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Márcia Barbosa g, António Mira a,c 

a Conservation Biology Lab, Department of Biology, University of Évora, Pólo da Mitra, 7002-554, Évora, Portugal 
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A B S T R A C T   

Wildlife roadkill hotspots are frequently used to identify priority locations for implementing mitigation mea-
sures. However, understanding the landscape-context and the spatial and temporal dynamics of these hotspots is 
challenging. Here, we investigate the factors that drive the spatiotemporal variation of bat mortality hotspots on 
roads along three years. We hypothesize that hotspot locations occur where bat activity is higher and that this 
activity is related to vegetation density and productivity, probably because this is associated with food avail-
ability. Statistically significant clusters of bat-vehicle collisions for each year were identified using the Kernel 
Density Estimation (KDE) approach. Additionally, we used a spatiotemporal analysis and generalized linear 
mixed models to evaluate the effect of local spatiotemporal variation of environmental indices and bat activity to 
predict the variation on roadkill hotspot locations and to asses hotspot strength over time. Between 2009 and 
2011 we conducted daily surveys of bat casualties along a 51-km-long transect that incorporates different types 
of roads in southern Portugal. We found 509 casualties and we identified 86 statistically significant roadkill 
hotspots, which comprised 12% of the road network length and contained 61% of the casualties. Hotspots tended 
to be located in areas with higher accumulation of vegetation productivity along the three-year period, high bat 
activity and low temperature. Furthermore, we found that only 17% of the road network length was consistently 
classified as hotspots across all years; while 43% of hotspots vanished in consecutive years and 40% of new road 
segments were classified as hotspots. Thus, non-persistent hotspots were the most frequent category. Spatio-
temporal changes in hotspot location are associated with decreasing vegetation production and increasing water 
stress on road surroundings. This supports our hypothesis that a decline on overall vegetation productivity and 
increase of roadside water deficit, and the presumed lower abundance of prey, have a significant effect on the 
decrease of bat roadkills. To our knowledge, this is the first study demonstrating that freely available remote 
sensing data can be a powerful tool to quantify bat roadkill risk and assess its spatiotemporal dynamics.   

1. Introduction 

The development of transport infrastructure is one of the main 
human-related pressures on wildlife (Spellerbeg, 1998; Fahrig and 
Rytwinski, 2009; Benítez-López et al., 2010), mainly due to habitat 

fragmentation and degradation (Trombulak and Frissell, 2000; van der 
Ree et al., 2015). However, the most acknowledged direct impact of 
roads is wildlife-vehicle collision (WVC), which often contributes to the 
decline of species of conservation concern (Kociolek et al., 2011; Vis-
intin et al., 2016; Loss et al., 2015). WVCs involving bats are 
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increasingly reported (Choquene, 2006; Lesiński, 2007, 2008; Capo 
et al., 2006; Gaisler et al., 2009; Medinas et al., 2013; Altringham and 
Kerth, 2016), and transport infrastructures may be an important factor 
contributing to the global decline of many bat species (Altringham and 
Kerth, 2016; Fensome and Mathews, 2016). Indeed, several life-history 
and ecological traits of bats make them particularly prone to be hit by 
vehicles. These include migration over considerable distances (Schofield 
and Mitchell-Jones, 2011), large home ranges (Kelt and Van Vuren, 
1999), or feeding opportunities on road verges (Berthinussen and 
Altringham, 2012; Medinas et al., 2019). Therefore, bat activity may be 
strongly reduced on road-dominated environments (Berthinussen and 
Altringham, 2012; Claireau et al., 2019). Moreover, bats are long lived, 
have low fecundity and late maturation, so they may be unable to 
withstand even moderate increases in mortality (Schorcht et al., 2009). 
Thus, roadkills may jeopardize the long-term viability of bat 
populations. 

Several studies reported that patterns of bat casualties are not 
equally distributed in space. Higher bat mortality rates have been found 
where bat flyways cross roads with high quality habitats or are close to 
foraging locations, such as water bodies and riparian galleries (Medinas 
et al., 2013; Gaisler, 2009; Iković et al., 2014; Lesiński, 2007; Lesiński 
et al., 2010; Secco et al., 2017). At these locations, bat casualties may be 
spatially clustered, being designated as roadkill hotspots. These are 
often computed in a static way for a defined time interval without 
considering how location changes across time (Malo et al., 2004; Skorka 
et al., 2015). For instance, bat-vehicle collision patterns are often 
described annually (Fensome and Mathews, 2016), but substantial 
inter-annual variations occur and this has been scarcely analyzed. For 
other mammal species (e.g. mule deer, black bear, lowland tapir) these 
inter-annual differences are often associated with variations in envi-
ronmental factors (e.g. land cover or climate), traffic volume or popu-
lation fluctuations (Seiler and Helldin, 2006; Shilling and Waetjen, 
2015; Ascensão et al., 2019). Moreover, some species showed marked 
seasonality in roadkill occurrences, which were particularly evident in 
mating and swarming periods (Fensome and Mathews, 2016). Thus, 
spatial and temporal changes in hotspots can give insights regarding 
distribution and predictability of important resources on the landscape 
(Fensome and Mathews, 2016). 

