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a b s t r a c t

This paper is about the dust effect impact on photovoltaic systems on the profit of an electricity market
agent acting as an aggregator of photovoltaic power, wind power, thermal power, and an energy
storage system. Energy storage ensures arbitrage and smoothing of the variability of photovoltaic
power and wind power. The market agent intends to derive bids for submission in a day-ahead
market, having consideration of the dust effect impact on the photovoltaic power. A formulation is
proposed for a support decision system by a profit-based unit commitment problem solved by a
stochastic programming approach, considering the operating characteristics of the virtual power plant.
The photovoltaic power, wind power, and market price uncertainties are input data derived from
scenarios of historical data. Case studies addressed show the advantages of the stochastic programming
approach and insights concerned with the integration of uncertainties within the modeling for the
schedule of the energy storage system and the dust effect impact on profit.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The integration of photovoltaic (PV) power in the mix of pro-
duction of an electricity market is a trending of a research topic
over the past decade. But nowadays, several issues not relevant
at levels of lower integration of PV power are raising at large in-
tegration ones [1]. Therefore, convenient anticipated assessment
of the PV system output can play a role in the decision-making
through an improved interface with the unit commitment and
the economic dispatch. Moreover, this assessment can allow a
more profitable and reliable operation by mitigating the impact
of uncertainty, augmented due to the integration in the electricity
market. This assessment must take into account the effects that
influence the performance of the PV system. For instance, envi-
ronment conditions [2], namely, temperature, wind speed, solar
radiance or radiation [3], device aging, damage, shading, deposi-
tion of dust due to human activities or natural dust accumulation,
influence performance.

The deposition of dust on PV systems attenuates the capture
of the radiation reaching the PV cells by reducing the overall
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transmissivity at the level of the glass cover and hence is respon-
sible for a decrease in the PV system performance [4–6]. Besides
this attenuation, if the deposition of dust is not even equal over
the PV cells, hot points appear, which over a due time can burn
the cells, i.e., permanently damaged in the cells is expected in
due time [7,8]. Wind speed and rain can help in the cleaning of
dust, but also installation tilt, azimuth angles, and the location
where the PV system is at the outdoor exposing conditions affect
dust accumulation density on surfaces [9]. Hence, the reduction
in PV system performance due to the deposition of dust is highly
dependent on the in-situ conditions [5].

Studies on the impact of deposition of dust on PV systems
addressed in what regards the analysis of the reduction in PV
power output are conclusive about the importance of this impact,
for instance: Ref. [10] reports a 26% reduction for concentrated PV
systems in Spain; Ref. [11] reports around 4.4% annual average
reduction and in a long time without rain exceeding a daily 20%
reduction for a tested small PV system on a roof in Spain; Ref. [12]
reports a 6.9% reduction as a result of deposition of sandy soil on
a PV system in Italy; Ref. [13] reports around 4% in a laboratory
study of a PV system in Germany; Ref. [14] reports a 13.7%
to 16.5% reduction in Minas Gerais, Brazil; Ref. [15] reports a
4.5% reduction in Australia. There are regions where the reported
reduction is even more significant, for instance: Ref. [16] reports
a 35% to 40% reduction in Northern Oman; Ref. [17] reports a
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Nomenclature

Abbreviations

DAM Day-ahead market
ESS Energy storage system
MIBEL Iberian Electricity Market
MILP Mixed integer linear programming
PSO Particle swarm optimization
PV Photovoltaic
WP Wind Power

Sets and indexes

I, i Set and index of thermal units
L, l Set and index of segments for piecewise

linear cost function of thermal units
S, s Set and index of scenarios
T , t Set and index of periods in the time

horizon

Parameters and Constants

α Dust effect parameter
λD
st DAM clearing price for scenario s at

period t
λ+

st Positive imbalance price for scenario s at
period t

λ−

st Negative imbalance price for scenario s
at period t

ηChESS ESS charging efficiency
ηDiESS ESS discharging efficiency
PR+

t Ratio between positive imbalance price
and DAM price at period t

PR−

t Ratio between negative imbalance price
and DAM price at period t

Ai Thermal unit i fixed cost
F l
i Thermal unit i slope of segment l of the

piecewise linear variable cost function
Ji Thermal unit i imposed number of

periods offline
Kβ

i Cost of the βth interval of the start-up
cost of thermal unit i

Ni Thermal unit i imposed number of
periods online

PChESSmax
st Maximum charging power of the ESS for

scenario s at period t
PDiESSmax
st Maximum discharging power of the ESS

for scenario s at period t
Pmin
i , Pmax

i Thermal unit i ramp-up and ramp-down
PPV
st PV power for scenario s at period t

PPV max Maximum PV power system power ca-
pacity

PW
st WP for scenario s at period t

PW max Maximum wind system power capacity
RUi/RDi Thermal unit i ramp-up/ramp-down

32% reduction in Lebanon; Ref. [18] reports a 22% reduction for

a 70-day experiment in Iran; Ref. [19] reports a 43% reachable

reduction in a PV system at the Cyprus University of Technology,

due to clouds of dust moving from the Sahara Desert to Cyprus.

SDCi Thermal unit i shut-down cost
SUi/ SDi Thermal unit i start-up and shut-down

ramp rate
ssi0 Thermal unit i offline time at the be-

ginning of the time horizon for scenario
s

T l
i Thermal unit i segment l upper limit

of the piecewise linear variable cost
function

UTi/ DTi Thermal unit i minimum up/down time

Continuous variables

δlsit Segment power l of thermal unit i for
scenario sat period t

dst Imbalance for scenario s at period t
d+

st Positive energy deviation for scenario s
at period t

d−

st Negative energy deviation for scenario s
at period t

eESSst ESS energy for scenario s at period t
psit Thermal unit i power generated for

scenario s at period t
pmax
sit Thermal unit i maximum available

power for scenario s at period t
bsit Thermal unit i linearized variable cost

function for scenario s at period t
pChESSst ESS charging power for scenario s at

period t
pDiESSst ESS discharging power for scenario s at

period t
pTotalst Total energy bid to be submitted to the

DAM for scenario s at period t
SUCsit Thermal unit i start-up cost of ESS for

scenario s at period t

Binary (0/1) variables

kChst / kDist ESS decisions for scenario s at period
t: 1, if charges/discharges; 0, otherwise

t lsit Thermal unit i decision for scenario s at
period t: 1, if the power exceeds the
power of segment l; 0, otherwise

