Tavares et al. (2016).174

[Table 1 about here.]175

For more details on the damage model, the reader is referred to Tavares et al. (2016).176

2.2.2. Epoxy matrix177

Previous studies (Ghorbel, 2008) have shown that both the Drucker-Prager and Mohr-Coulomb constitu-178

tive material models are not able to properly model the representative behaviour of an epoxy resin, namely179

under the presence of triaxial stress states. A more representative elasto-plastic material model, proposed180

by Melro et al. (2013a), is used here to simulate the behaviour of the matrix constituent.181

The model assumes that the matrix behaves in a linear-elastic fashion until the following paraboloidal182

yield criterion, originally proposed by Tschoegl (1971), is met:183

Φ(σ, εpe) = 6J2 + 2(σm
Yc

− σm
Yt

)I1 − 2σm
Yc
σm
Yt
, (7)

where σm
Yt

and σm
Yc

are the absolute values of the tensile and compressive yield strengths, I1 = tr(σ) is the184

first invariant of the stress tensor and J2 = 1
2s : s is the second deviatoric stress tensor (s) invariant. In order185

to correctly define the plastic deformation under the presence of a hydrostatic pressure, a non-associative186

flow rule is defined. Both tensile and compressive yield strengths depend on the equivalent plastic strain, εpe:187

εpe =

√

1

1 + 2νpm
2 ε

p : εp, (8)

where νpm is the plastic Poisson’s ratio of the matrix.188

The yield surface presented in equation (7) depends only on the tensile (σm
Yt

) and compressive (σm
Yc

) yield189

strengths which are both affected by hardening:190

σm
Yt

= σm
Yt

(εpe), σm
Yc

= σm
Yc

(εpe). (9)

Figure 5 shows the hardening curves used in the plasticity model in both tension and compression.191

[Figure 5 about here.]192
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Damage is defined by using a model developed within the framework of thermodynamically admissible193

processes. Initiation of damage is computed with the following failure criterion (Melro et al., 2013a):194

F d
m = φd

m − rm =
3J̃2

Xc
mXt

m

+
Ĩ1(Xc

m −Xt
m)

Xc
mXt

m

− rm, (10)

where φd
m is the loading function, Xc

m and Xt
m represent the compressive and tensile strengths of the material,195

respectively, and rm is an internal variable related to the matrix damage variable. Both invariants (J̃2 and196

Ĩ1) are determined using the effective stress tensor, i.e. the stress tensor calculated using the undamaged197

stiffness tensor. The damage variable is given by:198

dm = 1 − eAm(3−
√

7+2r2m)

√

7 + 2r2m − 2
, (11)

where Am is a parameter that must be computed for each element of the finite element mesh of the matrix199

material. To avoid mesh size dependency problems, Bažant and Oh’s crack band model (Bažant, Oh, 1983)200

was also implemented, making use of the mode I fracture toughness of the epoxy, Gm
Ic and corresponding201

characteristic element length, lem, to regularise the computed dissipated energy (Bažant, Oh, 1983):202

Ψm =

∫ ∞

1

∂Gm

∂dm

∂dm
∂rm

drm =
Gm
Ic

lem
, (12)

where Gm is the complementary free energy density of the matrix material.203

Table 2 shows the mechanical properties used to model the epoxy. For more information regarding the204

constitutive material model, the reader is referred to Melro et al. (2013a).205

[Table 2 about here.]206

This material constitutive model has exhibited promising results when modelling the behaviour of epoxy207

resins under a variety of loading conditions (Melro et al., 2013b, Arteiro et al., 2014, 2015, Tavares et al.,208

2016, Varandas et al., 2017, 2019, Sun et al., 2019b, Arteiro et al., 2019, Chen et al., 2019, Meer van der et al.,209

2019, Dalli et al., 2019, Varandas et al., 2020a,b, Dalli et al., 2020).210

2.2.3. Fibre-matrix interface211

Due to the intricate mesh required for these RVEs, the interfaces between fibres and matrix were modelled212

using cohesive surfaces, rather than cohesive elements, as it does not require mesh compatibility between the213

two constituents. A Mohr-Coulomb friction condition has also been considered for post-failure of the cohesive214

bond between the two constituents. Once the cohesive stiffness starts degrading, friction starts contributing215

to the shear stresses. This feature will capture the pull-out resistance between fibre and matrix caused mostly216

by the rough failure surface on the fibre, after interfacial failure, and it is governed by the friction coefficient,217

µτ .218
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Initiation of fibre-matrix interface damage is predicted using a stress-based quadratic failure criterion (Lin Ye,219

1988):220

φd
int =

(

〈τ3〉
τ03

)2

+

(

τ2
τ02

)2

+

(

τ1
τ01

)2

, (13)

where τ1, τ2, and τ3 represent the components of traction and τ01 , τ02 , and τ03 are the corresponding inter-221

face strengths. A bi-linear traction-separation behaviour is assumed, and the fibre-matrix interface damage222

variable is computed as (Aba, 2018):223

dint =
δfint(δ

max
int − δ0int)

δmax
int (δfint − δ0int)

, (14)

where, δfint = 2Gint
c /τ0eff, with Gint

c as the mixed-mode fracture toughness (Benzeggagh, Kenane, 1996) and τ0eff224

as the effective traction at damage initiation. δmax
int refers to the maximum value of the effective displacement225

attained during loading history and δ0int is the displacement at damage initiation. Table 3 shows the properties226

used to model the interfaces.227

[Table 3 about here.]228

2.3. Finite element modelling229

Several RVEs having different concentration parameters, κ, are considered (see equation (1)). As remarked230

by Hill (1963), an important aspect in RVE-based modelling, is the size of the RVE and boundary conditions231

(BCs) imposed. The applied BCs should affect the overall mechanical performance of the material, namely232

during softening, existing an interplay between the BCs and size of the RVE (Triantafyllidis, Bardenhagen,233

1996, Gitman et al., 2007, Galli et al., 2008). Since Periodic Boundary Conditions (PBCs) yield an enor-234

mous computational cost, as well as, in longitudinal compression, they constrain the kink-band angle a235

priori (Gutkin et al., 2010a), standard BCs are used, where direct constraints are applied to the bound-236

aries of the RVEs. Moreover, by considering a sufficiently large FE model, edge and face effects can be237

neglected (Kanit et al., 2003, Stroeven et al., 2004, Gitman et al., 2006, Sun et al., 2019b). With reference238

to Figure 6, the following BCs are applied for each loading condition (Hsu et al., 1998, Vogler et al., 2001,239

Tavares et al., 2016, Bishara et al., 2017):240

• Longitudinal compression - The longitudinal (x-direction) and through-thickness (z-direction) axial241

displacements of face 1 are fixed. Tie Constraints are applied between Face 3 and Face 4. A longitudinal242

(x-direction) compressive velocity-type BC is applied to face 2. Faces 5 and 6 are free to deform.243

• Longitudinal tension - The longitudinal axial (x-direction) displacements are fixed on Face 1 and a244

longitudinal (x-direction) tensile velocity-type BC is applied to Face 2. All other faces are free to245

deform to account for Poisson’s contraction.246
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The dimension of the RVEs in the longitudinal direction (x-direction) is denoted by Lx, and the in-plane247

dimensions (y- and z-directions) by H (see Figure 3).248

[Figure 6 about here.]249

The micromechanical simulations were conducted using the FE solver Abaqus R©/Explicit (Aba, 2018).250

Damaged elements having df > 0.9999 ∨ dm > 0.9999 (see equations (6) and (11)) were removed through-251

out the numerical simulations to prevent excessive element distortion. The models ran on one node (20252

CPUs @ 3.4 GHz of Intel R© Haswell R©) having 512 GB of RAM. The Variable Mass Scaling capability of253

Abaqus R©/Explicit (Aba, 2018) was used in order to reduce computational cost, by scaling all masses of the254

elements, to ensure that they all have the same time increment. With that being said, due to the peak load255

instability and to its kinetic nature, load stages beyond peak load, such as kink-band broadening, could not256

be captured using the present framework.257

Due to its complex geometry, the epoxy matrix material is modelled using C3D4, three-dimensional linear258

tetrahedrons. The fibres are modelled using C3D8R, reduced integration, linear hexahedrons, combined with259

C3D6R, reduced integration, linear triangular prisms. The orientation of each element is computed by: (i)260

obtaining the coordinates of the respective centroid of the ith element, Ci={xi, yi, zi}T ; (ii) finding the261

nearest point of the middle line of the associated fibre, i.e. of the associated Bézier curve, to the centroid262

Ci, with coordinates Cf={xf , yf , zf}T ; and (iii) calculating the unit vector which is tangent to the curve263

in Cf , i.e. f̂ , and assign it to the orientation of the ith element. Figure 7 shows the longitudinal direction264

(1-direction) of each element, in a highly misaligned fibre.265

[Figure 7 about here.]266

3. Numerical results267

3.1. Longitudinal compression268

This section aims to evaluate the longitudinal compressive failure through fibre kinking. Different RVEs,269

having random microstructures with several degrees of misalignment were generated following equation (1),270

with κ = 1500, κ = 2000, κ = 3000, κ = 4000, κ = 6000, κ = 8000, and κ = ∞. Figure 8 shows the271

pdf distribution of the misalignment angles for each von Mises concentration parameter considered in this272

section. Certain outputs related to compressive failure are analysed in detail, making several quantitative273

and qualitative parallelisms with experimental observations. Moreover, the effect of fibre-matrix interfacial274

friction is also analysed. It must be noted that it is not feasible to compare these numerical results with275

analytical/semi-analytical models which estimate the compressive strength of the material, since most of276

these assume a constant in space initial fibre misalignment angle.277

[Figure 8 about here.]278
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The following two sections present preliminary results assessing the influence of the RVE size and mesh279

density on the peak stress of the material, as well as global and local features exhibited on a material loaded280

in longitudinal compression.281

3.1.1. Effect of RVE size282

Several analyses were conducted to evaluate the influence of the size of the RVE and its mesh size on the283

overall mechanical performance of the material. Firstly, RVEs with a refined mesh and different dimensions284

were virtually tested. By considering a constant aspect ratio of the RVE (ratio between the length and in-285

plane dimensions of the RVE, Ar = Lx/H), i.e. Ar = 4, the in-plane dimensions considered were 5, 10, 15, 20,286

25, and 30 times the radius of a single fibre. Figure 9 and Table 4 show the normalised numerical predictions,287

with respect to the peak stress associated with the largest RVE. Only one simulation was conducted per size,288

for κ = 4000.289

[Figure 9 about here.]290

[Table 4 about here.]291

The results show that when increasing the size of the RVE, the peak load increases as well. Since the292

smallest RVEs could not accommodate the formation of a kink-band, the material failed prematurely mainly293

due to interfacial debonding. The results are considered geometrical independent for RVEs with H > 25Rf ,294

where the peak load represented ≈ 99% of the RVE having the largest dimensions. From the concluded295

above, in-plane dimensions and total length of the RVE of approximately H = 75 µm and Lx = 300 µm,296

respectively, are chosen for the forthcoming numerical simulations.297

3.1.2. Influence of mesh density298

To ensure mesh independent results, FE meshes of different densities were considered, for an FE model299

with κ = 4000, and pertinent results are presented in Figure 10 and Table 5.300

[Figure 10 about here.]301

[Table 5 about here.]302

Mesh independence was achieved with models containing over 7 million elements. Therefore, a mesh303

density with an average value of Rf/5 was considered for the forthcoming simulations.304

3.1.3. Global mechanical response305

Figure 11 shows the numerical results associated with an RVE with κ = 3000, where a representative306

stress-strain curve is shown (see Figure 11a) and corresponding contour plots of the equivalent plastic strain307

of the epoxy matrix (see Figure 11b), associated with three different stages of the non-linear process: (A)308

initiation of plasticity; (B) just before peak load instability, where the kink-band is almost formed; and (C1)309

and (C2) complete formation of the kink-band and initiation of the dynamic process.310
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[Figure 11 about here.]311

To assess the effect of the initial fibre misalignment on the longitudinal mechanical performance of the312

material, it is presented in Figure 12a the representative stress-strain curves for different concentration313

parameters, κ, all normalised with respect to the results associated with κ = ∞. Moreover, in Figure 12b314

and Table 6, the results associated with the effect of the initial fibre misalignment on both overall longitudinal315

compressive Young’s modulus and strength of the material are shown.316

[Figure 12 about here.]317

[Table 6 about here.]318

The normalised stress vs. applied strain curves are presented in Figure 12a (where σ11 and ε11 represent319

the longitudinal stress and strain, respectively, and σcu
11∞ represents the compressive peak stress associated320

with the RVE with κ = ∞), which shows that both compressive Young’s modulus, Ec
11, and peak stress,321

