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Abstract 

Tuberculosis (TB) is one of the top 10 causes of death and the leading cause 

from a single infectious agent (above HIV/AIDS). In 2017, the World Health 

Organization (WHO) estimated 10.0 million people developed TB and 1.3 

million deaths (range, 1.2–1.4 million) among HIV-negative people with an 

additional 300 000 deaths from TB (range, 266 000–335 000) among HIV-

positive people. Studies that understand the socio-demographic 

characteristics, time and spatial distribution of the disease are vital to 

allocating resources in order to improve National TB Programs. The database 

includes information from all confirmed Pulmonary TB (PTB) cases notified in 

Continental Portugal between 2000 and 2010. Following a descriptive analysis 

of the main risk factors of the disease, a Structured Additive Regression (STAR) 

model is presented exploring possible spatial and temporal correlations in PTB 

incidence rates in order to identify the regions of increased incidence rates. 

Three main regions are identified as statistically significant areas of increased 

PTB incidence rates in Continental Portugal. STAR models proved to be a 

valuable and effective approach in identifying PTB incidence rates and will be 

used in future research to identify the associated risk factors in Continental 

Portugal, yielding high-level information for decision-making in TB control. 
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1.  Introduction 

Pulmonary Tuberculosis (PTB) is an infectious disease which affects 

millions of people every year, being the second most deadly infectious disease 

worldwide after the human immunodeficiency virus (HIV) [1]. The disease is 

caused by the bacillus Mycobacterium tuberculosis that affects mainly the 
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lungs, and can be transmitted through the air when the bacteria is expelled by 

coughing, sneezing or speaking.  

From all notified cases in the WHO European Region in 2017, about 80% 

had pulmonary localization (PTB) [1,2], a fact also verified in Portugal, with 

73.5% of the cases in our database being PTB. An earlier study conducted in 

Portugal in 2011 aimed at identifying critical areas for the joint occurrence of 

PTB and HIV/AIDS (Acquired Immune Deficiency Syndrome). The study, based 

on spatiotemporal clustering analyses, identified the Oporto and Lisbon 

Metropolitan Areas as critical areas for both diseases, either independently or 

jointly occurring [3].  

Research on spatial and temporal correlations among PTB incidence rates 

together with disease factors are of the utmost importance from a Public 

Health perspective. This study will focus on analyzing through STAR 

(Structured Additive Regression) modeling temporal trends and geographic 

patterns of PTB incidence rates associated with notified PTB cases in 

Continental Portugal (278 municipalities) from 2000 to 2010. 

 

2.  Methodology 

2.1 The data 

This study was entirely based on data from registers with the permission 

of the National Program for Tuberculosis Control. The data was extracted from 

SVIG-TB (Sistema de Vigilância da TB em Portugal) database of the National 

Program for Tuberculosis Control and included information from all confirmed 

TB cases, whose notification is mandatory in Continental Portugal (henceforth 

referred to as Portugal) between 2000 and 2010. Ethics committee approval 

and informed consent were not required, as data was based on an Official 

National Surveillance System, provided by the General Directorate of Health, 

and was previously anonymized. 

A total of 25,279 new cases with PTB were used, together with the 

information regarding municipality of residence, age, sex and disease risk 

factors, such as alcohol dependence, intravenous drug dependence (IV Drugs), 

other drug dependence, being an inmate, homeless, an immigrant and co-

infected with HIV. This study considered a new case as one defined by WHO 

[1], that is, a patient with PTB disease involving lung parenchyma who has 

never received a treatment or who has been taking anti-TB drugs for less than 

one month. Yearly population data (global and per municipality) were taken 

from Statistics Portugal. 

 

2.2 The model 

Structured Additive Regression Models (STAR) enable the placement 

within the same framework of nonlinear effects of continuous covariates, 

spatial effects, time trends and the usual linear or fixed effects in regression 
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models with non-Gaussian responses [4]. A suitable STAR model for 

spatiotemporal data is given by 

 

𝜂𝑖𝑡  =  𝑓1(𝑥𝑖𝑡1)+ . . . + 𝑓𝑘 (𝑥𝑖𝑡𝑘)  + 𝑓𝑡𝑟𝑒𝑛𝑑(𝑡)  + 𝑓𝑠𝑝𝑎𝑡 (𝑠𝑖𝑡)  +  𝑢′𝑖𝑡  𝛾,                (1) 

 

where 𝜂𝑖𝑡  is the additive predictor for observation 𝑖  at time 𝑡 ,                                  

𝑓1(𝑥𝑖𝑡1) , ..., 𝑓𝑘(𝑥𝑖𝑡𝑘) are smooth functions of 𝑘 continuous covariates 𝑥𝑖𝑡1 ,... 