The notion of shifting hotspots relates to the concept of home range 
fidelity (Börger et al., 2006; Freedman and Roy, 2012; Switzer, 1997). 
The consistent classification of a road section as hotspot over time, 
termed hotspot fidelity, may reflect the existence of permanent impor-
tant landscape features for bat ecological needs, such as foraging habi-
tats or roosts in roadsides. In contrast, when resource availability 
changes in space and time, bat activity will track the resources and 
hotspots of roadkill may shift accordingly. In these circumstances, 
spatiotemporal predictability of the hotspots may be low. Unfortunately, 
there is a dearth of information on factors driving bat roadkills hotspot 
dynamics, in space and time, likely due to a lack of analytical methods 
for capturing and characterizing spatiotemporal variability in resource 
availability at a fine-scale. 

The current availability and development of remote sensing tech-
niques allow them to be used for monitoring and mapping of insect 
outbreaks, particularly to evaluate forest damages caused by defoliators 
(Zhang et al., 2010). Moreover, there are many studies where remote 
sensing data of vegetation productivity, land surface temperature and 
moisture content are indicated as having greater potential for mapping 
the biomass at higher trophic levels (Jepsen et al., 2009; Rullan-Silva 
et al., 2013). These studies suggest that spatiotemporal heterogeneity of 
remote sensing derived indices is intrinsically linked to fluctuations in 
food resources availability and may provide insight about insect abun-
dance. For instance, the Normal Deviation Vegetation Index (NDVI) has 
a robust positive linear correlation with ground-based measurements of 
net primary productivity, such as vegetation cover (Zhang et al., 2010) 
and, indirectly related to insect abundance in deciduous forest (Spruce 
et al., 2011). Furthermore, a shortage of water may increase vegetation 

stress and decrease foliage availability to insects. Blum et al. (2015), 
showed that the use of land surface temperature resulted in satisfactory 
estimations of olive fly population trends. Thus, assuming that bats have 
a higher probability of being roadkilled while foraging in areas with 
high food resources (Fensome and Mathews, 2016; Medinas et al., 
2013), remote sensing data can be a powerful and cost-effective tool for 
gaining knowledge on spatiotemporal dynamics of bat roadkills. 

In this study, we describe bat roadkill patterns along low, medium 
and high traffic roads in a Mediterranean landscape for three consecu-
tive years. We first assess whether roadkills are spatially clustered 
forming “hotpots” of mortality. Then we evaluate if roadkill spatio-
temporal patterns are similar along the studied years. Finally, we 
investigate how important are vegetation productivity, moisture content 
and land surface temperature, acting as a proxy of food availability in 
explaining roadkill hotspot patterns, taking into account local bat ac-
tivity and traffic volume. We hypothesize that bat casualties will not be 
evenly distributed across space, and that there will be aggregations. 
These will tend to occur in areas with higher vegetation productivity and 
may vary between years, owing to variation in water availability, tem-
perature or local land management over time. We discuss the applica-
bility of freely available remote sensing data to describe spatial variation 
in roadkill patterns. 

2. Material and methods 

2.1. Study area and bat roadkill surveys 

This study was carried out in a landscape of about 400 km2 in 
southern Portugal (38◦32′24′′ to 38◦47′33′′N; − 08◦13′33′′ to 
− 07◦55′45′′W; Fig. 1). The climate is Mediterranean, with mean daily 
temperature ranging from 5.8 to 12.8 ◦C in January, and from 16.3 to 
30.2 ◦C in August; annual rainfall averages 609.4 mm and is concen-
trated between October and March (Évora, 1971–2000; Instituto de 
Metereologia, 2010). The topography is flat, with altitude ranging from 
100 m to 400 m a.s.l. The landscape is dominated by savanna-like forests 
mainly composed of cork (Quercus suber) and holm-oak (Quercus rotun-
difolia), alternating with open agricultural areas for cattle grazing and 
cereal crops, olive groves (Olea europaea), vineyards (Vitis spp.) and 
woody vegetation along streams. 

Bat roadkill surveys were carried out along three national road 
segments (EN4, EN114 and EN370) and one municipal road segment 
(M529), comprising a total of 51 km. We surveyed these single- 
carriageway roads daily, from the 15th of March to the 15th of 
October, in 2009, 2010 and 2011. Surveys were conducted by a single 
observer driving a car at 20–40 km/h while scanning the road surface for 
bat carcasses (details in Santos et al., 2011). These observations started 
at sunrise, to reduce the impact of scavenger removal, because median 
persistence time for bat carcasses is one day (Slater, 2002; Santos et al., 
2011). Surveys were always carried out by experienced observers (more 
than five years conducting roadkill surveys), and most (>80%) were 
carried out by the same two experienced observers (DM, PC), thereby 
assuring consistency of procedures and minimising errors due to varia-
tion in observer detectability skills. All bat carcasses were collected and 
later identified to species level using morphological keys (Palmeirim, 
1990; Dietz and von Helversen, 2004) or genetic analysis, when the bat 
had no identifiable external characters (see details Medinas et al., 2013). 

