

EGU21-1047 https://doi.org/10.5194/egusphere-egu21-1047 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

A possible radio anomaly observed on the occasion of the M_W =6.0 earthquake occurred in Dodecanese islands at the end of January 2020

Pier Francesco Biagi¹, Anita Ermini², Mohammed Boudjada³, Hans Eichelberger³, Konstantinos Katzis⁴, Michael Contadakis⁵, Christos Skebelis⁵, Iren Moldovan⁶, Mourad Bezzeghoud⁷, Alexandra Nina⁸, and Giovanni Nico⁹

Since 2009, several VLF/LF radio receivers have been installed throughout Europe in order to realize a European radio network for studying the radio precursors of earthquakes, called the INFREP network. The current network has nine VLF/LF receiving stations, two in Romania and Greece, one in Italy, Austria, Portugal, Cyprus, and Serbia. The receivers can measure with 1 min sampling rate the intensity of 10 radio signals in the band VLF (10-50 kHz) and LF (150-300 kHz). The scope of existing transmitters is manifold, e.g. they are used for radio broadcast (LF), for radionavigation or time signals and mainly for military purposes in the VLF range. At the end of January 2020 an intense seismic crisis occurred in Dodecanese Islands; the main event (Mw= 6.0) occurred on January 30. This seismic activity occurred in the "sensitive" area of the INFREP network. The analysis of the data collected by INFREP receivers has revealed clear anomalies in three VLF signals appearing some days before the main earthquake. The anomalies appear in the trends collected by the Cyprus receiver and the epicenter is inside the 5th Fresnel ellipses defined by transmitters-receiver. Here we report the data analysis and we present in detail the anomalies. The possibility that they are precursors of the quoted earthquake seems significant.

Biagi, P.F., Colella, R., Schiavulli, L., Ermini, A., Boudjada, M., Eichelberger, H., Schwingenschuh, K., Katzis, K., Contadakis, M.E., Skeberis, C., Moldovan, I.A. and Bezzeghoud, M. (2019) The INFREP Network: Present Situation and Recent Results. Open Journal of Earthquake Research,8, 101-115. https://doi.org/10.4236/ojer.2019.82007

¹Università di Bari, Departent of Physics, Bari, Italy (pf.biagi@gmail.com)

²Department of Industrial Engineering, University of Tor Vergata, Rome, Italy

³Space Research Institute, Austrian Academy of Sciences, Graz, Austria

⁴Department of Computer Science and Engineering, European University of Cyprus, Nicosia, Cyprus

⁵Department of Surveying &Geodesy, University of Thessaloniki, Thessaloniki, Greece

⁶National Institute of Earth's Physics, Seismological Department, Bucharest, Romania

⁷ECT, University of Evora, Evora, Portugal

⁸Institute of Physics, University of Belgrade, Belgrade, Serbia

⁹IAC, CNR, Bari, Italy