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Programa de Doutoramento em Biologia

Tese de Doutoramento

Network analysis of connectivity thresholds in fragmented
landscapes. A multi-species approach using birds in pine and

oak forests

Pedro Alexandre Marques da Silva Salgueiro

Orientador(es) | António Mira

João Eduardo Rabaça

Sara Maria Lopes Santos
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Vogais | Ana Isabel Camoez Leal da Encarnação Martins (Universidade de Lisboa)

Carlos Godinho (Universidade de Évora)
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Que possas continuar a contemplar a natureza 
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Como os teus pais, tios e avós antes de ti. 
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“Do pinhão, que um pé-de-vento arrancou ao dormitório da pinha-mãe, e da 

bolota, que a ave deixou cair no solo, repetido o acto mil vezes, gerou-se a 

floresta. Acudiram os pássaros, os insectos, os roedores de toda a ordem a 

povoá-la. No seu solo abrigado e gordo nasceram as ervas, cuja semente 

bóia nos céus ou espera à tez dos pousios a vez de germinar. De permeio 

desabrocharam cardos, que são a flor da amargura, e a abrótea, a diabelha, 

o esfondílio, flores humildes, por isso mesmo troféus da vitória. Vieram os 

lobos, os javalis, os zagais com os gados, a infinita criação rusticana. Faltava 

o senhor, meio fidalgo, meio patriarca, à moda do tempo. 

Ora, certa manhã de Outono…” 

 

Aquilino Ribeiro, in “A casa grande de Romarigães”, 1957 
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Network analysis of connectivity thresholds in fragmented landscapes. A 

multi-species approach using birds in pine and oak forests 

 

Abstract 

Over the last decades, the pervasiveness of human activities has leading landscapes 

worldwide to experience unprecedented changes often resulting on the loss, 

simplification or fragmentation of habitats. Concomitantly, species diversity and the 

self-regulated ecological processes mediated by landscape are severely threatened. This 

thesis extends the theoretical considerations of the fragmentation conundrum into real-

world fragmented landscapes to determine the effects of structural and functional 

landscape connectivity in mediating the spatial distribution of bird communities. We 

describe conceptual approaches to capture landscapes’ heterogeneity on different 

forest contexts to uncover the adequate surrogacy of the structural connectivity of the 

landscape. Critical ecological thresholds of forest cover are explored to preview 

community turnovers and establish the limits where populations are more sensitive. 

Finally, we demonstrate how functional connectivity mediates the spatial distribution of 

bird species and bird community composition. Our results point out that, though species 

reveal overall interdependent behaviour, they show highly specific responses to patch 

and landscape cues suggesting differences on how they perceive their quality and 

structure, respectively. Consequently, this denotes that the spatial distribution and 

composition of bird communities depend on the intrinsic ability of each species to move 

across the landscape (functional connectivity) and reach a patch, as well as on the 

capacity of patches to provide vital resources for different species. The implications of 

our findings leverage concrete and specific management strategies to prevent the 

downfall of avian diversity in the two most representative forest systems in Portugal: 

pine forest plantations and oak woodlands. We establish the limits beyond which major 

changes in community are expected and suggest practices that behold the maintenance 

of high bird diversity levels. Overall, we endorse sustainable approaches previewing 

exploitation alternatives that reconcile both human interests and the conservation of 

natural assets. 
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Análise de limiares de conectividade em paisagens fragmentadas. Uma 

abordagem multiespécies de aves em florestas de pinhal e quercíneas. 

 

Resumo 

O impacto das actividades humanas nas paisagens tem promovido alterações sem 

precedentes a uma escala global nas últimas décadas, resultando na perda, simplificação 

ou fragmentação dos habitats. Consequentemente, a diversidade de espécies e os 

processos ecológicos associados à dinâmica paisagística encontram-se profundamente 

ameaçados. Nesta tese são explorados os efeitos da conectividade estrutural e funcional 

da paisagem na distribuição espacial de comunidades de aves, transferindo para um 

contexto de paisagens reais as considerações teóricas formuladas no âmbito da 

investigação em fragmentação. Para o efeito, são descritas diferentes abordagens 

conceptuais na caracterização da heterogeneidade da paisagem, aferindo a 

adequabilidade de descritores de conectividade estrutural, em diferentes contextos 

florestais. São explorados os limiares de sensibilidade ecológica e alteração das 

comunidades ao longo de um gradiente reflectindo a disponibilidade de recursos. Por 

último, é investigado o papel da conectividade funcional na distribuição espacial e a 

composição das comunidades de aves. Os resultados demonstram que a percepção da 

qualidade de habitat e da estrutura da paisagem é dependente da espécie embora 

existam relações de interdependência entre estas. Isto implica que a distribuição 

espacial e os processos inerentes à composição das comunidades dependam da 

capacidade de cada espécie em alcançar parcelas de habitat adequado (conectividade 

funcional), e da disponibilidade de recursos providenciada pelas mesmas em satisfazer 

um conjunto diverso de espécies. As implicações dos resultados obtidos estendem-se à 

aplicabilidade de estratégias de gestão concretas e específicas que previnem a perda de 

diversidade avifaunística nos sistemas florestais mais representativos de Portugal – 

plantações de pinheiro e montado –, nomeadamente através da identificação dos 

limites além dos quais estão previstas alterações significativas na comunidade, e 

sugerindo práticas que contemplam a manutenção de níveis elevados de diversidade. 

Abordagens sustentáveis associadas a estratégias alternativas de exploração 

contribuirão para conciliar os interesses humanos e a conservação dos valores naturais. 
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Chapter I General Introduction 

 

In the past decades, human footprint on the environment assumed such unprecedented 

levels that lead to the classification of a new geological epoch – the Anthropocene 

(Ruddiman, 2003; Smith and Zeder, 2013). The intense pressure of human activities has 

inflicted profound geological and ecological changes (Zalasiewicz et al., 2011; Waters et 

al., 2016), modifying ecosystems and communities. Ultimately, these changes are 

threatening the conservation of natural assets and causing the extinction of several 

species to an extent only comparable to the great mass extinctions in the past (Dirzo et 

al., 2014). Despite several global agreements attempting to halt biodiversity loss (e.g., 

UN Aichi Targets), evidence reveals a continuing global decline (Butchart et al. 2010; 

Dornelas et al. 2014; Tittensor et al. 2014) with ongoing species loss and/or changes in 

communities (e.g., homogenization). 

Landscape modification driven by human activities is widely recognized as one 

of the most severe threats to global biodiversity (Fischer and Lindenmayer 2007; Hooper 

et al., 2012), often resulting in species extinction, alteration of ecological processes and 

depletion of ecosystem services (Haddad et al., 2015; Mitchell et al., 2015). Over the last 

decades, landscapes worldwide have experienced major changes as land-use conversion 

and intensification further increase habitat loss, simplification or fragmentation 

(Newbold et al., 2015). More than 75% of Earth’s terrestrial ecosystems have 

experienced alterations due to human activities (Ellis and Ramankutty, 2008). In Europe, 

landscape changes have been mainly promoted by agricultural and forestry activities 

(Jongman 2002; Plieninger and Schaar, 2008), often resulting on the subdivision of larger 
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natural patches into smaller ones, increasing patch vulnerability and constraining 

movements of animals (Kettunen et al., 2007).  

This thesis addresses the topic of habitat fragmentation as provided by landscape 

modification. Connectivity is further explored as a spatial property of landscapes that 

can be managed to prevent or soften the adverse impacts of fragmentation. In this 

chapter, we present the state-of-the-art on habitat fragmentation and landscape 

connectivity as applied to bird communities. We introduce the theoretical framework 

and the concepts upon which we develop this thesis and the research within, 

highlighting the current demands and challenges in this research field. Additionally, we 

frame these topics on the most representative Portuguese forest landscapes, exploring 

the conditions and threats laying upon them and the foreseeable changes they face in 

the future, as well as the resulting implications for the bird communities inhabiting 

them. 

 

 

I.1. CONCEPTUALIZING HABITAT FRAGMENTATION 

The response of organisms to landscape modification and habitat fragmentation is well 

documented for several taxa (Andrén, 1994; Didham et al., 1996; Gibbons et al., 2000). 

For instance, significant declines have been detected at both species (Inger et al., 2015; 

Jeliazkov et al., 2016) and community levels (Billeter et al., 2008). These often result in 

net changes on ecological assemblages (Newbold et al., 2015) and homogenization of 

communities (Gámez-Virués et al., 2015) by reducing species diversity through 

replacement by widespread species (Clavero and Brotons, 2010; Gámez-Virués et al., 

2015).  

 

I.1.1. Conceptualization of landscapes 

The use of different approaches describing patterns of landscape modification and 

habitat fragmentation supported different conceptual paradigms (Haila, 2002) (Table 

I.1). The island biogeography theory by MacArthur and Wilson (1967) has dominated the 

human perspective on landscape topology over the years. This theory implicitly 

considers a binary categorization of the landscapes where landscape heterogeneity is 
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translated into discrete and well-defined patches of suitable habitats (hypothetical 

islands) embedded in an unsuitable or hostile matrix. This theory conforms to pattern-

oriented approaches (or discrete/patch models). Although it has contributed with 

valuable insights on the development of other theories (e.g., metapopulation theory, 

Hanski, 1998), it is accounted as an overly simplistic way to characterize landscape 

heterogeneity. Possibly for that reason, many other discrete approaches that account for 

other levels of landscape heterogeneity followed, such as the patch-corridor-matrix 

(Forman, 1995) or the hierarchical patch-based model (Dunn and Majer, 2007).  

Such developments, however, did not refrain further criticism on discrete 

approaches, pointing out other liabilities, such as: (1) landscape is often subjected to a 

human-centric perspective (Dunn and Majer, 2007) which may not be consistent with 

species perception (Fischer and Lindenmayer, 2006; Lindenmayer et al., 2008; Franklin 

and Lindenmayer, 2009); (2) discrete conceptualizations of landscapes are often dubious 

because they neglect within patch heterogeneity (Price et al., 2010); and as a 

consequence, (3) force interdependent responses of the organisms, i.e., assume that 

multiple organisms respond similarly to landscape change (Betts et al., 2014). Several 

authors thus argue that such approaches are potentially limited to landscapes with 

ideally contrasting patches while poorly contributing to understand ecological processes 

in other landscape types (Fischer and Lindenmayer, 2006; Lindenmayer et al., 2008). For 

that reason, they are likely to produce unrealistic management practices in most 

landscapes (Fischer and Lindenmayer, 2006, 2007; Lindenmayer et al., 2008). 

 Alternatively, species-oriented approaches (or gradient models) describe 

landscapes as spatial gradients reflecting gradual changes of resources, environmental 

conditions and ecological processes (Fischer and Lindenmayer, 2006). Although the 

continuum model (Fischer and Lindenmayer, 2006) is the most relevant approach 

developed on this matter, other landscape conceptualizations appeared as detachments 

from discrete models by considering spatial continua, such as the variegation model 

(McIntyre and Barrett, 1992), the Continua and Umwelt model (Manning et al., 2004) 

and the habitat contours model (Fischer et al., 2004a). Although appealing, the 

applicability of continuous models is still rare (but see Betts et al., 2014), probably due 

to the unavailability of data in quantity and quality to properly characterize landscape 

complexity (Fischer et al., 2004a).  
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Table I.1 – Summary table addressing the assumptions of each of the approaches 
conceptualizing landscape heterogeneity and habitat fragmentation, and the associated 
concepts or theories. 

Attributes 
pattern-oriented approaches 
(discrete/patch-based models) 

species-oriented approaches 
(gradient models) 

Landscape  
topology 

Assumes clear contrast between 
patches and matrix  

Defines landscapes as ecological 
gradients describing a continuum of 
change  

Patch  
classification 

Requires human defined patch-
boundaries to correlate with species 
distribution  

Classification is independent from 
human-centric perception 

Spatial  
heterogeneity 

Patches are assumed to be internally  
homogeneous  

No assumptions on the internal 
homogeneity of patches  

Species  
response 

Species perceive landscape similarly 
and distribution is restricted to patches 
as assemblages (species responses are 
clustered ) 

Species distribute through space in 
complex (species-specific) and 
continuous way  

Species  
turnover 

Sharp transitions between discrete 
communities.  

Changes in species composition occur 
gradually.   

Ecological  
processes 

Assumes that the correlation between 
landscape pattern and species 
distribution is a proxy for ecological 
processes  

Attempts to study ecological 
processes directly  

Supporting  
theories 

 Island biogeography theory 
(MacArthur and Wilson, 1967) 

 Patch-corridor-matrix (Forman, 
1995) 

 Hierarchical patch-based model 
(Dunn and Majer, 2007) 

 Community unit concept (Clements, 
1936) 

 Metapopulation theory (Hanski, 
1998) 

 Metacommunities theory (Leibold et 
al., 2004) 

 Continuum concept (Austin, 1985; 
Fischer and Lindenmayer, 2006) 

 Variegation model (McIntyre and 
Barrett, 1992) 

 Continua and Umwelt model 
(Manning et al., 2004) 

 Habitat contours model (Fischer et 
al. 2004a) 

 Individualistic continuum concept 
(Gleason, 1917, 1926) 

 

 

 

 

 

 

 

 

 

I.1.2. Conceptualization of species response  

Beyond landscape attributes, the assumptions provided by gradient models also 

establish that species perceive and respond individualistically to landscape modification, 

and that the interdependence of species response is therefore highly underappreciated 
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(Didham et al., 2012) (Table I.1, Figure I.1). This implies that the conceptualization of 

communities as coherent and functional assemblages (community-unit concept, 

Clements, 1936) does not prevail over a random and stochastic sum of species that 

coincidently occur in space and time (the individualistic continuum, Gleason, 1917, 

1926) (Figure I.1). On the other hand, discrete models, while assuming an 

interdependent response (or dynamic synchrony effect) among organisms occurring at 

the same environmental conditions, support the existence of communities and 

metacommunities (Leibold et al., 2004) as a corollary. 

The paradigm of the individualistic continuum (or Gleasonian hypothesis) and 

community-unit concepts (or Clementsian hypothesis) remains unsolved. Lortie et al. 

(2004) proposed the “integrated community concept” which recognizes the synergistic 

effects of species-specific traits, interactions between organisms and stochastic 

processes structuring communities (see also Didham et al., 2012). It advocates that 

communities can have a dualistic nature where the individualistic behaviour of species 

is somewhat embedded within ecological assemblages (Figure I.1). Yet, the processes 

underlying the composition of ecological communities have been subject of debate for 

a long time (Taper et al., 1995; Austin, 1999; Baselga and Araújo, 2009; Leaper et al., 

2014) and the conceptualization of communities is still a non-consensual topic of 

discussion. 

 



Chapter I   General introduction 

21 
 

 

Figure I.1 – Conceptualization of species response and community parameters patterns along 
an environmental gradient, according to each of the three hypotheses. In the individualistic 
continuum hypothesis, species distribution do not overlap and no coherent assemblages are 
noticed, thus both richness and turnover rates assume a clear constant variation with no 
significant peaks as species substitute each other along the gradient. In the community unit 
hypothesis, species are sort into discrete assemblages, thus overlapping their distribution; 
richness and turnover show at least one distinct peak marking changes in community 
composition between both assemblages. The integrated community concept acknowledges the 
dualistic nature of community assembly, thus species distribute individualistically within 
assemblages balanced between the interspecific relations and species-specific tolerance; 
richness and turnover show at least one distinct peak marking changes in community. 

 

I.1.3. Implications  

The implications of these conflicts between opposing perspectives on how landscapes 

and species responses are conceptualized can have damaging consequences on the 

determination of the effects of habitat fragmentation on species and communities. 

Many studies addressing landscape modification rely on the estimation of the relative 

effects of habitat loss and fragmentation (Fahrig, 2003), thresholds of habitat amount 

(Andrén, 1994; Fahrig, 2002), or edge effects (e.g., Harper et al., 2005). These studies 

often establish limits beyond which major changes in species occupancy occur and 

communities are most vulnerable to species loss (the fragmentation threshold 

hypothesis, Fahrig, 2003). The way habitat amount, for instance, is captured from the 

landscape is important to provide reliable evidence on the susceptibility of a community 
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and determine where extinction scenarios may be plausible (Betts et al., 2007). 

However, choosing an inadequate conceptualization may conduct to misleading results, 

thus increasing the risk of developing ineffective management strategies (Fischer et al., 

2004a, 2004b; Lindenmayer et al., 2008). 

How to prevent further biodiversity loss from landscape modification and habitat 

fragmentation is a critical challenge to attend for in the near future (Balmford et al., 

2003), and researchers are challenged to provide concrete management alternatives 

that uphold or restore the conservation value of landscapes (Lindenmayer et al., 2008; 

Driscoll et al., 2013). 

 

 

I.2. LANDSCAPE CONNECTIVITY  

In human-modified landscapes, the dispersal of species can be severely disrupted, as 

patches of native habitats are lost or become increasingly fragmented and isolated 

(Diniz et al., 2020). Landscape connectivity analysis has become a valuable tool with the 

potential to identify constraints and minimize or reverse such effects (Taylor et al., 1993; 

Diniz et al., 2020). Improving and restoring landscape connectivity (Taylor et al., 1993) 

can enable species dispersal (Haddad et al., 2003), colonization of newly available 

patches (Haddad et al., 2015), and gene flow between populations (Whitlock et al., 

2000). Globally, it may prevent species and communities from local extinctions and 

uphold their persistence in the landscape (Gonzalez et al., 1998; Bennett et al., 2006; 

Staddon et al., 2010). 

 Landscape connectivity can be defined as the degree to which the landscape 

facilitates or impedes movement of animals among resource patches (Taylor et al., 

1993) and can be characterized by two primary components: (1) structural, i.e., the 

spatial arrangement of different types of habitat or other elements in the landscape 

(Calabrese and Fagan, 2004), and (2) functional, which refers to the behavioural 

response of individuals, species or ecological processes to the physical structure of the 

landscape, ignored in structural connectivity approaches (Taylor et al., 1993, 

Tischendorf and Fahrig, 2000, Pe’er et al., 2011).  
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The likelihood of a species to reach a patch depends, therefore, on both the 

permeability of the landscape where patches are embedded (the matrix) and the 

intrinsic species ability to engage in successful dispersal (Baguette et al., 2013).  