σcu
11 , depend on the initial fibre misalignment angle distribution, quantified by κ. As κ increases (less mis-322

alignment), both mechanical properties increase. The RVEs having the highest misalignment (κ = 1500)323

yielded a peak stress of ≈ 32% that of the idealised RVE having perfectly aligned fibres (κ = ∞). The324

decrease in peak stress is explained by the higher initial micro-buckling introduced in several regions of the325

fibres along the length of the RVEs, causing an earlier degradation of the epoxy matrix and fibre-matrix326

interface, thus promoting an earlier kinking of the reinforcement. Moreover, for this material system, the327

quantitative results show that the variation in peak stress with the distribution of the misalignment angles328

fits better with a rational type of fit (σcu
11 (κ−1) = (p1κ

−1 + p2)/(κ−1 + q1), where p1 = 667.30, p2 = 1.00 and329

q1 = 1.95 × 10−4), and the corresponding coefficient of determination is approximately R2
rat = 0.991. The330

compressive Young’s modulus can be assumed to vary in a linear fashion (Ec
11(κ−1) = n1κ

−1 + n2, where331

n1 = −2.05 × 104 and n2 = 125.40), where the corresponding coefficient of determination is approximately332

R2
lin = 0.994, as shown in Figure 12b.333

Comparing the results with the experimental values of the longitudinal compressive strength of several334

composite material systems, having similar fibre volume fractions, such as AS4/8552 (Xc ≈ 1530 MPa),335

IM7/8552 (Xc ≈ 1689 MPa), and IM10/8552 (Xc ≈ 1793 MPa) (Hexcel, 2016a) or IMA/M21 (Xc ≈ 1500336

MPa), AS7/M21 (Xc ≈ 1560 MPa), and IM7/M21 (Xc ≈ 1790 MPa) (Hexcel, 2016b), it is evident that337

only the RVEs having fibres with a more realistic initial fibre misalignment angle distribution (Sebaey et al.338

(2019), found for an IM7/8552 and an IM7/PEEK UD material systems, a von Mises concentration parameter339

of κ = 1582.91 and κ = 2069.72, respectively) yielded reasonable longitudinal compressive strengths. In340

contrast, as shown in Figure 13, the idealised RVE incorporating perfectly aligned fibres (κ = ∞), did not341

form a kink-band, due to the unrealistic spatial representation of the fibres, but a sort of crushing scenario, in342

which the RVE failed at higher applied strains in a region near to the boundaries of the RVE, overpredicting343

the mechanical performance of the material.344
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[Figure 13 about here.]345

By considering the non-uniform variation of the fibre waviness along the RVE, when this waviness was346

relatively high, a local failure in the highest misaligned region was observed prior to ultimate failure. Figure 14347

shows the contour plots of the equivalent plastic strain (equation (8)), at different stages of the damage348

process, associated with an RVE with κ = 1500. The first appearance of non-linearity was in a region where349

the fibres were highly misaligned, leading to local damage propagation, and for a higher applied strain,350

catastrophic failure of the material.351

[Figure 14 about here.]352

Interestingly, some RVEs exhibited a wedge-shaped kink-band, as shown in Figure 15. This was also seen353

experimentally (Sun et al., 2019a, Wang et al., 2019), where, during compressive loading, localised areas of354

the material having smaller degrees of misalignment formed fibre kink-bands which act together to move a355

“wedge” of material upwards, thus leading to a different kink-band shape.356

[Figure 15 about here.]357

Even if fibre-matrix interfacial friction is expected to mostly affect the post-peak response, the effect of358

friction on the mechanical performance of the material, up to peak load, was studied. Two RVEs having359

different concentration parameters, i.e. κ = 2000 and κ = 8000 were analysed considering a frictionless360

(µτ = 0) interface. Figure 16a shows the longitudinal compressive reaction force vs. the applied displacement361

for the two RVEs having different interfacial friction coefficients. The difference in peak load is larger for the362

RVE having the highest degree of misalignment, exhibiting a difference in approximately 5%, where the less363

misaligned RVE did not show any substantial decrease in peak load, i.e. less than 0.01%. This is due to the364

amount of frictional energy that is dissipated during damage propagation (see Figure 16b). As shown, the365

amount of energy dissipated by friction is much greater for the case of the RVE with κ = 2000, in comparison366

to the RVE with κ = 8000. The RVEs with a frictionless interface still exhibit a level of energy dissipation,367

since the general contact algorithm implements friction with self-contact.368

[Figure 16 about here.]369

3.1.4. Kink-band width and fibre rotation angle370

The developed kink-band is characterised by certain features, namely its width, angle, and fibre rotation371

within the kink-band. There is strong empirical evidence which shows that for most thermoset-based com-372

posites, when the kink-band is formed (before softening), the fibres within the band rotate by an angle of373

15◦ 6 ϕexp
kb 6 30◦ (Soutis et al., 1993, Moran et al., 1995, Vogler, Kyriakides, 2001, Gutkin et al., 2010b). In374

contrast, the values measured for both kink-band angle and width have been more disperse, i.e. 5◦ 6 βexp
kb 6375

30◦ (Kyriakides et al., 1995, Vogler et al., 2001, Lee, Soutis, 2007) and 25 µm 6 wexp
kb 6 80 µm (Jelf, Fleck,376

1992, Jumahat et al., 2010, Laffan et al., 2012, Zobeiry et al., 2015), respectively. The kink-band width, wkb,377
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is shown to increase with increasing radii of the fibrous reinforcements, i.e. wkb ∝ Rf (Fleck et al., 1995,378

Budiansky et al., 1998), being approximately equal to 20 times the fibre radii (Soutis et al., 1993). The379

kink-band angle, βkb, is not explored in this work, since, even if the applied BCs allow for its qualitative380

representation (in Figure 14d: βkb ≈ 13◦), for its proper evaluation, for different κ, a thicker RVE is needed.381

The kink-band width, wkb, was computed as the distance between the two extreme points of the kink-382

band, which have the highest stress, as soon as the kink-band is formed, as suggested by Pimenta et al.383

(2009). The fibre rotation angle, ϕkb, was measured as the angle that the kink-band forms with a horizontal384

line. Figure 17 shows the local longitudinal stress along the kink-band for three different RVEs, having385

different degrees of misalignment, where both the kink-band width and fibre rotation angle are highlighted.386

Table 7 shows the estimated quantitative results of the kink-band width and fibre rotation angle, for different387

concentration parameters, κ. Moreover, the evolution of both wkb and ϕkb were quantified for the case388

presented in Figure 11 - (A): wkb ≈ 36 µm and ϕkb ≈ 6◦; (B): wkb ≈ 40 µm and ϕkb ≈ 12◦; and (C1 ≡C2):389

wkb ≈ 49 µm and ϕkb ≈ 23◦.390

[Figure 17 about here.]391

[Table 7 about here.]392

From the aforementioned results, the kink-band width was found to be independent of the initial fibre393

misalignment distribution. Looking at different fibre radii, a previous preliminary study conducted by the394

authors, presented by Catalanotti et al. (2020), showed that, for larger fibre radii and same material system,395

larger kink-band widths were estimated, i.e. wkb ≈ 80 µm. The fibre rotation angles seem to gradually396

decrease with κ, where smaller degrees of misalignment, at peak load, promote slightly smaller overall fibre397

rotation angles.398

Despite the initial individual misalignment that each fibre presents when the kink-band is developed, all399

tend to have the same orientation inside the kink-band. This can be verified in Figure 18, where different400

fibres within the same RVE, having different initial misalignment distributions, just after peak load, exhibit401

similar orientation angles in the kink-band.402

[Figure 18 about here.]403

3.2. Longitudinal tension404

To accurately capture the behaviour of composite materials in longitudinal tension, the RVEs must be405

large enough to capture both co-planar and disperse fibre break clusters. RVEs having an in-plane dimension406

of H ≈ 175 µm and a longitudinal dimension of Lx ≈ 500 µm, were generated. Due to the high computational407

cost that these FE models yield, and based on previous micromechanical simulations (Tavares et al., 2016,408

2017), the aforementioned dimensions were deemed sufficient. These RVEs encompass approximately 600409

fibres. For this stress state, RVEs having four different degrees of misalignment were considered: κ =410

4000, κ = 6000, κ = 8000, and κ = ∞ (see equation (1) and Figure 8) and only one simulation was411
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performed per configuration. The in-plane dimensions of each finite element are approximately 0.8 µm,412

whereas their longitudinal dimension is approximately lex = Lx/150 = 4 µm. As mentioned by several413

authors (Watson, Smith, 1985, Gulino, Phoenix, 1991, Tavares et al., 2017), the Weibull distribution may414

lead to overestimations of the fibre strength at short gauge lengths, however, a refined discretisation of the415

microstructure for such long RVEs is needed. Since the objective of this work is to analyse the effect of fibre416

misalignment on the behaviour of the material, a Weibull distribution was deemed to be sufficiently accurate417

to represent the stochastic distribution of the tensile strength of the fibres. Moreover, even if there are several418

methods to determine clusters of broken fibres (Sibson, 1973, Murtagh, Contreras, 2012), here it is chosen to419

evaluate the formation of fibre break clusters in a qualitative way.420

3.2.1. Global response and formation of fibre break clusters421

The longitudinal stress-strain curves for the four different RVEs are shown in Figure 19. For a better422

understanding of the in-plane fibre break clustering process, three different points (associated with κ = ∞),423

corresponding to different applied strains, are highlighted, as well as the corresponding contour plots of the424

fibre (equation (6)) and matrix (equation (11)) damage, in the critical section of the RVE: 1) initial broken425

fibres, as well as damage in the surrounding matrix; 2) development of a critical cluster, causing; 3) the426

catastrophic failure of the material.427

[Figure 19 about here.]428

The overall longitudinal tensile mechanical response of the material is not substantially affected by the429

initial fibre misalignment. Even if the Young’s modulus slightly decreases with decreasing κ (from E11 ≈ 125430

GPa to E11 ≈ 121 GPa), the peak stresses are all very similar. With increasing strain, the number of broken431

fibres increase, leading to the formation of small clusters of broken fibres. Despite the misalignment, the432

same cluster-type formation was observed for all RVEs, where the maximum number of fibre fractures was433

qualitatively the same.434

The majority of fibres did not fail in the same plane, leading to the formation of disperse clusters, where435

the locations of fibre breaks are observed in multiple locations along the length of the RVE (see Figure 20).436

[Figure 20 about here.]437

3.2.2. Local damage mechanisms438

Certain local mechanisms such as the ineffective length, debond length, stress profile along a fibre, and439

the effect of fibre-matrix interfacial friction and misalignment, are analysed in this section. These local440

mechanisms are assessed with no prior cracks in the matrix, since they play an important role in the stress441

recovery of the broken fibre and consequently in the debond length (Swolfs et al., 2015b). Moreover, there are442

several parameters which locally affect the tensile damage process, such as, distribution of the microstructure,443

material properties of the matrix constituent, and strain-rate (Zeng et al., 1997, Heuvel van den et al., 2000,444
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Zhao, Takeda, 2000, Hobbiebrunken et al., 2007, Foreman et al., 2009, Swolfs et al., 2015b, Tavares et al.,445

2017), where most of which were analysed by Tavares et al. (2019a) using the Spring Element Model (SEM).446

The ineffective length is a measure of the stress recovery length of the fibre and can be defined as twice447

the length at which the broken fibre is able to carry 90% of the applied stress (Rosen, 1964). To analyse this448

effect, fibres which were far from the boundaries of the RVEs were chosen to give a more detailed evaluation449

of the local damage mechanisms. Figures 21a and Figures 21b show the contour plots of the longitudinal450

stress and cohesive interfacial damage along the length of a single fibre inside an RVE with κ = ∞, for451

different friction coefficients and same applied strain, just after fibre breakage. Fibre breakage was promoted452

at its centre, by artificially decreasing the local tensile strength of the central elements to 4050 MPa.453

[Figure 21 about here.]454

By increasing the friction coefficient, both ineffective and debond length are reduced, leading to a higher455

stress recovery profile of the fibre, slowing down the damage process. Moreover, Figure 21c shows the456

numerical predictions of the volumetrically homogenised longitudinal stress along the single fibre, for different457

friction coefficients. After fibre fracture, different interfacial friction coefficients lead to slightly different stress458

profiles, where for the same longitudinal position, a greater homogenised stress can be observed, leading to459

an ineffective length of ≈ 68 µm and ≈ 55 µm, for a frictionless interface and for one considering µτ = 0.70,460

respectively.461

To locally assess the effect of fibre waviness, two different fibres positioned far from the boundaries of the462

RVE, having qualitatively a different degree of misalignment, were chosen inside an RVE with κ = 4000. In463

Figures 22a and 22b, the contour plots of the fibre-matrix interface damage and longitudinal stress, for the464

two different fibres are shown, and Figure 22c shows the volumetrically homogenised longitudinal stress of465

each cross-section, along each fibre, having qualitatively different degrees of misalignment for central elements466

having two different failure strains (ε0f = 0.6% in red and ε0f = 1.1% in blue). The friction coefficient was467

kept constant and equal to µτ = 0.52.468

[Figure 22 about here.]469

For both analysed failure strains, the ineffective length increases with initial fibre misalignment. The470

difference between the ineffective length of a fibre having a small and a high degree of misalignment, was471

approximately 10 µm, for both failure strains. Additionally, it was noted that the debonded length increases472

with increasing failure strain. The changes in the local damage mechanisms, due to initial fibre waviness, may473

alter the development of fibre break clustering, as they change the local stress redistribution to neighbouring474

fibres, after fibre breakage. However, the overall behaviour of the composite is not directly connected to the475

local effects acting on a single fibre, but a bigger collection of fibres, possibly making these individual damage476

mechanisms, which act in a particular region of a single fibre, negligible when comparing to the longitudinal477

tensile strength distribution.478
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4. Conclusions479