2.2. Bat activity data and traffic surveys 

Bat activity was surveyed in 87 sites across the study area using 15- 
min point counts at the same time period of the roadkill surveys 
(2009–2011). Each sampling site was visited three times each year, from 
April until September - the period of the highest bat activity in Medi-
terranean systems (Rainho, 2007) - with a two-month interval between 
visits. The sampling sites were at least 1000 m apart and located on most 
representative land use categories, and at different distances from roads 
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(Fig. 1). We used a bat detector (D240x bat detector, Pettersson Elek-
tronik AB) and a digital recorder (Archos AV 500 mobile digital video 
recorder) to record sound samples of each bat pass. The surveys were 
performed only on dry calm nights, which are the most favourable 
conditions for bat activity and detectability (Dixon, 2012). We gener-
ated yearly bat activity maps for the study area using the inverse 
distance-weighted interpolation (IDW) of the mean number of bat 
passes. 

Traffic volume estimates were based on, counts of all passing vehi-
cles on 20 bat survey sites located near roads, and they were repeated 
three times each year. From these data we obtained an estimate of the 
number of vehicles per hour for every two months between April and 
September. 

Following the classification of the Portuguese Road Institute, sur-
veyed roads according to nocturnal traffic were categorized as: high for 
EN114 (1210 vehicles/night), medium for N4 (277 vehicles/night), and 
low for EN370 and M529 (both with <100 vehicles night), hereafter 
analyzed together as EN370-M529 (EP, 2005; see details in Medinas 
et al., 2013). 

2.3. Definition of hotspots and hotspot strength 

The bat roadkill data were examined for the presence of high mor-
tality clusters, i.e. hotspots, using the Kernel density estimation (KDE) 
(Okabe et al., 2009; Bíl et al., 2013; Favilli et al., 2018). This approach 
estimates the probability density function of the underlying data, and 

was combined with Monte Carlo simulations with a 95% threshold to 
evaluate the significance of each hotspot detected. The point pattern 
density method uses a moving function, controlled by a bandwidth, to 
weigh the importance of points within the bandwidth. In our analyses, 
we used a 150 m bandwidth because it was previously shown that this 
value is adequate to define roadkill hotspots on low-medium traffic 
roads (Bíl et al., 2013). 

Additionally, we calculated the hotspot strength to rank the hotspots 
according to their hazardousness or risk. This ranking makes it possible 
to prioritize the most hazardous hotspots. This relative measure is 
directly dependent on the number of roadkills recorded in a hotspot and 
the length of road section, and indirectly related to the length of hotspot 
and the number of roadkills outside the cluster (Bíl et al., 2019). Hotspot 
strength estimates how much the observed distribution of mortality 
values on each hotspot is different from the uniform distribution (Bíl 
et al., 2013). Monte Carlo simulations and identification of hotspots 
were performed using the “sparr” package (Davies et al., 2017) and the 
“spatialEco” package (Evans, 2018) in R software version 3.4.4 (R 
Development Core Team, 2018). To assess possible spatial correlations 
between hotspot locations, we calculated the nearest-neighbour dis-
tance between centroids of hotspots per each year of survey (D_KDE) and 
used a Moran’I test to evaluate potential statistical significance. Hot-
spots distanced up to 50 m were considered together. 

Fig. 1. Map of the study area in southern Portugal, showing the sections of roads that were surveyed (EN114, EN4 and EN370-M529) and the bat acoustic sampling 
points (black markers). The two main land uses are woodland (light grey) and open field (dark grey) areas. Bat-vehicle collision spots per year were highlighted with 
white markers. 
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2.4. Explanatory variables of bat roadkill hotspots 

To find the best predictors that explain the spatiotemporal persis-
tence of hotspots and their hazardousness (i.e. strength), we used three 
remote sensing based environmental indices reflecting local dynamics in 
primary production content (NDVI - Normalized Difference Vegetation 
Index), water content on surface and vegetation (NDWI - Normalized 
Differences Water Index), and relative water stress (WETNESS - Wetness 
Tasseled Cap transformation Index); we also used a remotely sensed 
daytime land surface temperature (TEMPERATURE). The remotely 
sensed environmental indices and land surface temperature were ob-
tained from a time series (from January 2007 to December 2011) of 
Landsat-5 satellite images, gathered from the US Geological Survey 
(USGS; LP DAAC - http://lpdaac.usgs.gov). The time frame included full 
calendar years of the study period and three years before its beginning. 
We only retained high-quality images for the whole study area (WRS-2 
scene: path 203, row 33, 30 m resolution) and, among these, we only 
examined images with less than 20% cloud cover. All images were pre- 
processed by applying the radiometric calibration to convert the pixel 
values to Top-of-Atmosphere reflectance (TOA) (Chander et al., 2009). 
Each of the remote sensing based environmental indices (Φ) was created 
for four time-periods (hereafter scenarios): the year of bat roadkill sur-
vey (YEAR_SURVEY; Φy); the year before the roadkill survey (one 
YEAR_BEFORE; Φ1y), the whole of the two years before the roadkill 

survey (two YEARS_BEFORE; Φ2y), and the whole of the three years 
before the roadkill survey (three YEARS_BEFORE; Φ3y) (Fig. 2). To 
derive each period composites, we first built a stack of all day-scenes for 
each scenario. Then, we used a 500-m buffer width around each roadkill 
hotspot to estimate the mean (m_Φ), sum (s_Φ) and standard deviation 
(sd_Φ) for each environmental indices. This buffer size was based on the 
foraging distances regularly covered by most roadkilled bat species in 
our study area, Pipistrellus kuhlii and P. pygmaeus (Dietz et al., 2009; 
Medinas et al., 2013). Additionally, we combined remote sensing data 
with field-measured variables, such as traffic volume and bat activity 
interpolation (see 2.2 Bat activity data and traffic surveys). Finally, we 
used a variable selection procedure aiming to reduce the dimensionality 
and eliminate highly correlated variables (see topic 2.5). 