usit Thermal unit i commitment decision for
scenario s at period t

ysit Thermal unit i start-up decision for
scenario s at period t

zsit Thermal unit i shut-down decision for
scenario s at period t

1.1. Unit commitment

The unit commitment problem is a decision problem con-
cerned with the scheduling of units at each period over a time
horizon and admits a processing structure divided into two sub-
problems: (i) the sub-problem determining the units on/off status
at each period of the time horizon; (ii) the sub-problem of the
economic dispatch determining the power output of units in
each period of the time horizon [20]. Unit commitment is the
most relevant task for power systems management [21], either
in the view of the past paradigm for regulated markets or of the
nowadays for deregulated markets. The past unit commitment,
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i.e., in the view of the paradigm for regulated markets, is a mini-
mization of cost while meeting the load demand and the opera-
tional constraints of the power system. While in the view of the
nowadays paradigm, the unit commitment is a maximization of
profit subjected only to the operational constraints. Under nowa-
days paradigm, market players have an environment for business
settling new opportunities. But market players must have a sup-
port decision system to exploit the opportunities advantageously.
Hence, a power producer must have a price-based unit commit-
ment as a support decision system to exploit the opportunities
conveniently [22]. The state-of-art about the approaches for the
unit commitment problem shows lines of research using heuris-
tics, conventional optimization, stochastic optimization, artificial
intelligence, or even hybrid approaches.

Approaches proposed for the unit commitment problem in-
volves, for instance: priority list [23], dynamic programming [24],
Lagrangian relaxation [25], mixed-integer programming [26–28].
Priority list approaches are easily implemented and have lit-
tle processing time, but these approaches do not ensure that
the solution is in an acceptable neighborhood of the optimal
solution [29]. Dynamic programming is the earliest optimiza-
tion approach applied to unit commitment problems but suf-
fers from the narrowness known as the curse of dimensionality.
Mixed-integer linear programming (MILP) proved to be a suc-
cessful approach in what regards the flexibility and extensive
modeling capability offered [26,27]. Most of the conventional
approaches have limitations on the ability to provide the opti-
mum for the non-differentiable and discontinuous formulation
of unit commitments. Hence, the state-of-art shows a line of re-
search with approaches developed using metaheuristics, genetic
or evolutionary optimization approaches, namely artificial neu-
ral networks, particle swarm optimization (PSO) [30–32]. These
approaches have a wide recognition due to easy implementa-
tion, allowing more complex formulations and being able to
achieve solutions in a near neighborhood of the optimal solutions.
Also, these approaches appear as a part of procedures in what
are the so-called hybrid approaches, trying for profiting simul-
taneously from advantages the conventional ones, particularly
convex optimization, and metaheuristics, genetic, or evolutionary
approaches. Hybrid approaches for more complex formulations
of constraints in unit commitment problems can carry out the
optimization with advantageous appropriated performance. For
instance: Ref. [33] presents a hybridization of Lagrangian relax-
ation with genetic algorithm; Ref. [34] presents a hybridization of
Lagrangian relaxation with PSO; Ref. [35] presents a hybridization
of dynamic programming with PSO; Ref. [36] presents a priority
list with a hybrid genetic-imperialist competitive algorithm. An-
other line of research uses stochastic optimization regarded as
relevant to handle bidding strategy of aggregation of energy re-
sources with uncertainty on the availability of renewable energy
sources. These resources must be conveniently modeled so that
the power producer decision-making under uncertainty is further
tuned in what regards the achievement of convenient operation
[37,38]. The electricity market is nowadays in the way of fol-
lowing in the smart grid context experiences that are significant
changes with the way of doing things [39–42], known to be the
business as usual. The electricity market is opening to the par-
ticipation of new market players, namely aggregators of energy
resources and small-scale renewable energy producers [43].

The use of stochastic optimization in unit commitment prob-
lems is a line of research tackled in the way of the future, for
instance: Ref. [44] presents a stochastic optimization for solving
a unit commitment problem with uncertainty model by particle
swarm optimization to select optimal scenarios; Refs. [45,46]
presents a comparison between stochastic optimization with de-
terministic optimization allowing to conclude that the former is

more convenient. Under nowadays paradigm, the unit commit-
ment problem formulation must consider uncertainty to account
not only for the availability of renewable energy sources but
also for the possible scenarios of market prices. Hence, stochastic
optimization is, without doubt, a line of research in the way
of the future. Stochastic optimization employs decomposition
techniques consisting of Progressive Hedging [47], Lagrangian
relaxation [48], Dantzig–Wolfe Decomposition [49], or Benders
Decomposition [50]. These techniques appear in the formaliza-
tions of two or multi-stage approaches, decomposing problems by
stages, scenarios, or by generation units. Other lines of research
are in the scope of the application of Game Theory approaches
concerned with the simulation of the market power for mar-
ket agents in the unit commitment. A report summarizing the
application of optimization techniques for solving unit commit-
ment problems addressing a formalization in what regards the
aggregation of power units is in Table 1.

As the penetration of renewable energy increases and be-
came enough perceptible in the mix of generation, i.e., became
a large penetration of renewable energy, the demands for flex-
ible options increase [56]. An energy storage system (ESS) can
play among the flexible options a meaningful role [57]. An ESS
is significant not only for improving the overall stability and
reliability of the power system [38,58] but also for arbitrage
and smoothing on the variability of PV and wind power (WP)
exploitation. Ref. [59] presents a review of ESSs for usage jointly
with renewable energy. Ref. [23] presents an approach for a ther-
mal unit commitment coordinated with an ESS, having thermal
scheduling implemented by an extended priority list. Ref. [51]
presents optimal scheduling solved by a PSO algorithm for a
thermal unit commitment coordinated with WP and an ESS by a
pumped hydro. Ref. [52] presents a stochastic unit commitment
problem having as ESS a battery and using sub-hourly intervals
in the second stage of the optimization, i.e., in the real-time
market. Ref. [53] presents a stochastic unit commitment hav-
ing WP coordinated with an ESS, smoothing the variability of
power. Also, a classification of ESS and criteria for the selection
of a specific ESS are presented. Ref. [54] presents a stochastic
unit commitment problem adapted for optimal coordination of
thermal units, renewable energy, and electric vehicles. Ref. [55]
presents a stochastic unit commitment for thermal units and
combined cycle gas turbines, taking into consideration constraints
due to emissions.