The importance of representing the realistic 3D microstructure of UD composite materials was addressed480

in this work, namely when the material is submitted to a longitudinal (fibre-direction) stress state. A481

computational finite element micromechanics framework was built, using a recent methodology to gener-482

ate the initial fibre misalignment via a combination of a stochastic process and an optimisation proce-483

dure (Catalanotti, Sebaey, 2019). RVEs having different degrees of misalignment were then generated to484

simulate the longitudinal compressive and tensile failure, and analyse the associated intrinsic damage mech-485

anisms.486

Different results associated with the compressive failure of the material by fibre kinking were obtained487

using the present framework. It was observed that by decreasing the degree of misalignment of the RVEs488

(increasing κ), both Young’s modulus and peak stress increased, where these results have shown to have a489

best fit using linear and rational functions, respectively. The RVEs having a more realistic κ (experimentally490

obtained by Sebaey et al. (2019)), yielded peak stresses comparable to empirical compressive strengths of491

different material systems (Hexcel, 2016a,b). Moreover, the present framework enabled the analysis of the492

kink-band width and of the fibre rotation inside the kink-band. The kink-band width was found to be493

independent of initial fibre waviness, in contrast, the fibre rotation angle was sensitive to it, where bigger494

degrees of initial misalignment lead to higher fibre rotation angles. Additionally, despite having different495

initial misalignment, after peak load, fibres which belong to the same RVE, exhibited similar orientation496

angles, in the kink-band region. Finally, friction seems to play a role for lower concentration parameters497

(higher misalignment), in which the energy dissipated by friction was higher.498

The failure mechanisms associated with a longitudinal tensile loading were also evaluated. By generating499

RVEs with different fibre misalignments, the overall performance of the material remained unaltered, i.e. the500

peak stress remained the same and the Young’s modulus changed slightly. Moreover, the RVEs exhibited501

similar damage patterns, leading to a similar type of fibre break clustering. More detailed analyses were502

undertaken to assess the effect of friction and degree of misalignment on the local load carrying capacity of503

the broken fibres. Friction was shown to decrease the ineffective length of the fibres, whereas misalignment504

increased the ineffective length, possibly leading to a faster progression of damage, changing the stress505

redistribution to neighbouring fibres. However, these local phenomena do not seem to dictate the final failure506

of the material, making the variation of the longitudinal tensile strength of the reinforcements the most507

influential parameter on the final failure of the material.508

Idealised representations of the microstructure cannot properly represent fibre kinking. In contrast,509

a more realistic spatial distribution (Catalanotti, Sebaey, 2019) guarantees a correct representation of the510

damage mechanisms associated with longitudinal compressive failure of UD materials. Despite the magnitude511

of the initial fibre misalignment, the longitudinal tensile behaviour and failure mechanisms were all very512

similar. There are certain limitations which were not assessed here. Fibre compressive and/or shear failure513

was not considered, due to a lack of strength characterisation testing of neat fibres, which can lead to an514
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overestimation of the local and overall performance of the material for small degrees of fibre misalignment.515

Finally, there is a need for developing analytical/semi-analytical models which are able to take into account516

the stochastic variability of the initial waviness of the reinforcements, thus yielding representative estimations517

of the parameters associated with compressive failure by fibre kinking.518

This study has shown that micromechanics can be treated as a reliable computational tool to analyse519

certain geometric and material variabilities which cannot be assessed using ply- or laminate-level analyses.520

Further studies can encompass the investigation of the effect of initial fibre waviness on the transverse tensile521

and compressive response, in- and out-of-plane shear loading scenarios, as well as other biaxial and triaxial522

loading conditions.523
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Herráez Miguel, Bergan Andrew C., González Carlos. Modeling fiber kinking at the microscale and mesoscale.625

// Technical report, NASA/TP2018220105. 2018. October.626

Heuvel P. W. J. van den, Peijs T., Young R. J. Failure phenomena in two-dimensional multi-fibre micro-627

composites. Part 4: a Raman spectroscopic study on the influence of the matrix yield stress on stress628

concentrations // Composites Part A: Applied Science and Manufacturing. feb 2000. 31, 2. 165–171.629

Hexcel . HexPly R© 8552 Matrix, Epoxy matrix (180◦ C/356◦ F curing) //630

https://www.hexcel.com/user area/content media/raw/HexPly 8552 eu DataSheet.pdf. 2016a.631

Hexcel . HexPly R© M21 Matrix, Epoxy matrix (180◦ C/356◦ F curing) //632

https://www.hexcel.com/user area/content media/raw/HexPly M21 global DataSheet.pdf. 2016b.633

Hill R. Elastic properties of reinforced solids: Some theoretical principles // Journal of the Mechanics and634

Physics of Solids. sep 1963. 11, 5. 357–372.635

Hillig W. B. Effect of fibre misalignment on the fracture behaviour of fibre-reinforced composites // Journal636

of Materials Science. 1994. 29, 2. 419–423.637

Hobbiebrunken Thomas, Fiedler Bodo, Hojo Masaki, Tanaka Mototsugu. Experimental determination of638

the true epoxy resin strength using micro-scaled specimens // Composites Part A: Applied Science and639

Manufacturing. mar 2007. 38, 3. 814–818.640

Hsu S.-Y., Vogler T. J., Kyriakides S. Compressive Strength Predictions for Fiber Composites // Journal641

of Applied Mechanics. mar 1998. 65, 1. 7–16.642

Jelf P.M., Fleck N.A. Compression Failure Mechanisms in Unidirectional Composites // Journal of Composite643

Materials. dec 1992. 26, 18. 2706–2726.644

Jumahat A., Soutis C., Jones F. R., Hodzic A. Fracture mechanisms and failure analysis of carbon fibre645

/ toughened epoxy composites subjected to compressive loading // Composite Structures. 2010. 92, 2.646

295–305.647

Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D. Determination of the size of the representative648

volume element for random composites: statistical and numerical approach // International Journal of649

Solids and Structures. jun 2003. 40, 13-14. 3647–3679.650

Kyriakides S., Arseculeratne R., Perry E.J., Liechti K.M. On the compressive failure of fiber reinforced651

composites // International Journal of Solids and Structures. mar 1995. 32, 6-7. 689–738.652

21



Laffan M.J., Pinho S.T., Robinson P., Iannucci L. Measurement of the in situ ply fracture toughness653

associated with mode I fibre tensile failure in FRP. Part II: Size and lay-up effects // Composites Science654

and Technology. apr 2010. 70, 4. 614–621.655

Laffan M.J., Pinho S.T., Robinson P., Iannucci L., McMillan A.J. Measurement of the fracture toughness656

associated with the longitudinal fibre compressive failure mode of laminated composites // Composites657

Part A: Applied Science and Manufacturing. nov 2012. 43, 11. 1930–1938.658
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Varandas Lúıs F., Catalanotti Giuseppe, Melro António R., Falzon Brian G. On the importance of nest-774

ing considerations for accurate computational damage modelling in 2D woven composite materials //775

Computational Materials Science. feb 2020b. 172. 109323.776

Vogler T. J., Hsu S. Y., Kyriakides S. On the initiation and growth of kink bands in fiber composites. Part777

II: Analysis // International Journal of Solids and Structures. 2001. 38, 15. 2653–2682.778

Vogler T. J., Kyriakides S. On the initiation and growth of kink bands in fiber composites: Part I. experiments779

// International Journal of Solids and Structures. 2001. 38, 15. 2639–2651.780

Wang Ying, Chai Yuan, Soutis Costas, Withers Philip J. Evolution of kink bands in a notched unidirectional781

carbon fibre-epoxy composite under four-point bending // Composites Science and Technology. mar 2019.782

172. 143–152.783

Watson A. S., Smith R. L. An examination of statistical theories for fibrous materials in the light of784

experimental data // Journal of Materials Science. sep 1985. 20, 9. 3260–3270.785

Weibull Waloddi. A statistical distribution function of wide applicability // Journal of applied mechanics.786

1951. 103. 293–297.787

Wilhelmsson D., Asp L.E. A high resolution method for characterisation of fibre misalignment angles in788

composites // Composites Science and Technology. sep 2018. 165. 214–221.789

Yerramalli Chandra S., Waas Anthony M. The effect of fiber diameter on the compressive strength of790

composites - A 3D finite element based study // CMES - Computer Modeling in Engineering and Sciences.791

2004. 6, 1. 1–16.792

Zeng Qing-Dun, Wang Zhi-Li, Ling Ling. A study of the influence of interfacial damage on stress concentra-793

tions in unidirectional composites // Composites Science and Technology. jan 1997. 57, 1. 129–135.794

25



Zhao F.M, Takeda N. Effect of interfacial adhesion and statistical fiber strength on tensile strength of795

unidirectional glass fiber/epoxy composites. Part I: experiment results // Composites Part A: Applied796

Science and Manufacturing. nov 2000. 31, 11. 1203–1214.797

Zobeiry N., Vaziri R., Poursartip A. Characterization of strain-softening behavior and failure mechanisms798

of composites under tension and compression // Composites Part A: Applied Science and Manufacturing.799

2015. 68. 29–41.800

26



Figure 1: (a) Micrograph of a developed kink-band, highlighting its width, wkb, angle, βkb, and the fibre rotation angle, ϕkb,
from Jumahat et al. (2010) (with permission); (b) schematic representation of the longitudinal compressive response of an UD
composite material, highlighting the different loading stages.

Figure 2: (a) CT image of a fracture surface of a cross-ply laminate, from Laffan et al. (2010) (with permission) and (b) SRCT
image of disperse (left) and co-planar (right) fibre break clusters, from Swolfs et al. (2015a) (with permission).
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Figure 3: Spatial descriptors that characterise 3D fibre waviness (the green line portraits a representative fibre).

(a) pdf of the distribution. (b) Q-Q plot.

(c) Front view of the fibres. (d) Isometric view of the fibres.

Figure 4: Results associated with a 3D fibre distribution with κ = 2000.
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Figure 5: Hardening curves used in the epoxy matrix plasticity model (Melro et al., 2013b, Arteiro et al., 2014, 2015).

Figure 6: Representation of a misaligned micromechanical RVE, highlighting its different faces. White - epoxy matrix; red -
carbon fibres.

Figure 7: Representation of the main, 1-direction, of each element of a highly misaligned fibre.
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Figure 8: Distribution of the misalignment angles for each κ considered in this section.

Figure 9: Representative normalised longitudinal compression stress-strain curves for different in-plane dimensions of the RVE,
having a constant aspect ratio of Ar = 4. The red points indicate the corresponding normalised peak stress.
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(a) Normalised compressive stress-strain curves for different average mesh densities. The red points indicate the
corresponding normalised peak stress.

(b) Normalised compressive peak stress and corresponding computational cost vs. mesh density.

Figure 10: Preliminary results to assess the effect of mesh density on the quantitative results (κ = 4000).
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(a) Representative stress-strain curve. The red point indicates the peak stress.

(b) Contour plots of the equivalent plastic strain of the epoxy matrix, at different stages of the damage process (blue
- 0.0; yellow - 0.19; red - 0.25).

Figure 11: Numerical results associated with an RVE with κ = 3000, in longitudinal compression.
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(a) Normalised representative stress-strain curves. The red points indicate the associated normalised peak stress.

(b) Sensitivity results for the compressive Young’s modulus and strength. Both individual numerical results and
corresponding mean and standard deviation values are respectively shown, as well as the associated linear (R2

lin =
0.994) and rational (R2

rat = 0.991) fits.

Figure 12: Numerical results showing the effect of the initial fibre misalignment on the longitudinal compressive response.
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Figure 13: Contour plots of the equivalent plastic strain of an RVE with κ = ∞, showing the localisation of damage at one of
the boundaries of the RVE, when submitted to longitudinal compression, just (a) before and (b) after peak load.

33



(Avg: 75%)

+0.000e+00
+1.855e�02
+3.709e�02
+5.564e�02
+7.418e�02
+9.273e�02
+1.113e�01
+1.298e�01
+1.484e�01
+1.669e�01
+1.855e�01
+2.040e�01
+2.225e�01

Figure 14: Deformed configuration of an RVE with κ = 1500, highlighting the contour plots of the equivalent plastic strain at
different stages of the damage process in longitudinal compression: (a) non-linearities in the most misaligned region; (b) damage
propagation along this region; (c) severe damage propagation along the height of the RVE before peak load; (d) fracture of the
material after peak load.

Figure 15: Deformed configuration of an RVE with κ = 8000, just after peak load, exhibiting a wedge-shaped kink-band.
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(a) Reaction force vs. displacement. (b) Frictional energy dissipated vs. displacement.