2.5. Statistical analyses for the evaluation of hotspot strength 

We investigated the influence of remotely sensed environmental 
indices and temperature, traffic volume and bat activity on the strength 
of hotspots using general linear mixed models (GLMMs) with a Gaussian 
error distribution and an identity link function. Hotspot location (id) 
was included as a random factor to account for the probable correlation 
between successive measurements - different years - at the same loca-
tion. We also included in our models a first-order autoregressive 
covariance structure to account for the potential dependence in the 

Fig. 2. An overview of methodology and the three methods presented. The flowchart depicts inputs (green), statistical analysis (orange), intermediate processes and 
preparatory analysis (no colour), partial objectives (red), interim results (blue) and for main drivers that explain the spatiotemporal variation of bat mortality 
hotspots (yellow). Firstly, the Kernel Density Estimation (KDE) method combined with repeated random simulations (Monte Carlo method) were used to identify 
clusters of bat roadkills within the roads surveyed and to determine the level of significance (threshold), selecting only significant clusters and ranking them. Then, 
Generalized Mixed Models (GLMM) were applied to evaluate the effects of the fine-scale spatiotemporal variation of environmental indices, traffic volume and bat 
activity on hotspot strength over time. Finally, we measured the hotspot location changes (HLC) on consecutive years (t and t+1) using Spatiotemporal analysis of 
Moving Polygons (STAMP), combined with post-hoc comparisons to evaluate for environmental indices between HLC categories. Φy: year of bat roadkill survey; Φ1y: 
year before the roadkill survey, Φ2y: whole of the two years before the roadkill survey, and Φ3y: whole of the three years before the roadkill survey. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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hotspot locations over sampling years (Zuur et al., 2009). 
Prior to modelling, when necessary, we log transformed the 

explanatory variables to approach normality, homogenise the variance 
and reduce the influence of outliers (Zuur et al., 2009). All explanatory 
variables were then standardised to zero mean and unit variance, to 
allow for comparison of their strength (Burnham and Anderson, 2002). 
At a first stage, bivariate models were built for each explanatory vari-
able. Only variables statistically significant in the bivariate phase were 
selected for further multiple variable modelling. To avoid collinearity, 
prior to modelling, we performed a Spearman correlation analysis 
among all remaining variables. For pairs of variables with a correlation 
higher than 0.70 (Dormann et al., 2013), only the variable most related 
to the hotspot strength was kept for further analysis. After this process, 
s_NDVIy, s_NDVI3yB, s_ACTIVITY, TRAFFIC, s_NDWIy, D_KDE and 
s_TEMPERATUREy were the only predictors retained to build the mul-
tiple models (Supplementary Material - Table SM1). 

All candidate models were built based on all possible subsets of 
selected explanatory variables, including the null and full model (Sup-
plementary Material - Table SM2). The full model was structured in the 
following way: 

Strength of Hotspots ̃ s NDVIy + s NDVI3yB + s ACTIVITY + TRAFFIC + s NDWIy +

D KDE + s TEMPERATUREy, random= 1|id, structural correlation= c 
orAR1 (id / year)

We used the AICc and the corresponding Akaike weights (wi) to rank 
candidate models (Burnham and Anderson, 2002). Because no single 
model was convincingly the most plausible (wi ≥ 0.95; Burnham and 
Anderson, 2002), we performed a model averaging approach, basing the 
average parameters, unconditional standard errors (SE) and 95% con-
fidence intervals (CI) inferences on the group of models with ΔAICc < 2 
(Burnham and Anderson, 2002). Plots of residuals were examined to 
check for normality, and deviance tests were done to assess the goodness 
of fit of the final models. All statistical tests were performed using the R 
software version 3.4.4 (R Development Core Team, 2018) with the 
packages “nlme” (Pinheiro et al., 2007) for GLMMs and ‘MuMIn’ (Bar-
ton, 2013) for multi-model inference. 