1.2. Research quiz and contributions

Integration of renewable energy can represent a challenge
for power systems, requiring a convenient approach for schedul-
ing energy conversion into electric energy under the nowadays
paradigm. Unlike the behavior of conventional power plants, the
behavior of renewable power plants requires the consideration of
stochasticity. Besides, the deposition of dust in PV modules can
deliver added stochasticity in the behavior of renewable energy.
As a result of the ongoing work by the authors, this paper reports
significant improvement in the work previously published in Refs.
[37,38]. The main contributions of this work are as follows:

• C1 — A support management system based in two-stage
linear stochastic programming to explore the advantages of
aggregation of distinct power sources including renewable
energy for the participation of an aggregator in electricity
markets;

• C2 — An arbitrage for ESS in the support management sys-
tem of the aggregator, i.e., considering a model for arbitrage
jointly within the formulation of the support management
system based in two-stage linear stochastic programming;
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Table 1
Unit commitment formulations addressing aggregation.
Aggregation power Method Objective function Reference

Thermal units, energy storage Extended Priority list Operating costs [23]
Thermal units,WP, pump-storage plant PSO Operating costs [51]
Thermal units, WP, energy storage device Stochastic programming Operating costs [52]
Thermal units, WP, energy storage device Stochastic programming Operating costs [53]
Thermal units, WP, electric vehicles Stochastic programming Operating costs [54]
Thermal units, combined cycles units Stochastic programming Expected profit [55]

• C3 — A formulation for the consideration of the dust accu-
mulation, i.e., an impact of dust accumulation on PV mod-
ules in the PV power output, and consequently the impact
in the expected profit of the aggregator.

A comparison between the references used in Table 1, regarding
some unit commitment formulations addressing aggregation, and
this paper is in Table 2.

The trend of management of a mix of power sources by a
single entity, the aggregator, is pivotal knowledge in the scope
of the future electricity markets, smart grids, and smart cities.
Since as expected in the future, the power system is a blend of
small microgrids managed by aggregators, having the capability
of importing or exporting electric energy. Mostly, this paper is
about a profit-based stochastic unit commitment concerned with
the aggregation of renewable energy, namely WP and PV powers,
with thermal unit power, and ESS. This profit-based stochastic
unit commitment is a contribution in adding an efficient aggre-
gation of renewables with thermal units and ESS, giving better
decisions in what regards the stochasticity to be faced.

Research on the capability of ESS to smooth the integration of
WP and PV power take place widely reported. Nevertheless, there
is a line of research on the capability of ESS to produce arbitrage
about the impact of the scenarios of market prices and the power
output of renewables that needs further appraisal. This paper
contributes to this line of research considering arbitrage due
to ESS to provide possible compensation for energy deviations.
Consequently, the incomes to the aggregator are a function of the
scenarios of market prices and the power output of renewables.
Also, research on the dust accumulation on PV modules takes
place widely reported at the technical level and less reported
in what refers to the economic implications. Nevertheless, an
analysis of the impact of dust accumulation on PV modules lacks
in what regards the viewpoint of the bidding assessment of a
market agent. Also, this paper contributes to this line of research.

2. Electricity market

The day-ahead market (DAM) is the platform where, after the
clearing of the market, the electric energy is through the next-
day operation of the grid conveyed from the power producers
for physical delivery to consumers. The structure of a deregulated
electricity market is in Fig. 1.

In Fig. 1 the market operator is the entity responsible for
setting the price at each period of the next day in the DAM. This
setting of the price is a crossing of offers of selling with purchase
ones coming from agents registered in the market. The offer must
indicate the period, the price, and the corresponding amount of
energy traded in the respective period. These offers are in curves
known as the supply curve or the demand curve, respectively, in
increasing order or decreasing order of the prices. The crossing
process is the process of the intersection of supply and demand
curves at each period, defining the price of the energy traded
in the period. Hence, this price ensures that at the clearing of
the market, the accepted supply meets the accepted demand at
each period, and the price is the lowest one. But the supply
and demand accepted at the clearing are not necessarily in per

with the ones needed at the time of delivery, i.e., in due time,
imbalances happen due to failure to meet the accepted traded
levels of energy. For instance: an aggregator managing renewable
energy sources is most probably faced either with more energy or
less energy than the one accepted at the clearing of the market
due to the uncertainty on availability of WP, PV power, or the
deposition of dust on the PV panels.

The system operator is the entity responsible for proceeding
in the way of keeping the balance between production and usage
of energy in due time to cope with the imbalance in a market
environment called the balancing market. The system operator
of the balancing market of the Iberian Electricity Market (MI-
BEL) subjects the market agents to a price for a positive energy
imbalance and another for negative energy imbalance. The price
for a positive energy imbalance is due to higher production or
lower consumption than the one accepted at the clearing of the
DAM. The price for negative energy imbalance is due to lower
production or higher consumption than the one accepted at the
clearing of the DAM [38]. The procedure for pricing imbalances
[60,61] in MIBEL is in Table 3.

Table 3 shows that in case of a positive system imbalance,
the producers with overproduction comparatively to the energy
accepted at the market-clearing are paid by the excess energy
at price λDN

t , typically this price is lower than the DAM clearing
price λD

t . Consequently, the profit expected is lesser than the one
given if the overproduction is in the offer of the previous day.
While market participants subject to the price λD

t can produce
less energy than that accepted at the market-clearing. This price
for these participants is because the balance of the system is
favorable to underproduction due to the overall excess produc-
tion. In the case of a negative system imbalance, the producers
with underproduction pay for the underproduction at a price, λUP

t ,
typically this price is higher than the price λD

t . Again, the profit
expected is lesser than the one given if the underproduction is not
in the offer of the previous day, i.e., the offer is the one feasible
to be satisfied. While market participants subject to the price
λD
t can produce more energy than that accepted at the market-

clearing. This price for these participants is because the balance
of the system is favorable to overproduction due to the overall
less production.