Figure 16: Numerical assessment of the influence of friction between constituents considering two degrees of misalignment in
longitudinal compression. The red points indicate peak load.
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Figure 17: Contour plots of the local longitudinal stress along the kink-band, highlighting the fibre rotation angle of the fibres
and kink-band width, associated with RVEs having: (a) κ = 2000; (b) κ = 4000; and (c) κ = 6000 (only the kink-band region
is shown).

36



Figure 18: Bi-dimensional (x and z) central spatial coordinates of different fibres, with different degrees of misalignment, of the
same RVE (κ = 2000), having an undeformed (dashed lines) and deformed (solid lines) configurations at peak load.
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Figure 19: (a) Longitudinal tensile stress-strain curves of four RVEs having different distributions of the initial fibre misalignment,
κ; (b) corresponding contour plots of the matrix and fibres damage variable, at different stages of the damage process, for an
RVE with κ = 6000.
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Figure 20: Contour plots of both matrix and fibres damage variable for an RVE with κ = ∞, at different longitudinal sections:
(a) ∆x/Lx = 0.31; (b) ∆x/Lx = 0.53; and (c) ∆x/Lx = 0.78.
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Figure 21: (a) and (b) Contour plots of the longitudinal stress (σ11) and fibre-matrix interface damage (CSDMG) along a single
fibre inside an RVE, considering µτ = 0 and µτ = 0.70, respectively; (c) numerical results of the distribution of the longitudinal
stress along a single fibre inside an RVE with κ = ∞, for different µτ (the results associated with only half a fibre are shown).

38



+0.000e+00
+8.333e�02
+1.667e�01
+2.500e�01
+3.333e�01
+4.167e�01
+5.000e�01
+5.833e�01
+6.667e�01
+7.500e�01
+8.333e�01
+9.167e�01
+1.000e+00

(Avg: 75%)

�1.612e+03
�1.266e+03
�9.194e+02
�5.731e+02
�2.268e+02
+1.195e+02
+4.658e+02
+8.121e+02
+1.158e+03
+1.505e+03
+1.851e+03
+2.197e+03
+2.544e+03

Figure 22: (a) and (b) Contour plots of the fibre-matrix interface damage (left - CSDMG) and longitudinal stress (right -
σ11 in MPa), exhibiting the debond length, for a fibre having, qualitatively, a “Small” and a “High” degree of misalignment,
respectively; (c) numerical predictions of the volumetrically homogenised longitudinal stress along each fibre having different
degrees of misalignment (red lines - ε0

f
= 0.6%; blue lines - ε0

f
= 1.1%).
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Table 1: AS4 carbon fibre material properties (Soden et al., 1998, Bai et al., 2015, Herráez et al., 2016, Tavares et al., 2016).

Material property Value

Fibre diameter
2Rf [mm] 0.006
Fibre volume fraction
ωf [%] 55.9
Young’s moduli

Ef
11 [MPa]

Ef
22 [MPa]

225000
15000

Poisson’s ratio

νf12 [-] 0.2

Shear moduli

Gf
12 [MPa]

Gf
23 [MPa]

15000
7000

Mode I fracture toughness

Gf
Ic [N/mm] 0.05

Weibull parameters
σ0 [MPa]
m0 [-]
L0 [mm]

4275
10.7
12.7

Density
ρf [kg/mm3] 1.78 × 10−6

823

Table 2: Matrix material properties (Melro et al., 2013b, Arteiro et al., 2014, 2015).

Material property Value

Young’s modulus
Em [MPa] 3760
Poisson’s ratio
νm [-] 0.39
Plastic Poisson’s ratio
νpm [-] 0.3
Tensile strength
Xt

m [MPa] 93
Compressive strength
Xc

m [MPa] 180
Mode I fracture toughness
Gm
Ic [N/mm] 0.277

Density

ρm [kg/mm3] 1.3 × 10−6

824

825

826

827

828

829
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Table 3: Fibre-matrix interface properties (Melro et al., 2013b, Arteiro et al., 2014, 2015).

Material property Value

Interface stiffness

K [N/mm
3
] 108

Interface strengths
τ01 [MPa]
τ02 [MPa]
τ03 [MPa]

75
75
50

Interface fracture toughnesses
GIc [N/mm]
GIIc [N/mm]
GIIIc [N/mm]

0.002
0.006
0.006

Mixed-mode interaction parameter
ηBK [-] 1.45
Friction coefficient
µτ [-] 0.52

Table 4: Size of the RVE vs. normalised numerical predictions of the peak stress.

In-plane dimension, H [µm] Number of fibres, nf [#] Normalised peak stress,
σcu
11

σmax
11

[%]

5Rf = 15 4 77.7
10Rf = 30 16 82.5
15Rf = 45 36 86.8
20Rf = 60 64 90.4
25Rf = 75 120 99.2
30Rf = 90 168 100.0

Table 5: Quantitative results for different mesh densities.

Element size [µm] N. of elements [#M] Normalised peak stress,
σcu
11

σmax
11

[%] Computational time, C [h]

≈ Rf/2 ≈ 1.1 51.2 108.5
≈ Rf/3 ≈ 3.4 75.5 140.0
≈ Rf/4 ≈ 6.0 94.4 191.8
≈ Rf/5 ≈ 7.2 99.4 243.9
≈ Rf/6 ≈ 9.4 100.0 317.4

Table 6: Numerical predictions of the mean compressive Young’s modulus, Ec
11
, mean peak stresses, σcu

11
, and their corresponding

standard deviations, for different von Mises concentration parameters, κ.

κ = 1500 κ = 2000 κ = 3000 κ = 4000 κ = 6000 κ = 8000 κ = ∞
Ec

11 [GPa] 111.5±0.3 115.6±0.3 118.4±0.7 119.8±0.6 122.2±0.3 123.2±0.2 125.1±0.1

σcu
11 [MPa] 1785±133.38 1907±120.19 2148±86.5 2589±167.6 3048±103.0 3561±53.3 5114±122.7

Table 7: Mean estimated results associated with the kink-band width, wkb, fibre rotation angle, ϕkb, and their corresponding
standard deviations, for different von Mises concentration parameters, κ.

κ = 1500 κ = 2000 κ = 3000 κ = 4000 κ = 6000 κ = 8000

wkb [µm] 50.17±0.88 50.69±1.62 49.43±1.11 52.77±3.47 49.88±2.83 51.89±3.31

ϕkb [◦] 23.87±0.49 23.44±0.57 23.19±0.50 22.44±0.47 21.91±0.31 20.73±0.18
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Abstract

Initial fibre misalignment is recognised to be one of the precursors leading to longitudinal compressive

failure in fibre-reinforced composites. Thus, to properly model their mechanical behaviour, an accurate spa-

tial representation of the fibrous reinforcements must be assured. This work presents a three-dimensional

micromechanical framework that is capable of analysing in detail the longitudinal tensile and compressive

failure mechanisms which are inherent in unidirectional composites. This is achieved through the incorpo-

ration of initial fibre waviness via a combination of a stochastic process and an optimisation procedure. A

robust micro-scale framework is developed by assigning, to both constituents and their interface, proper ther-

modynamically consistent damage models. Several microstructures having different degrees of misalignment

are modelled and a clear trend is observed for the longitudinal compressive load case, i.e. by increasing initial

fibre misalignment, the overall performance of the material decreases. In contrast, the models subjected to

longitudinal tension exhibit a similar overall response, despite the misalignment. However, local mechanisms

seem to change with the degree of friction and fibre misalignment, but these smaller-scale mechanisms do

not play a decisive role on the overall longitudinal tensile performance of the material.

Keywords: Composite materials, Fibre misalignment, Fracture, Micromechanics, Stochastic

1. Introduction1

As a direct consequence of increasing computational power, in the last decade, computational microme-2

chanics has emerged as an accurate and reliable numerical tool to evaluate both linear and non-linear geo-3

metrical and material behaviour of heterogenous materials. Unlike analytical/semi-analytical methods, the4

several complex dissipative phenomena, including local plastic deformation and degradation of the matrix5

constituent, fibre-matrix interface debonding, and fibre fracture, are accounted for and their interaction can6

be evaluated.7
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Compressive failure of composite materials caused by fibre kinking is classified as a complex, multi-staged8

phenomenon, due to the interacting mechanisms and instabilities present at peak load, which span over several9

length-scales of the material (Argon, 1972, Budiansky, 1983, Budiansky, Fleck, 1993, 1994, Moran et al.,10

1995, Jumahat et al., 2010, Costa et al., 2020). There is compelling evidence that this mode of failure is11

mostly driven by not only the initial misalignment of the fibres, but also by the shear yield strength of12

the matrix (Moran et al., 1995, Bažant et al., 1999, Vogler et al., 2001, Gutkin et al., 2010b, Pinho et al.,13

2012). The material is loaded elastically until the first appearance of non-linearity, which is due to the initial14

rotation of the fibres, permitted by the plastic response of the matrix. This is also known as “incipient15

kinking” (Moran et al., 1995). Due to this rotation and to the formation of microcracks in the resin, the16

peak load (instability) is reached, forming an initial kink-band. The progressive shearing/bending stresses in17

the material causes its continuous degradation, until this fibre rotation is halted, through a process referred18

as fibre lock-up, which eventually leads to the steady-state broadening of the kink-band, causing a constant19

stress plateau under compression, referred as the residual compressive strength of the material (Moran et al.,20

1995, Zobeiry et al., 2015, Dalli et al., 2020). Kink-bands are characterised by an angle, βkb, with respect21

to the through-thickness direction (normal to the load), a certain width, wkb, having the fibres rotated from22

an angle, ϕkb, to the global longitudinal direction. Figure 1 shows a micrograph of a formed kink-band in23

an UD cross-ply laminate, as well as a schematic representation of a longitudinal compressive stress-strain24

curve, highlighting the main load level stages.25

[Figure 1 about here.]26

Several computational micromechanical models have been reported, in an attempt to model longitu-27

dinal compressive failure in UD composite materials by fibre kinking. Initial insights were provided us-28

ing two-dimensional (2D) models, namely on the types of failure mechanisms associated with compres-29

sive failure (Gutkin et al., 2010a), the interaction between fibre kinking and fibre-matrix interface debond-30

ing (Prabhakar, Waas, 2013), and on the estimation of the kink-band angle and compressive strength of31

the material (Kyriakides et al., 1995, Vogler et al., 2001). The limitations of 2D models were addressed32

by Hsu et al. (1998), where a bigger degree of discrepancy between 2D and three-dimensional (3D) models33

was observed in the post-peak regime. Fortunately, modern computational resources have enabled the gen-34

eration of 3D high-fidelity numerical models. Yerramalli, Waas (2004) conducted 3D Finite Element (FE)35

analyses to show the importance of fibre bending stiffness on the overall compressive strength of the mate-36

rial, as well as the presence of a complex triaxial stress state in the matrix region. Later, Bai et al. (2015),37

incorporating a more robust elasto-plastic damage model for the resin (Melro et al., 2013a), subjected dif-38

ferent Representative Volume Elements (RVEs) to several loading conditions, i.e. transverse on- and off-axis39

compression, and pure longitudinal compression. They were able to obtain some preliminary results con-40

cerning kink-band widths and fibre rotation angles, concluding that the interplay between the shear stresses,41

presented in the matrix material, and microbuckling, caused by the initial, idealised fibre misalignment,42

provides a sound explanation to the fibre kinking failure mode. Bishara et al. (2017) conducted simpler mi-43
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cromechanical simulations, considering a single array of fibres, in order to assess the influence of the artificial44

imperfection type on the resulting kinking mechanism, the effective determination of the kink-band angle,45

and the effect of different fibre strengths on the kink-band angle. Recent studies using a sinusoidal swept46

single fibre model, subjected to Periodic Boundary Conditions (PBCs), were undertaken (Naya et al., 2017,47

Herráez et al., 2018, 2020) to give more insight into the effect of the initial fibre misalignment angle on the48

kink-band width and fibre rotation angles, by comparing the results with well known analytical models.49

As remarked by Hill (1963), an RVE is a medium which characterises the microstructure of the material,50

being statistically representative of the mixture of constituents. It has a dimension that contains a sufficient51

number of inclusions/reinforcements, making a single fibre model non-representative of the actual material.52

Moreover, the application of such PBCs force the kink-band angle to be zero, i.e. βkb = 0. Finally, the use53

of the maximum homogenised stress, obtained by using First Order Homogenisation Techniques (FOHT),54

may not be a proper way to measure the actual strength of the material, since, as strain localisation occurs,55

the separation of scales (Hashin, 1983) is intrinsically violated, making the solution dependent on both BCs56

applied and size of the considered medium. For a concise review on the analytical, semi-analytical, and nu-57

merical methodologies which treat longitudinal compressive failure in fibre-reinforced composites, addressing58

both phenomenology and failure mechanisms involved, the reader is referred to Daum et al. (2019).59