2.6. Spatiotemporal changes on roadkill hotspots patterns 

To evaluate the spatiotemporal hotspot location changes (HLC), we 
used a GIS-based method for analysing temporally dynamic polygons 
(STAMP) (Robertson et al., 2007). This method adds an additional 
dimension to the analysis by quantifying hotspot shifts between two 
time periods (Nelson, 2011; Smulders et al., 2012). Thus, within a paired 
set of hotspot locations on consecutive years (t and t+1), each polygon 
was categorized as one of the HLC categories: (i) stability or fidelity, if 
the area was identified as hotspot in both t and t+1; (ii) generation or 
expansion, when a new hotspot location was identified in t+1 but not 
classified in t; and (iii) disappearance or contraction, when the hotspot 
location was identified in t but not in t+1 (Fig. 2). To compare the 
changes between HLC categories among years (stable vs. expansion vs. 
contraction), we calculated the relative proportion of area to each HLC 
category per year. Additionally, we evaluated differences in explanatory 
variables (ΔΦ) in each roadkill polygon between every two consecutive 
years (t and t+1) and tested these differences among HLC categories. 
Following tests for normality and homogeneity of variance, we used 
PERMANOVA procedures and randomized ANOVA comparisons (Sokal 
and Rohlf, 1995). Whenever significant differences were found, we 
performed post-hoc comparisons (Tukey’s HSD) to test for differences 
between pair groups (Supplementary Material – Table SM3). STAMP 
analyses were conducted using R package “stampr” (Long et al., 2018), 
while the HLC analyses were performed with R package “vegan” 
(Oksanen et al., 2012). 

3. Results 

3.1. General bat roadkill patterns 

Between 2009 and 2011, we recorded 509 bat carcasses belonging to 
12 species, most of which were Pipistrellus kuhlii (34.5%), P. pygmaeus 
(30.8%), P. pipistrellus (21.9%), Rhinolophus hipposideros (3.6%) and 
Eptesicus serotinus (2.9%) (Table 1). The total number of bat carcasses 
per year increased along the three years of the study: 154 in 2009, 176 in 
2010 and 179 in 2011 (Fig. 1). 

3.2. Spatiotemporal patterns of roadkill hotspots 

Roadkill hotspot analyses demonstrated different aggregation pat-
terns over the study period (Fig. 3 A). In total, we identified 86 bat 
roadkill hotspots with uneven distribution among years (27 in 2009, 33 
in 2010, and 26 in 2011 – Fig. 3 B). The bat mortality in hotspots 
accounted for more than half of the total bat casualties, 2010 being the 
year with the highest percentage of mortality in hotspots (2009–57%; 
2010–65%; and, 2011–60%). The total length of these hotspots amounts 
to, on average, 12% of the road network (2009–9%; 2010–13%; 
2011–8%). The average hotspot length also varied among years 
(2009–175 m; 2010–206 m; 2011–162 m), but these differences were 
not statistically significant (F = 0.829, p = 0.44). 

Concerning temporal changes in hotspots location, 24 hotspots, 
comprising 3% of the road length, have remained stable along the three 
years of the study. On the other hand, hotspot expansion or contraction, 
between consecutive years had a higher representation on the road 
network (expansion – 6%, n = 46; contraction – 7%, n = 51). 

3.3. Main drivers of bat roadkill hotspots 

The most hazardous bat roadkill locations - higher hotspot strengths - 
were associated with higher accumulated vegetation productivity along 
the three-year period previous to the survey (s_NDVI3yB: coef = 0.458), 
higher bat activity (s_ACTIVITY: coef = 0.314), and lower daytime land 
surface temperature (s_TEMPERATUREy: coef = - 0.227). Moreover, 
both s_NDVI3yB and s_ACTIVITY had higher importance (RVI = 1.00 and 
0.5, respectively) and were included in a higher number of models than 
s_TEMPERATUREy (RVI = 0.3) (Fig. 4). According to the averaged 
models, s_TEMPERATUREy has an equivocal meaning, as zero was 
included in the unconditional confidence interval (Fig. 4). Contrary to 
our expectations, traffic volume was not included in any of the final 
models of hotspot strength. All candidate models with ΔAICc < 2 are 
presented in Table 2. 

3.4. Drivers of spatiotemporal changes in roadkill hotspots 

Regarding temporal hotspot location changes (Fig. 5), the Tukey post 
hoc test revealed that a positive ΔNDVI, an increase in primary 

Table 1 
Yearly distribution of bat carcasses collected.  

Species 2009 2010 2011 Total 

Barbastella barbastellus 3 – 1 4 
Eptesicus isabellinus – 1 – 1 
Eptesicus serotinus 5 3 7 15 
Miniopterus schreibersii 1 2 – 3 
Myotis daubentonii 2 2 4 8 
Myotis escalerai 1 – – 1 
Nyctalus leisleri 2 4 – 6 
Pipistrellus kuhlii 66 60 53 179 
Pipistrellus pipistrellus 21 38 54 113 
Pipistrellus pygmaeus 45 58 55 158 
Rhinolophus ferrumequinum 1 2 – 3 
Rhinolophus hipposideros 7 6 5 18 
Total per year 154 176 179 509  
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production content between t and t + 1, was significantly higher in the 
expansion of hotspot areas (p = 0.038) compared with areas where 
hotspots contracted. Whereas no differences were found when 
comparing with stable hotspots areas (p = 0.234) (Fig. 6). Additionally, 
hotspots tended to contract in areas where water stress increases 
(ΔWETNESS), comparing with hotspots expansion areas and stable 
hotspots areas (p = 0.035; p = 0.058, respectively). No significant 
changes in ΔNDWI, ΔTEMPERATURE or ΔACTIVITY, from t to t+1, 
were detected among HLC categories (stability vs. expansion vs. 
contraction) (Fig. 6). 