𝑥𝑖𝑡𝑘, 𝑓𝑡𝑟𝑒𝑛𝑑(𝑡) is a temporal trend, 𝑢′𝑖𝑡  𝛾 represents the parametric component 

with 𝛾  being the parameter vector of the fixed effects, and 𝑓𝑠𝑝𝑎𝑡 (𝑠𝑖𝑡) is a 

spatially correlated effect of the location (𝑠) where the observation belongs. 

The spatial effect can furthermore be split into a spatially correlated part and 

a spatially uncorrelated part: 𝑓𝑠𝑝𝑎𝑡 (.) = 𝑓𝑠𝑟𝑡 (.)+ 𝑓𝑢𝑛𝑠𝑡𝑟 (.), allowing for a 

distinction to be made between the unobserved influential factors which obey 

a global spatial structure and those which may be present only locally [5] 

For smooth non-linear effects of continuous covariates and time trends 

Bayesian penalized splines are used [6, 7]. Correlated and uncorrelated spatial 

effects follow a Gaussian Markov random field and an independent identically 

distributed (iid) Gaussian random effects priors, respectively [8]. 

Inference in the above STAR model can be made through a full (FB) or 

empirical Bayesian (EB) approach. In a FB approach the unknown variance or 

smoothing parameters are considered as random variables with suitable 

hyperpriors and are estimated together with the unknown functions and 

covariate effects, using MCMC (Markov chain Monte Carlo) simulation 

techniques [9]. EB approach is based on penalized likelihood inference for the 

regression coefficients and restricted maximum likelihood estimation (REML) 

for the variance components [4, 5, 9]. 

The model here presented analyzes the temporal trend and the spatial 

distribution of PTB incidence rates in Portugal between 2000 and 2010. The 

main goal was to identify areas with different risk levels in terms of PTB 

incidence rates, if they exist. 

For this model, municipality was considered as the statistical unit and 𝑌𝑖𝑡 , the 

number of new PTB cases in the 𝑖𝑡ℎ municipality at year 𝑡, as the response 

variable. To be able to model PTB incidence rates, an offset term with 

regression coefficient fixed to 1 is included in the model and is defined as 

𝑙𝑜𝑔(𝑃𝑖𝑡/100,000) , where 𝑃𝑖𝑡  represents the number of habitants in the 

municipality 𝑖 at the year 𝑡. The final model can then be specified as: 

 

𝜂𝑖𝑡  =  𝑙𝑜𝑔(𝑃𝑖𝑡/100 000) (𝑜𝑓𝑓𝑠𝑒𝑡)  + 𝑓𝑦𝑒𝑎𝑟 (𝑡)  + 𝑓𝑠𝑟𝑡  (𝑠𝑖𝑡)  +  𝑓𝑢𝑛𝑠𝑡𝑟 (𝑠𝑖𝑡),     (2) 

 

where 𝜂𝑖𝑡 =  𝑙𝑜𝑔(𝐸(𝑌𝑖𝑡))  represents the additive predictor for the                                            

𝑖 =  1, . . . , 278𝑡ℎ municipally at year 𝑡 =  2000, . . . , 2010. The function 𝑓𝑦𝑒𝑎𝑟 is 

a smooth function estimated using a Bayesian cubic P-spline [6, 7] with second 
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order random walk penalty with 20 inner knots. For the spatial components, a 

Gaussian Markov random field is used for the structured effects, 𝑓𝑠𝑟𝑡(.), and an 

iid Gaussian random effects for the unstructured effects, 𝑓𝑢𝑛𝑠𝑡𝑟(.) [10]. To take 

into account the excess of zeros and possible overdispersion of the data, a 

zero-inflated negative binomial distribution for the response variable was 

assumed [11]. Inference results are obtained considering a FB approach. 

 

3.  Results and Discussion 

3.1 Descriptive analysis 

Portugal shows a decrease of 42.3% in PTB incidence rates from 28.6 cases 

per 100 000 population in 2000 to 16.5 cases in 2010 (Figure 1a). When looking 

at sex differences (Figure 1b), the ratio man to woman was 2.4 in the period 

2000-2010, being stable over this time period. Regarding the ratio by age 

group, Figure 1b, there is almost the same number of new cases for men and 

women before the age of 25, with over 3 times more new cases of men 

between the ages of 35 and 64. It is also worth noting that, although there is 

a decrease in the sex ratio for the age group greater than 64 years of age, this 

ratio is still equal to 2 for this class.  

With respect to changes in age over time, the consistent decrease in 

incidence is followed by a consistent increase of the median age, Figure 1a, 

suggesting a decrease in PTB endemic in Portugal. 