Modelling fibre-dominated damage, in UD composites, is a complex task due to the acting damage mech-60

anisms which arise when submitted to a longitudinal tensile loading scenario. There are several important61

factors when modelling the longitudinal tensile behaviour of a composite, namely: i) capture the formation62

of fibre break clusters, which later leads to the unstable final failure of the material (Scott et al., 2011, 2012,63

Thionnet et al., 2014); ii) capture the stochastic nature of the tensile strength of carbon fibres (Lamon, 2007,64

Tanaka et al., 2014, Torres et al., 2017); iii) capture the complete ineffective and debond length of a bro-65

ken fibre; and iv) treat fibre fracture as a dynamic event, where the internal strain energy released by the66

reinforcements is converted into kinetic energy (Swolfs et al., 2015a, Tavares et al., 2019b). Figure 2 shows67

a computed tomography (CT) image of a cross-ply laminate, which failed under longitudinal tension, high-68

lighting the pulled-out 0◦ fibres and the corresponding perpendicular fracture plane (Laffan et al., 2010), and69

a synchrotron radiation computed tomography (SRCT) image of disperse and co-planar clusters of broken70

fibres (Swolfs et al., 2015a).71

[Figure 2 about here.]72

There are several models which are available in literature that are capable of estimating the longitudinal73

tensile strength of UD carbon fibre-reinforced composite materials, hybridised or not, being able to tackle most74

(if not all) of the aforementioned features governing longitudinal tensile failure (Swolfs et al., 2015c,b, 2016,75

Tavares et al., 2016, 2017, St-Pierre et al., 2017, Guerrero et al., 2018, Tavares et al., 2019b). These often rely76

on simpler micromechanical models, where fibre fracture is taken into account using maximum stress criteria.77

In contrast, the work of Tavares et al. (2016) reports the usage and implementation of thermodynamically78
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consistent damage models, providing enough detail to capture the micro-scale failure mechanisms which79

govern longitudinal tensile failure.80

Most of the aforementioned micromechanical models make reference to an implicitly assumed, constant81

in space, initial fibre misalignment, making such predictions unsuitable for real case scenarios, since to em-82

pirically quantify fibre misalignment, a statistically representative parameter is needed. Variable, spatially83

distributed fibre waviness, has long been recognised as an important consideration, and investigations into the84

stochastic properties of its magnitude and distribution have been reported (Hillig, 1994, Clarke et al., 1995,85

Creighton et al., 2001, Requena et al., 2009, Sutcliffe et al., 2012, Pain, Drinkwater, 2013, Mizukami et al.,86

2016, Wilhelmsson, Asp, 2018). Recently, Sebaey et al. (2019) developed an integrated approach to statisti-87

cally represent fibre misalignment at the scale of the constituents, where the deviations in fibre angles and88

corresponding footprints are first determined using CT scans, and then the data is statistically fitted fol-89

lowing a von Mises distribution, characterised by the corresponding concentration parameter. A post-study90

conducted by Catalanotti, Sebaey (2019) involved the proposal of a semi-stochastic algorithm where initial91

fibre misalignment is taken into account by combining the stochastic process and an optimisation procedure.92

Here, a 3D FE micromechanical framework is built to analyse in detail, the longitudinal failure of com-93

posite materials. To describe the non-linear behaviour of the constituents and their interface, appropriate94

constitutive material models are implemented along with an algorithm for the generation of high-fidelity95

RVEs, accounting for a stochastic-based fibre misalignment. To the authors’ knowledge, this is the first time96

that a numerical micromechanical framework is built together, to investigate the effect of a stochastic-based97

initial fibre waviness on the longitudinal failure of unidirectional carbon fibre-reinforced composite materials.98

Additional analyses are undertaken to investigate the effect of considering frictional cohesive surfaces on the99

damage tolerance of the composite.100

2. Computational framework101

The developed 3D FE micromechanical framework is composed of detailed micromechanical representa-102

tions of the material, henceforth described as RVEs, having different degrees of fibre misalignment and the103

same fibre volume fraction, ωf . For brevity, only pertinent aspects of the RVE generation and the constitutive104

material models used, are presented, where several important considerations are discussed.105

2.1. Generation of the RVEs106

The generation of the RVEs involves the measurement of the angle between the projection of the tangent107

vector of the fibres and a given direction (Catalanotti, Sebaey, 2019). Figure 3 shows the three spatial108

descriptors, which the algorithm makes use of, that characterise fibre misalignment, where x, y, and z109

represent the longitudinal, transverse, and through-thickness directions of a typical UD lamina, respectively,110

and ~i, ~j, and ~k the unit vectors in each corresponding direction.111

[Figure 3 about here.]112
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The three spatial descriptors, shown in Figure 3, are the three misalignment angles, which are defined113

as: φyx, the angle between ~i and the projection of the tangent vector to the fibre, ~ν, onto the Oxz plane;114

φzx, the angle between ~i and the projection of the tangent vector to the fibre, ~ν, onto the Oxy plane;115

and αxy, the angle between ~j and the the projection of the tangent vector to the fibre, ~ν, onto the Oyz116

plane (Catalanotti, Sebaey, 2019). Both in-plane and out-of-plane misalignment angles, φyx and φzx, re-117

spectively, are of importance when conducting RVE-based numerical simulations, and may be experimentally118

characterised using appropriate experimental techniques (Sutcliffe et al., 2012, Sebaey et al., 2019). However,119

there is no relevance on characterising the remaining misalignment angle, αxy, since, in principle, it does not120

have any practical importance when submitting the RVEs to the stress states mentioned in this work.121

For introducing the waviness of the fibres via a stochastic process, the fibres are modelled as Bézier curves,122

whose initial control points are determined by using a 2D fibre distribution algorithm (Catalanotti, 2016).123

These control points can then be moved in a random fashion, for a desired number of times, in a plane124

perpendicular to ~i, creating the 3D geometrical variability, i.e. fibre waviness. Periodicity of the virtual125

microstructure is also achieved by computing the proper distance between the control points of different126

fibres and assuring continuity between the first and last control point of the same fibre, when translated in127

the longitudinal direction by the length of the RVE (Catalanotti, Sebaey, 2019). The radial coordinates are128

chosen in order to ensure that the distribution of the misalignment angles match the empirical/theoretical129

ones (Sebaey et al., 2019). It was assumed the distribution follows the general von Mises distribution, whose130

probability density function (pdf) reads:131

ě(φ, µ, κ) =
1

2πI0(κ)
eκcos(φ)−µ, (1)

where φ is equal either to the in-plane or out-of-plane misalignment angle, µ is the mean direction, κ is the132

concentration parameter, and I0 is the modified Bessel function of the first kind and order 0. Since the mean133

direction represents the longitudinal (x-direction) direction of the composite, µ is assumed to be equal to134

0, and therefore the concentration parameter, κ, is the only variable which characterises the distribution.135

By minimising the standard errors (likelihood and probability), it is possible to achieve a remarkable match136

between the experimental/theoretical and numerical distributions. Figure 4 shows an example of the pdf137

of theoretical and numerical distributions, the Q-Q plot, and the associated front and isometric views of a138

generated RVE with κ = 2000.139

[Figure 4 about here.]140

For modelling perfectly aligned fibres, κ is equal to ∞, and for modelling very wavy fibres, κ takes a small141

value, e.g. κ = 500. For a complete description of the algorithm used to generate 3D RVEs incorporating142

fibre waviness, the reader is referred to Catalanotti, Sebaey (2019).143
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2.2. Constitutive material models144

2.2.1. Carbon fibres145

The carbon fibres are modelled as transversely isotropic and considered to behave linear-elastically up146

to failure. Degradation of the stiffnesses of the material is defined by implementing a thermodynamically147

consistent isotropic damage model, which is only activated by the longitudinal stress component. The damage148

activation function is given as:149

F d
f = φd

f − rf =
σ̃11

Xt
f

− rf , (2)

where φd
f is the loading function, σ̃11 is the undamaged longitudinal applied stress, Xt

f is the longitudinal150

tensile strength of the fibre, and rf is an internal variable related to the damage evolution law of the fibre, df .151

As discussed by several authors (Swolfs et al., 2015c,b, Tavares et al., 2016, Swolfs et al., 2016, Tavares et al.,152

2017), the tensile strength of the carbon fibres has an intrinsic stochastic nature, mostly due to the flaws153

which are present on the surface of the fibres (Lamon, 2007, Tanaka et al., 2014, Torres et al., 2017), which154

needs to be taken into account. Here, these are accounted for through the Weibull distribution (Weibull,155

1951):156

P (σ) = 1 − exp

[

−
(

L

L0

)(

σ

σ0

)m0
]

, (3)

where P represents the failure probability at the applied stress σ, σ0 and m0 are the Weibull strength and157

parameter, respectively, and L0 and L are the reference and gauge length, respectively. Modifying equation (3)158

and generating a random scalar in the interval ]0, 1[, X , that represents the failure probability, the tensile159

strength can be estimated following:160

Xt
f = σ0

[

− L0

L
ln(1 − X )

]1/m0

. (4)

The Weibull distribution is probably the most used statistical distribution for fibre strength. How-161

ever, it has been shown that it is not the best suited for carbon and glass fibres (Gulino, Phoenix, 1991,162

Beyerlein, Phoenix, 1996, Curtin, 2000), leading to an overprediction in both tensile strength and failure163

strain (Tavares et al., 2017). The correct definition of the proper fibre tensile strength distribution is out of164

the scope of the current work, thus the Weibull distribution is used due to its simplicity in implementation.165

To avoid damage localisation and to control the energy dissipated in the fracture process, Bažant and166

Oh’s crack band model (Bažant, Oh, 1983) is implemented to regularise the computed dissipated energy:167

Ψf =

∫ ∞

1

∂Gf

∂df

∂df
∂rf

drf =
Gf
Ic

lef
, (5)

where Gf is the complementary free energy density of the fibrous material, Gf
Ic is the mode I fracture toughness168

of the fibres, and lef represents the characteristic element length.169
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The damage evolution law for the fibres is given by:170

df = 1 − eAf (1−rf )

rf
, (6)

where Af is a mesh regularisation parameter which conveys the numerical model with mesh size indepen-171

dency (Bažant, Oh, 1983) and must be computed for each finite element by solving equation (5).172

The mechanical properties of the AS4 fibres considered here are shown in Table 1 and were taken173

from Soden et al. (1998), Bai et al. (2015), Herráez et al. (2016), Tavares et al. (2016).174

[Table 1 about here.]175

For more details on the damage model, the reader is referred to Tavares et al. (2016).176

2.2.2. Epoxy matrix177

Previous studies (Ghorbel, 2008) have shown that both the Drucker-Prager and Mohr-Coulomb constitu-178

tive material models are not able to properly model the representative behaviour of an epoxy resin, namely179

under the presence of triaxial stress states. A more representative elasto-plastic material model, proposed180

by Melro et al. (2013a), is used here to simulate the behaviour of the matrix constituent.181

The model assumes that the matrix behaves in a linear-elastic fashion until the following paraboloidal182

yield criterion, originally proposed by Tschoegl (1971), is met:183

Φ(σ, εpe) = 6J2 + 2(σm
Yc

− σm
Yt

)I1 − 2σm
Yc
σm
Yt
, (7)

where σm
Yt

and σm
Yc

are the absolute values of the tensile and compressive yield strengths, I1 = tr(σ) is the184

first invariant of the stress tensor and J2 = 1
2s : s is the second deviatoric stress tensor (s) invariant. In order185

to correctly define the plastic deformation under the presence of a hydrostatic pressure, a non-associative186

flow rule is defined. Both tensile and compressive yield strengths depend on the equivalent plastic strain, εpe:187

εpe =

√

1

1 + 2νpm
2 ε

p : εp, (8)

where νpm is the plastic Poisson’s ratio of the matrix.188

The yield surface presented in equation (7) depends only on the tensile (σm
Yt

) and compressive (σm
Yc

) yield189

strengths which are both affected by hardening:190

σm
Yt

= σm
Yt

(εpe), σm
Yc

= σm
Yc

(εpe). (9)

Figure 5 shows the hardening curves used in the plasticity model in both tension and compression.191

[Figure 5 about here.]192
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Damage is defined by using a model developed within the framework of thermodynamically admissible193

processes. Initiation of damage is computed with the following failure criterion (Melro et al., 2013a):194

F d
m = φd

m − rm =
3J̃2

Xc
mXt

m

+
Ĩ1(Xc

m −Xt
m)

Xc
mXt

m

− rm, (10)

where φd
m is the loading function, Xc

m and Xt
m represent the compressive and tensile strengths of the material,195

respectively, and rm is an internal variable related to the matrix damage variable. Both invariants (J̃2 and196

Ĩ1) are determined using the effective stress tensor, i.e. the stress tensor calculated using the undamaged197

stiffness tensor. The damage variable is given by:198

dm = 1 − eAm(3−
√

7+2r2m)

√

7 + 2r2m − 2
, (11)

where Am is a parameter that must be computed for each element of the finite element mesh of the matrix199

material. To avoid mesh size dependency problems, Bažant and Oh’s crack band model (Bažant, Oh, 1983)200

was also implemented, making use of the mode I fracture toughness of the epoxy, Gm
Ic and corresponding201

characteristic element length, lem, to regularise the computed dissipated energy (Bažant, Oh, 1983):202