3. Methodology

The two-stage stochastic optimization approach can deal with
the uncertainties related to renewable energy exploitation and
market prices, processing scenarios in an arrangement expressed
by a scenario tree obtained by the utilization of the available
historical data processed by a suitable scenario reduction tool.
The two-stage stochastic optimization approach admits a reason-
able formulation as a MILP approach, allowing to benefit from
the available and well-proven practical commercial optimization
solvers for MILP, and this paper proposes to use commercial
optimization solvers for MILP for the practical solution of the
approach. A summarization of the theoretical basis for the man-
agement of the aggregator under uncertainty, namely, the two-
stage stochastic optimization approach, the ESS modeling, and the
thermal unit modeling is in what follows.
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Table 2
Comparison between this paper and references in Table 1.
Features of this paper Reference

[23] [51] [52] [53] [54] [55]

Thermal units Yes Yes Yes Yes Yes Yes
WP No Yes Yes Yes Yes Yes
PV power No No No No No No
ESS Yes No Yes Yes No No
Stochastic programming No No Yes Yes Yes Yes
Profit-based stochastic UC No No No No No Yes
ESS arbitrage as a function of the
scenarios of electricity market prices

No No No No No No

Dust effect No No No No No No

Fig. 1. Deregulated electricity market structure.

3.1. Two-stage stochastic programming approach

The formulation for the two-stage linear stochastic program-
ming is [62] as follows:

max cT x + E
[
maxyωq

T
ωyω

]
(1)

Subject to:

b ≤ Ax ≤ b (2)

hω ≤ Tωx + Wωyω ≤ hω, ∀ω (3)

x ≥ 0, yω ≥ 0, ∀ω (4)

In (1) the second term is the expected second-stage value.
In (3) T and W are, respectively, referred to as the technology
and the recourse matrices, respectively. The two-stage stochas-
tic programming formulated from (1) to (4) is expressed in a
deterministic equivalent program as follows:

maxx,yωc
T x +

Ω∑
ω

ρωqTωyω (5)

Subject to:

b ≤ Ax ≤ b (6)

hω ≤ Tωx + Wωyω ≤ hω, ∀ω (7)

x ≥ 0, yω ≥ 0, ∀ω (8)

In (5) the second term is the recourse function or expected
second-stage value function. Ref. [62] presents more detail about
stochastic programming. In the scope of this paper, the catego-
rization of the decision variables are as follows:

• D1 — First stage decisions, given in the vector x, which are
also known as here and now decisions, are made before
the realization of uncertainties, which in the scope of the

Table 3
Imbalance pricing.

System imbalance

Negative Positive

Power producer
imbalance

Negative λ−

t = max(λD
t , λUP

t ) λ−

t = λD
t

Positive λ+

t = λD
t λ+

t = min(λD
t , λDN

t )

formulation in this paper are: WP, PV power and market
prices for energy and market prices for imbalance, known
as imbalance prices. The hourly bids are first-stage deci-
sions. The objective is the maximization of the profit of the
aggregation of production in the first stage;

• D2 — Second stage decisions, given in the vector y, which
are known as wait and see decisions are made after the
realization of the first-stage decisions. Second stage deci-
sions are related to the commitment decisions of thermal
units and economic dispatch over the time planning horizon,
i.e., the power output of units in each period of the planning
horizon and the charge/discharge status of the ESS. The
objective of the optimization problem is the maximization
of the expected profit in the second stage.

3.2. ESS Modeling

The stochastic nature of WP and PV power poses significant
challenges not only in grid integration but also in the decision-
making process for the exploitation. Adequate usage of an ESS is
a valuable solution to improve the matching of production with
the compromised power or to develop arbitrage schemes, i.e., for
taking economic advantage of the time shift of delivering power.

Particularly, time shift is of interest for WP and PV power
producers that can store energy at periods of low market prices
and sell this stored energy at a more favorable price period, i.e., a
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likely high price period. An ESS has a set of technical characteris-
tics imposing, for instance, energy and power storage limits, effi-
ciencies for charge and discharge processes. Additionally, binary
variables are required to model these processes.

The modeling used in this paper for ESS assumes a null depth
of discharge, i.e., all the stored energy can be discharged, and is
typically the one describing a vanadium redox flow battery. This
type of ESS is one of the most promising technology for energy
management to mitigate the variation and intermittence of WP
and PV power [63]. The modeling of the ESS is stated as follows:

0 ≤ eESSst ≤ EESSmax. (9)

In (9) the energy stored at scenario s and period t is limited to
the maximum capacity of the ESS, which is an intrinsic charac-
teristic of the ESS. Two binary variables to control the charge and
discharge processes are introduced as follows:

kChst + kDist ≤ 1; (10)

0 ≤ pChESSst ≤ PChESSmax
st kChst ; (11)

0 ≤ pDiESSst ≤ PDiESSmax
st kDist . (12)

In (10) is imposed that the ESS cannot charge and discharge
simultaneously. In (11) and (12) the charged and discharged
power at scenario s and period t are limited to a maximum power
allowed, respectively. The equation for the balance of energy of
the ESS is stated as follows:

eESSst = eESSst−1 + ηChESSpChESSst −
1

ηDiESS p
DiESS
st . (13)

In (13) eESSst and eESSst−1 are the energy stored at scenario s and period
t and period t − 1, respectively; ηChESS and ηDiESS are the efficiency
of charging and discharging, respectively.

3.3. Thermal units modeling

The total operating cost OPsit is given by the cost of operation
of thermal units [64] stated as follows:

OPsit = GCsit + SUCsit + SDCsitzit ∀ s , ∀ i, ∀ t. (14)

In (14) the terms associated with unit i are respectively: the
generation cost GCsit , the start-up cost SUCsit , and the shut-down
cost SDCsit . The generation cost GCsit is stated as follows:

GCsit = Aiusit + bsit ∀ s , ∀ i, ∀ t. (15)

In (15) the two terms are respectively the fixed cost and the
variable cost of unit i. The variable cost of a thermal unit is
typically formulated as a quadratic function, but to use MILP the
variable cost is reformulated as piecewise linear function stated
as follows:

bsit =

L∑
l=1

F l
i δ

l
sit ∀ s , ∀ i, ∀ t; (16)

psit = Pmin
i usit +

L∑
l=1

δlsit ∀ s , ∀ i, ∀ t (17)

(T 1
i − Pmin

i )t1sit ≤ δ1sit ∀ s , ∀ i, ∀ t; (18)

δ1sit ≤ (T 1
i − Pmin

i )usit ∀ s , ∀ i, ∀ t; (19)

(T l
i − T l−1

i )t lsit ≤ δlsit ∀ s , ∀ i, ∀ t, ∀ l = 2, . . . , L − 1;
(20)

δlsit ≤ (T l
i − T l−1

i )t l−1
sit ∀ s , ∀ i, ∀ t, ∀ l = 2, . . . , L − 1;