4. Discussion 

We found a large number of bat roadkills (~three bats killed/km/ 
year) with a tendency to increase slightly along the three years of the 
study. Bat roadkill hotspots occupied about 12% of the whole road 
length, encompassing 61% of all roadkilled bats. However, the hotspots 
that remained stable along the three years of study comprised only 3% of 
road length, but represented 27% of roadkills. Our results suggest that 
bats are consistently more prone to be hit by a car at some specific lo-
cations across time. Thus, from the practical perspective, these results 
has important consequences, because in absence of significant landscape 
changes, it allows concentrating conservation efforts in spatially 
restricted areas, greatly improving the efficiency and cost-effectiveness 
of mitigation actions (Rytwinski et al., 2015). However, measures to 
reduce bat roadkills, such as overpasses, underpasses, barriers or strips 
to guide road crossings, are still a matter of debate, and further data are 
needed to assess their efficiency (Solowczuk, 2019; Claireau et al., 2018, 
2019; Berthinussen and Altringham, 2012). Claireau et al. (2019) 

highlighted that bat overpasses should be located on intersections be-
tween roads and bat commuting routes. However, identifying these in-
tersections remains a challenge. Other tools based on the assessment of 
bat flight trajectories such as acoustic flight path reconstruction (Clair-
eau et al., 2018), may be used to evaluate the bat roadkill risk. Never-
theless, analyses of hotspot stability and strength over time, like we 
applied in this study, may be a cheaper and easily implemented tool to 
help to find hazardous locations and decide on efficient placement of 
mitigation measures. Although an even longer period of sampling might 
increase the robustness of the study, our analysis represents an advance 
over other studies concerning roadkill risk locations, and one of the first 
that examine roadkill risk dynamics across time. 

Zimmerman et al. (2017) argue that, for older roads, the rate be-
tween road mortality and population abundance in road surroundings 
should be the preferable, comparing with hotspot location, for informing 
mitigation priorities, due to the effects of past road mortality (Eberhardt 
et al., 2013) on long-term population abundance. These authors suggest 
that over time, the number of bat roadkills on high-traffic stretches with 
a high road mortality risk declines to the point that there are more 
roadkills on low-traffic stretches (Zimmerman et al., 2017). In these 
circumstances, the low-traffic locations may be erroneously identified as 
priority sections to mitigate, because “false” roadkill hotspots only 
reflect the previous population depression near high-traffic stretches 
(Fahrig et al., 1995; Edehardt et al., 2013). Although our study 
considered a relatively short period of time (three years) and an area 
where all roads are over 50 years old, our results do not support the 
Zimmerman and co-authors (2017) hypothesis. Indeed, we did not find a 
relationship between roadkill hotspot strength and traffic intensity, 
despite most roadkills having been detected on roads with higher traffic, 

Fig. 3. A) Spatial and temporal distribution of bat-vehicle collision hotspots calculated with kernel-density estimation for each year surveyed. Maps depict the roads 
surveyed (solid line). B) Location of sections defined as hotspots per each year where the estimated probability density function rose above the threshold of 95th after 
Monte Carlo simulations. 

D. Medinas et al.                                                                                                                                                                                                                                



Journal of Environmental Management 277 (2021) 111412

7

every year. 
Our results show that bat roadkill patterns are not random, although 

hotspot locations may shift along consecutive years. Changes in roadkill 
hazardousness and hotspot persistence are related to the spatiotemporal 
dynamics of net primary productivity (NDVI), which is a surrogate of 
foraging habitat suitability for bats, such as woodland areas and riparian 
vegetation (Fonderflick et al., 2015; Rainho et al., 2011). Thus, our re-
sults agree with previous studies which show that higher habitat quality 
is a key factor explaining bat roadkill patterns (Medinas et al., 2013; 
Lesińki, 2007, 2010; Gaisler et al., 2009; Fensome and Mathews, 2016). 
Similarly, Ascensão and co-authors (2019) showed that roadkill risk and 
spatiotemporal pattern of road mortality for seven medium-large 
mammal species in Brazil are highly related to NDVI. A positive rela-
tionship between the cumulative NDVI for long periods – three years in 
our case – seems to be the strongest driver influencing roadkill hotspot 
strength over time. This is probably because higher values of accumu-
lated aboveground net primary productivity (as measured by NDVI) 
tend to be associated with high insect availability areas that are 

temporally stable (Bailey et al., 2004), consistently improving the 
quality of foraging areas for many close-space aerial insectivorous bats, 
such as Rhinolophus spp.. High vegetation productivity is also often 
related to higher tree cover, which provides shelter resources for com-
mon bat species as P. kuhlii or P. pipistrellus (Kunz and Lumsden, 2003; 
Rodríguez-Aguilar et al., 2017). Moreover, in a landscape context with 
few hedgerows, roadside verges often represent the last remains of dense 
vegetation strips providing corridors and enhanced foraging opportu-
nities in the immediate roadside vicinity (Abbott et al., 2012; Hale et al., 
2015; Laforge et al., 2019), which increases the roadkill risk. Indeed, we 
also confirmed a strong positive relationship between areas of high bat 
activity and roadkill risk. Thus, acoustic bat activity monitoring, which 
is easily measured, may be a simple useful tool to assess roadkill risk 
(Medinas et al., 2013). We found that mortality risk tends to increase in 
road sections crossing areas with a slightly lower temperature. Forest 
areas, riparian galleries, and proximity to water bodies are the main land 
uses surrounding bat roadkill locations (Medinas et al., 2013). In those 
areas, due to the vegetation cover and/or proximity to water, the tem-
perature tends to be lower which may explain this tendency. 