Ψm =

∫ ∞

1

∂Gm

∂dm

∂dm
∂rm

drm =
Gm
Ic

lem
, (12)

where Gm is the complementary free energy density of the matrix material.203

Table 2 shows the mechanical properties used to model the epoxy. For more information regarding the204

constitutive material model, the reader is referred to Melro et al. (2013a).205

[Table 2 about here.]206

This material constitutive model has exhibited promising results when modelling the behaviour of epoxy207

resins under a variety of loading conditions (Melro et al., 2013b, Arteiro et al., 2014, 2015, Tavares et al.,208

2016, Varandas et al., 2017, 2019, Sun et al., 2019b, Arteiro et al., 2019, Chen et al., 2019, Meer van der et al.,209

2019, Dalli et al., 2019, Varandas et al., 2020a,b, Dalli et al., 2020).210

2.2.3. Fibre-matrix interface211

Due to the intricate mesh required for these RVEs, the interfaces between fibres and matrix were modelled212

using cohesive surfaces, rather than cohesive elements, as it does not require mesh compatibility between the213

two constituents. A Mohr-Coulomb friction condition has also been considered for post-failure of the cohesive214

bond between the two constituents. Once the cohesive stiffness starts degrading, friction starts contributing215

to the shear stresses. This feature will capture the pull-out resistance between fibre and matrix caused mostly216

by the rough failure surface on the fibre, after interfacial failure, and it is governed by the friction coefficient,217

µτ .218
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Initiation of fibre-matrix interface damage is predicted using a stress-based quadratic failure criterion (Lin Ye,219

1988):220

φd
int =

(

〈τ3〉
τ03

)2

+

(

τ2
τ02

)2

+

(

τ1
τ01

)2

, (13)

where τ1, τ2, and τ3 represent the components of traction and τ01 , τ02 , and τ03 are the corresponding inter-221

face strengths. A bi-linear traction-separation behaviour is assumed, and the fibre-matrix interface damage222

variable is computed as (Aba, 2018):223

dint =
δfint(δ

max
int − δ0int)

δmax
int (δfint − δ0int)

, (14)

where, δfint = 2Gint
c /τ0eff, with Gint

c as the mixed-mode fracture toughness (Benzeggagh, Kenane, 1996) and τ0eff224

as the effective traction at damage initiation. δmax
int refers to the maximum value of the effective displacement225

attained during loading history and δ0int is the displacement at damage initiation. Table 3 shows the properties226

used to model the interfaces.227

[Table 3 about here.]228

2.3. Finite element modelling229

Several RVEs having different concentration parameters, κ, are considered (see equation (1)). As remarked230

by Hill (1963), an important aspect in RVE-based modelling, is the size of the RVE and boundary conditions231

(BCs) imposed. The applied BCs should affect the overall mechanical performance of the material, namely232

during softening, existing an interplay between the BCs and size of the RVE (Triantafyllidis, Bardenhagen,233

1996, Gitman et al., 2007, Galli et al., 2008). Since Periodic Boundary Conditions (PBCs) yield an enor-234

mous computational cost, as well as, in longitudinal compression, they constrain the kink-band angle a235

priori (Gutkin et al., 2010a), standard BCs are used, where direct constraints are applied to the bound-236

aries of the RVEs. Moreover, by considering a sufficiently large FE model, edge and face effects can be237

neglected (Kanit et al., 2003, Stroeven et al., 2004, Gitman et al., 2006, Sun et al., 2019b). With reference238

to Figure 6, the following BCs are applied for each loading condition (Hsu et al., 1998, Vogler et al., 2001,239

Tavares et al., 2016, Bishara et al., 2017):240

• Longitudinal compression - The longitudinal (x-direction) and through-thickness (z-direction) axial241

displacements of face 1 are fixed. Tie Constraints are applied between Face 3 and Face 4. A longitudinal242

(x-direction) compressive velocity-type BC is applied to face 2. Faces 5 and 6 are free to deform.243

• Longitudinal tension - The longitudinal axial (x-direction) displacements are fixed on Face 1 and a244

longitudinal (x-direction) tensile velocity-type BC is applied to Face 2. All other faces are free to245

deform to account for Poisson’s contraction.246
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The dimension of the RVEs in the longitudinal direction (x-direction) is denoted by Lx, and the in-plane247

dimensions (y- and z-directions) by H (see Figure 3).248

[Figure 6 about here.]249

The micromechanical simulations were conducted using the FE solver Abaqus R©/Explicit (Aba, 2018).250

Damaged elements having df > 0.9999 ∨ dm > 0.9999 (see equations (6) and (11)) were removed through-251

out the numerical simulations to prevent excessive element distortion. The models ran on one node (20252

CPUs @ 3.4 GHz of Intel R© Haswell R©) having 512 GB of RAM. The Variable Mass Scaling capability of253

Abaqus R©/Explicit (Aba, 2018) was used in order to reduce computational cost, by scaling all masses of the254

elements, to ensure that they all have the same time increment. With that being said, due to the peak load255

instability and to its kinetic nature, load stages beyond peak load, such as kink-band broadening, could not256

be captured using the present framework.257

Due to its complex geometry, the epoxy matrix material is modelled using C3D4, three-dimensional linear258

tetrahedrons. The fibres are modelled using C3D8R, reduced integration, linear hexahedrons, combined with259

C3D6R, reduced integration, linear triangular prisms. The orientation of each element is computed by: (i)260

obtaining the coordinates of the respective centroid of the ith element, Ci={xi, yi, zi}T ; (ii) finding the261

nearest point of the middle line of the associated fibre, i.e. of the associated Bézier curve, to the centroid262

Ci, with coordinates Cf={xf , yf , zf}T ; and (iii) calculating the unit vector which is tangent to the curve263

in Cf , i.e. f̂ , and assign it to the orientation of the ith element. Figure 7 shows the longitudinal direction264

(1-direction) of each element, in a highly misaligned fibre.265

[Figure 7 about here.]266

3. Numerical results267

3.1. Longitudinal compression268

This section aims to evaluate the longitudinal compressive failure through fibre kinking. Different RVEs,269

having random microstructures with several degrees of misalignment were generated following equation (1),270

with κ = 1500, κ = 2000, κ = 3000, κ = 4000, κ = 6000, κ = 8000, and κ = ∞. Figure 8 shows the271

pdf distribution of the misalignment angles for each von Mises concentration parameter considered in this272

section. Certain outputs related to compressive failure are analysed in detail, making several quantitative273

and qualitative parallelisms with experimental observations. Moreover, the effect of fibre-matrix interfacial274

friction is also analysed. It must be noted that it is not feasible to compare these numerical results with275

analytical/semi-analytical models which estimate the compressive strength of the material, since most of276

these assume a constant in space initial fibre misalignment angle.277

[Figure 8 about here.]278
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The following two sections present preliminary results assessing the influence of the RVE size and mesh279

density on the peak stress of the material, as well as global and local features exhibited on a material loaded280

in longitudinal compression.281

3.1.1. Effect of RVE size282

Several analyses were conducted to evaluate the influence of the size of the RVE and its mesh size on the283

overall mechanical performance of the material. Firstly, RVEs with a refined mesh and different dimensions284

were virtually tested. By considering a constant aspect ratio of the RVE (ratio between the length and in-285

plane dimensions of the RVE, Ar = Lx/H), i.e. Ar = 4, the in-plane dimensions considered were 5, 10, 15, 20,286

25, and 30 times the radius of a single fibre. Figure 9 and Table 4 show the normalised numerical predictions,287

with respect to the peak stress associated with the largest RVE. Only one simulation was conducted per size,288

for κ = 4000.289

[Figure 9 about here.]290

[Table 4 about here.]291

The results show that when increasing the size of the RVE, the peak load increases as well. Since the292

smallest RVEs could not accommodate the formation of a kink-band, the material failed prematurely mainly293

due to interfacial debonding. The results are considered geometrical independent for RVEs with H > 25Rf ,294

where the peak load represented ≈ 99% of the RVE having the largest dimensions. From the concluded295

above, in-plane dimensions and total length of the RVE of approximately H = 75 µm and Lx = 300 µm,296

respectively, are chosen for the forthcoming numerical simulations.297

3.1.2. Influence of mesh density298

To ensure mesh independent results, FE meshes of different densities were considered, for an FE model299

with κ = 4000, and pertinent results are presented in Figure 10 and Table 5.300

[Figure 10 about here.]301

[Table 5 about here.]302

Mesh independence was achieved with models containing over 7 million elements. Therefore, a mesh303

density with an average value of Rf/5 was considered for the forthcoming simulations.304

3.1.3. Global mechanical response305

Figure 11 shows the numerical results associated with an RVE with κ = 3000, where a representative306

stress-strain curve is shown (see Figure 11a) and corresponding contour plots of the equivalent plastic strain307

of the epoxy matrix (see Figure 11b), associated with three different stages of the non-linear process: (A)308

initiation of plasticity; (B) just before peak load instability, where the kink-band is almost formed; and (C1)309

and (C2) complete formation of the kink-band and initiation of the dynamic process.310

11



[Figure 11 about here.]311

To assess the effect of the initial fibre misalignment on the longitudinal mechanical performance of the312

material, it is presented in Figure 12a the representative stress-strain curves for different concentration313

parameters, κ, all normalised with respect to the results associated with κ = ∞. Moreover, in Figure 12b314

and Table 6, the results associated with the effect of the initial fibre misalignment on both overall longitudinal315

compressive Young’s modulus and strength of the material are shown.316

[Figure 12 about here.]317

[Table 6 about here.]318

The normalised stress vs. applied strain curves are presented in Figure 12a (where σ11 and ε11 represent319

the longitudinal stress and strain, respectively, and σcu
11∞ represents the compressive peak stress associated320

with the RVE with κ = ∞), which shows that both compressive Young’s modulus, Ec
11, and peak stress,321

σcu
11 , depend on the initial fibre misalignment angle distribution, quantified by κ. As κ increases (less mis-322

alignment), both mechanical properties increase. The RVEs having the highest misalignment (κ = 1500)323

yielded a peak stress of ≈ 32% that of the idealised RVE having perfectly aligned fibres (κ = ∞). The324

decrease in peak stress is explained by the higher initial micro-buckling introduced in several regions of the325

fibres along the length of the RVEs, causing an earlier degradation of the epoxy matrix and fibre-matrix326

interface, thus promoting an earlier kinking of the reinforcement. Moreover, for this material system, the327

quantitative results show that the variation in peak stress with the distribution of the misalignment angles328

fits better with a rational type of fit (σcu
11 (κ−1) = (p1κ

−1 + p2)/(κ−1 + q1), where p1 = 667.30, p2 = 1.00 and329

q1 = 1.95 × 10−4), and the corresponding coefficient of determination is approximately R2
rat = 0.991. The330

compressive Young’s modulus can be assumed to vary in a linear fashion (Ec
11(κ−1) = n1κ

−1 + n2, where331

n1 = −2.05 × 104 and n2 = 125.40), where the corresponding coefficient of determination is approximately332

R2
lin = 0.994, as shown in Figure 12b.333

Comparing the results with the experimental values of the longitudinal compressive strength of several334

composite material systems, having similar fibre volume fractions, such as AS4/8552 (Xc ≈ 1530 MPa),335

IM7/8552 (Xc ≈ 1689 MPa), and IM10/8552 (Xc ≈ 1793 MPa) (Hexcel, 2016a) or IMA/M21 (Xc ≈ 1500336

MPa), AS7/M21 (Xc ≈ 1560 MPa), and IM7/M21 (Xc ≈ 1790 MPa) (Hexcel, 2016b), it is evident that337

only the RVEs having fibres with a more realistic initial fibre misalignment angle distribution (Sebaey et al.338

(2019), found for an IM7/8552 and an IM7/PEEK UD material systems, a von Mises concentration parameter339

of κ = 1582.91 and κ = 2069.72, respectively) yielded reasonable longitudinal compressive strengths. In340

contrast, as shown in Figure 13, the idealised RVE incorporating perfectly aligned fibres (κ = ∞), did not341

form a kink-band, due to the unrealistic spatial representation of the fibres, but a sort of crushing scenario, in342

which the RVE failed at higher applied strains in a region near to the boundaries of the RVE, overpredicting343

the mechanical performance of the material.344
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[Figure 13 about here.]345

By considering the non-uniform variation of the fibre waviness along the RVE, when this waviness was346

relatively high, a local failure in the highest misaligned region was observed prior to ultimate failure. Figure 14347

shows the contour plots of the equivalent plastic strain (equation (8)), at different stages of the damage348

process, associated with an RVE with κ = 1500. The first appearance of non-linearity was in a region where349

the fibres were highly misaligned, leading to local damage propagation, and for a higher applied strain,350

catastrophic failure of the material.351

[Figure 14 about here.]352

Interestingly, some RVEs exhibited a wedge-shaped kink-band, as shown in Figure 15. This was also seen353

experimentally (Sun et al., 2019a, Wang et al., 2019), where, during compressive loading, localised areas of354

the material having smaller degrees of misalignment formed fibre kink-bands which act together to move a355