(21)

0 ≤ δLsit ≤ (Pmax
i − T L−1

i )tL−1
sit ∀ s , ∀ i, ∀ t. (22)

In (16) the variable cost is given as the sum of products of the
slope F l

i by power δlsit of the segment. In (17) the power of unit i
is given by the minimum power generation plus the sum of the
segment power. The binary variable usit ensures that if the unit
is in the state offline, the power is null. In (18)–(22) the limits
are set for the power of the segments. The start-up costs SUCsit
is typically formulated as an exponential, but to use MILP the
variable cost is reformulated as stair wise function as follows:

SUCsit ≥ Kβ

i

(
usit −

β∑
r=1

usit−r

)
∀ s , ∀ i, ∀ t. (23)

In (23), the expression in parentheses determines if a start-up has
occurred, i.e., if a start-up occurs, then the expression is equal to
1, implying that the unit has been in the state offline in the β
preceding periods. The power generated for a unit i is stated as
follows:

Pmin
i usit ≤ psit ≤ pmax

sit ∀ s , ∀ i, ∀ t; (24)

pmax
sit ≤ Pmin

i (usit − zsit) + SDzsit ∀ s , ∀ i, ∀ t; (25)

pmax
sit ≤ pmax

sit + RUusit + SUysit ∀ s , ∀ i, ∀ t; (26)

psit−1 − psit ≤ RDusit + SDzsit ∀ s , ∀ i, ∀ t. (27)

In (24) the psit is the power of unit i at period t, which is limited
by the maximum power pmax

sit of unit i at period t. In (25)–(26) the
maximum power pmax

sit is feasible if satisfy the constraint regarded
with the actual capacity of unit i, the start-up and shut-down
ramp rate limits and the ramp-up limit of the unit. In (25)–(27)
the relation between the start-up and shut-down variables of unit
i is given in function of the binary variables. The minimum up
time constraints are stated as follows:
Ni∑
t=1

(1 − usit ) = 0 ∀ s, ∀ i; (28)

Ni = min{T , (UTi − Usi0) usit}; (29)

k+UTi−1∑
t=k

usit ≥ UTiysit ∀ s, ∀ i, ∀ k = Ni + 1 . . . T − UTi + 1;

(30)

T∑
t=k

(usit − zsit ) ≥ 0 ∀ s, ∀ i, ∀ k = T − UTi + 2 . . . T . (31)

In (28) the unit is imposed to remain in the online state for a
specific number of periods in regard of the initial state. In (30)
a start-up implies being online by at least UTi periods. In (31)
the minimum up time is imposed. The minimum down time the
constraints are stated as follows:

Ji∑
t=1

usit = 0 ∀ s, ∀ i, ∀ t; (32)

Ji = min{T , (DTi − ssi0)(1 − usit )}; (33)

k+DTi−1∑
t=k

(1 − usit ) ≥ DTizsit ∀ s, ∀ i,

∀ k = Ji + 1 . . . T − DTi + 1; (34)

T∑
t=k

(1− usit − zsit ) ≥ 0 ∀ s, ∀ i, ∀ k = T − DTi + 2 . . . T . (35)
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In (32)–(34) the unit is imposed to satisfy the down time con-
straint. In (35) the minimum down time is imposed, i.e., the unit
must be down during at least the minimum number of down
periods. The constraints on the binary variables are stated as
follows:

ysit − zsit = usit − usit−1 ∀ s, ∀ i, ∀ t; (36)

ysit + zsit ≤ 1 ∀ s, ∀ i, ∀ t. (37)

In (36)–(37) the constraints on the start-up and shut-down vari-
ables of the thermal units are imposing that start-up and shut-
down are not simultaneously feasible. The total power generated
by thermal units is stated as follows:

pTherst =

I∑
i=1

psit ∀ s , ∀ t. (38)

Although not explicitly mentioned in the above constraints any
linear constraint in continuous variables is possible to be consid-
ered, for instance, a local constraint in the power of a group of
thermal units due to fossil fuel or an emission restriction on the
operation of the group of thermal units.

4. Problem formulation

4.1. Aggregated formulation

The goal of the profit-based stochastic unit commitment prob-
lem aggregating thermal units, renewable energy, and ESS is
to deliver an enhancing management information system for
maximizing the expected profit of the bidding in the DAM and
without discarding that the deposition of dust influences the
expected profit. So, this influence must be considered in the
problem formulation. The tilt angle of the panels is in practice
correlated with the amount of density of dust on the surface of
the panel. This amount of dust density is in this paper emulated
by a factor α ∈ [0, 1] given from historical data shaping the
above correlation, reducing the available power on the PV power
scenarios. Therefore, the value of pPVst characterizing the power of
the PV power scenarios is replaced by pPVst α.

The objective function is stated as follows:

max PROFIT =

Ns∑
s=1

T∑
t=1

1
Ns

(REVst + IMBst − COSTst ). (39)

In (39) REVst , IMBst and COSTst are the revenue associated with
the scenario s period t, the imbalance contribution for the profit
incurred with the scenario s period t, and the total generation
costs in the scenario s period t, respectively. The imbalance con-
tribution can have positive or negative values. If the value of the
imbalance contribution is positive, then the contribution is in fa-
vor of the revenue, if negative is a loss of revenue. The sum is over
the total number of scenarios Ns and the scenarios are considered
as equiprobable ones, i.e., the probability of each scenario is 1/Ns.
But the formulation can be easily adapted if different probabilities
are imposed for the scenarios. The revenue considered in (39) is a
per scenario one, i.e., a revenue of participation in the DAM. This
revenue for scenario s and period t is stated as follows:

REVst = pTotalst λD
st . (40)

In (40) pTotalst and λD
st are the total bid in the DAM and the DAM

price in the scenario s and period t, respectively. This contribution
is a per scenario revenue/cost due to the participation in the
balancing market stated as follows:

IMBst = d+

stλ
D
stPR

+

st − d−

stλ
D
stPR

−

st . (41)

In (41) d+

st and d−

st and PR+

st and PR−

st for the scenario s at a
period t are the positive and negative power deviations and
down imbalance price ratios, respectively. If there is a positive
imbalance the first term of (41) has a non-null value, while the
second has a null value; if there is a negative imbalance the first
term of (41) has a null value, while the second one a non-null
value.