The increase of vegetation productivity between consecutive years 
was the most important variable influencing the appearance of new 
roadkill hotspot locations. Conversely, the increase of water stress, 
reflecting lower surface moisture, was related to the contraction of 
hotspots in consecutive years. Our results show that even small temporal 
changes in habitat suitability, related with changes in moisture and 
vegetation productivity, influence roadkill patterns, probably due to 
alterations they induce in bat activity patterns. The changes in these 
remote-sensing descriptors should reflect mostly changes in local man-
agement actions (e.g. changes in grazing intensity, irrigation, crop 
harvesting, deforestation, etc.), thus linking these management actions 
with bat roadkill risk. Monitoring local management changes based on 
field work is logistically unfeasible for large areas or long periods. 
However, according to our results, moderately detailed freely available 
remote sensing imagery may adequately describe local environmental 
disturbance and can be used to evaluate spatiotemporal variation in bat 
roadkill risk. Evaluation of spatiotemporal habitat suitability changes 
based on remote-sensing data has already been done for other wildlife 
groups of different sizes and with different ecological requirements (e.g.. 
beetles – Lassau and Hochuli, 2008; ungulates – Schweiger et al., 2015). 
However, to our knowledge, our study is among the pioneers in using 
these data to identify spatiotemporal changes in road sections with a 
higher roadkill risk. 

Identifying spatially significant roadkill clusters for multiple years is 
a valuable tool, since it allows the identification and ranking of locations 
where efforts to reduce wildlife mortality should be focused. On the 
other hand, concentrating mitigation efforts only on overall bat roadkill 
hotspots may have limited benefit for some species (Clevenger and 
Waltho, 2000). Thus, analysing roadkill at the species level or at least at 
habitat guild level is important, because different spatial or temporal 
roadkill patterns may be found, depending on specific ecological re-
quirements (Santos et al., 2015). However, this will require a large 
volume of roadkill data for single species, which is not possible to do in 
an efficient way for our dataset. 

5. Conclusions 

Overall, our findings confirmed previous results showing that bats 
are especially susceptible to roadkill in the vicinity of high quality 
habitats (Medinas et al., 2013; Berthinussen et al., 2012). We were able 
to demonstrate that bat roadkill hotspot locations may shift along time, 
accompanying spatiotemporal changes in habitat suitability, and that 
these can be inferred using freely available remote-sensing imagery, 
such as NDVI. Furthermore, using multiple year data and complex 
modelling, such as spatiotemporal analysis, allowed us to classify hot-
spots according to their strength and persistence, and thus to more 
precisely target and rank road stretches of interest to install temporal or 

Fig. 4. Coefficient estimates (i.e., median values and 95% credible intervals 
(bars) of the posterior distribution of the parameters from the best spatiotem-
poral models with ΔAICc < 2. Credible intervals overlapping 0 (dotted line) 
indicate that the corresponding effect is not significant at the 5% level. The dot 
size relates to the relative importance for each predictor on model selec-
tion approach. 

Table 2 
Candidate models that were tested to access the potential influence of envi-
ronmental indices, traffic volume and bat activity on the roadkill risk of the 
overall community of bats. Parameters: s_NDVI3yB – sum of vegetation produc-
tivity of 3 years before the reference year when the hotspot was identified. 
ACTIVITY – bat activity level on the year when hotspot was identified. s_TEM-
PERATUREy - daytime land surface temperature. For each model, we present the 
number of degrees of freedom (df), the Akaike Information Criterion corrected 
for small samples (AICc), AICc differences (ΔAICc) and Akaike weights (wi). The 
models are ranked by ΔAICc.  

Model df AICc ΔAICc wi 

s_NDVI3yB + ACTIVITY 6 106.75 0.00 0.35 
s_NDVI3yB 5 106.78 0.03 0.34 
s_NDVI3yB + s_TEMPERATUREy 6 108.25 1.50 0.16 
s_NDVI3yB + ACTIVITY + s_TEMPERATUREy 7 108.55 1.80 0.14  
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permanent mitigation measures. Our results support the need of moni-
toring roadkills across several years to more efficiently mitigate bat 
casualties. Ideally, monitoring roadkills should be accompanied by 
monitoring bat populations on road surrounding landscapes, paying 
particular attention to rare and threatened species that are commonly 
hit by vehicles (e.g. Rhinolophus spp.) 
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deux kilomèters routiers proches d’un site d’hibernation. Symbioses 15, 45–46. 