 

I.2.1. Species dispersal  

Dispersal can be defined as the movement engaged by organisms, which can be 

expressed by potential gene flow across space (Ronce, 2007). It is a key process for 

species survival, enabling species to move on a landscape to reproduce, seek food, 

escape disturbance (predators or human pressure), or roam in search for suitable 

habitats (Morales et al., 2010; Baguette et al., 2013). For that reason, dispersal assumes 

an essential role in population and metapopulation dynamics, species spatial 

distribution and community assembly processes (Jønsson et al., 2016).  

 Generally, dispersal is described as a three-stage process in which an organism 

departs from its breeding site (emigration), traverses the landscape (transfer), and 

settles in a new breeding site (immigration) (Ronce, 2007; Clobert et al., 2012). Each of 

these stages challenges the organism in different aspects of its interaction with the 

environment. For instance, engaging in dispersal movements involves costs to individual 

fitness associated to exposure to predation risk, high energy demand for traversing non-

suitable habitats, or competition while setting its territory in a new patch (Morris, 2003). 

Understanding the drivers of dispersal and the specific requirements and constraints 

that ensure this process is pivotal to report effective connectivity-based conservation 

strategies (Vasudev et al., 2015). 

 However, the techniques currently available that allow the estimation of 

effective dispersal are scarce, expensive and occasionally unsuitable or logistically 

unfeasible for some taxa (Jønsson et al., 2016). In addition, such techniques also struggle 

with some limitations. For instance, molecular or genetic approaches can only provide 

inference on successful dispersal events, linking dispersed individuals to source 

populations, which offer no evidence on the details of actual movement (e.g., path 

selection, Jønsson et al., 2016). Tagging and tracking techniques, on the other hand, 

allow to estimate effective dispersal while accounting for movement, but are often 

limited to larger animals (e.g., radio tracking, Carvalho et al., 2016) or apply 
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capture-recapture methodologies which seldom provide robust dispersal data (e.g., bird 

ringing) (Kays et al., 2015).  

 Consequently, when these techniques are overwhelmingly impractical, many 

studies bypass these limitations by assessing landscape connectivity based on habitat 

use or spatial distribution. Although it can only be used as a proxy of dispersal ability, 

these approaches have performed well as a cost-effective method to build functional 

connectivity models when data on movement or dispersal ability is lacking (Keeley et al., 

2016; Ahmadi et al., 2017; Khosravi et al., 2018; Valerio et al., 2019). Nevertheless, the 

implications and inferences of those studies must be carefully addressed, as such 

approaches may not suit every question (Diniz et al., 2020). 

 

I.2.2. Landscape permeability 

Dispersal ability also depends on how a particular organism perceives the landscape 

(Tischendorf and Fahrig, 2000). Both landscape composition and configuration influence 

dispersal ability by altering movement patterns across the landscape through facilitation 

(e.g., corridors and stepping-stones) or impediment (e.g., barriers) (Rudnick et al., 2012; 

Diniz et al., 2020). 

Structural and functional landscape connectivity can be easily assessed by means 

of a large set of indices and methods specifically designed for that purpose based on 

graph theory (e.g., Saura et al., 2011, Bodin and Saura, 2010) or circuit theory (McRae 

et al., 2008). Graph theory has been applied as an analytical tool to assess habitat 

fragmentation effects on animal movement and species persistence, as well as to 

network optimization (Urban et al., 2009, Luque et al., 2012). In this representation, the 

landscape is presented as a set of nodes (e.g., habitat patches) and links (potential ability 

of an organism to disperse between two nodes, Saura et al., 2011). The network analysis 

will determine which patches (nodes) maintain more links with other patches (key 

connectors) and which are more isolated. 

Circuit theory builds on an analogous graph approach where multiple random 

walks are simulated between nodes in the form of an electrical network (McRae et al., 

2008). Animal movement is represented by electrical current flowing between nodes 

connected by resistors, which determine the friction to which current (movement) is 

allowed to flow (McRae et al., 2008). 
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In the last decade, both these methods offered important advances in ecological 

theory by inferring animal movements and ecological processes throughout the 

landscape. Nevertheless, these methods rely on the previous determination of a 

resistance surface that reflects the degree to which a landscape facilitates movements 

of the organisms. Explicitly, it consists on a spatial representation of the traversing costs 

of an organism, as imposed by the environmental constraints to which its movements 

are subjected (Zeller et al., 2012). Diniz et al. (2020) addressed it as the “backbone of 

connectivity models”, emphasizing that resistance surfaces must accurately capture the 

real costs to movement. Ideally, landscape resistance should rely on species empirical 

movement or dispersal data (Diniz et al., 2020). However, as referred above, data on 

movement or dispersal ability is not often available. Alternatively, habitat suitability 

models can be used to infer landscape resistance by means of a negative linear or 

exponential transformation (Trainor et al., 2013; Keeley et al., 2016). Because dispersal 

generally occurs in non-habitat patches (Clobert et al., 2012) such models may not 

conveniently capture dispersal habitat characteristics (Revilla and Wiegand, 2008; 

Vasudev et al., 2015), thus possibly leading to an overestimation of resistance.  

 

I.2.3. Landscape filtering 

A growing number of studies linking landscape structure and functional connectivity to 

species occurrence (see Fletcher et al., 2016) have been conducted, but much interest is 

growing nowadays on the application of these techniques in multispecies approaches 

(Mimet et al., 2013, Brás et al., 2013). Because landscapes have different permeability 

to different species, it is expectable that species connectivity will vary according to their 

dispersal ability (Liu et al., 2018) and sensitivity to barriers (Breckheimer et al., 2014).  

Most species are expected to reach highly connected patches, but otherwise, 

landscape will filter out species for which the matrix restricts their movements, i.e., the 

likelihood of most species reaching that patch is lower. Such process is generally 

acknowledged as landscape filtering, but other processes are expected to filter species 

from the regional pool of competitors. It is well established in literature and widely 

considered that local community composition and structure are driven by three filters 

linked to specific processes that operate hierarchically at different temporal and spatial 

scales (Zhang et al., 2013; Cadotte and Tucker, 2017) (Figure I.2): (1) a landscape filter 
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relates to the limitations imposed by resistance to dispersal, interfering with the ability 

of a species to reach a habitat patch; (2) a habitat filter defines the species able to settle 

and persist in a patch given the environmental conditions at site; and (3) the interaction 

(or biotic) filter which specifies the effects derived from the competitive interplay 

between species that can result in the facilitation, segregation or exclusion of a species 

(Figure I.2).  

 

 

Figure I.2 – Classic diagram of the hierarchy of filtering effects (adapted from Cadotte and 
Tucker, 2017) and respective ecological processes to which a regional species pool is coerced 
into, thus resulting in the assembly of local communities. Bird colouring codes different 
assemblages, birds with the same colour exploit similar resources.  

 

 

As the demand for designing conservation strategies based on multispecies 

approaches increases (Diniz et al., 2020), ecologists must engage in assessments that 

behold species diversity instead of single or focal species. The most pressing issue here 

is to disentangle the effects of connectivity (landscape filtering) from the other filtering 

processes (Fletcher et al., 2016) in determining the rules of assembly of local 

communities and inherently, the spatial patterns of diversity on the landscape. 
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Nonetheless, the real challenging point is to transfer this information into efficient 

conservation planning oriented towards the decision making process (García-Feced et 

al., 2011, Saura et al., 2011), going beyond a mere descriptive analysis.  

 

 

I.3. EFFECTS OF HABITAT FRAGMENTATION AND LANDSCAPE CONNECTIVITY ON BIRD 

COMMUNITIES 

Birds are often considered as suitable models for monitoring broad-scale environmental 

change (Koskimies, 1989; Canterbury et al., 2000), since they are closely related to 

different environmental characteristics, namely concerning the structural complexity of 

the landscape (Willson, 1974; Mayer and Cameron, 2003; Padoa-Schioppa et al., 2006, 

Skorka et al., 2006; Larsen et al., 2010). For that reason, birds are a noteworthy group 

to analyse the effects of fragmentation and connectivity. 

In this section we summarize a survey of published works in fragmentation and 

connectivity using birds. We searched the Web of Science for published papers up to 

2019 using the strings “bird and fragmentation” and “bird and connectivity” in the title. 

This did not aim to produce a complete review, instead a comprehensive search to 

outline the general trends of the existing research. Each paper on the list was validated, 

looking for effects of fragmentation and connectivity on bird communities (papers 

dealing with species richness, diversity, assemblages and other community parameters), 

species (papers dealing with spatial or temporal occurrence patterns, population size, 

or genetic structure), individual condition (nutritional condition, nesting success), and 

the processes associated to services provided by birds (seed dispersal, frugivory, 

pollination and other interactions). We excluded all papers dealing with migratory 

connectivity since this process occurs at larger scales than those used to examine 

landscape fragmentation. Titles and abstracts from the research focusing on 

connectivity were screened for the geographic area (country), habitat type, method to 

quantify connectivity, number of species analysed, ecological levels and the effects of 

connectivity on them. 

We retrieved 408 papers dealing with habitat fragmentation or landscape 

connectivity on birds, of which only 42 (10.3%) explicitly addressed connectivity. To our 

knowledge, the first seminal papers debating the effects of fragmentation on bird 
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communities date from 1984 (Figure I.3). Those works set the methodological bases to 

analyse the effects of habitat fragmentation, namely the need for evidence-based 

inference and scale-dependence issues (Haila and Hansky, 1984), or the complexity and 

specificity of fragmentation on individual bird species, weighing the joint effect of both 

patch size and habitat quality (Lynch and Wigham, 1984). From the early 90’s onwards, 

research on habitat fragmentation and its effects on birds became more frequent, 

increasing steadily until 2008 and stabilizing thereafter (Figure I.3). Research explicitly 

addressing connectivity and birds, to our knowledge, only emerged in 1997 (four years 

after the seminal work of Taylor et al., 1993, defining connectivity) when Phillipe 

Clergeau and Françoise Burel reported the presence of Short-toed Tree Creeper (Certhia 

brachydactyla) to be dependent on landscape spatial structure (Clergeau and Burel, 

1997). Since then, research focusing on landscape connectivity for birds has also grown, 

though modestly compared to habitat fragmentation sensu stricto. In fact, in the last ten 

years, the number of published papers seems to have reached an asymptote, rarely 

overcoming five publications/year (Figure I.3). As a personal note, it is surprising the lag 

between connectivity explicit research and strict fragmentation given the potential of 

addressing connectivity to resolve fragmentation effects (Herrera et al., 2018; Estrada-

Carmona et al., 2019). It matters, therefore, to understand what hampers further 

research on this subject. 
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Figure I.3 – Number of published papers that explicitly address habitat fragmentation (in grey) 
or landscape connectivity (in green) effects on bird communities or species. Data was assembled 
from a comprehensive search of published papers up to 2019, reported by the Web of Science. 
The sample consists of 408 papers dealing with fragmentation or connectivity, of which 42 
(10.3%) explicitly address connectivity. 

 

 

The geographic distribution of the published papers on connectivity effects on 

birds, for instance, is highly biased (Figure I.4). Most of the research took place in 

America (both North and South), Europe and Australia. Together the countries from 

these continents hold 93% of the research, while in Asia and Africa information is scarce. 

Despite the lack of information on landscape connectivity for birds in those areas, 

connectivity for large mammals and carnivores groups has been profusely investigated 

in the last years in both Asia (e.g., Ahmadi et al., 2017; Khosravi et al., 2018) and Africa 

(e.g., Osipova et al., 2018). Research on landscape connectivity for birds has been mostly 

addressed in countries like Australia and Brazil, where landscape changes have greatly 

modified sensitive and important ecosystems, like Box Gum Grassy Woodland 

(Lindenmayer et al., 2020), native Eucalyptus forests (Mortelliti et al., 2014), or the 

Atlantic Rain forest (Uezu et al., 2005; Awade et al., 2012; Martensen et al., 2008, 2012). 
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Figure I.4 – World map showing the geographical distribution of the research addressing 
the effects of landscape connectivity on birds.  
 

 

However, other issues arise while exploring other technical and practical 

considerations of the assembled studies, which may follow important implications. For 

example, 74.4% of studies addressing connectivity focus on forest or woodland habitats, 

showing a highly biased tendency. Only a few other available from current literature 

investigate further relevant habitats, such as grassland (Duflot et al., 2018), open-

habitats (Zozaya et al., 2012), understory (Martensen et al., 2012), or urban areas 

(Grafius et al., 2017). About 9.3% of the studies address several habitats instead of 

considering only one focal community. Comprehensively, the net loss of forest habitats 

would have long-lasting impacts on communities, as they usually require more time to 

achieve climax, through either regeneration or proper restoration practices.  

Regarding the methods used to quantify connectivity, we found that most 

studies (58.1%) rely on either structural connectivity or model-based approaches (Figure 

I.5). Structural connectivity only considers landscape configuration to infer connectivity 

(Calabrese and Fagan, 2004), but has provided evidence for the use of corridors, gap 

crossing or permeability (e.g., Vergara, 2011). Nonetheless, such approaches are subject 

to criticism, since their applications inherently assume that different species perceive 

landscape similarly, which may not hold true in some cases (Lindenmayer et al., 2020). 
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Model-based approaches, on the other hand offer the possibility to consider species-

specific associations to landscape characteristics. Moreover, current methodologies 

(e.g., graph-based or circuit theory) allow to account for species dispersal ability, 

meaning that connectivity no longer depends solely of landscape characteristics, but 

also on species attributes, such as behaviour and movement ability (functional 

connectivity, Tischendorf and Fahrig, 2000). Both structural connectivity and model-

based approaches have been more intensely used in multispecies approaches than in 

single-species, likely because such approaches require less information on species 

dispersal ability to calculate connectivity for a large set of species. Other less used 

methods (capture-recapture – 20.9%, genetic or molecular – 11.6%, and movement 

tracking – 7.0%) are applied more often (or at least more evenly) in single-species studies 

(Figure I.5).  

Connectivity studies have also addressed different ecological levels of avian 

diversity. Species distribution, movement patterns and community parameters are 

amongst the most studied features on this subject (69.0%) (Figure I.5). Demographic, 

genetic and species interaction remain poorly explored, most likely because inference is 

difficult to attain, usually requiring tools and effort not commonly available, affordable 

or easily applied in this context (Jacobson and Peres-Neto, 2010). Nevertheless, most 

studies globally show that connectivity has positive effects at all ecological levels, 

meaning that increasing connectivity will tend to increase general diversity, from genes 

to communities. The extent to which connectivity affects these ecological levels, 

however, remains doubtful. Even though effects are positive, they wander between 

weak (connectivity has an effect, however weak compared to others, e.g., landscape 

attributes; Mortelliti et al., 2014; Kang et al., 2015), uneven (connectivity has an effect, 

but only on some species; Uezu et al., 2005), and clearly positive (Vergara, 2011; 

Mayhew et al., 2019) (Figure I.5). Therefore, it is possible that responses to connectivity 

vary significantly and that inference may be driven by both species- (traits, e.g., dispersal 

ability) and context-dependency effects (e.g., landscape permeability).  

As a corollary, even though this survey of published works is highly conservative 

(key-word search was constrained to title’s information) it allowed a first insight on the 

effects of landscape connectivity on avian diversity. Quantifying landscape functional 

connectivity remains a challenge (Fletcher et al., 2016; Jønsson et al., 2016) and there is 
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still limited inference and high uncertainty on how it mediates bird diversity in highly 

fragmented landscapes. Furthermore, data on species movement, dispersal or genetics 

still bores significant constraints when studying small animal species in spatially 

scattered populations (Jacobson and Peres-Neto, 2010), like birds. The amount of effort 

needed to gather robust and reliable movement data for several species is still an 

obstacle to attain evidence-based results over broader and finer scales. 

Notwithstanding these limitations, the preliminary results show that evidence is 

mostly positive, though ranging from weak to strong effects. Remarkably, however, only 

a few studies (about 25%) explored and disentangled the effects of connectivity 

comparatively to other landscape attributes (e.g., patch size, habitat quality; see also 

Fletcher et al., 2016).  