 

 
Figure 1: (a) Incidence (new cases per 100 000 population) versus median 

age, by year; (b) Sex ratio (men to women) of new PTB cases by age group 

for the period 2000-2010 

 

Factors such as alcohol or drug dependency, HIV co-infection, being an 

inmate, homeless or an immigrant could contribute to the increased risk of 

infection with TB, as well as of disseminating it if already ill. Figure 2 shows the 

yearly evolution of these factors in our database. 
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Worth note is the steady decrease in the proportion of HIV diagnosed 

individuals, from 22.3% in 2000 to 10.7% in 2010. A similar trend was observed 

in IV drugs (Intravenous drugs) dependents that decreased from 12.8% to 

7.1% in the same period. Although more moderate, the proportion of new PTB 

cases being alcohol dependent is also decreasing over time. Notice the 

increase of the proportion of immigrants after the year 2005. 

When looking at the risk factors by sex (Figure 3), it is very clear that the 

percentage of men with a certain risk factor is always higher when compared 

to women, except when an immigrant. This difference is quite remarkable 

when looking at alcohol, where almost 25% of the men in the database are 

alcohol dependent. 

 

 
Figure 2: Proportion of risk factors per year in PTB new cases, 2000-2010 

 

Although the total number of men and women are quite different (numbers 

in brackets in Figure 3), these differences are indeed statistically significant 

with a p < 0.001 for all the comparisons, with the exception of the proportion 

of being an immigrant, which showed statistically significant differences 

between sexes with a p = 0.040. 
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Figure 3: Proportions of risk factors per sex in PTB cases, 2000-2010. In 

brackets are presented the absolute number of cases. 

 

3.2 Spatial and temporal analysis 

Figure 4 shows a clear spatial pattern, with the Metropolitan Area of 

Porto/Upper North (Region I - MAP), Metropolitan Area of Lisbon (Region II - 

MAL) and Algarve/Lower Alentejo (Region III) areas (red/darker and black 

areas in Figure 4) being the higher risk regions that significantly contribute to 

an increase of the PTB incidence rates. On the contrary, it shows some regions 

with lower risk in the interior north, center, and Alentejo (lighter areas in Figure 

4), that are significantly decreasing PTB incidence rates. The model did not 

show any significant unstructured (local) spatial effects (not shown here). 

 
Figure 4: For the period 2000 -2010, (a) Spatial distribution of the posterior 

means of the global spatial effect; (b) 95% posterior probabilities. Black areas 

on (b) denote municipalities with strictly positive credible intervals; white 

areas representing municipalities with strictly negative credible intervals; and 
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grey areas represent municipalities of non-significant effects for PTB 

incidence rates (credible intervals containing zero) 

Regarding time, Figure 5 shows a slightly non-linear decreasing effect 

between 2000 and 2010, confirming the capacity of the model to pick up the 

decreasing effect of PTB new cases shown in the previous descriptive analysis 

(Figure 1a). 

 
Figure 5: Estimated nonlinear effect of year in PTB incidence rates, together 

with 95% credible intervals. 

 

4.  Conclusion 

Nunes et al. [3] identified two main regions, MAL and MAP, as being high 

risk areas for contracting PTB in Portugal in 2001. The results of our study also 

suggest a clear urban problem, with MAL (Region II) and the MAP (Region I) 

being two of the main areas identified as statistically significant areas of 

increased PTB incidence rates (Figure 4). Although with smaller numbers of 

new cases of PTB, Algarve and Lower Alentejo (Region III) also emerge as a 

region within this category.  The metropolitan areas of Lisbon (Region II) and 

Oporto (Region I) correspond to two regions with high population density, 

resulting immediately in an agglomeration of the main risk groups associated 

with high incidence of tuberculosis (e.g. homeless, unemployed, IV drug 

addicts and other drugs). On the other hand, Region III which includes Algarve, 

not corresponding to an area of high population density throughout the year, 

it is associated with seasonal tourism and workers particularly through the 

months of April to September, when it also becomes a high density populated 

region. It is worth noticing that, after Lisbon with 52% of the total of foreigners 

living in Portugal, Algarve, North and Center of Portugal, are the three regions 

with the highest percentage of foreigners (13%, each). In addition, 12% of 
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Algarve’s population is foreigner, making it the region with the greatest 

representativeness of foreigners’ residents (Census 2011, Statistics Portugal). 

Future research will focus on the risk factors associated with the identified 

four regions, namely Region I – Metropolitan Area of Porto and Upper North 

(34 municipalities), Region II –Metropolitan Area of Lisbon (20 municipalities), 

Region III – Algarve and Lower Alentejo (17 municipalities), and the Low Risk 

region with the remaining municipalities (207 municipalities). 

As a final note, it is essential to emphasize how Structured Additive Regression 

(STAR) models offer a rich framework that allows the presence of a wide range 

of covariates while simultaneously exploring possible spatial and temporal 

correlations within a very diverse type of response variables. 
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