Chander, G., Markham, B., Helde, D., 2009. Summary of current radiometric calibration 
coefficients for Landsat MSS, TM, ETM, and EO-1 ALI sensors. Remote Sens. Environ. 
13, 893–903. 
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Skórka, P., Lenda, M., Moron, D., Martyka, R., Tryjanowski, P., Sutherland, W.J., 2015. 
Biodiversity collision blackspots in Poland: separation causality from stochasticity in 
roadkills of butterflies. Biol. Conserv. 187, 154–163. 

Slater, F.M., 2002. An assessment of wildlife road casualties—the potential discrepancy 
between numbers counted and numbers killed using conventional census. Web Ecol. 
3, 33–42. https://doi.org/10.5194/we-3-33-2002. 

Smulders, M., Nelson, T.A., Jelinski, D.E., Nielsen, S.E., Stenhouse, G.B., Laberee, K., 
2012. Quantifying spatial–temporal patterns in wildlife ranges using STAMP: a 
grizzly bear example. Appl. Geogr. 35, 124–131. https://doi.org/10.1016/j. 
apgeog.2012.06.009. 

Sokal, R.R., Rohlf, F.J., 1995. Biometry: the Principles and Practice of Statistics in 
Biological Research, third ed. W. H. Freeman, New York.  

Solowczuk, A., 2019. Determinants of the performance of bat gantries installed to carry 
bat commuting routes over the S3 expressway in Poland. Symmetry 11. https://doi. 
org/10.3390/sym11081022. 

Spellerberg, I., 1998. Ecological effects of roads and traffic: a literature review. Global 
Ecol. Biogeogr. 7, 317–333. 

Spruce, J., Sader, S., Ryan, R., Smoot, J., Kuper, P., Ross, K., 2011. Assessment of MODIS 
NDVI time series data products for detecting forest defoliation by gypsy moth 
outbreaks. Remote Sens. Environ. 115, 427–437. 

Switzer, P.V., 1997. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 
533–555. 

Trombulak, S.C., Frissel, C.A., 2000. Review of ecological effects of roads on terrestrial 
and aquatic communities. Conserv. Biol. 14, 18–30. https://doi.org/10.1046/j.1523- 
1739.2000.99084.x. 

van der Ree, R., Smith, D.J., Grilo, C., 2015. The ecological effects of linear infrastructure 
and traffic: challenges and opportunities of rapid global growth. In: Smith, D.J., 
Grilo, C., Van Der Ree, R. (Eds.), Handbook of Road Ecology. Wiley-Blackwell, 
Chichester, pp. 1–9. 

Visintin, C., van der Ree, R., McCarthy, M., 2016. A simple framework for a complex 
problem? Predicting wildlife-vehicle collisions. Ecol. Evol. 6, 6409–6421. https:// 
doi.org/10.1002/ece3.2306. 

Zhang, Z., Yang, H., Yang, H., Li, Y., Wang, T., 2010. The impact of roadside ditches on 
juvenile and subadult Bufo melanostictus migration. Ecol. Eng. 36, 1242–1250. 

Zimmerman, F.T., Kindel, A., Hartz, S.M., Mitchell, S., Fahrig, L., 2017. When road-kill 
hotspots do not indicate the best sites for road-kill mitigation. J. Appl. Ecol. https:// 
doi.org/10.1111/1365-2664. 

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects 
Models and Extensions in Ecology with R, first ed. Springer, New York.  

D. Medinas et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0301-4797(20)31337-2/sref69
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref69
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref70
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref70
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref70
https://doi.org/10.5194/we-3-33-2002
https://doi.org/10.1016/j.apgeog.2012.06.009
https://doi.org/10.1016/j.apgeog.2012.06.009
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref73
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref73
https://doi.org/10.3390/sym11081022
https://doi.org/10.3390/sym11081022
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref75
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref75
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref76
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref76
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref76
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref77
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref77
https://doi.org/10.1046/j.1523-1739.2000.99084.x
https://doi.org/10.1046/j.1523-1739.2000.99084.x
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref79
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref79
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref79
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref79
https://doi.org/10.1002/ece3.2306
https://doi.org/10.1002/ece3.2306
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref81
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref81
https://doi.org/10.1111/1365-2664
https://doi.org/10.1111/1365-2664
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref83
http://refhub.elsevier.com/S0301-4797(20)31337-2/sref83

	Spatiotemporal persistence of bat roadkill hotspots in response to dynamics of habitat suitability and activity patterns
	1 Introduction
	2 Material and methods
	2.1 Study area and bat roadkill surveys
	2.2 Bat activity data and traffic surveys
	2.3 Definition of hotspots and hotspot strength
	2.4 Explanatory variables of bat roadkill hotspots
	2.5 Statistical analyses for the evaluation of hotspot strength
	2.6 Spatiotemporal changes on roadkill hotspots patterns

	3 Results
	3.1 General bat roadkill patterns
	3.2 Spatiotemporal patterns of roadkill hotspots
	3.3 Main drivers of bat roadkill hotspots
	3.4 Drivers of spatiotemporal changes in roadkill hotspots

	4 Discussion
	5 Conclusions
	Credit author statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Reeferences