For these reasons, connectivity studies are still a small fraction of the research 

concerning overall landscape fragmentation and still hold many biases (e.g., geographic, 

habitats, methods or ecological levels addressed). Robust and reliable data is, therefore, 

needed to produce evidence-based results that attest connectivity as an effective tool 

to tackle the already pressing impacts of habitat fragmentation and loss in human-

altered landscapes. 
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Figure I.5 – a) Number of published papers addressing the methods to quantify landscape 
connectivity, and b) regarding the number of species considered in those studies. Structural 
connectivity refers to approaches dealing only with landscape composition and configuration 
effects; model-based assume species-specific responses to landscape, generally accounting for 
dispersal ability; capture-recapture methods (Capture-recap) regard information from ringed 
birds, or from induced territorial response; genetic or molecular (Genetic/Mol.) studies examine 
genetic distances and gene flow; tracking involves studies on dispersal movements directly 
addressed from radio-tracking techniques; historical data compares data from long-term 
studies. c) Number of published papers addressing the different ecological levels, and d) 
magnitude of effects explained by landscape connectivity for each of the ecological levels. 
Genetic includes research on heterozygosity and allelic richness; demography attends to 
population level studies addressing colonization, immigration or breeding success; movement 
relates to studies using capture-recapture of radio tracking approaches; distribution studies 
investigate species spatial distribution and abundance; community studies analyse species 
richness, diversity or processes of assembly; and interactions investigate bird connectivity 
effects on ecological processes (e.g., seed-dispersal). 
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I.4. MAIN OBJECTIVES 

This thesis aims to determine the effects of landscape structural and functional 

connectivity in mediating the spatial distribution of bird communities inhabiting 

fragmented forest landscapes. Moreover, the studies here presented intend to uncover 

the ecological thresholds at which changes in community assembly occur. We aim at 

testing the following hypotheses derived from the general framework of the ecological 

niche theory (see Austin, 2007): 

1. The adequacy of a model to describe species response to landscape structure 

depends on both landscape topography and species perception (the 

continuum concept by Austin, 1985; Fischer and Lindenmayer, 2006, vs. the 

island biogeography theory MacArthur and Wilson, 1967); 

2. Species responses to habitat fragmentation are individualistic as species 

perceive landscape uniquely and differently (the individualistic continuum 

concept by Gleason 1917, 1926 vs. the community unit concept by Clements, 

1936); 

3. Environmental thresholds determine limits beyond which major changes in 

species abundance and community composition occur (the fragmentation 

threshold hypothesis by Fahrig, 2003); 

4. Functional connectivity complements patch size and quality in effectively 

describing the spatial distribution of species (landscape filtering hypothesis); 

5. Multispecies connectivity determines local community composition and 

diversity by incorporating the cumulative dispersal ability of each species to 

reach a patch (metacommunities theory by Leibold et al., 2004; Galpern, 

2011). 
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Those hypotheses were incorporated in the following specific goals: 

1. Assess the conditions under which an adequate description of the landscape 

structure best suits species perception, taking into account landscape 

context and species trait dependency effects; 

2. Characterize bird species responses to landscape change and how species 

assemble according to their habitat requirements; 

3. Determine critical thresholds of habitat fragmentation beyond which a 

significant loss of species occurs; 

4. Disentangle the effects of landscape connectivity from other key factors (e.g., 

patch size and habitat quality) on bird species distribution; 

5. Quantify the role of landscape functional connectivity in determining the 

spatial distribution of a bird community in fragmented landscapes; 

6. Validate the effectiveness of multispecies connectivity over single-species 

connectivity approaches in determining bird community assembly. 

In order to explore the specific objectives of the thesis, as well as to depict 

concrete implications of the studies, we extended the theoretical considerations of the 

fragmentation conundrum into real-world forest landscapes taking advantage of their 

patchiness to set non-manipulative experimental designs. Therefore, our research also 

intends to endorse sustainable landscape practices, allowing for forest management and 

exploitation to be compatible with the maintenance of high biodiversity levels. 

 

 

I.5. STUDY AREAS 

Many highly considered studies addressing habitat fragmentation and landscape 

connectivity are carried out in experimental landscapes where controlled conditions are 

provided (e.g., Damschen et al., 2006, 2012, 2019; Haddad et al., 2015). Patch size, 

configuration and connectivity are manipulated to determine the effects of habitat 

fragmentation on biodiversity, animal behaviour, community dynamics and ecosystem 

functioning (Jenerette and Shen, 2012). Such studies allow for an unbiased estimation 

of effect sizes, causal inference and have provided valuable insights to ecological theory 

(Ims, 2005; Resasco et al., 2017). Non-manipulated observational and modelling 
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approaches seldom allow such accuracy (Jenerette and Shen, 2012). However, 

controlled situations rarely occur in nature and it is not clear to what extent the 

theoretical considerations find support in real-world landscapes (Fletcher et al., 2016; 

Viljur and Teder, 2018). Beyond theory, gathering evidence from real-world landscapes 

can provide valuable information that can help landscape planners and managers to 

implement more sustainable management practices by integrating landscape 

connectivity and structure in exploitation plans. 

Since our aim intends to provide both theoretical information on how bird 

communities are structured and translate such evidence into explicit management 

practices that can contribute to more sustainable landscapes, we approached our 

objectives on two real-world landscapes with different topology: (1) standard 

production pine forests, and (2) Mediterranean evergreen oak woodlands. 

The thesis focuses purposely on those forest land uses because they are the most 

represented in Portugal. According to 2015’s national forest inventory (ICNF, 2015), 

forests are the main land uses in the Portuguese mainland territory, occupying 36% of 

total area. Both evergreen oak woodlands and pine forest are, respectively, the first and 

second main forest cover in Portuguese mainland, each nearly occupying 1,000,000 ha 

(ICNF, 2015) (Figure I.6). Both occur along the Portuguese territory, but while evergreen 

oak woodlands are mainly restricted to the south or Mediterranean climate, pine forests 

distribute more profusely in the centre and north, subjected to a higher Atlantic 

influence (Figure I.6).  

Both forest landscapes rely on a strong human presence and are currently 

exposed to major threats (see below) which may lead to changes in their structure and, 

consequently, on the biodiversity they hold. Therefore, advance on landscape-scale 

studies able to provide evidence-based implications on specific management practices 

are needed to reverse or alleviate such impacts. 
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Figure I.6 – Proportion of the area occupied by the main land uses (left image), and spatial 
distribution of evergreen (only Cork and Holm oaks considered) and coniferous (Maritime and 
Stone pine) forests and agro-forestry systems across Portugal inland territory (right image). 
(Source: Land Use and Land Cover Map of Continental Portugal for 2018 – COS2018). 

 

 

I.5.1. Standard production pine forests 

Standard production forests mainly involve intensive forestry activities (e.g., logging, 

plantation, thinning, understory management) of Maritime pine (Pinus pinaster), but 

also of other non-native plantations (Eucalyptus sp.). Each patch is under a rotational 

scheme passing from clear-cut patches where shrubs prevail (normally persisting for 5 

years), newly planted forests subjected to regular thinning, and mature forests (with 

stands reaching 50 to 80 years for pines and 9-10 years for eucalypts). This results in a 

heterogeneous landscape mosaic of well-defined even-aged stands, which vary in 

composition, density, and age with neighbouring patches.  

 Pine forests are suffering a strong and continued decline since 1995 in 

Portuguese mainland territory (ICNF, 2015), though it has deaccelerated in the 5 years 

before 2015. Wildfires (Fernandes and Rigolot, 2007) and pests (namely the Pinewood 
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nematode Bursaphelenchus xylophilus, Robinet et al., 2020) have been the main hazards 

inflicting a reduction of the area covered by pine forests (ICNF, 2015). These have led to 

an abandonment or replacement of pine harvesting by other unmanaged land uses (e.g., 

shrubland) or afforestation of new woody species, such as eucalypt. Conversion to 

eucalypt plantations, for instance, may be unfavourable to biodiversity in Mediterranean 

landscapes, as these plantations are the least diverse forested habitats, e.g., for plant 

and bird communities (Proença et al., 2010). 

In general, pine forests are privately owned (though there are noticeable 

exceptions of national woods owned by the Portuguese State – ICNF, 2020), where 

small-estate management assumes greater significance in landscape planning. Each 

landowner manages its properties independently, contributing to the patchiness and 

characteristic mosaic of these landscapes.  

Because standard production forests are highly dynamic, animal communities 

are continuously challenged by sudden habitat changes (Bennett et al., 2006, Bergsten 

et al., 2013). Hence, the occurrence of species is most likely susceptible to fragmentation 

and isolation effects. Therefore, the implementation of sustainable exploitation plans 

requires objective and quantitative approaches to identify those key elements that 

reinforce the spatial coherence of the whole landscape. In other words, we need to 

know how to keep landscape functional connectivity, while maintaining exploitation of 

the forest resource areas.  

Some studies enclosed in this thesis were carried out in centre-west Portugal 

(centroid: 39°38’N 9°02’W, Figure I.7). The orography is mainly flat with a mean altitude 

of 70 m a.s.l., where calcareous sandy soils dominate. The area presents a 

Mediterranean oceanic bioclimate (Rivas-Martínez, 2011), since it is exposed to an 

Atlantic influence, resulting in dry and mild summers (T ~ 20 °C, P ~ 10 mm) and rainy 

winters (T ~ 8.5°C, P > 150 mm) (IPMA, 2020). Landscape is highly patchy, since small-

state management dominates. Forestry is the main activity dominating the landscape 

(Figure I.8) and other land uses (e.g., shrubland, non-native plantations) exhibit a 

scattered distribution embedded within the forest matrix (Figure I.7). 

 Pine forests do not excel for the high diversity of birds or the presence of species 

of conservation concern. However, bird communities inhabiting these land uses are 

strongly specialized in forest habitats, and some species are especially abundant in these 
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forests (e.g., Coal tit Periparus ater, Crested tit Lophophanes cristatus, Mistle thrush 

Turdus viscivorus, or the European nightjar Caprimulgus europaeus) (Catry et al., 2010). 

Due to their high level of specialization and high patch contrast between different land 

uses, birds are confined to specific habitat patches and may perceive unsuitable habitats 

as barriers to dispersal (e.g., due to visual obstruction, Prevedello et al., 2010). 

 

 

Figure I.7 – Location of the study area devoted to study fragmentation effects and connectivity 
on bird communities in standard production pine forests, plotted against the distribution of pine 
forests in the Portuguese mainland territory (left image) and main land uses in the study area 
(right image). Land use data source: own land cover map using Bing Maps aerial photography 
(year: 2011; resolution: 30cm). 
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Figure I.8 – A Maritime pine forest, even-aged stand. 

 

 

I.5.2. Mediterranean oak woodlands – the ‘montado’ system 

Mediterranean oak woodlands are a highly heterogeneous land use that resulted from 

centuries of traditional human activities (e.g., agriculture, cattle grazing) which have 

gradually modified the once pristine forests (Blondel et al., 2010) dominated by 

evergreen oaks, namely Cork oak (Quercus suber) and Holm oak (Q. rotundifolia). This 

long-last process resulted on a large scale fuzzy or variegated landscape (sensu McIntyre 

and Hobbs, 1999) where forest cover varies from densely wooded areas to agricultural 

plains of scarce tree cover or with islets of isolated trees (Pinto-Correia et al., 2011). 

Along this gradient, the ‘montado’ is characterized as an agro-silvo-pastoral system with 

varying densities of oak trees (generally above 10%), in which the understory depends 

on human intervention expressed by a combination of agriculture, livestock grazing, and 

forestry activities (Pinto-Correia et al., 2011; Godinho et al., 2016; Pereira et al., 2015). 

This system is one of the most biodiverse ecosystems in the Mediterranean, and for that 

reason, is classified as a High Nature Value (HNV) farmland (Andersen et al., 2003) and 
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is include in Annex I of European Habitats Directive (92/43/CEE), meaning, it is of 

conservation importance and concern. 

Unlike standard production pine forests, Mediterranean oak woodlands show 

less abrupt spatial changes throughout the landscape and less dynamism over time. 

However, the characteristic savannah-type structure faces significant threats related to 

land abandonment, or management practices leading to areas of intensive agro-forestry 

production and livestock raising (Pinto-Correia and Mascarenhas, 1999; Plieninger and 

Schaar, 2008). Whether these changes will result in a new landscape structure is one of 

the main current concerns about ‘montado’ persistence (Pinto-Correia and 

Mascarenhas, 1999).  

 For the purpose of this thesis, we conducted the studies on the highly variegated 

Mediterranean landscape of southern Portugal, in the Évora district (centroid: 16271.45, 

-113395.21; EPSG: 3763-ETRS89 / Portugal TM06, Figure I9). The orography is mainly 

flat, though occasionally gently undulating, with altitude ranging between ~100 and 

~450 m a.s.l.. The climate is typically Mediterranean with dry and hot summers (T > 24°C, 

P < 10 mm) and mild winters (T ~ 9°C, P ~ 90 mm) (IPMA, 2020). The area comprises the 

Mediterranean savannah-like woodland ‘montado’ (Pinto-Correia et al., 2011) (Figure 

I.10), but other land uses are also present, such as: open farmlands for cattle grazing or 

cereal farming (grasslands), forest plantations (mainly Pinus pinaster and Eucalyptus 

sp.), orchards (olive groves and vineyards), and urban areas (Figure I.9).  

 Bird species diversity is generally high in Mediterranean oak woodlands (Catry et 

al., 2010; Pereira et al., 2015), taking advantage of the heterogeneity of the landscape 

(Tellería, 2001; Sanderson et al., 2009; Bonthoux et al., 2013) and structural 

characteristics of the habitats (Godinho and Rabaça, 2010; Catarino et al., 2016). Pereira 

et al. (2015) described 92 species as usual breeders in ‘montado’ systems. Woodlark 

(Lullula arborea), Blue tit (Cyanistes caeruleus), Eurasian nuthatch (Sitta europaea) or 

Lesser spotted woodpecker (Dryobates minor) are among the most referenced or 

emblematic species of the system. Because the diversity of the ´montado’ system relies 

on the spatial heterogeneity of the landscape (Blondel and Aronson, 1999; Tellería, 

2001; Díaz et al., 2003), its simplification can lead to significant losses in habitat 

suitability for species, or in the ability to provide structural and functional connectivity 

across a landscape (Fischer and Lindenmayer, 2002; Herrera et al., 2018). 
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Figure I.9 – Location of the study area devoted to study fragmentation effects and connectivity 
on bird communities in Mediterranean oak woodlands, plotted against the distribution of 
evergreen oak forests in the Portuguese mainland territory (left image). Mapping of the main 
land uses in the study area (right image). Land use data source: CORINE Land Cover Level 5 
classification (Guiomar et al., 2009). 
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Figure I.10 – A Cork oak woodland representative of the ‘montado’ system. 

 

 

I.6. THESIS STRUCTURE 

This thesis is structured in five chapters: opens with the general introduction (Chapter I) 

where the theoretical framework and the concepts concerning the topics of research 

are introduced, and ends with general conclusions (Chapter V) where we unfold the 

main contributions and outline further research. In between, Chapters II to IV include 

the research developed and expressed in three scientific papers addressing the 

objectives of the thesis. 

Chapter II consists on an exploratory paper, which determines the suitability of 

different conceptual approaches to capture landscapes’ heterogeneity. Both patch- and 

gradient-based approaches are tested on different landscape contexts (variegated and 

mosaic), while accounting for species dependency effects. Overall, this chapter intends 

to provide evidence on the adequate approach to describe landscape structure 

considering both the nature of species perception and landscape type, thus providing 

support for application in subsequent research. 



Chapter I   General introduction 

44 
 

In Chapter III we explore individual bird species responses to landscape change 

by determining critical thresholds beyond which major changes in species abundance 

and community composition occur. While looking at the tree canopy gradient in 

‘montado’ landscape we aim to ascertain the limits where populations are more 

sensitive, thus setting bases to prevent the critical downfall of biodiversity while 

improving the effectiveness of conservation, resource management and restoration 

practices.  

 Chapter IV demonstrates how functional connectivity mediates the spatial 

distribution of a bird community inhabiting a fragmented landscape subjected to long-

standing forestry activity. Single- and multispecies connectivity are tested on species 

occurrence and community assemblage while accounting for habitat amount and quality 

to determine habitat and landscape filtering effects on local communities. In this 

chapter we aim to disentangle the effects of functional connectivity from other key 

factors on bird species occurrence, while assessing how it mediates the spatial 

distribution of local community composition and diversity. 

In the last chapter (Chapter 5 – General conclusions), we summarize the main 

findings stemming from the studies and explore tangible implications, while framing 

them in the current agenda addressing further issues in fragmentation and connectivity. 

Based on the thesis results we then unfold the main contributions to the current 

knowledge and outline further research that advances on the study of habitat 

fragmentation and functional connectivity. 
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Appendix I.A: Published research on connectivity and birds  

 

The following published studies were obtained from the Web of Science while searching 

for studies published up to 2019 using the strings “bird and connectivity” in the title. 

This is a comprehensive search to outline the general trends of the existing research and 

not a complete review. 
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II.1. ABSTRACT 

Context: When modelling a species' distribution, landscapes can alternatively be 

conceptualized following patch- or gradient-based approaches. However, choosing the 

most suitable conceptualization is difficult and methods for empirical validation are still 

lacking. 

Objectives: To address the conditions under which a given conceptual model is more 

suitable, taking into account landscape context and species trait dependency effects. 

Patch- and gradient-based conceptualizations were built based on two structurally 

different landscapes: variegated and mosaic. We hypothesize that: (H1) gradient-based 

models better describe variegated landscapes while patch-based models perform better 

in mosaic landscapes; and (H2) gradient-based models will fit generalist species better 

while patch-based models will suit specialists better. 

Methods: We modelled the distribution of eleven bird species in each landscape using 

each conceptualization. We determined the suitability of each conceptual model to fit 

statistical models by looking for cross-species responses and deviations from best 

models. 

Results: We found no clear support for our hypotheses. Although patch-based models 

performed better in mosaic landscapes (H1), they also provided useful 

conceptualizations in variegated landscapes. However, when patches showed high 

heterogeneity, gradient-based approaches better fit specialist species (H2). 

Conclusions: The suitability of a given conceptual model depends on the interaction 

between species habitat specialization and the intrinsic spatial heterogeneity of the 

landscape, and the ability of each conceptualization to capture it. Gradient-based 

models provide better information on resource allocation, while patch-based models 

offer a simplified perspective on landscape attributes. Future research should consider 

the nature of both species and landscapes in order to avoid bias from inadequate 

landscape conceptualizations. 

 

II.2. KEYWORDS 

Mosaic landscape; Variegated landscape; Continuum model; Discrete model; Habitat 

quality; Spatial heterogeneity. 
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II.3. INTRODUCTION 

Advances in landscape ecology have provided new, yet sometimes conflicting, models 

to describe and interpret human-modified landscapes and habitat fragmentation (Dunn 

and Majer, 2007; Lindenmayer et al., 2007; Didham et al., 2012; Mimet et al., 2014). 

Two main types of conceptual models can be broadly considered: discrete (patch-based) 

and continuum (gradient-based) approaches, each dealing differently with spatial 

continua (Fischer et al., 2004a). Patch-based models implicitly categorize the landscape 

into suitable habitat patches embedded in an unsuitable or hostile matrix (e.g., island 

biogeography theory by MacArthur and Wilson, 1967; Haila, 2002; and patch-corridor-

matrix by Forman, 1995). Gradient-based models describe landscapes as a gradual 

change of resources, ecological processes and environmental conditions in space (e.g., 

the continuum model by Fischer and Lindenmayer, 2006).  