“wedge” of material upwards, thus leading to a different kink-band shape.356

[Figure 15 about here.]357

Even if fibre-matrix interfacial friction is expected to mostly affect the post-peak response, the effect of358

friction on the mechanical performance of the material, up to peak load, was studied. Two RVEs having359

different concentration parameters, i.e. κ = 2000 and κ = 8000 were analysed considering a frictionless360

(µτ = 0) interface. Figure 16a shows the longitudinal compressive reaction force vs. the applied displacement361

for the two RVEs having different interfacial friction coefficients. The difference in peak load is larger for the362

RVE having the highest degree of misalignment, exhibiting a difference in approximately 5%, where the less363

misaligned RVE did not show any substantial decrease in peak load, i.e. less than 0.01%. This is due to the364

amount of frictional energy that is dissipated during damage propagation (see Figure 16b). As shown, the365

amount of energy dissipated by friction is much greater for the case of the RVE with κ = 2000, in comparison366

to the RVE with κ = 8000. The RVEs with a frictionless interface still exhibit a level of energy dissipation,367

since the general contact algorithm implements friction with self-contact.368

[Figure 16 about here.]369

3.1.4. Kink-band width and fibre rotation angle370

The developed kink-band is characterised by certain features, namely its width, angle, and fibre rotation371

within the kink-band. There is strong empirical evidence which shows that for most thermoset-based com-372

posites, when the kink-band is formed (before softening), the fibres within the band rotate by an angle of373

15◦ 6 ϕexp
kb 6 30◦ (Soutis et al., 1993, Moran et al., 1995, Vogler, Kyriakides, 2001, Gutkin et al., 2010b). In374

contrast, the values measured for both kink-band angle and width have been more disperse, i.e. 5◦ 6 βexp
kb 6375

30◦ (Kyriakides et al., 1995, Vogler et al., 2001, Lee, Soutis, 2007) and 25 µm 6 wexp
kb 6 80 µm (Jelf, Fleck,376

1992, Jumahat et al., 2010, Laffan et al., 2012, Zobeiry et al., 2015), respectively. The kink-band width, wkb,377
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is shown to increase with increasing radii of the fibrous reinforcements, i.e. wkb ∝ Rf (Fleck et al., 1995,378

Budiansky et al., 1998), being approximately equal to 20 times the fibre radii (Soutis et al., 1993). The379

kink-band angle, βkb, is not explored in this work, since, even if the applied BCs allow for its qualitative380

representation (in Figure 14d: βkb ≈ 13◦), for its proper evaluation, for different κ, a thicker RVE is needed.381

The kink-band width, wkb, was computed as the distance between the two extreme points of the kink-382

band, which have the highest stress, as soon as the kink-band is formed, as suggested by Pimenta et al.383

(2009). The fibre rotation angle, ϕkb, was measured as the angle that the kink-band forms with a horizontal384

line. Figure 17 shows the local longitudinal stress along the kink-band for three different RVEs, having385

different degrees of misalignment, where both the kink-band width and fibre rotation angle are highlighted.386

Table 7 shows the estimated quantitative results of the kink-band width and fibre rotation angle, for different387

concentration parameters, κ. Moreover, the evolution of both wkb and ϕkb were quantified for the case388

presented in Figure 11 - (A): wkb ≈ 36 µm and ϕkb ≈ 6◦; (B): wkb ≈ 40 µm and ϕkb ≈ 12◦; and (C1 ≡C2):389

wkb ≈ 49 µm and ϕkb ≈ 23◦.390

[Figure 17 about here.]391

[Table 7 about here.]392

From the aforementioned results, the kink-band width was found to be independent of the initial fibre393

misalignment distribution. Looking at different fibre radii, a previous preliminary study conducted by the394

authors, presented by Catalanotti et al. (2020), showed that, for larger fibre radii and same material system,395

larger kink-band widths were estimated, i.e. wkb ≈ 80 µm. The fibre rotation angles seem to gradually396

decrease with κ, where smaller degrees of misalignment, at peak load, promote slightly smaller overall fibre397

rotation angles.398

Despite the initial individual misalignment that each fibre presents when the kink-band is developed, all399

tend to have the same orientation inside the kink-band. This can be verified in Figure 18, where different400

fibres within the same RVE, having different initial misalignment distributions, just after peak load, exhibit401

similar orientation angles in the kink-band.402

[Figure 18 about here.]403

3.2. Longitudinal tension404

To accurately capture the behaviour of composite materials in longitudinal tension, the RVEs must be405

large enough to capture both co-planar and disperse fibre break clusters. RVEs having an in-plane dimension406

of H ≈ 175 µm and a longitudinal dimension of Lx ≈ 500 µm, were generated. Due to the high computational407

cost that these FE models yield, and based on previous micromechanical simulations (Tavares et al., 2016,408

2017), the aforementioned dimensions were deemed sufficient. These RVEs encompass approximately 600409

fibres. For this stress state, RVEs having four different degrees of misalignment were considered: κ =410

4000, κ = 6000, κ = 8000, and κ = ∞ (see equation (1) and Figure 8) and only one simulation was411
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performed per configuration. The in-plane dimensions of each finite element are approximately 0.8 µm,412

whereas their longitudinal dimension is approximately lex = Lx/150 = 4 µm. As mentioned by several413

authors (Watson, Smith, 1985, Gulino, Phoenix, 1991, Tavares et al., 2017), the Weibull distribution may414

lead to overestimations of the fibre strength at short gauge lengths, however, a refined discretisation of the415

microstructure for such long RVEs is needed. Since the objective of this work is to analyse the effect of fibre416

misalignment on the behaviour of the material, a Weibull distribution was deemed to be sufficiently accurate417

to represent the stochastic distribution of the tensile strength of the fibres. Moreover, even if there are several418

methods to determine clusters of broken fibres (Sibson, 1973, Murtagh, Contreras, 2012), here it is chosen to419

evaluate the formation of fibre break clusters in a qualitative way.420

3.2.1. Global response and formation of fibre break clusters421

The longitudinal stress-strain curves for the four different RVEs are shown in Figure 19. For a better422

understanding of the in-plane fibre break clustering process, three different points (associated with κ = ∞),423

corresponding to different applied strains, are highlighted, as well as the corresponding contour plots of the424

fibre (equation (6)) and matrix (equation (11)) damage, in the critical section of the RVE: 1) initial broken425

fibres, as well as damage in the surrounding matrix; 2) development of a critical cluster, causing; 3) the426

catastrophic failure of the material.427

[Figure 19 about here.]428

The overall longitudinal tensile mechanical response of the material is not substantially affected by the429

initial fibre misalignment. Even if the Young’s modulus slightly decreases with decreasing κ (from E11 ≈ 125430

GPa to E11 ≈ 121 GPa), the peak stresses are all very similar. With increasing strain, the number of broken431

fibres increase, leading to the formation of small clusters of broken fibres. Despite the misalignment, the432

same cluster-type formation was observed for all RVEs, where the maximum number of fibre fractures was433

qualitatively the same.434

The majority of fibres did not fail in the same plane, leading to the formation of disperse clusters, where435

the locations of fibre breaks are observed in multiple locations along the length of the RVE (see Figure 20).436

[Figure 20 about here.]437

3.2.2. Local damage mechanisms438

Certain local mechanisms such as the ineffective length, debond length, stress profile along a fibre, and439

the effect of fibre-matrix interfacial friction and misalignment, are analysed in this section. These local440

mechanisms are assessed with no prior cracks in the matrix, since they play an important role in the stress441

recovery of the broken fibre and consequently in the debond length (Swolfs et al., 2015b). Moreover, there are442

several parameters which locally affect the tensile damage process, such as, distribution of the microstructure,443

material properties of the matrix constituent, and strain-rate (Zeng et al., 1997, Heuvel van den et al., 2000,444
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Zhao, Takeda, 2000, Hobbiebrunken et al., 2007, Foreman et al., 2009, Swolfs et al., 2015b, Tavares et al.,445

2017), where most of which were analysed by Tavares et al. (2019a) using the Spring Element Model (SEM).446

The ineffective length is a measure of the stress recovery length of the fibre and can be defined as twice447

the length at which the broken fibre is able to carry 90% of the applied stress (Rosen, 1964). To analyse this448

effect, fibres which were far from the boundaries of the RVEs were chosen to give a more detailed evaluation449

of the local damage mechanisms. Figures 21a and Figures 21b show the contour plots of the longitudinal450

stress and cohesive interfacial damage along the length of a single fibre inside an RVE with κ = ∞, for451

different friction coefficients and same applied strain, just after fibre breakage. Fibre breakage was promoted452

at its centre, by artificially decreasing the local tensile strength of the central elements to 4050 MPa.453

[Figure 21 about here.]454

By increasing the friction coefficient, both ineffective and debond length are reduced, leading to a higher455

stress recovery profile of the fibre, slowing down the damage process. Moreover, Figure 21c shows the456

numerical predictions of the volumetrically homogenised longitudinal stress along the single fibre, for different457

friction coefficients. After fibre fracture, different interfacial friction coefficients lead to slightly different stress458

profiles, where for the same longitudinal position, a greater homogenised stress can be observed, leading to459

an ineffective length of ≈ 68 µm and ≈ 55 µm, for a frictionless interface and for one considering µτ = 0.70,460

respectively.461

To locally assess the effect of fibre waviness, two different fibres positioned far from the boundaries of the462

RVE, having qualitatively a different degree of misalignment, were chosen inside an RVE with κ = 4000. In463

Figures 22a and 22b, the contour plots of the fibre-matrix interface damage and longitudinal stress, for the464

two different fibres are shown, and Figure 22c shows the volumetrically homogenised longitudinal stress of465

each cross-section, along each fibre, having qualitatively different degrees of misalignment for central elements466

having two different failure strains (ε0f = 0.6% in red and ε0f = 1.1% in blue). The friction coefficient was467

kept constant and equal to µτ = 0.52.468

[Figure 22 about here.]469

For both analysed failure strains, the ineffective length increases with initial fibre misalignment. The470

difference between the ineffective length of a fibre having a small and a high degree of misalignment, was471

approximately 10 µm, for both failure strains. Additionally, it was noted that the debonded length increases472

with increasing failure strain. The changes in the local damage mechanisms, due to initial fibre waviness, may473

alter the development of fibre break clustering, as they change the local stress redistribution to neighbouring474

fibres, after fibre breakage. However, the overall behaviour of the composite is not directly connected to the475

local effects acting on a single fibre, but a bigger collection of fibres, possibly making these individual damage476

mechanisms, which act in a particular region of a single fibre, negligible when comparing to the longitudinal477

tensile strength distribution.478
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4. Conclusions479

The importance of representing the realistic 3D microstructure of UD composite materials was addressed480

in this work, namely when the material is submitted to a longitudinal (fibre-direction) stress state. A481

computational finite element micromechanics framework was built, using a recent methodology to gener-482

ate the initial fibre misalignment via a combination of a stochastic process and an optimisation proce-483

dure (Catalanotti, Sebaey, 2019). RVEs having different degrees of misalignment were then generated to484

simulate the longitudinal compressive and tensile failure, and analyse the associated intrinsic damage mech-485

anisms.486

Different results associated with the compressive failure of the material by fibre kinking were obtained487

using the present framework. It was observed that by decreasing the degree of misalignment of the RVEs488

(increasing κ), both Young’s modulus and peak stress increased, where these results have shown to have a489

best fit using linear and rational functions, respectively. The RVEs having a more realistic κ (experimentally490

obtained by Sebaey et al. (2019)), yielded peak stresses comparable to empirical compressive strengths of491

different material systems (Hexcel, 2016a,b). Moreover, the present framework enabled the analysis of the492

kink-band width and of the fibre rotation inside the kink-band. The kink-band width was found to be493

independent of initial fibre waviness, in contrast, the fibre rotation angle was sensitive to it, where bigger494

degrees of initial misalignment lead to higher fibre rotation angles. Additionally, despite having different495

initial misalignment, after peak load, fibres which belong to the same RVE, exhibited similar orientation496

angles, in the kink-band region. Finally, friction seems to play a role for lower concentration parameters497

(higher misalignment), in which the energy dissipated by friction was higher.498

The failure mechanisms associated with a longitudinal tensile loading were also evaluated. By generating499