Since normally is assumed that the costs of operation of the
renewables, the WP or PV power, or the ESS are negligible, the
costs in (39) are costs only due to the thermal unit operations.
The total generation cost for the scenario s period t is stated as
follows:

COSTst =

I∑
i=1

OPsit . (42)

In (42) OPsit is the operating costs of thermal unit i for the
scenario s at a period t.

The goal of maximizing the expected profit is subjected to the
following constraints.

(a) Energy Bid Constraint
The energy bid must satisfy the modeling constraint as fol-

lows:

0 ≤ pTotalst ≤

I∑
i=1

pmax
sit +PW max

+PPV max
+PDiESSmax

∀s, ∀t. (43)

In (43) the bid for the scenario s at a period t pTotalst is imposed to
be never greater than the sum of the maximum powers of the
thermal units for the scenario s at a period t, the WP, the PV
power, with the maximum discharged power of the ESS.

(b) Imbalance Constraints Considering Dust
The imbalance constraints to take in consideration the dust

effect satisfies the proposed modeling constraint as follows:

dst = pTherst + PW
st + PPV

st α − pTotalst ∀s, ∀t, ∀α ∈ [0, 1]. (44)

In (44) α is a factor associated with the effect of dust density,
i.e., a factor that echoes the value of PV power reduced due to
the deposition of dust. The imbalance in (44) further satisfies
a constraint given as the difference between two contributions
said to be the positive and negative imbalance terms. Hence, the
imbalance is stated as follows:

dst = d+

st − d−

st ∀s, ∀t. (45)

In (45) the formulation ensures that only one of the imbalances
has a non-null value. The positive and negative imbalances are
bounded by the constraints stated as follows:

0 ≤ d+

st ≤ pgst + PW
st + PPV

st α ∀s, ∀t, ∀α ∈ [0, 1]; (46)

0 ≤ d−

st ≤

I∑
i=1

pmax
sit + PW max

+ PPV max
+ PDiESSmax

∀s, ∀t. (47)

(c) Bidding Curves Constraint
Bidding curves are a useful aid for taken decisions and are

normally subjected to a modeling constraint as follows:(
pTotalst − pTotals−1t

) (
λD
st − λD

s−1t

)
≥ 0 ∀ s, ∀ t. (48)

In (48) are imposed that the bidding curves must satisfy the
usual management requirement of the non-decreasing condition
constraint.

4.2. Disaggregated formulation

The disaggregated formulation for a specific technology is
performed by setting all the parameters and variables related to
the remaining technologies to zero in the formulation (39)–(48).
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Table 4
Thermal units.
Unit Pmin

i
(MW)

Pmax
i

(MW)
UTi
(h)

DTi
(h)

SU i
(MW)

SDi
(MW)

RU i
(MW/h)

RDi
(MW/h)

Ai
(e/h)

SDC i
(e/h)

U1 70 125 5 4 100 95 45 40 2900 170
U2 60 125 5 3 90 80 55 55 3060 120

Fig. 2. Aggregation of wind system, PV system, thermal units, and ESS.

For instance, the disaggregated formulation for WP is stated as
follows:

max PROFIT =

Ns∑
s=1

T∑
t=1

1
Ns

(REVst + IMBst ). (49)

where

REVst = PTotal
st λD

st . (50)

IMBst = d+

stλ
D
stPR

+

st − d−

stλ
D
stPR

−

st . (51)

subject to

0 ≤ pTotalst ≤ PW max. (52)

dst = PW
st − pTotalst ∀s, ∀t. (53)

dst = d+

st − d−

st ∀s, ∀t. (54)

0 ≤ d+

st ≤ PW
st ∀s, ∀t. (55)

0 ≤ d−

st ≤ PW max, ∀s, ∀t. (56)

(pTotalst − pTotals′t )(λD
st − λD

s′t ) ≥ 0 ∀ s, s′, ∀ t. (57)

5. Case studies

The aggregator manages a WP, a PV power, thermal unit
power with an ESS as shown in Fig. 2.

The case studies are:
Case 1#–Analysis of the profitability of the aggregation;
Case 2#–Analysis of the impact of dust accumulation on the

profitability of the aggregation.

Table 5
Piecewise linear approximations for the variable cost.
Unit T 1

i
(MW)

T 2
i

(MW)
F 1
i
(e/MWh)

F 2
i
(e/MWh)

F 3
i
(e/MWh)

U1 100 115 33.22 34.81 35.61
U2 90 115 43.98 39.77 42.12

Fig. 3. DAM price scenarios.

5.1. Input data

The aggregator owns two thermal units having minimum and
maximum power, ramp up/down rates, start-up and shut-down
values, minimum up/down time, fixed and shut-down costs as
shown in Table 4.

The variable costs of the thermal units are given by an approx-
imation given by piecewise linear function with the parameters
as shown in Table 5.

The start-up costs of thermal units given by an approximation
given by a stairwise function with the parameters as shown in
Table 6.

The rated power of the WP system and the PV power system
is 100 MW each. The ESS is considered a vanadium redox flow
battery with the data given in Table 7.

The scenarios for market prices, WP, and PV power are re-
ported in Refs. [65–67]. The case study is on an hourly basis for
a time horizon of 24 h.

The simulations of the case studies are implemented in GAMS
and solved by the solver CPLEX 12.1, using a 4-GHz processor
with 4-GB of RAM. The number of equations, continuous and
binary variables and the CPU time are reported in Table 8.

The case study due to the uncertainty has 625 scenarios of data
in what concerns the aggregation bidding. These scenarios are as
follows: 5 scenarios for DAM prices, 5 scenarios for imbalances
prices, 5 scenarios for WP and 5 scenarios for PV power.

The DAM price scenarios are in Fig. 3.
Fig. 3 shows that the price for the scenarios with an exception

for scenario 2 show a tendency to have more favorable values in
the range from the 6 h to the 24 h. After the 20 h, the prices have
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Table 6
Stairwise approximations for the start-up cost.
Unit capacity (MW) K 1

i K 2
i K 3

i K 4
i K 5

i K 6
i K 7

i K 8
i K 9

i K 10
i

<125 654 1347 1896 2254 2533 2684 2733 2767 2813 2853
≥125 and ≤215 1046 2155 3034 3606 4053 4294 4373 4427 4501 4565

Table 7
Renewable energy and ESS data.
System Minimum power

output (MW)
Maximum power
output (MW)

Charge
efficiency

Discharge
efficiency

Wind 0 100 – –
PV 0 100 – –
ESS 0 100 0.90 0.90

Table 8
Number of equations and variables.