 In spite of the valuable insights that patch-based models have provided (e.g., 

metapopulation studies; Hanski, 1998), there is increasing criticism that their 

generalization is an overly simplistic way to understand ecological processes and the 

effect of management practices (Fischer and Lindenmayer, 2006, 2007). Landscape 

categorization is often subjected to a human perspective, which may not be consistent 

with a species perception (Fischer and Lindenmayer, 2006; Franklin and Lindenmayer, 

2009). In particular, discrete conceptualizations of landscapes that are characterized by 

open woodlands of varying tree density (e.g., savannahs, Woodward et al., 2004) are 

often dubious because patch boundaries are difficult to define, neglect within-patch 

heterogeneity (Price et al., 2010) and assume all organisms respond in the same way 

(Betts et al., 2014). To overcome such limitations, Fischer and Lindenmayer (2006) 

proposed the continuum model, which considers spatial continua rather than discrete 

patches. Although conceptually appealing, the application of gradient-based models is 

still rare (see Ingham and Samways, 1996 or Betts et al., 2014) probably due to a lack of 

habitat quality data with sufficient detail to properly characterize continua at the 

landscape level (Fischer et al., 2004a). Most recently, some studies have attempted to 

explore different approaches using continuum data (McGarigal et al., 2009; Frazier and 

Wang, 2013; Mimet et al., 2014), although such applications are limited and model 

performance has not been thoroughly assessed in different types of real landscapes. 
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 Choosing an inadequate landscape conceptualization to model species 

distributions may produce misleading results, increasing the risk of developing 

ineffective management strategies (Fischer et al., 2004a, 2004b; Lindenmayer et al., 

2008). Researchers are increasingly studying under which conditions a given landscape 

conceptual model is more appropriate or constitutes a suitable alternative 

(Lindenmayer et al., 2007). Fischer et al. (2004b) argued that the selection of an 

appropriate conceptual model depends on the species of interest and the landscape 

context. Recent research on considering a single landscape context by Price et al. (2009) 

and Bruton et al. (2015, 2016) pointed out the need to account for multispecies and life-

history trait effects on the individualistic perception of landscapes given the lack of 

coherent responses of species. More recently, Brudvig et al. (2017) proposed a decision-

making framework to guide conceptual model selection based on study objectives, 

landscape context and species traits. This framework provides a set of ‘rules of thumb’ 

meant to ease the process of environmental data acquisition according to an 

appropriate conceptualization of landscapes. For instance, environmental data collected 

on the scope of patch-based models would better apply to landscapes showing distinct 

patch boundaries (hard-edges) between few land-cover types; or to species exhibiting 

specific requirements, since suitable patches are more easily mapped as distinct from 

the inhospitable matrix. Conversely, the continuum model would better suit landscapes 

with low contrast (soft-edges) between patches (see also McIntyre and Barrett, 1992), 

or to generalist species using multiple habitats, since their plasticity would hamper clear 

species-habitat relations required by patch-based models (Brudvig et al., 2017). 

However, empirical validation of the assumptions regarding the use and selection of 

appropriate conceptual models is still lacking, especially those using empirical data in 

real-world landscapes. 

 Our study uses the distribution of bird species to test the assumptions derived 

from the latest research on landscape conceptualization (Price et al., 2009; Bruton et al., 

2015; Brudvig et al., 2017). In order to avoid biases from single (Price et al., 2009; Bruton 

et al., 2015) or artificially built experimental landscapes (Brudvig et al., 2017), we 

expanded our study to two structurally different real-world landscapes: a variegated 

savannah-like forest with a tree canopy cover gradient without abrupt changes, and a 

mosaic landscape with clearly defined forest patches. We set up four conceptual models 
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to explain species occurrences: (1) a human-derived patch model considering supervised 

assistance for land use classification; (2) a contour-based patch model developed from 

the identification of community turnovers (thresholds marking strong changes in bird 

species composition) at each landscape; (3) a gradient-based continuum model 

considering gradients of change in environmental variables at the landscape scale; and 

(4) a gradient-based microhabitat model focusing on site-scale heterogeneity which is 

often not achievable from a landscape-scale characterization. Our aim was to identify 

the conditions under which a given landscape conceptual model was the better 

alternative (Lindenmayer et al., 2007; Stoddard, 2010), as a function of both landscape 

context and species trait dependency effects. We evaluated conceptual models within 

each real-world landscape in order to test the following hypotheses: (H1) landscape 

context dependency effects – gradient-based models better describe the structural 

complexity of variegated landscapes while patch-based models provide better 

outcomes in classic mosaic landscapes; and (H2) species trait dependency effects – 

gradient-based models will better fit generalist species while patch-based models will 

better suit species with marked habitat requirements (specialists). However, it was not 

the aim of this study to provide a direct comparison between landscapes, as both differ 

structurally in their elements and the bird communities that occur within them. Instead, 

our aim was to assess how species respond to different conceptualizations within the 

two contrasting landscapes considering similar assumptions. 

 

II.4. METHODS 

II.4.1. Study area 

The study was carried out in two different landscape types (Figure II.1): a Mediterranean 

oak woodland (southern Portugal, centroid: 38º39’N 7º59’W, EPSG code: 4326) and an 

Atlantic pine plantation (centre-west Portugal, centroid: 39º38’N 9º41’W, EPSG code: 

4326). 

 The Mediterranean oak woodlands are a highly variegated savannah-like 

landscape (sensu McIntyre and Hobbs, 1999). The heterogeneous pattern of land use is 

a result of centuries of traditional human activities (agriculture, cattle grazing and 

forestry) that have gradually modified the once pristine evergreen cork oak (Quercus 

suber) and holm oak (Q. rotundifolia) forests (Blondel et al., 2010; Pinto-Correia et al., 
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2011). Sharp patch boundaries are difficult to identify because forest cover varies from 

densely wooded areas to agricultural plains with sparse tree cover or with islets of 

isolated trees (Pinto-Correia et al., 2011).  

 The Atlantic pine plantations are standard production forests subjected to 

intensive forestry activities of maritime pine (Pinus pinaster) and non-native plantations 

(Eucalyptus sp.). Each patch is under a rotational scheme passing from clear-cut patches 

dominated by shrubs (normally 5 years) to newly planted forests subjected to regular 

thinning, and mature forests (reaching 50 to 80 years for pines and 9-10 years for 

eucalypts). This has resulted in a heterogeneous landscape mosaic of well-defined 

patches with stands varying in composition, density and age. 

 

 
Figure II.1. – Location of the two study areas in Portugal (Mediterranean oak woodland at Évora 
study area and Atlantic pine plantations at Leiria study area) and representative detail of the 
three landscape-scale models for the same sample area.  

 

 

II.4.2. Landscape conceptual models 

Each landscape was described using four conceptual models (Figure II.1). Two of them 

used as patch-based conceptualizations of the landscape: (1) a human-derived patch 
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classification – PH, and (2) a contour-based patch – PC. Other two were gradient-based 

conceptualizations: (3) a landscape-scale gradient–based continuum – GC, and (4) a site-

scale gradient of microhabitat complexity – GM. 

 The human-derived patch model (PH) is considered a discrete mosaic landscape 

conceptual model (sensu Bennett et al., 2006). Landscape characterization uses 

supervised assistance based on a land use classification. In Mediterranean oak 

woodlands, we used the CORINE Land Cover Level 5 classification (Guiomar et al., 2009) 

coupled with fieldwork for validation. Atlantic pine plantation landscapes are very 

dynamic, so we produced our own land cover map using Bing Maps aerial photography 

(year: 2011; resolution: 30cm), and the delimitation and classification of each patch was 

validated in the field using a GPS device (Garmin eTrex20). We then reclassified the 

original classes to reduce their number (see Appendix II.A Table II.A1 and II.A2 for more 

detailed considerations on land use reclassification). Patch boundaries were sharp and 

well defined, and the landscape was composed of a mosaic of multiple patch classes 

(minimum size: 100m2), which avoids an unrealistic binary classification of habitat versus 

non-habitat (McIntyre and Hobbs, 1999; Fischer et al., 2004b).  

The contour-based patch model (PC) is a simplification of the habitat contours 

model (Fischer et al., 2004a). We defined habitat contours using bird community 

turnover data, where thresholds marking strong changes in bird species composition 

were transposed to landscape maps as contours delineating putative homogeneous 

patches. Bird community turnovers were computed, taking into account the whole bird 

community detected in each area (20 species in pine plantations; 33 in oak woodlands, 

see Appendix II.A Table II.A3 for complete listing). Species responses to the tree canopy 

gradient were modelled using Huisman-Olff-Fresco models (hereafter HOF models; 

Salgueiro et al., 2018a). HOF models consist of a set of Gaussian response curves based 

on ecological niche theory, estimating the probability of occurrence and the turnover 

patterns for species and communities (Appendix II.A Figure II.A1; for details see Jansen 

and Oksanen, 2013). Contours are therefore community-based, instead of species-

specific, as originally advocated by Fischer et al. (2004a). Most importantly, this 

approach provides an unsupervised land-use classification as an alternative to human-

derived conceptualizations that may not be consistent with species perception. 
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 The gradient continuum model (GC) follows the assumptions provided by 

continuum theory (Austin, 1985, 1999), in which landscapes are described by 

unrestricted and direct environmental gradients (Fischer and Lindenmayer, 2006). We 

used the tree cover density gradient (raster-based) as a proxy for distribution of habitat, 

foraging and nesting resources (Price et al., 2009). In both landscapes, the tree cover 

density gradient was built from 2010 aerial photography data (resolution: 1m) by 

applying colour image segmentation and the k-means algorithm for unsupervised 

classification (Subbiah and Seldev, 2012). For these procedures, we used Orfeo Toolbox 

3.20 (Orfeo Toolbox Development Team, 2013), in QGIS version 2.2 (Quantum GIS 

Development Team, 2013). This resulted in a reclassification where each individual pixel 

represented the presence of tree canopy, describing the structure of forest cover as a 

continuum of change (Fischer and Lindenmayer, 2006). 

 The microhabitat model (GM) produces a site-scale characterization describing 

local gradients of change in vegetation density and structure that captures highly 

detailed complexity at the patch scale in a way that is typically poorly represented in 

landscape conceptual models.  

 

II.4.3. Explanatory variables 

We extracted a set of variables for each conceptual model, aiming to describe landscape 

composition and configuration (Table II.1). For patch models (PH and PC), we extracted 

compositional parameters using the relative proportions of land uses from a vector map. 

Configuration patterns were determined by calculating the landscape Shannon’s 

diversity index, number of patches and edge length. For the PC model, we calculated 

only total edge length. The PH conceptualization allows both hard and soft edges to be 

explored. We measured edge length between patches, where edges were defined as 

differences in vertical structure (for Atlantic pine plantations) or stem density (for 

Mediterranean oak woodlands). In the first case, hard edges were considered to exist 

between mature pine plantations and shrub/farmland/bare soil, while soft edges were 

found between mature plantations and young plantations or young plantations and 

shrub/farmland/bare soil. In Mediterranean oak woodlands, hard edges were 

considered the edge between grassland and dense oak forest cover, and soft edges were 
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found between grassland and sparse oak forest cover or sparse and dense oak forest 

cover (see Table II.1 for land-cover class descriptions).  

 Continuum model (GC) variables were extracted using the tree canopy gradient 

raster map as a surrogate for tree density (Westfall and Morin, 2012; Godinho et al., 

2016). We defined composition as the percentage of canopy cover. The gradient was 

obtained by a ‘moving window’ procedure at different spatial extents (see below). To 

account for configuration, we followed the same procedure to compute measures of 

subdivision (the number of clusters of adjacent raster cells classified as canopy cover) 

and aggregation (clumpiness and aggregation index of raster cells classified as canopy 

cover) using FRAGSTATS (McGarigal et al., 2012). 

 Finally, the GM variables described local habitat characteristics from field 

measurements such as density (cover) and structure (height, variation of height and 

cover) of vegetation strata (shrubs and trees) as a proxy of habitat quality (sensu 

Mortelliti et al., 2010a). Field measurements were conducted in the same period as bird 

sampling at 20 random points within a 100m radius from the bird sampling sites. Shrub 

variables corresponded to total occurrence, and mean and covariance values of height 

of each sampling point data. In Mediterranean oak woodlands, we counted the number 

of mature and young trees (< 2m), and measured the tree diameter in Atlantic pine 

plantations at breast height as a proxy for forest plantation age.  

 Although different data sources were used to derive the habitat metrics for each 

landscape, we established a baseline of variables across conceptual models using 

Spearman correlation ranks for comparative purposes (see Appendix II.C). We found 

evidence for cross-model correlations, indicating that most conceptual models account 

for similar tendencies for both compositions (e.g., densely forested areas are equally 

captured as such by different conceptual models) and configuration variables (e.g., 

heterogeneous areas are equally captured as such by different conceptual models).  

 Finally, as documented in several studies (e.g., Bennett et al., 2006), species 

perceive landscape at different scales, sometimes due to a differential spatial use 

(Ingham and Samways, 1996). For landscape-scale models (GC, PH, PC), we considered 

three different spatial extents to detect scale-dependent responses (Grand and 

Cushman, 2003) at site (100m and 200m), meso- (500m) and macro- (1000m) scales (see 

Warren et al., 2005). 
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Table II.1 – Summary of variables used to build generalized linear models for each conceptual 
model (PH –human-derived patch model, PC – contour-based patch model, GC – continuum 
model, GM – site-scale model) in the two landscape context study areas. 

Model Mediterranean oak woodlands Atlantic Pine plantations 

PH % Grassland cover (<10% CORINE) 
% Sparse forest cover (10-30%) 
% Dense forest cover (>30%) 
 
Shannon’s diversity index 
Number of patches 
Total length of hard edges  
Total length of soft edges  

% Shrubland 
% Young plantations 
% Pine forest 
% Non-native plantations 
Shannon’s diversity index 
Number of patches 
Total length of hard edges 
Total length of soft edges  

PC % Grassland cover (<1% canopy) 
% Sparse cover forest (1-20%) 
% Medium cover forest (20-50%) 
% Dense cover forest (>50%) 
Shannon’s diversity index 
Number of patches 
Total edge length 

% Low forest cover (<15% canopy) 
% Medium forest cover (15-50%) 
% High forest cover (50-70%) 
% Very high forest cover (>70%) 
Shannon’s diversity index 
Number of patches 
Total edge length 

GC Percentage canopy cover 
Number of canopy clusters 
Clumpiness 
Aggregation index 

Percentage canopy cover 
Number of canopy clusters 
Clumpiness 
Aggregation index 

GM Number of trees 
Number of young trees 
Mean shrub height 
Shrub height covariance 
Shrub density 

Number of trees 
Mean diameter at breast height 
Mean shrub height 
Shrub height covariance 
Shrub density 

 

 

II.4.4. Bird surveys 

Bird species data were obtained by means of 10 min point counts (Bibby et al., 2000) 

with a distance limit of 100m. A total of 210 sampling sites, 105 per study area, were 

surveyed once during the breeding season (between April and May), when both resident 

and migratory species are more conspicuous. Surveys were made during the period of 

highest detectability (6:00 to 11:00 a.m., Palmeirim and Rabaça, 1994) and in favourable 

weather conditions (Bibby et al., 2000). In order to enhance the statistical power and 

representativeness of the study area, we chose to sample a higher number of sites at 

the expense of a higher survey effort per site (Loos et al., 2015). Atlantic pine plantations 

were sampled in 2011 and Mediterranean oak woodlands in 2013. All bird species that 

were seen or heard were recorded, but fly-over individuals, aerial-feeders or species 
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with large home ranges were not included in the analysis. Species of the genus Galerida 

(G. cristata and G. theklae) were pooled and analysed together (hereafter Galerida spp.) 

due to the difficulty in accurately distinguishing these species (e.g., Delgado and 

Moreira, 2000).  

 We calculated the Species Specialization Index (SSI) to evaluate habitat 

specialization for each species in each landscape separately (Julliard et al., 2006). To 

avoid bias from original discrete classifications, we used the CLARA method (Maechler 

et al., 2016) which defines the number of habitat classes in each landscape by computing 

a set of variables that cluster sampling sites sharing similar characteristics (Appendix II.B 

Table II.B1 and II.B2). The number of habitats was validated by analysing the silhouette 

coefficient to find the optimal number of clusters by considering the tightness within 

and separation between clusters (Rousseeuw, 1987). For each species, SSI was defined 

as the coefficient of variation of the averaged densities in each habitat class (Julliard et 

al., 2006). Species were ranked accordingly (Appendix II.B Table II.B3 and II.B4). The SSI 

regards specialists as species that are more restricted to a single habitat class and 

generalists as species that use multiple habitats. 

 

II.4.5. Data analysis 

Our hypotheses take into account the decision-making framework proposed by Brudvig 

et al. (2017) and the studies of Price et al. (2009) and Bruton et al. (2015). We took into 

account the attributes of the landscapes (context dependency) and species habitat 

specialization (trait dependency) (Table II.2). We built an analytical procedure (see Figure 

II.2) based on two attributes: (1) ‘coherence’ in species responses and (2) the 

‘performance’ of conceptual models. ‘Coherence’ regards which conceptual model 

consistently provides a good fit across the highest number of species in each landscape. 

A similar approach has been used in other studies (Price et al., 2009; Bruton et al., 2015), 

but this approach does not evaluate the suitability of alternative conceptual models. 

Therefore, we also evaluated our results by measuring the ability of an alternative 

conceptual model to also provide an acceptable fit, i.e., the ‘performance’. 

 The modelling procedure for each species followed the theoretical information 

approach of Burnham and Anderson (2002) using generalized linear models (GLM). 