RVEs with different fibre misalignments, the overall performance of the material remained unaltered, i.e. the500

peak stress remained the same and the Young’s modulus changed slightly. Moreover, the RVEs exhibited501

similar damage patterns, leading to a similar type of fibre break clustering. More detailed analyses were502

undertaken to assess the effect of friction and degree of misalignment on the local load carrying capacity of503

the broken fibres. Friction was shown to decrease the ineffective length of the fibres, whereas misalignment504

increased the ineffective length, possibly leading to a faster progression of damage, changing the stress505

redistribution to neighbouring fibres. However, these local phenomena do not seem to dictate the final failure506

of the material, making the variation of the longitudinal tensile strength of the reinforcements the most507

influential parameter on the final failure of the material.508

Idealised representations of the microstructure cannot properly represent fibre kinking. In contrast,509

a more realistic spatial distribution (Catalanotti, Sebaey, 2019) guarantees a correct representation of the510

damage mechanisms associated with longitudinal compressive failure of UD materials. Despite the magnitude511

of the initial fibre misalignment, the longitudinal tensile behaviour and failure mechanisms were all very512

similar. There are certain limitations which were not assessed here. Fibre compressive and/or shear failure513

was not considered, due to a lack of strength characterisation testing of neat fibres, which can lead to an514
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overestimation of the local and overall performance of the material for small degrees of fibre misalignment.515

Finally, there is a need for developing analytical/semi-analytical models which are able to take into account516

the stochastic variability of the initial waviness of the reinforcements, thus yielding representative estimations517

of the parameters associated with compressive failure by fibre kinking.518

This study has shown that micromechanics can be treated as a reliable computational tool to analyse519

certain geometric and material variabilities which cannot be assessed using ply- or laminate-level analyses.520

Further studies can encompass the investigation of the effect of initial fibre waviness on the transverse tensile521

and compressive response, in- and out-of-plane shear loading scenarios, as well as other biaxial and triaxial522

loading conditions.523
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Bažant Z. P., Kim Jang-jay H., Daniel Isaac M., Becq-Giraudon Emilie, Zi G. Size effect on compression547

strength of fiber composites failing by kink band propagation // International Journal of Fracture. 1999.548

07, 1984. 103–141.549
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Varandas Lúıs F., Catalanotti Giuseppe, Melro António R., Falzon Brian G. On the importance of nest-774

ing considerations for accurate computational damage modelling in 2D woven composite materials //775

Computational Materials Science. feb 2020b. 172. 109323.776

Vogler T. J., Hsu S. Y., Kyriakides S. On the initiation and growth of kink bands in fiber composites. Part777

II: Analysis // International Journal of Solids and Structures. 2001. 38, 15. 2653–2682.778

Vogler T. J., Kyriakides S. On the initiation and growth of kink bands in fiber composites: Part I. experiments779

// International Journal of Solids and Structures. 2001. 38, 15. 2639–2651.780

Wang Ying, Chai Yuan, Soutis Costas, Withers Philip J. Evolution of kink bands in a notched unidirectional781

carbon fibre-epoxy composite under four-point bending // Composites Science and Technology. mar 2019.782

172. 143–152.783

Watson A. S., Smith R. L. An examination of statistical theories for fibrous materials in the light of784

experimental data // Journal of Materials Science. sep 1985. 20, 9. 3260–3270.785

Weibull Waloddi. A statistical distribution function of wide applicability // Journal of applied mechanics.786

1951. 103. 293–297.787

Wilhelmsson D., Asp L.E. A high resolution method for characterisation of fibre misalignment angles in788

composites // Composites Science and Technology. sep 2018. 165. 214–221.789

Yerramalli Chandra S., Waas Anthony M. The effect of fiber diameter on the compressive strength of790

composites - A 3D finite element based study // CMES - Computer Modeling in Engineering and Sciences.791

2004. 6, 1. 1–16.792

Zeng Qing-Dun, Wang Zhi-Li, Ling Ling. A study of the influence of interfacial damage on stress concentra-793

tions in unidirectional composites // Composites Science and Technology. jan 1997. 57, 1. 129–135.794

25



Zhao F.M, Takeda N. Effect of interfacial adhesion and statistical fiber strength on tensile strength of795

unidirectional glass fiber/epoxy composites. Part I: experiment results // Composites Part A: Applied796

Science and Manufacturing. nov 2000. 31, 11. 1203–1214.797

Zobeiry N., Vaziri R., Poursartip A. Characterization of strain-softening behavior and failure mechanisms798

of composites under tension and compression // Composites Part A: Applied Science and Manufacturing.799

2015. 68. 29–41.800

26



Figure 1: (a) Micrograph of a developed kink-band, highlighting its width, wkb, angle, βkb, and the fibre rotation angle, ϕkb,
from Jumahat et al. (2010) (with permission); (b) schematic representation of the longitudinal compressive response of an UD
composite material, highlighting the different loading stages.

Figure 2: (a) CT image of a fracture surface of a cross-ply laminate, from Laffan et al. (2010) (with permission) and (b) SRCT
image of disperse (left) and co-planar (right) fibre break clusters, from Swolfs et al. (2015a) (with permission).
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Figure 3: Spatial descriptors that characterise 3D fibre waviness (the green line portraits a representative fibre).

(a) pdf of the distribution. (b) Q-Q plot.

(c) Front view of the fibres. (d) Isometric view of the fibres.

Figure 4: Results associated with a 3D fibre distribution with κ = 2000.
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Figure 5: Hardening curves used in the epoxy matrix plasticity model (Melro et al., 2013b, Arteiro et al., 2014, 2015).

Figure 6: Representation of a misaligned micromechanical RVE, highlighting its different faces. White - epoxy matrix; red -
carbon fibres.

Figure 7: Representation of the main, 1-direction, of each element of a highly misaligned fibre.
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Figure 8: Distribution of the misalignment angles for each κ considered in this section.

Figure 9: Representative normalised longitudinal compression stress-strain curves for different in-plane dimensions of the RVE,
having a constant aspect ratio of Ar = 4. The red points indicate the corresponding normalised peak stress.
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(a) Normalised compressive stress-strain curves for different average mesh densities. The red points indicate the
corresponding normalised peak stress.

(b) Normalised compressive peak stress and corresponding computational cost vs. mesh density.

Figure 10: Preliminary results to assess the effect of mesh density on the quantitative results (κ = 4000).
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(a) Representative stress-strain curve. The red point indicates the peak stress.

(b) Contour plots of the equivalent plastic strain of the epoxy matrix, at different stages of the damage process (blue
- 0.0; yellow - 0.19; red - 0.25).

Figure 11: Numerical results associated with an RVE with κ = 3000, in longitudinal compression.
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(a) Normalised representative stress-strain curves. The red points indicate the associated normalised peak stress.

(b) Sensitivity results for the compressive Young’s modulus and strength. Both individual numerical results and
corresponding mean and standard deviation values are respectively shown, as well as the associated linear (R2

lin =
0.994) and rational (R2

rat = 0.991) fits.

Figure 12: Numerical results showing the effect of the initial fibre misalignment on the longitudinal compressive response.
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Figure 13: Contour plots of the equivalent plastic strain of an RVE with κ = ∞, showing the localisation of damage at one of
the boundaries of the RVE, when submitted to longitudinal compression, just (a) before and (b) after peak load.
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Figure 14: Deformed configuration of an RVE with κ = 1500, highlighting the contour plots of the equivalent plastic strain at
different stages of the damage process in longitudinal compression: (a) non-linearities in the most misaligned region; (b) damage
propagation along this region; (c) severe damage propagation along the height of the RVE before peak load; (d) fracture of the
material after peak load.

Figure 15: Deformed configuration of an RVE with κ = 8000, just after peak load, exhibiting a wedge-shaped kink-band.
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(a) Reaction force vs. displacement. (b) Frictional energy dissipated vs. displacement.

Figure 16: Numerical assessment of the influence of friction between constituents considering two degrees of misalignment in
longitudinal compression. The red points indicate peak load.
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Figure 17: Contour plots of the local longitudinal stress along the kink-band, highlighting the fibre rotation angle of the fibres
and kink-band width, associated with RVEs having: (a) κ = 2000; (b) κ = 4000; and (c) κ = 6000 (only the kink-band region
is shown).
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Figure 18: Bi-dimensional (x and z) central spatial coordinates of different fibres, with different degrees of misalignment, of the
same RVE (κ = 2000), having an undeformed (dashed lines) and deformed (solid lines) configurations at peak load.
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Figure 19: (a) Longitudinal tensile stress-strain curves of four RVEs having different distributions of the initial fibre misalignment,
κ; (b) corresponding contour plots of the matrix and fibres damage variable, at different stages of the damage process, for an
RVE with κ = 6000.
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Figure 20: Contour plots of both matrix and fibres damage variable for an RVE with κ = ∞, at different longitudinal sections:
(a) ∆x/Lx = 0.31; (b) ∆x/Lx = 0.53; and (c) ∆x/Lx = 0.78.
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Figure 21: (a) and (b) Contour plots of the longitudinal stress (σ11) and fibre-matrix interface damage (CSDMG) along a single
fibre inside an RVE, considering µτ = 0 and µτ = 0.70, respectively; (c) numerical results of the distribution of the longitudinal
stress along a single fibre inside an RVE with κ = ∞, for different µτ (the results associated with only half a fibre are shown).
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Figure 22: (a) and (b) Contour plots of the fibre-matrix interface damage (left - CSDMG) and longitudinal stress (right -
σ11 in MPa), exhibiting the debond length, for a fibre having, qualitatively, a “Small” and a “High” degree of misalignment,
respectively; (c) numerical predictions of the volumetrically homogenised longitudinal stress along each fibre having different
degrees of misalignment (red lines - ε0

f
= 0.6%; blue lines - ε0

f
= 1.1%).
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Table 1: AS4 carbon fibre material properties (Soden et al., 1998, Bai et al., 2015, Herráez et al., 2016, Tavares et al., 2016).

Material property Value

Fibre diameter
2Rf [mm] 0.006
Fibre volume fraction
ωf [%] 55.9
Young’s moduli

Ef
11 [MPa]

Ef
22 [MPa]

225000
15000

Poisson’s ratio

νf12 [-] 0.2

Shear moduli

Gf
12 [MPa]

Gf
23 [MPa]

15000
7000

Mode I fracture toughness

Gf
Ic [N/mm] 0.05

Weibull parameters
σ0 [MPa]
m0 [-]
L0 [mm]

4275
10.7
12.7

Density
ρf [kg/mm3] 1.78 × 10−6

823

Table 2: Matrix material properties (Melro et al., 2013b, Arteiro et al., 2014, 2015).

Material property Value

Young’s modulus
Em [MPa] 3760
Poisson’s ratio
νm [-] 0.39
Plastic Poisson’s ratio
νpm [-] 0.3
Tensile strength
Xt

m [MPa] 93
Compressive strength
Xc

m [MPa] 180
Mode I fracture toughness
Gm
Ic [N/mm] 0.277

Density

ρm [kg/mm3] 1.3 × 10−6

824

825

826

827

828

829
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Table 3: Fibre-matrix interface properties (Melro et al., 2013b, Arteiro et al., 2014, 2015).

Material property Value

Interface stiffness

K [N/mm
3
] 108

Interface strengths
τ01 [MPa]
τ02 [MPa]
τ03 [MPa]

75
75
50

Interface fracture toughnesses
GIc [N/mm]
GIIc [N/mm]
GIIIc [N/mm]

0.002
0.006
0.006

Mixed-mode interaction parameter
ηBK [-] 1.45
Friction coefficient
µτ [-] 0.52

Table 4: Size of the RVE vs. normalised numerical predictions of the peak stress.

In-plane dimension, H [µm] Number of fibres, nf [#] Normalised peak stress,
σcu
11

σmax
11

[%]

5Rf = 15 4 77.7
10Rf = 30 16 82.5
15Rf = 45 36 86.8
20Rf = 60 64 90.4
25Rf = 75 120 99.2
30Rf = 90 168 100.0

Table 5: Quantitative results for different mesh densities.

Element size [µm] N. of elements [#M] Normalised peak stress,
σcu
11

σmax
11

[%] Computational time, C [h]

≈ Rf/2 ≈ 1.1 51.2 108.5
≈ Rf/3 ≈ 3.4 75.5 140.0
≈ Rf/4 ≈ 6.0 94.4 191.8
≈ Rf/5 ≈ 7.2 99.4 243.9
≈ Rf/6 ≈ 9.4 100.0 317.4

Table 6: Numerical predictions of the mean compressive Young’s modulus, Ec
11
, mean peak stresses, σcu

11
, and their corresponding

standard deviations, for different von Mises concentration parameters, κ.

κ = 1500 κ = 2000 κ = 3000 κ = 4000 κ = 6000 κ = 8000 κ = ∞
Ec

11 [GPa] 111.5±0.3 115.6±0.3 118.4±0.7 119.8±0.6 122.2±0.3 123.2±0.2 125.1±0.1

σcu
11 [MPa] 1785±133.38 1907±120.19 2148±86.5 2589±167.6 3048±103.0 3561±53.3 5114±122.7

Table 7: Mean estimated results associated with the kink-band width, wkb, fibre rotation angle, ϕkb, and their corresponding
standard deviations, for different von Mises concentration parameters, κ.

κ = 1500 κ = 2000 κ = 3000 κ = 4000 κ = 6000 κ = 8000

wkb [µm] 50.17±0.88 50.69±1.62 49.43±1.11 52.77±3.47 49.88±2.83 51.89±3.31

ϕkb [◦] 23.87±0.49 23.44±0.57 23.19±0.50 22.44±0.47 21.91±0.31 20.73±0.18
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