Equations Continuous variables Binary variables CPU time (s)

Wind disaggregated 5 275 4 921 0 6
PV disaggregated 5 275 4 921 0 6
Thermal disaggregated 35 947 12 423 1 200 1800
Wind-PV-Thermal-ESS aggregated 899 087 288 549 1 320 2400

Fig. 4. Positive imbalance price ratios.

in average higher values and smaller dispersion. Consequently, if
available WP and PV power are expected to contribute for storage
into the ESS before the 6 h and discharge after 20 h. The positive
imbalance price ratios for the scenarios are in Fig. 4.

In Fig. 4 the positive imbalance price ratios show a tendency of
almost the same value of dispersion at each hour with exceptions
at 3 h and more significantly at 9 h due to the unfavorable values
of scenario 5 at 3 h and scenario 1 at 9 h, respectively. Conse-
quently, from this data a positive imbalance is not favored to
happen at any particular hour, i.e., almost all hours are equivalent
in what regards the possibility of going into a positive imbalance.

The negative imbalance price ratios scenarios are in Fig. 5.
In Fig. 5 the negative imbalance price ratios show a tendency

to be lesser penalizing from 9 h to 15 h, particularly the scenario 4
at 9 h and 12 h is most favorable for going into underproduction.
This tendency is relevant for both aggregation and disaggregation.
So, the main difference to be expected between aggregation and
disaggregation schedule is due to the schedule of the ESS, regard-
ing the influence of PV power and WP or not, respectively. The
WP scenarios are in Fig. 6.

Fig. 5. Negative imbalance price ratios.

In Fig. 6 the scenario 1 is the one with less time variability
power and almost less power than all other scenarios in a sig-
nificative range of the time horizon. The WP scenarios show a
tendency to have more favorable values from the 15 h to 20 h.
The WP is eventually expected to contribute for storing energy
in the ESS before the 9 h due to the tendency of lower favorable
DAM price scenarios before this hour as shown in Fig. 3.

The PV power scenarios are in Fig. 7.
In Fig. 7 the PV power scenarios s1 and s3 model the data

of solar power associate with attenuation due to sky significant
clouding roughly from 11 h to 18 h. Scenario s3 is the one more
affected from 15 h to 16 h due to very dark clouds. But in general,
the PV power scenarios have power in the range of favorable DAM
prices, from 6 h to 21 h, allowing anticipating that the storage
of PV power in this range is not to be expected. Notice that
the PV power uncertainty is mainly due from scenario 1 and 3
realizations and mainly due from 11 h to 16 h. Also, notice that
the PV power uncertainty is less significant than the one for the
WP.
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Fig. 6. WP scenarios.

Fig. 7. PV power scenarios.

5.2. Case 1# — analysis of the profitability of aggregation

The optimal hourly bids for the disaggregation and the aggre-
gation are in Fig. 8.

In Fig. 8 the bid for aggregation at 5 h is significantly smaller
than the disaggregated one and at 21 h is greater than the disag-
gregated one, because of the tendency for lesser favorable price
scenarios before 6 h and more favorable after this hour allowing
to do arbitrage, i.e., taking economic advantage of the time shift
of power. As envisaged WP is stored in the ESS before 6 h, in
fact at 5 h, and ESS discharges at 21 h. Although the bids have
smaller differences in other hours, the main difference between
aggregation and disaggregation is due to the schedule of the ESS,
bringing more profitable management with aggregations. This
case study shows an analysis of the profitability of aggregation,
i.e., infer in what manner the aggregation of all the power sources
results is prone to deliver an expected profit higher than the
disaggregation one. In this case study, the factor α ∈ [0, 1] used
to emulate the PV power reduction due to dust accumulation is
considered 1, i.e., α = 1. The optimal hourly bids for specific
scenarios are in Fig. 9.

Fig. 8. Optimal hourly bids.

Fig. 9. Optimal hourly bids for price scenarios 1, 2 and 3.

Fig. 9 shows in scenario 1 that thermal units are at full power
due to the favorable prices. While for scenarios 2 and 3, thermal
units are not at full power. In some hours the thermal units are at
the minimum power and even shutdowns are scheduled. Notice
that in all these scenarios the ESS is scheduling to discharge at
the 21 h, due to the favorable prices. So, the schedule of the ESS
seems to be mostly governed by the prices. The wind scenarios
tend to have high values of power between 16 h and 22 h while
the PV scenarios tend to have high values of power between 10 h
and 16 h. In Fig. 9 bids are computed for 5×5×5×1 = 125
scenarios, i.e., uncertainty on the DAM prices is discarded: with
the scenario 1, the hourly bids are high due to high values of the
prices, such that, all thermal units are at full power and between
11 h and 17 h the total capacity of the production is offered, the
ESS is discharging at 21 h due to a high value price; with the
scenario 2, the hourly bids are moderate between 3 h and 20 h



I.L.R. Gomes, R. Melicio and V.M.F. Mendes / Sustainable Energy, Grids and Networks 22 (2020) 100359 11

Fig. 10. Charged power of the ESS.

Fig. 11. Discharged power for selected scenarios.

due to low prices. Between 21 h and 22 h, the ESS is discharging
due to high prices. This scenario schedules no offering at 13 h
and 16 h, due to low prices and low positive imbalance prices,
i.e., a defensive attitude; with the scenario 3, the hourly bids are
moderate between 3 h and 19 h. Only unit 1 is in production
between 4 h and 18 h and WP and PV power contribute with
low powers. At 7 h the power is low due to a decrease in the
prices. The charging of the ESS as a function of the prices of the
five scenarios is shown in Fig. 10.

In Fig. 10 at 5 h the ESS is significantly charging for scenarios 1
and 4 due to low prices, low positive imbalance and high negative
imbalance prices; at 16 h, the ESS charges at full power for
scenario 2 and at lower power for scenario 4; at 17 h the ESS has
a small charge under the scenario 2, again, due to a low price. The
discharged power of the ESS is in Fig. 11.