Model selection was based on Akaike information criterion corrected for small sample 
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sizes (AICc) and Akaike weights (i). For each study area, we modelled count data of 

eleven species with a Poisson error distribution (log link function), which complied with 

statistical (species was present at least in 20% of the points, showing no significant 

spatial autocorrelation) and ecological criteria (acknowledged to have different 

requirements concerning habitat characteristics).  

 We started the procedure by screening explanatory variables for outlier 

presence, normality and collinearity (Spearman correlation ranks > 0.7, Tabachnick and 

Fidell, 1996). Whenever needed, variables were transformed (square root or logarithmic 

for continuous variables and arcsine of the square root for proportions, Zar, 1996), 

categorized to overcome the lack of normality or discarded to avoid model over-

parameterization. We also tested for the quadratic terms of variables in order to detect 

non-linear relations, although further consideration was only given when the quadratic 

term overcame the linear term in at least 4 AICc units (Burnham et al., 2011). For each 

variable, we selected the best response scale (100, 200, 500 and 1000m) by extracting 

the one with the lowest AICc from univariate GLM. We determined the four best 

explanatory variables of each conceptual model by calculating their relative importance 

(RVI – the sum of Akaike weights in statistical models where the variable was present) 

after running the function ‘dredge’ upon all variables (library ‘MuMIn’, Bartón, 2012). All 

possible statistical models (n=16) were computed separately for each of the four 

conceptual models. All resulting statistical models were grouped together (n=64), and 

ΔAICc and correspondent Akaike weights were calculated and ranked. The final ΔAICc 

dataset was obtained by setting a cut-off point at the 95% confidence interval on the 

cumulative sum of Akaike weights, below which models were discarded. 
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Table II.2 – Attributes of the landscapes and species used in this study. For landscape context 
dependency, we considered the number of land cover types, the contrast between patches and 
the edge structure. For species trait dependency, we calculated the Species Specialization Index 
(‘SSI’).  

  Attributes of landscape       Attributes of species   

  Land cover types 
Landscape 
contrast 

Edge 
structure 

  Species SSI 

a) Mediterranean oak woodlands 

 Grassland;  Weak Soft edges  Cyanistes caeruleus 0.35 

 Sparse forest;     Chloris chloris 0.53 

 Dense forest    Sylvia melanocephala 0.53 

     Carduelis carduelis 0.57 

     Fringilla coelebs 0.57 

     Turdus merula 0.59 

     Certhia brachydactyla 0.67 

     Luscinia megarhyncos 0.72 

     Parus major 0.72 

     Galerida spp. 0.79 

     Sitta europaea 0.86 

b) Atlantic pine plantations 

 Pine forest;  Strong Hard edges  Parus major 0.22 

 Shrubland;     Serinus serinus 0.28 

 Young plantations;    Lophophanes cristatus 0.30 

 Non-native plantations    Chloris chloris 0.32 

     Erithacus rubecula 0.35 

     Fringilla coelebs 0.36 

     Certhia brachydactyla 0.45 

     Turdus merula 0.48 

     Lullula arborea 0.56 

     Periparus ater 0.87 

     Dendrocopos major 1.04 

 

 To check for the ‘coherence’ of each conceptual model, we summed the selection 

probability of the respective statistical models (conditional sum of Akaike weights). We 

tested whether a conceptual model was more important than expected by chance for 

each species by computing a multinomial randomization test comparing the observed 

probability of selection of each conceptual model (sum of Akaike weights) with the 

multinomial distribution generated by 10,000 iterations constrained by expected values 

of probability. We assumed equal probabilities of selection for each conceptual model 

(4 classes, 25% probability each). Observed selection values were considered significant 

whenever below or above 95% of the distribution of randomly generated expected 
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values of probability. Selected conceptual models were compared with the expected 

results from both hypotheses, checking the number of cases (species) that were in 

agreement.  

 To evaluate the ‘performance’ of landscape conceptual models, we examined 

AICc changes (ΔAICc) of all species combined. We used a mixed model approach 

(Pinheiro et al., 2014; Zuur et al., 2009), where ΔAICc was treated as the response 

variable, the conceptual model (four levels) as the categorical fixed effect and the species 

as a random factor. We assumed that conceptual models with significantly lower AICc 

had better performance. These two analyses enabled us to assess how each conceptual 

model performed in each landscape type separately. Following our second hypothesis, 

we also looked for the effect of species habitat specialization on the ‘performance’ of 

conceptual models. Another mixed model (Pinheiro et al., 2014; Zuur et al., 2009) was 

developed to account for random variation in species. ΔAICc was treated as the response 

variable and the interaction between species specialization (continuous variable) and 

conceptual model (four levels) as a categorical fixed effect.  

 The effects of minimum patch size and raster resolution on conceptual model 

selection were tested by means of a sensitivity analysis, considering different patch sizes 

in patch-based approaches (100 m2, 1000 m2 and 10000 m2) and resolutions (1x1 m, 5x5 

m and 10x10 m) in the continuum model. Our analysis supported the use of both lower 

patch size and higher raster resolution because no differences were found between the 

different categories, except for PC land-use data, where 100 m2 was determined to be 

the best option (see Appendix II.D). 



Chapter II                                                                 Patch and gradient landscape conceptualizations 

64 
 

 

Figure II.2 – Scheme of the analytical approach employed. In the Preparatory Stage, after 
variable screening, we selected the best four variables of each conceptual model (PH –human-
derived patch model, PC – contour-based patch model, GC – continuum model, GM – gradient 
microhabitat model) to explain each species abundance. At the modelling stage, partial GLMs → 
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for each conceptual model were computed through a ‘dredge’ procedure. Full models aggregate 
all GLMs from each conceptual model within the 95% confidence interval (95% CI) of the 

cumulative sum of Akaike weights (i). For the final dataset, we joined the Species 
Specialization Index (SSI), i.e., the coefficient of variation of each species abundance in a number 
the habitats defined through a CLARA ordination procedure (Appendix B Table B1-2). In analyses 
stage we checked ‘coherence’ performing a multinomial randomization test (MnRt) on the sum 

of Akaike weights (i). For ‘performance’ of conceptual models a mixed model procedure was 

applied on AICc to test the first hypothesis (H1) and considering specialization index to test the 
second hypothesis (H2).  

 

All statistical analyses were performed in R environment, version 3.0.2 (R 

Development Core Team, 2013). During the GLM modelling procedure, we checked for 

possible over-dispersion of our response data (Anderson, 2008) using the package ‘AER’ 

(Kleiber and Zeileis, 2008). Additionally, we calculated the variance inflation factors (VIF) 

using package ‘car’ (Fox and Weisberg, 2011). As a ‘rule of thumb’, we discarded variables 

with VIF scores > 4 (Netter et al., 1996). We plotted both model residuals and partial 

residuals to check for model fitting. Sampling sites that revealed a significant influence 

on model parameters were discarded (Cook’s distance threshold = 4/n, where n is 

sample size). Residuals were tested for spatial autocorrelation using spline cross-

correlograms (package ‘ncf’, Bjornstad, 2013). All of the analysed species showed spatial 

independence. A model was considered well fitted whenever residuals showed random 

dispersion and approximated a straight line close to zero, and all of the aforementioned 

assumptions were met.  

 

II.5. RESULTS 

II.5.1. Context-dependency in landscape conceptualization  

In terms of the ‘coherence’ attribute, there were no consistent patterns of cross-species 

selection of a conceptual model in Mediterranean oak woodlands. Thus, there was no 

support for our first hypothesis, as only four species agreed with predictions from H1 

(Table II.3). Nevertheless, the patch-based models (PH and PC together) provided 

greater coherence (higher number of species with higher probability of selection of 

these models; n = 7), while gradient-based models (GC and GM) were best suited to four 

species (Table II.3). Against our expectations, the continuum model (GC) fitted fewer 

species (n = 2). Our ‘performance’ results were in line with ‘coherence’ results because 

we did not find any significant differences in AICc values between conceptual models 
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(Table II.4, Figure II.3). However, as a general tendency, the GC model (AICc = 7.38 ± 

4.06) was outperformed (higher AICc) by all other conceptual models (mean AICc: PH 

= 6.28 ± 4.96; PC = 6.34 ± 5.23; GM = 6.16 ± 2.54). 

 In Atlantic pine plantations, ‘coherence’ results were also inconclusive because 

no conceptual model was consistently selected and only five species responded as 

expected by the first hypothesis (Table II.3). Patch-based models fitted a higher number 

of species (n=5), but did not differ greatly from gradient conceptualizations (n=4). 

However, regarding model ‘performance’ (Table II.4, Figure II.3), the PH presented 

better fitted statistical models (mean AICc = 5.64 ± 4.72, coefficient estimate = -0.930, 

P < 0.01) than GC, while the GM showed significantly lower fitted models (mean 

AICc=7.28 ± 4.37, coefficient estimate = 1.177, P < 0.01). No differences were detected 

between PC and GC. ‘Performance’ results support the second part of the first 

hypothesis, i.e., patch-based models provide better outcomes in classic mosaic 

landscapes. 
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Table II.3 – Summary of results of generalized linear models for each species in each study area (i: sum of Akaike weights of all statistical models of each 
conceptual model; PH: human-derived patch model; PC: contour-based patch model; GC: continuum model; GM: site-scale model; Selected model:  the best 
conceptual model for each species; Hypotheses:  agreement with the stated hypotheses). Significant p-values (ns: > 0.05; *: <0.05; **: <0.01; ***: <0.001) are 
derived from the multinomial randomization procedure that identifies conceptual models with Akaike weight sums above the expectation. Species are sorted 
from most generalist to most specialist. 

   i  Selected  
model 

Hypotheses 
 Species  PH PC GC GM   

a) Mediterranean oak woodlands 

 Cyanistes caeruleus  (Blue tit)  73.99 *** 12.87 ** 5.13 *** 3.31 ***  PH  

 Chloris chloris  (Greenfinch)  32.79 * 23.23 ns 27.39 Ns 11.85 **  PH  

 Sylvia melanocephala (Sardinian warbler)  0.00 *** 0.00 *** 0.00 *** 95.92 ***  GM H1; H2 

 Carduelis carduelis (Goldfinch)  58.40 *** 32.19 * 2.24 *** 2.55 ***  PH/PC  

 Fringilla coelebs (Common chaffinch)  62.68 *** 26.66 ns 5.33 *** 1.33 ***  PH  

 Turdus merula (Common blackbird)  7.04 *** 81.26 *** 0.00 *** 7.19 ***  PC  

 Certhia brachydactyla (Short-toed treecreeper)  13.82 ** 1.37 *** 9.17 *** 70.90 ***  GM H1 

 Luscinia megarhyncos (Common nightingale)  1.99 *** 77.92 *** 6.97 *** 8.36 ***  PC H2 

 Parus major (Great tit)  10.39 *** 66.14 *** 17.43 Ns 1.21 ***  PC H2 

 Galerida spp. (Crested and Thekla larks)  6.06 *** 0.00 *** 73.46 *** 15.63 *  GC H1 

  Sitta europaea (Eurasian nuthatch)   8.81 *** 0.00 *** 33.50 * 52.99 ***   GM/GC H1 
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Table II.3 (cont.) – Summary of results of generalized linear models for each species in each study area (i: sum of Akaike weights of all statistical models of 
each conceptual model; PH: human-derived patch model; PC: contour-based patch model; GC: continuum model; GM: site-scale model; Selected model:  the 
best conceptual model for each species; Hypotheses:  agreement with the stated hypotheses). Significant p-values (ns: > 0.05; *: <0.05; **: <0.01; ***: <0.001) 
are derived from the multinomial randomization procedure that identifies conceptual models with Akaike weight sums above the expectation. Species are 
sorted from most generalist to most specialist. 

   i  Selected  
model 

Hypotheses 
 Species  PH PC GC GM   

b) Atlantic pine plantations 

 Parus major (Great tit)  75.51 *** 8.18 *** 6.58 *** 4.99 ***  PH H1 

 Serinus serinus (Serin)  22.41 ns 6.78 *** 5.15 *** 60.70 ***  GM H2 

 Lophophanes cristatus (Crested tit)  27.44 ns 28.29 ns 33.66 * 5.85 ***  GC H2 

 Chloris chloris (Greenfinch)  61.06 *** 30.64 ns 1.30 *** 2.02 ***  PH H1 

 Erithacus rubecula (Robin)  18.36 ns 31.87 ns 25.18 Ns 19.71 ns  none  

 Fringilla coelebs (Common chaffinch)  1.32 *** 89.12 *** 4.80 *** 0.00 ***  PC H1 

 Certhia brachydactyla (Short-toed treecreeper)  0.00 *** 0.00 *** 0.00 *** 96.97 ***  GM  

 Turdus merula (Common blackbird)  22.73 ns 31.93 ns 22.68 Ns 18.17 ns  none  

 Lullula arborea (Woodlark)  79.54 *** 1.81 *** 13.97 * 0.00 ***  PH H1; H2 

 Periparus ater (Coal tit)  22.89 ns 59.57 *** 12.93 ** 0.00 ***  PC H1; H2 

  Dendrocopos major (Great spotted woodpecker)   7.86 *** 0.00 *** 0.00 *** 87.38 ***   GM  
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Table II.4 – Mixed-model results testing the effects of conceptual models on model performance 

(AICc values). The conceptual model has four levels: GC – continuum model (reference level), 
PH – human-derived patch model, PC – contour-based patch model, GM – gradient microhabitat 
model. Significant p-values (ns: P > 0.05; *: P < 0.05; ***: P < 0.001). 

a) Mediterranean oak woodlands 

 Terms Coef. SD df t-value P 

 (Intercept) 6.805 0.906 401 7.515 *** 

 PH  -0.712 0.390 401 -1.828 (.) 

 PC -0.297 0.571 401 -0.520 ns 

 GM  -0.646 0.383 401 -1.684 (.) 

       

b) Atlantic pine plantations 

 Terms Coef.  SD df t-value P 

 (Intercept) 6.929 1.024 484 6.770 *** 

 PH  -0.930 0.323 484 -2.884 ** 

 PC 0.006 0.296 484 0.019 ns 

 GM  1.177 0.449 484 2.622 ** 

 

 

 
Figure II.3 – Boxplots showing the deviation and range of variation of each conceptual model 
(PH –human-derived patch model, PC – contour-based patch model, GC – continuum model, GM 

– gradient microhabitat model) (squares: AICc values of all concurrent statistical models from 

species generalised linear models; dotted line:  the 4 AICc threshold). Models with low AICc 

values have higher performance (higher fit to data) than models with high AICc values. 
Conceptual models sharing a letter (‘a’ or ‘b’) are not significantly different at P=0.05.  
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II.5.2. Species traits dependency in landscape conceptualization 

We were able to quantify all species along a gradient of habitat specialization. In 

Mediterranean oak woodlands, Sitta europaea and the Galerida complex were the most 

habitat specialized species. Conversely, Cyanistes caeruleus was the most generalist 

species. In Atlantic pine plantations, both Parus major and Serinus serinus were the most 

generalist species, while Periparus ater and Dendrocopos major showed higher habitat 

specialization. All habitat and species classifications are shown in detail in Appendix II.B 

Tables II.B1-4. 

There was no clear support for our second hypothesis, regarding ‘coherence’ 

results in Mediterranean oak woodlands, as only three species supported it. Thus, Sylvia 

melanocephala distribution (generalist) was better explained by GM models while the 

PH approach provided better models for Luscinia megarhyncos and Parus major 

(specialist). However, contrary to what was expected, both species exhibiting the 

highest habitat specialization showed higher agreement with gradient models, while 

more generalist species showed a greater preference for patch-based models. Contrary 

to our second hypothesis, the ‘performance’ results followed a similar tendency (Table 

II.5, Figure II.4); we found that the GC and GM statistical models provided similar 

outcomes (coefficient estimate = 1.383, P = ns), showing higher ‘performance’ for 

specialist species in Mediterranean oak woodlands (GC slope = -8.03, P < 0.01; GM slope 

= -5.81, P < 0.01). On the other hand, PH and PC statistical models differ significantly 

from this relation (PH coefficient estimate = 13.406, P < 0.001; PC coefficient estimate = 

22.152, P < 0.001), showing a higher performance towards generalist species (PH slope 

= 3.89, P = ns; PC slope = 13.08, P < 0.001).  

In Atlantic pine plantations, only four species responded as expected by the 

second hypothesis. Gradient-based models only fitted two generalist species better 

(Serinus serinus and Lophophanes cristatus), while patch-based models only fitted two 

specialist species better (Lullula arborea and Periparus ater). ‘Performance’ results 

detected significant differences between the PC and GC in interactions with habitat 

specialization (coefficient estimate = 2.91, P < 0.05; Table II.5), meaning that PC tends 

to provide slightly better models towards generalist species (slope = 7.52, P < 0.001) 

(Figure II.4). All other models discriminated equally between the degree of habitat 
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specialization (PH: slope = 3.52, P < 0.05; GC: slope = 3.53, P < 0.01; GM: slope = 1.44, P 

= ns). 

 

Table II.5 – Mixed-model results testing the interaction effects of species specialization (SSI) and 
conceptual models on model performance (AICc values). The conceptual model has four levels: 
PH – human-derived patch model, PC – contour-based patch model, GC – continuum model, GM 
– gradient microhabitat model. Significant p-values (ns: P > 0.05; (.): P < 0.1; *: P < 0.05; **: P < 
0.01***: P < 0.001). 

a) Mediterranean oak woodlands 

 Terms Coef. SD df t-value P 

 (Intercept) 12.859 4.461 398 2.883 ** 

 PH -8.848 1.682 398 -5.261 *** 

 PC -13.641 2.263 398 -6.028 *** 

 GM -1.339 1.718 398 -0.780 ns 

 SSI -9.994 6.969 9 -1.434 ns 

 PH:SSI 13.406 2.695 398 4.974 *** 

 PC:SSI 22.152 3.641 398 6.084 *** 

 GM:SSI 1.283 2.838 398 0.452 ns 

       

b) Atlantic pine plantations 

 Terms Coef. SD df t-value P 

 (Intercept) 5.537 2.295 481 2.413 * 

 PH -0.512 0.679 481 -0.754 ns 

 PC -1.359 0.609 481 -2.229 * 

 GM 1.684 1.049 481 1.606 ns 

 SSI 2.948 4.298 9 0.686 ns 

 PH:SSI -0.942 1.296 481 -0.727 ns 

 PC:SSI 2.907 1.161 481 2.504 * 

 GM:SSI -1.219 2.202 481 -0.553 ns 
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Figure II.4 – Linear regressions of AICc values as a function of Species Specialization Index for each conceptual model (PH –human-derived patch model, PC 
– contour-based patch model, GC – continuum model, GM – gradient microhabitat model). Shaded areas show the Standard Error for each model. Lower 

AICc values show higher performance (higher fit to data).  
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II.6. DISCUSSION 

II.6.1. Context-dependency in landscape conceptualization  

In variegated landscapes, our results did not meet our expectations, as continuum 

models did not show coherent cross-species results, nor did they perform significantly 

better than concurrent conceptual models. This is in disagreement with other authors 

who championed this hypothesis (McIntyre and Barrett 1992; Price et al., 2010; Bruton 

et al., 2015). In fact, we found that patch-based models can be as good as gradient-

based alternatives, emphasizing the individualistic response of the species (Price et al., 

2009). For instance, Cyanistes caeruleus distribution models showed higher fit to a 

human-derived patch conceptualization. For this species, the percentage of grassland 

cover was reported as the most important variable showing a negative effect on species 

occurrence (Appendix II.E Table II.E1), meaning that a simple binary classification in 

grassland vs. forest habitats, typical of patch-based models, would be sufficient. 

Conversely, the tree canopy gradient present in the continuum model (Appendix II.E 

Table II.E1) provided better models for Galerida spp. Although these species mainly 

occur in grassland areas, there was some tolerance to increasing canopy cover, showing 

a gradual declining transition along the landscape gradient rather than a sharp change. 

On the other hand, the Sylvia melanocephala distribution model was highly determined 

by variables found only in the gradient-based microhabitat conceptualization (Appendix 

II.E Table II.E1), because it was able to capture highly detailed and ecologically 

meaningful data for this species (e.g., species depends on shrub density for nesting 

purposes; Godinho et al., 2010).  

Regarding Atlantic pine plantations, our results suggest that human-derived 

patch models provided an adequate description of the landscape structure. Although PH 

may not reflect the response of many species (lacks coherence), the results show that it 

performed better than concurrent conceptualizations (higher performance). Human-

derived patch conceptualizations capture more accurately the structure of mosaic 

landscapes because there is a strong contrast between patches, and patches themselves 

are internally homogeneous (Bennett et al., 2006). Species also perceive spatial 

heterogeneity similarly as they are bound by this same structure of habitats (Didham et 

al., 2012). Therefore, although reflecting a human perspective of the landscape, this 

conceptualization appears to be ecologically meaningful. The GM conceptualization 
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showed an overall lower fit, as its performance was significantly lower than other 

approaches. However, for some forest-dependent species (e.g., Certhia brachydactyla 

and Dendrocopos major), the GM performed better, with patch stand characteristics 

(e.g., diameter at breast height, Appendix II.E Table II.E2) being particularly relevant. 

This means that patch-based models may occasionally fail to capture some important 

resources in mosaic landscapes and may not be sufficient to fully describe the ecological 

requirements of a species.  

 

II.6.2. Species traits dependency in landscape conceptualization 

In contrast to what was expected, patch-based models (PH and PC) showed higher 

performance for generalist species in Mediterranean oak woodlands, while gradient-

based models (GM and GC) are better suited to specialist species. In their framework, 

Brudvig et al. (2017) argued that gradient-based models are more suitable for generalist 

species because their plasticity to several habitats would not be properly described by a 

patch-based conceptualization. However, our results show the opposite. Patch-based 

models seem to be good proxies of landscape complexity in variegated landscapes (e.g., 

Herrera et al., 2016), especially for generalist species, because they offer a simplified 

representation of the landscape (Fischer and Lindenmayer, 2006, 2007). Patch-based 

models are more prone to discriminating between habitat and matrix, while gradual 

changes in species occurrence probabilities are expected in gradient-based models. For 

instance, Cyanistes caeruleus occurs in forested areas independent of tree density 

(habitat) but not in grasslands (matrix). Thus, its probability of occurrence is mainly 

dependent on the presence of tree cover (Appendix II.E Table II.E2). Therefore, it is 

possible that gradient-based models capture too much detail of the spatial 

heterogeneity, hampering the discovery of clear species-gradient relationships.  

Following Brudvig et al. (2017), it was also expected that patch-based models 

would provide better results for species exhibiting specific requirements, since suitable 

patches are more easily mapped apart from the inhospitable matrix. However, this 

hypothesis assumes that patches must be defined by considering species-specific 

habitat requirements, and human-derived land-use classifications may not provide the 

most suitable approaches if they are not species-oriented. We found that gradient-

based models provided better outcomes for increasing habitat specialization, probably 
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because they were able to capture higher landscape detail (including within-patch 

heterogeneity) compared to homogeneous patches. Thus, the way in which resources 

are distributed within the patch are also of concern and gradient-based models can 

characterize heterogeneity (e.g., vertical complexity of vegetation, tree density) in a way 

that is not achievable by other conceptual models. Conversely, in Atlantic pine 

plantations, both gradient and patch based models behaved similarly while considering 

species habitat specialization, probably because patches in mosaic landscapes were 

highly homogeneous, likely due to the more uniform management practices (Bennett et 

al., 2006). Consequently, resources were more homogeneously distributed within a 

patch and different conceptual models captured analogous attributes.  

 

II.6.3. Conceptual model selection, caveats and future directions  

Our results highlight the existence of a strong bias while using inappropriate conceptual 

models to describe species distributions, with observed deviations between best and 

alternative statistical models reaching AICc values of 20. Therefore, the selection of a 

landscape conceptual model should be carefully considered. Our results provide two 

major conclusions regarding conceptual model selection: (1) the way in which 

landscapes are characterized by each conceptualization has strong implications for its 

suitability to model species distribution, often resulting in highly individualistic 

responses by species; and (2) intrinsic heterogeneity is a key attribute of the landscapes 

to account for when selecting the best conceptual model.  

 Some studies have also concluded that species responses are highly 

individualistic because conceptual models may lack consistency, depending on 

landscape context (Price et al., 2009). However, checking for consistency in species 

response (as in other studies; e.g., Price et al., 2009; Bruton et al., 2015) depends more 

on the circumstances of a conceptual model to match a species perception, rather than 

truly providing clear cross-species validation on the characterization of landscape 

structure. A species will be better represented by a conceptual model that approximates 

its own perception of the landscape, and the model that better discriminates species-

specific resources will be ecologically more meaningful and better fitted. For instance, 

while using patch-based approaches (e.g., human-derived), species are constrained to 

respond to land-use classes that may not reflect species habitats (Fischer and 
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Lindenmayer, 2006; Franklin and Lindenmayer, 2009). Unless land-use classifications are 

species-oriented, they will probably fail.  

 Our findings based on ‘performance’ show that the suitability of conceptual 

models in explaining species distributions depends on the interaction between 

landscape context and species habitat specialization. As our results build on deviations 

from the best statistical model, we were able to depict the relative suitability of 

alternative conceptual models. Overall, patch-based models provide useful 

conceptualizations in both mosaic (e.g., Atlantic pine plantations) and variegated 

landscapes (e.g., Mediterranean oak woodlands), but mostly for generalist species. 

Whenever patches were difficult to define, gradient-based approaches improved 

specialist species distribution models, likely due to their increased ability to capture 

spatial heterogeneity. Some authors (Price et al., 2009; Stoddard, 2010) have suggested 

the importance of spatial heterogeneity in their studies, but we highlight this feature as 

a key attribute to account for in conceptual model selection, especially by considering 

how each conceptual model deals with spatial heterogeneity. Spatial heterogeneity 

reflects the spatial distribution of resources (e.g., food, nest, shelter), which are by 

definition species-specific. Patch-based models offer a simplification of spatial 

heterogeneity into more general attributes (e.g., non-forest vs. forest cover) by 

classifying internally heterogeneous patches into a unique land-use, which improves 

their performance for generalist species that are not tied to a specific habitat. Gradient-

based models depict spatial heterogeneity more accurately. By avoiding landscape 

compartmentalization, they provide a better description of specific resources as 

environmental gradients. For instance, most conceptual models failed to capture some 

complexity of vegetation strata, and models including the description of microhabitat 

proved to be useful in both landscapes. The importance of habitat quality at the site-

scale has been largely demonstrated (Bergman et al., 2008; Price et al., 2010; Bruton et 

al., 2016), although the adequate specification of a conceptual model that addresses 

this scale efficiently is still lacking (Bennett et al., 2006; Mortelliti et al., 2010b). Site-

scale habitat quality data are rarely used because of (1) the amount of information 

required to thoroughly describe the structural complexity and resource allocation at the 

landscape scale (Bruton et al., 2015), (2) the limitations of the conceptual models (e.g., 

difficulty incorporating patch heterogeneity in patch-based models; Price et al., 2010) 
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or (3) limited availability of remote sensing technology to capture highly detailed habitat 

structures (Bruton et al., 2015), although recent developments in LiDAR and SAR 

technology show promising results (Nagendra et al., 2013).  

To prevent misleading predictions due to statistical artefacts, several authors 

(Lindenmayer et al., 2007; Price et al., 2009; Bruton et al., 2015) proposed the adoption 

of pluralistic approaches to complement weaknesses of different conceptual models. 

Nevertheless, pluralistic approaches need to comply with a set of pre-defined 

assumptions that ease the process of conceptual model selection while guiding species-

specific landscape characterization. Brudvig’s et al. (2017) framework attempted to 

provide such guidance. We took two real-world contrasting landscapes as examples to 

validate the framework regarding landscape context and species habitat specialization. 

However, we found inconsistencies concerning conceptual model selection, as species 

showed contrasting responses according to their habitat specialization. Most studies are 

still based in experimental landscapes designed to test patch-matrix models (see Brudvig 

et al., 2017). These approaches may overlook the importance of gradient-based 

approaches, degrading their applicability to real-world landscapes. Our study overcame 

such limitations by focusing on two real-world landscapes representing systems with 

distinct structures: the variegated (savannah-like) and the mosaic. Our results suggest 

that the framework assumptions outlined by Brudvig et al. (2017) still lack empirical 

validation. It is important to conduct further studies, especially concerning other species 

traits (e.g., vagility, home range size) on real-world landscapes, as species responses 

appear to be highly individualistic.  
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Appendix II.A: Making of landscape models  

 

Table II.A1 – Reclassification classes of land-use mapping for Mediterranean oak woodlands. 
CORINE land cover classes were the starting point for oak woodland landscape reclassification. 
Only the most representative land-uses are shown until a cumulative sum of 95% cover of the 
study area.    

 Reclassification Original classification 

 Dense oak woodlands (2.4.4) Agro-forestry systems (>50% tree cover) 
  (3.1.1) Broad-leaved forest (>50% tree cover) 
  (3.1.3) Mixed forest (>50% tree cover) 
 Grasslands (2.1.1) Non-irrigated arable land 
  (2.1.2) Permanently irrigated land 
  (2.3.1) Pastures 
  (2.4.1) Annual crops associated with permanent crops 
  (2.4.2) Complex cultivation patterns 
  (3.1.1) Broad-leaved forest (<10% tree cover) 
  (3.2.1) Natural grasslands 
  (3.2.2) Moors and heathland 
 Orchards (2.2.1) Vineyards 
  (2.2.3) Olive groves 
 Production forests (3.1.1) Broad-leaved forest (Eucalyptus sp.) 
  (3.1.2) Coniferous forest 
  (3.1.3) Mixed forest dominated by non-native species 
 Sparse oak woodlands (2.4.4) Agro-forestry systems (10-50% tree cover) 
  (3.1.1) Broad-leaved forest (10-50% tree cover) 
  (3.1.3) Mixed forest (10-50% tree cover) 
 Urban (1.1.1) Continuous urban fabric 
  (1.1.2) Discontinuous urban fabric 
  (1.2.2) Road and rail networks and associated land 
 Waterbodies (5.1.2) Water bodies 
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Table II.A2 – Reclassification classes of land-use mapping for Atlantic pine forests. We 
reclassified a detailed land-use map produced by us using aerial photo-interpretation and field 
validation. Only the most representative land-uses are shown until a cumulative sum of 95% 
cover of the study area.   

 Reclassification Original classification 

 Bare Soil Open areas without vegetation 
  Rocky habitats 
  Coastal dunes 
  Quarries 
 Broad-leaved forests Oak forests 
  Riparian forest 
  Poplar (Populus sp.) plantations 
 Farmland Farmland 
  Orchards 
  Grasslands 
 Non-native plantations Acacia sp. Plantations 
  Eucalyptus sp. Plantations 
 Pine forests Maritime pine (Pinus pinaster) forest 
  Stone pine (Pinus pinea) forest 
  Mixed pine forest 
 Shrubland Shrubland 
 Urban Urban area 
  Green urban areas and parks 
  Main roads 
 Young plantations Young Maritime pine (Pinus pinaster) plantations 
  Young Stone pine (Pinus pinea) plantations 
  Young Eucalyptus sp. Plantations 
 Water bodies Water bodies 
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Table II.A3 – List of bird species used to calculate turnover rates from HOF-models for 
Mediterranean oak woodlands and Atlantic pine forests. 

Mediterranean oak woodlands  Atlantic pine forests 

Scientific name (Common name)  Scientific name (Common name) 

Alectoris rufa (Red-legged partridge)  Certhia brachydactyla (Short-toed treecreeper) 

Carduelis cannabina (Common linnet)  Chloris chloris (European greenfinch) 

Carduelis carduelis (European goldfinch)  Dendrocopos major (Great spotted woodpecker) 

Certhia brachydactyla (Short-toed treecreeper)  Erithacus rubecula (Robin) 

Chloris chloris (European greenfinch)  Fringilla coelebs (Common chaffinch) 

Cisticola juncidis (Zitting cisticola)  Garrulus glandarius (Eurasian jay) 

Columba palumbus (Common wood pigeon)  Lophophanes cristatus (European crested tit) 

Coturnix coturnix (Common quail)  Lullula arborea (Woodlark) 

Cuculus canorus (Common cuckoo)  Parus ater (Coal tit) 

Cyanistes caeruleus (Blue tit)  Parus major (Great tit) 

Dendrocopos major (Great spotted woodpecker)  Picus viridis (European green woodpecker) 

Emberiza calandra (Corn bunting)  Regulus ignicapilla (Common firecrest ) 

Fringilla coelebs (Common chaffinch)  Saxicola rubicola (Stonechat) 

Galerida spp. (Crested and Thekla Larks)  Serinus serinus (Serin) 

Hippolais polyglota (Melodious warbler)  Sylvia atricapilla (Eurasian blackcap) 

Lanius meridionalis (Southern grey shrike)  Sylvia melanocephala (Sardinian warbler ) 

Lanius senator (Woodchat shrike)  Sylvia undata (Dartford warbler) 

Lophophanes cristatus (European crested tit)  Troglodytes troglodytes (Wren) 

Lullula arborea (Woodlark)  Turdus merula (Common blackbird) 

Luscinia megarhynchos (Common nightingale)  Turdus viscivorus (Mistle thrush) 

Parus major (Great tit)   
Passer domesticus (House sparrow)   
Passer hispaniolensis (Spanish sparrow)   
Pica pica (Eurasian magpie)   
Saxicola rubicola (Stonechat)   
Serinus serinus (Serin)   
Sitta europaea (Eurasian nuthatch)   
Streptopelia decaocto (Eurasian collared dove)   
Sturnus unicolor (Spotless starling)   
Sylvia melanocephala (Sardinian warbler )   
Tetrax tetrax (Little bustard)   
Turdus merula (Common blackbird)   
Upupa epops (Hoopoe)   
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Figure II.A1 – Turnover rates (total turnover: solid line; positive turnover: dashed line, negative 
turnover: dotted line) calculated from HOF-models approach for bird communities inhabiting 
each different landscape-context study areas. Community turnovers are found at 1% and 20% 
tree canopy cover for oak woodlands variegated landscape where a 50% threshold was added 
following niche clustering assemblages in Salgueiro et al. (2008a). At pine forests mosaic 
landscape we considered community turnovers at 15%, 50% and 70% tree canopy cover. 
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Appendix II.B: Species Specialization Index 

 

Table II.B1 – Mean and standard deviation values of the variables used in CLARA classification method for each resulting cluster for Mediterranean oak 
woodlands landscape. 

 Cluster 

Variables 1 2 3 4 5 6 

Number of trees 16.47±11.34 54.17±30.23 65.35±26.32 18.00±18.04 130.77±29.43 235.13±30.50 

Number of young trees 7.94±10.32 2.28±4.69 15.50±16.45 5.71±7.85 7.95±7.90 24.93±39.13 

Mean shrub height 133.1±37.53 3.29±10.04 90.25±27.85 263.93±33.89 49.12±22.67 59.52±21.44 

Shrub height covariance 3.23±1.06 0.31±1.07 2.50±1.21 3.40±1.14 2.15±1.08 1.47±0.74 

Percentage canopy cover 4.43±5.09 11.54±8.54 21.36±11.19 3.27±4.09 30.19±14.25 37.75±13.15 

Dense forest cover 22.63±15.62 6.70±13.51 29.79±23.93 10.85±18.21 64.45±24.44 75.73±22.52 

Grassland cover 54.26±20.28 35.24±19.36 18.97±11.25 68.44±17.98 12.72±10.5 5.81±5.37 

Sparse forest cover 11.98±10.08 54.83±23.54 47.13±22.90 18.48±13.09 20.22±26.09 12.95±10.64 

Shannon's diversity index 0.40±0.32 0.34±0.27 0.43±0.33 0.51±0.35 0.19±0.23 0.12±0.20 
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Table II.B2 – Mean and standard deviation values of the variables used in CLARA classification 
method for each resulting cluster for Atlantic pine forests landscape. 