Fig. 11 shows that at 21 h the ESS is discharging in all the 5
scenarios, due to high prices. While at 22 h the discharge is less
and there is no discharging for scenarios 1 and 5 since the re-
spective prices are lower than the ones in 21 h. Hence, if only one

Table 9
Expected profit for disaggregation and aggregation and relative gain.
Configuration Expected profit (ke) Gain (%)

Wind disaggregated 47.4 –
PV disaggregated 28.9 –
Thermal disaggregated 41.8 –
Wind-PV-Thermal disaggregated 118.1 –
Wind-PV-Thermal aggregated 120.0 1.65
Wind-PV-Thermal-ESS aggregated 121.4 2.76

scenario is chosen for the price the bid is not in accordance with
the uncertainty on prices, i.e., the bid is not tuned in what regards
the achievement of convenient operation under uncertainty on
prices. The consideration of all uncertainties in the aggregation
allows for more appropriate bidding. A comparison of bidding
curves for disaggregated and aggregated bidding at 4 h, 5 h, 6 h,
17 h, 18 h, and 21 h are in Fig. 12.

In Fig. 12 the bidding curves allow to unveil a tendency be-
tween disaggregation and aggregation: disaggregation has high
power for low prices and low power for high market prices
in comparison with aggregation, respectively. The aggregation
has higher profit, since, the ability to coordinate production can
deliver a better bid. For instance, the ESS discharge at 21 h,
allows an increase of power bids delivering better profit. The unit
commitment for disaggregation and aggregation are in Fig. 13.

In Fig. 13 unit 1 remains online 24 h in both aggregation and
disaggregation and unit 2 is offline in all scenarios at 0 h in
aggregation unit 2 is offline in 14 h, 15 h, 16 h, 17 h, and 18 h in
scenario 3 in comparison with the disaggregation. This is due to
the low prices in scenario 3 and the disadvantage cost of unit 2
in comparison with unit 1. Hence, the aggregation can reduce the
calls of thermal units and in any case is never worse than the
disaggregation. The profit and the relative gain are in Table 9.

Table 9 shows that: the expected profit of aggregation with-
out the ESS is 1.65% higher than the disaggregated one; the
expected profit with aggregation having the ESS is 2.76% higher
than the disaggregated one, i.e., almost 1.1% higher in comparison
to the aggregation without the ESS. The 2.76% higher per day
implies in a year an augmented in the expected profit of almost
1.2 ×103 ke.

5.3. Case 2# - analysis of the impact of dust accumulation on the
profitability of aggregation

The profit, the relative gain, the imbalance cost and the rel-
ative increment as a function of the dust parameter α are in
Table 10.

Table 10 shows that while the profit can decrease about by
10% with a dust effect at 40%, the imbalance cost is increased
about by 23%. The unavailability of PV power implies by sim-
ulation a decrement in the profit of about 25.0%. So, the dust
effect influences significantly the production of the PV modules.
Loss of profit accumulated during several days can be significative
higher than the cost of removing dust, so that removing must
be scheduled in due time. The profit and the imbalance cost as
a function of the dust parameter α are in Fig. 14.

Fig. 14 shows that the decrement in PV power due to the dust
effect is in line with the increment in the imbalance cost and the
decrement in the profit. Also, the decrement in PV power means
an increment in thermal power in terms of share of renewables
and consequently an increment in the greenhouse gas emissions.
Also, the PV power decrement reduces the ability of PV to con-
tribute to the lessening WP volatility, implying the increment of
imbalance cost. So, the decrement in PV power due to the dust
effect is not advisable both technically and economically. This
case study shows the analysis of the impact of dust accumulation
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Fig. 12. Optimal bidding curves: left — disaggregated; right — aggregated.

Fig. 13. Hourly self-scheduling of thermal units for the scenarios: top: disaggregated; bottom: aggregated.

Table 10
Profit, relative decrement, imbalance cost, and the relative increment as a function of the dust parameter α.
Dust level α ∈ [0, 1] Profit (ke) Decrement (%) Imbalance cost (ke) Increment (%)

Dust-free 1.0 121.4 – 10.8 –
Dust-10% 0.9 118.5 2.38 11.4 5.6
Dust-20% 0.8 115.6 4.77 12.0 11.1
Dust-30% 0.7 112.7 7.16 12.6 16.7
Dust-40% 0.6 109.8 9.55 13.3 23. 1

on the profitability of aggregation, i.e., infer if the PV power re-
duction due to dust accumulation results in the reduction of profit
of the aggregator. In this case study, the dust parameterα ∈ [0, 1]

that emulates the PV power reduction due to dust accumulation
is a changeable value. The 5 dust levels considered are: dust-free
(α = 1), i.e., the PV power is not affected; dust-10% (α = 0.9),
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Fig. 14. Profit and imbalance cost as a function of the dust parameter α.

i.e., the PV power is reduced by 10%, and so on. The considered
values are based on experimental results of power reduction
[14–18]; due to the dust effect.

6. Conclusion

The change of the power sector from publicly regulated to
a market-based industry brought the need for a new unit com-
mitment problem known as the profit-based unit commitment
problem. Also, concerns about sustainability and a healthy en-
vironment brought the need for the exploitation of renewable
variable sources of energy. A stochastic approach for this unit
commitment in what regards bidding in a DAM addressed for
aggregation of WP, PV power, and thermal power with an ESS
is the main purpose of the paper. The total operating cost for
the aggregation is due to the operation with thermal units, and
constraints model the technical characteristics of the power units
and the ESS. The uncertainties regarding the availability of WP, PV
power, and market prices are input data. The formalization of the
problem is of the type of a mathematical programming problem
based on a stochastic approach formulated as a mixed-integer
linear programming problem. The convenient and adequate usage
of an ESS is a valuable benefit, known to be an advantage not
only in matching the production with the compromised power
in a market, but also allowing for arbitrage schemes. But, the
model dependence of the schedule for charge or discharge of
the ESS must consider the uncertainty due to market prices. The
influence of uncertainty of the market prices on the ESS schedule
is in favor of being an opportunity to drive the capability to allow
for arbitrage schemes. This influence is discernible and shown to
deliver an increase in the power offer, improving the profit.

The decrement in PV power due to the dust effect dimin-
ishes the contribution in the lessening WP volatility, implying
an increment of imbalance cost, subjecting the aggregator to a
decrement in the profit. Also, the decrement in PV power in
the mix of productions of a DAM implies the need to call more
thermal power, and consequently, augments the greenhouse gas
emissions. Dust must be removed from PV modules in due time
not only to avoid losses of PV power, that can be quantified in
what regards bidding in a DAM by the proposed unit commitment
but also to contribute to a healthy environment and as sustainable
development.
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