 Cluster 

Variables 1 2 3 

Number of trees 4.85±10.61 116.23±50.41 46.77±33.01 

Mean diameter at breast height 8.26±16.07 31.11±10.14 95.69±21.85 

Mean shrub height 31.68±20.22 28.73±24.56 24.59±22.81 

Shrub height covariance 0.53±0.18 0.61±0.25 0.71±0.28 

Percentage canopy cover 57.45±19.48 72.02±18.16 78.97±14.9 

Non-native plantations 5.35±10.51 5.98±9.75 3.52±7.63 

Shrubland 35.2±25.33 6.17±8.07 7.64±10.58 

Pine forest 35.92±19.49 25.99±20.65 72.22±22.97 

Young plantations 20.14±16.48 54.75±23.62 9.71±13.78 

Shannon's diversity index 1.01±0.3 0.92±0.39 0.69±0.47 
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Table II.B3 – Species mean abundances (and respective standard deviation) in each of the habitat clusters identified in Mediterranean oak woodlands 
landscape. Species are ranked by Species Specialization Index (SSI). 

 Cluster  
Species 1 2 3 4 5 6 SSI 

Cyanistes caeruleus (Blue tit) 1.18±0.88 2.06±1.43 1.73±1.04 0.71±0.76 2.09±1.06 2.07±1.10 0.35 

Sylvia melanocephala  (Sardinian warbler) 0.53±0.72 0.33±0.69 0.73±0.87 1.14±0.69 0.32±0.57 0.47±0.64 0.53 

Chloris chloris (Greenfinch) 0.24±0.44 0.39±0.61 0.35±0.63 0.00±0.00 0.32±0.72 0.27±0.46 0.53 

Fringilla coelebs (Common chaffinch) 1.41±1.62 2.33±1.81 2.15±1.35 0.14±0.38 3.23±0.87 3.33±1.29 0.57 

Carduelis carduelis (Goldfinch) 0.76±0.97 0.17±0.51 0.19±0.49 0.86±1.46 0.77±1.11 0.47±0.83 0.57 

Turdus merula (Common blackbird) 0.29±0.47 0.11±0.47 0.65±0.63 0.29±0.49 0.36±0.66 0.73±0.59 0.59 

Certhia brachydactyla (Short-toed treecreeper) 0.35±0.61 1.28±1.07 1.54±0.99 0.14±0.38 2.14±1.04 1.93±0.88 0.67 

Luscinia megarhyncos (Common nightingale) 0.12±0.49 0.00±0.00 0.38±0.57 0.57±0.53 0.36±0.58 0.27±0.46 0.72 

Parus major (Great tit) 0.12±0.33 0.33±0.59 0.54±0.65 0.00±0.00 0.59±0.67 0.67±0.82 0.72 

Galerida spp (Crested and Thekla larks) 1.41±1.28 1.56±1.58 0.54±0.65 1.43±1.13 0.18±0.50 0.07±0.26 0.79 

Sitta europaea (Eurasian nuthatch) 0.24±0.44 0.50±0.71 0.46±0.81 0.00±0.00 1.14±0.94 1.40±1.18 0.86 
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Table II.B4 – Species mean abundances (and respective standard deviation) in each of the 
habitat clusters identified in Atlantic pine forests landscape. Species are ranked by Species 
Specialization Index (SSI). 

  Cluster   

Species 1 2 3 SSI 

Parus major (Great tit) 0.68±0.75 0.84±0.69 1.05±0.90 0.22 

Serinus serinus (Serin) 0.60±0.91 0.37±0.50 0.39±0.69 0.28 

Lophophanes cristatus  (Crested tit) 0.52±0.65 0.47±0.70 0.80±0.77 0.30 

Chloris chloris (Greenfinch) 0.72±1.17 0.68±0.95 0.38±0.55 0.32 

Erithacus rubecula (Robin) 0.60±0.91 1.00±1.25 0.54±0.92 0.35 

Fringilla coelebs (Common chaffinch) 1.04±1.06 1.58±1.22 2.21±1.36 0.36 

Certhia brachydactyla (Short-toed treecreeper) 0.64±0.95 0.74±1.19 1.41±1.19 0.45 

Turdus merula (Common blackbird) 0.68±0.95 0.26±0.45 0.39±0.67 0.48 

Lullula arborea (Woodlark) 0.40±0.65 0.11±0.32 0.30±0.53 0.56 

Periparus ater (Coal tit) 0.00±0.00 0.63±0.96 0.62±0.97 0.87 

Dendrocopos major (Great spotted woodpecker) 0.08±0.28 0.05±0.23 0.36±0.61 1.04 
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Appendix II.C: Baseline comparison of variables across conceptual models using Spearman correlation ranks 

 

Table II.C1 – Spearman correlations of composition variables between landscape conceptual models (grey areas) in Mediterranean oak woodlands (PH –
human-derived patch model, PC – contour-based patch model, GC – continuum model, GM – site-scale model). Only correlations with |r|>0.3 are shown. 

  GM   GC   PH       PC     

    
Numb.  
trees 

 Canopy 
cover 

 Grassland 
cover 

Sparse  
forest 

Dense  
forest 

 Grassland 
cover 

Sparse  
forest 

Medium  
 forest 

GC Canopy cover 0.803           

PH Grassland cover -0.651  -0.614         

 Sparse forest     -0.377       

 Dense forest 0.692  0.600  -0.416 -0.627      

PC Grassland cover -0.715  -0.767  0.802  -0.573     

 Sparse forest -0.349  -0.517   0.408 -0.337     

 Medium forest 0.670  0.830  -0.486  0.579  -0.640 -0.504  

  Dense forest 0.435  0.646      -0.302 -0.545 0.303 
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Table II.C2 – Spearman correlations of configuration variables between landscape conceptual models (grey areas) in Mediterranean oak woodlands (PH –
human-derived patch model, PC – contour-based patch model, GC – continuum model, GM – site-scale model). Only correlations with |r|>0.3 are shown.  

  GC       PH         PC   

    
Numb. canopy 
patches 

Clumpiness 
Aggregation 
index 

 Shannon's 
diversity 

Numb. 
patches 

High contr. 
edge 

Low contr. 
edge 

 
Shannon's 
diversity 

Numb. 
patches 

GC Clumpiness            

 Aggregation index  0.701          

PH Shannon's diversity  0.430          

 Numb. patches  0.451   0.793       

 High contr. edge  0.318   0.444 0.466      

 Low contr. edge     0.719 0.601      

PC Shannon's diversity            

 Numb. patches     0.340 0.477 0.340   0.591  

  Total edge          0.818 0.699 
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Table II.C3 – Spearman correlations of composition variables between landscape conceptual models (grey areas) in Atlantic pine forest (PH –human-derived 
patch model, PC – contour-based patch model, GC – continuum model, GM – site-scale model). Only correlations with |r|>0.3 are shown.  

  GM   GC   PH         PC     

    
Numb. 
trees 

 Canopy 
cover 

 Pine 
forest 

Young 
plantations 

Shrubland 
Non-native 
plantations 

 Low  
cover  

Medium  
cover  

High  
cover  

GC Canopy cover             

PH Pine forest   0.656          

 Young plantations 0.325    -0.709        

 Shrubland -0.410  -0.676  -0.439        

 Non-native plantations     -0.304        

PC Low forest cover    -0.788  -0.429  0.634      

 Medium forest cover    -0.808  -0.597  0.472 0.337  0.324   

 High forest cover           -0.343   

  Very high forest cover    0.772  0.683  -0.429 0.358  -0.391 -0.722 -0.457 
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Table II.C4 – Spearman correlations of configuration variables between landscape conceptual models (grey areas) in Atlantic pine forest (PH –human-derived 
patch model, PC – contour-based patch model, GC – continuum model, GM – site-scale model). Only correlations with |r|>0.3 are shown.  

  GC       PH         PC   

    
Numb. Canopy 
 patches 

Clumpiness 
Aggregation 
index 

 Shannon's 
diversity 

Numb. 
patches 

High contr. 
edge 

Low contr. 
edge 

 Shannon's 
diversity 

Numb. 
patches 

GC Clumpiness            

 Aggregation index -0.890           

PH Shannon's divers 0.350 0.616 -0.427         

 Numb. patches  0.468   0.798       

 High contr. edge  0.605   0.605 0.573      

 Low contr. edge   -0.358  0.726 0.736      

PC Shannon's divers.  0.821   0.674 0.407 0.576     

 Numb. patches  0.557   0.551 0.567 0.468 0.380  0.570  

  Total edge  0.767   0.667 0.476 0.603 0.337  0.908 0.702 
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Appendix II.D: Sensitivity analysis of grain size and minimum patch size 

 

Table II.D1 – Sensitivity analysis regarding the grain size (1x1 pixel size – reference level –, 5x5 
and 10x10 for Gradient continuum model) and minimum patch size (100m2 minimum patch size 
– reference level –, 1000m2 and 10000m2 for human-derived and contour-based patch models) 
of landscape data for Mediterranean Oak Woodlands. Significant p-values (ns: P > 0.05; ***: P < 
0.001). 

a) Gradient Continuum model     

 Terms Coef. SD df t-value P 

 (Intercept) 6.540 0.759 373 8.620 *** 

 5x5 pixel -0.086 0.230 373 -0.375 ns 

 10x10 pixel 0.294 0.231 373 1.270 ns 

 
 

     
b) Human-derived patch model   

 Terms Coef. SD df t-value P 

 (Intercept) 5.572 1.531 328 3.640 *** 

 mps 1000m2 0.254 0.204 328 1.240 ns 

 mps 10000m2 0.372 0.203 328 1.834 ns 

 
 

     
c) Contour-based patch model    

 Terms Coef. SD df t-value P 

 (Intercept) 6.748 1.645 373 4.101 *** 

 mps 1000m2 0.865 0.216 373 3.994 *** 

 mps 10000m2 0.676 0.219 373 3.093 ** 
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Table II.D2 – Sensitivity analysis regarding the grain size (1x1 pixel size – reference level –, 5x5 
and 10x10 for Gradient continuum model) and minimum patch size (100m2 minimum patch size 
– reference level –, 1000m2 and 10000m2 for human-derived and contour-based patch models) 
of landscape data for Atlantic Pine Forest. Significant p-values (ns: P > 0.05; **: P < 0.01; ***: P 
< 0.001). 

a) Gradient continuum model    

 Terms Coef. SD df t-value P 

 (Intercept) 6.409 0.754 375 8.501 *** 

 5x5 pixel 0.275 0.220 375 1.248 ns 

 10x10 pixel 0.109 0.220 375 0.494 ns 

 
 

     
b) Human-derived patch model   

 Terms Coef. SD df t-value P 

 (Intercept) 5.344 1.432 330 3.731 *** 

 mps 1000m2 0.091 0.207 330 0.440 ns 

 mps 10000m2 0.325 0.207 330 1.569 ns 

 
 

     
c) Contour-based patch model    

 Terms Coef. SD df t-value P 

 (Intercept) 6.875 1.664 377 4.130 *** 

 mps 1000m2 0.776 0.215 377 3.606 *** 

 mps 10000m2 0.693 0.218 377 3.178 ** 
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Figure II.1D – Boxplots showing the distribution of delta AICc values for each grain size (1x1 pixel 
size, 5x5 and 10x10 for Gradient continuum model – GC) and minimum patch size (100m2 
minimum patch size, 1000m2 and 10000m2 for human-derived – PH –, and contour-based patch 
models – PC) of landscape data for Mediterranean Oak Woodlands and Atlantic Pine Forest. 
Boxplots sharing the same letter (‘a’ or ‘b’) are not significantly different at P=0.05. 
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Appendix II.E: GLM results 

 

Table II.E1 – Summary of variable selection of generalized linear models for each species at 
Mediterranean oak woodlands variegated landscape. For each variable is shown the coefficient 
estimate and corresponding 95% confidence interval, relative variable importance (RVI 
corresponding to the sum of Akaike weights of statistical models where the variable was 
present) in partial (95% confidence interval for statistical models within each landscape model) 
and full models (95% confidence interval with all landscape conceptual models: PH – human-
derived patch model, PC – patch-based contour model, GC – continuum model, GM – gradient 
microhabitat model) and respective p-value (P; (.): P < 0.1; *: P < 0.05; **: P < 0.01; ***: P < 
0.001).  

 Model     RVI  

Species type Variables Scale Estimate CI95% partial full P 

Carduelis PH (Intercept)  -0.251 [-2.12; 1.62]   
 

   carduelis  Sparse cover forest 1000 -0.030 [-0.06; 0.00] 0.96 0.54 * 

(Goldfinch)  Numb. patches 1000 -0.057 [-0.23; 0.03] 0.58 0.34  
  Grassland cover 500 0.007 [0.00; 0.03] 0.50 0.29  
  Shannon's diversity 1000 0.015 [-2.46; 2.57] 0.29 0.17  
 PC (Intercept)  0.305 [-2.81; 3.42]   

 
  Numb. patches 500 -2.230 [-6.85; 0.33] 0.68 0.21  
  Total edge 200 0.000 [0.00; 0.00] 0.62 0.19  
  Grassland cover 1000 0.018 [0.00; 0.07] 0.58 0.19  
  Dense cover forest 1000 0.011 [-0.01; 0.06] 0.42 0.14  
 GC (Intercept)  -3.659 [-23.25; 15.93]   

 
  Clumpiness 100 1.177 [-4.84; 12.10] 0.32 0.00  
  Aggregation index 100 0.544 [-19.52; 23.67] 0.26 0.00  
  Canopy cover 1000 0.005 [-0.03; 0.07] 0.28 0.00  
  Numb. canopy patches 200 0.000 [0.00; 0.01] 0.22 0.00  
 GM (Intercept)  -1.843 [-3.06; -0.63]   

** 
  Shrub height cov. - 0.057 [-0.19; 0.55] 0.32 0.01  
  Mean shrub height - 0.025 [-0.08; 0.22] 0.35 0.01  
  Numb. young trees - -0.653 [-5.75; 1.94] 0.34 0.00  
  Numb. trees - 0.000 [-0.01; 0.01] 0.23 0.00  
Chloris PH (Intercept)  -1.281 [-2.39; -0.17]   

* 

  chloris  Grassland cover 500 -0.018 [-0.07; 0.01] 0.63 0.21  
(Greenfinch)  Hard edge 1000 -0.137 [-0.62; 0.09] 0.52 0.17  
  Shannon's diversity 500 0.512 [-0.85; 3.45] 0.39 0.14  
  Soft edge 100 -0.005 [-0.1; 0.06] 0.25 0.09  
 PC (Intercept)  -1.099 [-3.85; 1.65]   

 
  Grassland cover 500 -0.017 [-0.09; 0.02] 0.52 0.12  
  Total edge 1000 0.000 [0.00; 0.00] 0.33 0.07  
  Medium cover forest 100 0.073 [-0.81; 1.39] 0.25 0.06  
  Numb. patches 1000 -0.133 [-4.98; 3.89] 0.24 0.06  
 GC (Intercept)  1.122 [-7.01; 9.26]   
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 Model     RVI  

Species type Variables Scale Estimate CI95% partial full P 

C. chloris  Canopy cover 200 0.017 [-0.01; 0.07] 0.56 0.15  
(cont.)  Aggregation index 1000 -0.037 [-0.25; 0.07] 0.42 0.12  
  Clumpiness 100 -0.355 [-11.22; 9.2] 0.35 0.09  
  Numb. canopy patches 100 0.000 [-0.02; 0.01] 0.21 0.06  
 GM (Intercept)  -1.527 [-2.42; -0.63]   

*** 
  Shrub height cov. - -0.067 [-0.63; 0.23] 0.33 0.04  
  Mean shrub height - 0.003 [-0.13; 0.16] 0.25 0.02  
  Shrub density - 0.009 [-0.15; 0.23] 0.23 0.02  
  Numb. young trees - -0.046 [-1.16; 0.79] 0.25 0.02  
Certhia PH (Intercept)  0.683 [0.43; 0.94]   

*** 

  brachydactyla  Grassland cover 500 -0.019 [-0.03; -0.01] 1.00 0.14 ** 

(Short-toed   Sparse cover forest 200 -0.108 [-0.64; 0.14] 0.44 0.06  
   treecreeper)  Hard edge 200 0.038 [-0.07; 0.30] 0.34 0.06  
  Soft edge 200 -0.001 [-0.02; 0.01] 0.19 0.04  
 PC (Intercept)  0.618 [0.01; 1.23]   

* 
  Total edge 500 0.000 [0.00; 0.00] 0.79 0.01  
  Grassland cover 500 -0.012 [-0.03; 0.00] 0.77 0.01  
  Medium cover forest 200 0.302 [-0.04; 1.00] 0.63 0.01  
  Dense cover forest 1000 0.005 [0.00; 0.02] 0.43 0.01  
 GC (Intercept)  1.930 [-1.01; 4.87]   

 
  Canopy cover 500 0.025 [0.01; 0.04] 1.00 0.09 ** 
  Aggregation index 200 -0.026 [-0.08; 0.00] 0.69 0.07  
  Numb. canopy patches 200 0.001 [0.00; 0.00] 0.54 0.05  
  Clumpiness 100 -0.294 [-5.09; 3.45] 0.36 0.03  
 GM (Intercept)  0.157 [-0.32; 0.63]   

 
  Mean shrub height - -0.006 [-0.01; 0.00] 1.00 0.67 * 
  Shrub density - 0.105 [0.03; 0.20] 0.89 0.61 (.) 
  Numb. trees - 0.001 [0.00; 0.01] 0.53 0.39  
  Shrub height cov. - 0.039 [-0.06; 0.25] 0.41 0.28  
Cyanistes PH (Intercept)  0.705 [0.48; 0.93]   

*** 

  caeruleus  Grassland cover 200 -0.881 [-1.69; -0.12] 0.97 0.68 * 

(Blue tit)  Soft edge 200 -0.005 [-0.03; 0.00] 0.48 0.37  
  Shannon's diversity 100 -0.191 [-1.09; 0.26] 0.46 0.34  
  Sparse cover forest 100 0.014 [-0.30; 0.40] 0.26 0.20  
 PC (Intercept)  0.619 [0.18; 1.05]   

** 
  Grassland cover 200 -0.010 [-0.03; 0.00] 0.78 0.10  
  Sparse cover forest 200 -0.108 [-0.65; 0.15] 0.43 0.05  
  Medium cover forest 100 0.097 [-0.16; 0.62] 0.43 0.05  
  Dense cover forest 500 -0.003 [-0.02; 0.01] 0.35 0.05  
 GC (Intercept)  2.284 [-0.57; 5.14]   

 
  Aggregation index 500 -0.022 [-0.08; 0.01] 0.64 0.04  
  Canopy cover 500 0.006 [-0.01; 0.03] 0.46 0.02  
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 Model     RVI  

Species type Variables Scale Estimate CI95% partial full P 

C caeruleus  Clumpiness 100 -0.243 [-4.50; 3.34] 0.42 0.02  
(cont.)  Numb. canopy patches 100 0.001 [0.00; 0.01] 0.32 0.01  
 GM (Intercept)  0.573 [0.16; 0.98]   

** 
  Mean shrub height - -0.016 [-0.09; 0.02] 0.46 0.01  
  Numb. trees - 0.001 [0.00; 0.00] 0.42 0.01  
  Shrub density - 0.015 [-0.05; 0.13] 0.36 0.01  
  Shrub height cov. - -0.022 [-0.21; 0.07] 0.32 0.01  
Fringilla  PH (Intercept)  1.166 [0.88; 1.45]   

*** 

  coelebs  Grassland cover 1000 0.000 [0.00; 0.00] 1.00 0.63 *** 

(Common   Soft edge 100 -0.008 [-0.04; 0.01] 0.47 0.31  
   chaffinch)  Sparse cover forest 500 -0.002 [-0.01; 0.00] 0.46 0.30  
  Hard edge 1000 0.003 [-0.11; 0.13] 0.23 0.17  
 PC (Intercept)  0.978 [0.59; 1.37]   

*** 
  Grassland cover 1000 -0.001 [0.00; 0.00] 1.00 0.27 *** 
  Medium cover forest 200 0.125 [-0.12; 0.65] 0.48 0.13  
  Sparse cover forest 100 -0.041 [-0.45; 0.15] 0.28 0.09  
  Shannon's diversity 500 -0.055 [-0.87; 0.39] 0.23 0.08  
 GC (Intercept)  0.531 [-1.79; 2.86]   

 
  Numb. canopy patches 200 0.002 [0.00; 0.00] 1.00 0.05 *** 
  Canopy cover 100 0.019 [0.01; 0.03] 1.00 0.05 *** 
  Aggregation index 1000 -0.007 [-0.06; 0.01] 0.34 0.02  
  Clumpiness 100 -0.095 [-2.5; 1.46] 0.18 0.00  
 GM (Intercept)  0.639 [0.26; 1.01]   

*** 
  Numb. trees - 0.004 [0.00; 0.01] 1.00 0.01 *** 
  Mean shrub height - -0.003 [-0.01; 0.00] 0.91 0.01 (.) 
  Numb. young trees - -0.043 [-0.42; 0.16] 0.33 0.00  
  Shrub density - 0.002 [-0.07; 0.09] 0.23 0.00  
Galerida spp. PH (Intercept)  -2.487 [-5.13; 0.15]   

(.) 

(Crested and   Shannon's diversity 200 1.281 [0.25; 2.60] 0.90 0.06 (.) 

  Thekla larks)  Grassland cover 1000 0.029 [0.00; 0.06] 0.89 0.06 (.) 
  Sparse cover forest 1000 0.016 [0.00; 0.04] 0.67 0.05  
  Dense cover forest 200 -0.743 [-3.08; 0.30] 0.54 0.03  
 PC (Intercept)  -0.946 [-2.63; 0.74]   

 
  Medium cover forest 200 -1.098 [-1.87; -0.33] 1.00 0.00 ** 
  Sparse cover forest 500 0.013 [0.00; 0.03] 0.77 0.00  
  Dense cover forest 500 -0.037 [-0.17; 0.05] 0.62 0.00  
  Shannon's diversity 200 0.648 [-0.24; 2.52] 0.57 0.00  
 GC (Intercept)  -6.755 [-11.46; -2.05]   

** 
  Canopy cover 100 -0.102 [-0.14; -0.06] 1.00 0.73 *** 
  Aggregation index 500 0.111 [0.01; 0.21] 1.00 0.69 * 
  Clumpiness 100 -1.529 [-12.78; 4.07] 0.35 0.29  
  Numb. canopy patches 100 0.000 [-0.01; 0.01] 0.25 0.18  
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 Model     RVI  

Species type Variables Scale Estimate CI95% partial full P 

Galerida spp. GM (Intercept)  1.102 [0.38; 1.83]   
** 

(cont.)  Numb. trees - -0.018 [-0.03; -0.01] 1.00 0.16 *** 
  Shrub density - -0.140 [-0.39; 0.00] 0.73 0.11  
  Mean shrub height - -0.009 [-0.14; 0.08] 0.28 0.04  
  Numb. young trees - -0.020 [-0.93; 0.72] 0.20 0.03  
Luscinia PH (Intercept)  -1.545 [-2.72; -0.38]   

** 

   megarhyncos  Hard edge 100 -6.168 [-2557; 2538] 0.65 0.01  
(Common   Grassland cover 500 -0.021 [-0.08; 0.01] 0.64 0.01  
   nightingale)  Numb. patches 100 0.135 [-0.70; 1.65] 0.28 0.00  
  Shannon's diversity 500 -0.064 [-2.21; 1.71] 0.25 0.00  
 PC (Intercept)  -18.754 [-4371; 4333]   

 
  Medium cover forest 200 17.485 [-4394; 4430] 0.97 0.72  
  Grassland cover 500 -0.016 [-0.17; 0.08] 0.35 0.29  
  Dense cover forest 500 0.005 [-0.01; 0.04] 0.35 0.28  
  Sparse cover forest 500 -0.003 [-0.03; 0.02] 0.32 0.25  
 GC (Intercept)  -2.237 [-7.07; 2.60]   

 
  Canopy cover 500 0.044 [0.01; 0.09] 0.88 0.07 (.) 
  Clumpiness 100 -1.126 [-12.24; 5.36] 0.33 0.02  
  Aggregation index 100 0.003 [-0.12; 0.14] 0.28 0.02  
  Numb. canopy patches 1000 0.000 [0.00; 0.00] 0.21 0.01  
 GM (Intercept)  -3.083 [-4.58; -1.59]   

*** 
  Shrub density - 0.178 [0.00; 0.49] 0.73 0.06  
  Numb. young trees - 0.461 [-0.33; 2.10] 0.52 0.04  
  Numb. trees - 0.000 [-0.01; 0.01] 0.26 0.02  
  Mean shrub height - 0.008 [-0.15; 0.22] 0.25 0.02  
Parus PH (Intercept)  -1.009 [-2.42; 0.40]   

 
   major  Grassland cover 1000 -0.043 [-0.07; -0.01] 1.00 0.10 ** 

(Great tit)  Hard edge 1000 0.243 [-0.04; 0.68] 0.76 0.08  
  Sparse cover forest 200 0.373 [-0.14; 1.47] 0.56 0.06  
  Numb. patches 200 -0.010 [-0.43; 0.33] 0.19 0.02  
 PC (Intercept)  -3.239 [-7.12; 0.64]   

 
  Medium cover forest 1000 0.019 [0.00; 0.04] 0.84 0.51  
  Grassland cover 1000 -0.028 [-0.10; 0.01] 0.63 0.44  
  Numb. patches 1000 1.255 [-0.66; 5.03] 0.57 0.35  
  Dense cover forest 1000 0.006 [-0.01; 0.04] 0.38 0.25  
 GC (Intercept)  -2.336 [-5.22; 0.54]   

 
  Canopy cover 1000 0.054 [0.02; 0.08] 1.00 0.17 *** 
  Numb. canopy patches 100 0.002 [-0.01; 0.02] 0.36 0.06  
  Clumpiness 100 0.053 [-4.41; 4.93] 0.20 0.04  
  Aggregation index 100 0.000 [-0.06; 0.06] 0.20 0.04  
 GM (Intercept)  -1.729 [-2.56; -0.9]   

*** 
  Numb. trees - 0.007 [0.00; 0.01] 1.00 0.01 ** 
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 Model     RVI  

Species type Variables Scale Estimate CI95% partial full P 

P. major  Numb. young trees - -0.062 [-0.94; 0.51] 0.29 0.00  
(cont.)  Shrub density - 0.014 [-0.13; 0.23] 0.28 0.00  
  Mean shrub height - -0.003 [-0.12; 0.10] 0.26 0.00  
Sitta PH (Intercept)  0.193 [-0.20; 0.59]   

 
   europaea  Grassland cover 500 -0.020 [-0.04; 0.00] 0.92 0.09 (.) 

(Eurasian   Sparse cover forest 200 -0.439 [-1.23; 0.02] 0.73 0.07  
   nuthatch)  Shannon's diversity 200 -0.586 [-2.39; 0.29] 0.56 0.05  
  Soft edge 100 -0.011 [-0.09; 0.03] 0.39 0.04  
 PC (Intercept)  -0.586 [-1.38; 0.21]   

 
  Grassland cover 200 -0.029 [-0.08; 0.01] 0.82 0.00  
  Dense cover forest 200 0.008 [0.00; 0.02] 0.71 0.00  
  Medium cover forest 100 0.303 [-0.15; 1.22] 0.57 0.00  
  Sparse cover forest 200 -0.018 [-0.81; 0.68] 0.29 0.00  
 GC (Intercept)  0.870 [-3.77; 5.51]   

 
  Numb. canopy patches 100 0.012 [0.00; 0.02] 1.00 0.34 ** 
  Canopy cover 500 0.025 [0.00; 0.06] 0.79 0.26  
  Clumpiness 100 -3.448 [-10.02; 0.24] 0.70 0.24  
  Aggregation index 500 -0.003 [-0.13; 0.12] 0.45 0.15  
 GM (Intercept)  -1.399 [-2.31; -0.49]   

** 
  Numb. trees - 0.008 [0.00; 0.01] 1.00 0.53 *** 
  Shrub height cov. - 0.171 [0.01; 0.47] 0.71 0.37  
  Mean shrub height - -0.004 [-0.01; 0.00] 0.67 0.34  
  Shrub density - -0.002 [-0.18; 0.16] 0.21 0.15  
Sylvia PH (Intercept)  -1.272 [-1.96; -0.59]   

*** 

   melanocephala  Soft edge 100 0.015 [-0.02; 0.09] 0.42 0.00  
(Sardinian   Shannon's diversity 200 0.250 [-0.87; 2.30] 0.35 0.00  
  warbler)  Grassland cover 500 -0.002 [-0.03; 0.02] 0.29 0.00  
  Hard edge 1000 0.013 [-0.22; 0.33] 0.23 0.00  
 PC (Intercept)  -1.428 [-2.58; -0.28]   

* 
  Dense cover forest 1000 0.033 [0.01; 0.06] 0.97 0.00 ** 
  Medium cover forest 1000 -0.002 [-0.03; 0.01] 0.27 0.00  
  Shannon's diversity 100 0.129 [-1.04; 2.01] 0.27 0.00  
  Numb. patches 100 0.114 [-4.07; 5.03] 0.24 0.00  
 GC (Intercept)  -3.168 [-8.40; 2.07]   

 
  Canopy cover 1000 0.039 [0.00; 0.09] 0.86 0.00  
  Clumpiness 100 3.983 [-1.55; 14.6] 0.61 0.00  
  Numb. canopy patches 200 -0.002 [-0.01; 0.00] 0.60 0.00  
  Aggregation index 100 -0.017 [-0.18; 0.09] 0.40 0.00  
 GM (Intercept)  -2.134 [-3.4; -0.87]   

*** 
  Shrub density - 0.310 [0.08; 0.57] 0.95 0.88 * 
  Numb. trees - -0.008 [-0.02; 0.00] 0.94 0.87 * 
  Numb. young trees - 0.467 [-0.19; 1.82] 0.57 0.56  
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 Model     RVI  

Species type Variables Scale Estimate CI95% partial full P 

  Shrub height cov. - -0.036 [-0.56; 0.28] 0.26 0.28  
Turdus PH (Intercept)  -0.361 [-0.96; 0.23]   

 
  merula  Grassland cover 1000 -0.047 [-0.08; -0.01] 1.00 0.07 ** 

(Common   Soft edge 200 -0.002 [-0.04; 0.03] 0.27 0.01  
   blackbird)  Sparse cover forest 1000 0.000 [-0.01; 0.02] 0.20 0.01  
  Shannon's diversity 200 0.030 [-1.47; 1.76] 0.21 0.01  
 PC (Intercept)  -0.124 [-1.35; 1.10]   

 
  Grassland cover 1000 -0.107 [-0.19; -0.03] 1.00 0.81 ** 
  Medium cover forest 1000 -0.014 [-0.04; 0.00] 0.71 0.54  
  Total edge 200 0.000 [0.00; 0.00] 0.39 0.34  
  Dense cover forest 100 0.003 [-0.01; 0.02] 0.35 0.31  
 GC (Intercept)  -1.770 [-5.77; 2.23]   

 
  Numb. canopy patches 500 0.000 [0.00; 0.00] 0.57 0.00  
  Canopy cover 500 0.014 [0.00; 0.06] 0.52 0.00  
  Clumpiness 100 -1.121 [-9.06; 2.93] 0.37 0.00  
  Aggregation index 100 0.010 [-0.06; 0.13] 0.29 0.00  
 GM (Intercept)  -3.201 [-5.12; -1.28]   

** 
  Mean shrub height - 0.150 [0.02; 0.32] 0.87 0.07  
  Numb. trees - 0.004 [0.00; 0.01] 0.68 0.05  
  Shrub density - 0.088 [-0.07; 0.40] 0.53 0.03  
  Shrub height cov. - -0.006 [-0.54; 0.50] 0.27 0.01  
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Table II.E2 – Summary of variable selection of generalized linear models for each species at 
Atlantic pine plantations mosaic landscape. For each variable is shown the coefficient estimate 
and corresponding 95% confidence interval, relative variable importance (RVI corresponding to 
the sum of Akaike weights of statistical models where the variable was present) in partial (95% 
confidence interval for statistical models within each landscape model) and full models (95% 
confidence interval with all landscape conceptual models: PH – human-derived patch model, PC 
– patch-based contour model, GC – continuum model, GM – gradient microhabitat model) and 
respective p-value (P; (.): P < 0.1; *: P < 0.05; **: P < 0.01; ***: P < 0.001).  

 Model    RVI  

Species type Variables Scale Estimate CI95% partial full P 

Certhia PH (Intercept) - -0.116 [-1.62; 1.38]    

   brachydactyla  Non-native plantations 200 -0.540 [-1.79; 0.18] 0.67 0.00  

(Short-toed   Pine forest 200 0.006 [0.00; 0.02] 0.58 0.00  

   treecreeper)  Young plantations 500 -0.010 [-0.04; 0.00] 0.58 0.00  

  Shrubland 200 -0.499 [-1.94; 0.20] 0.57 0.00  

 PC (Intercept) - -0.890 [-2.27; 0.49]    

  Medium forest cover  100 -0.021 [-0.03; -0.01] 1.00 0.00 *** 
  Shannon's diversity 500 0.825 [-0.07; 2.43] 0.70 0.00  

  Numb. patches 200 0.030 [-0.07; 0.24] 0.36 0.00  

  Total edge 500 0.000 [0.00; 0.00] 0.27 0.00  

 GC (Intercept) - -19.150 [-30.47; -7.83]   *** 
  Aggregation index 100 1.850 [0.68; 3.02] 1.00 0.00 ** 
  Clumpiness 500 1.953 [-0.36; 6.54] 0.63 0.00  

  Canopy cover 1000 -0.005 [-0.04; 0.01] 0.39 0.00  

  Numb. canopy patches 100 0.002 [-0.06; 0.07] 0.19 0.00  

 GM (Intercept) - -1.041 [-1.94; -0.14]   * 
  Diameter at breast height - 0.016 [0.01; 0.02] 1.00 0.97 *** 
  Shrub density - -0.006 [-0.02; 0.00] 0.63 0.61  

  Numb. trees - 0.000 [-0.01; 0.01] 0.21 0.25  

  Shrub height cov - 0.004 [-0.82; 0.87] 0.20 0.24  

Chloris PH (Intercept) - -1.870 [-2.69; -1.05]   *** 

  chloris  Non-native plantations 200 -2.272 [-4.38; -0.17] 1.00 0.59 * 

(Greenfinch)  Shannon's diversity 100 1.499 [0.39; 3.00] 0.88 0.54 (.) 
  Numb. patches 100 0.038 [-0.45; 0.67] 0.34 0.20  

  Soft edge 100 0.000 [0.00; 0.00] 0.26 0.16  

 PC (Intercept) - -2.863 [-4.19; -1.54]   *** 
  Numb. patches 100 0.447 [0.18; 0.72] 1.00 0.31 ** 
  High forest cover  200 0.002 [-0.01; 0.03] 0.31 0.10  

  Low forest cover  1000 0.002 [-0.05; 0.07] 0.21 0.08  

  Total edge 200 0.000 [0.00; 0.00] 0.20 0.08  

 GC (Intercept) - -4.829 [-17.58; 7.92]    

  Clumpiness 100 2.415 [0.40; 4.93] 0.91 0.01 (.) 
  Aggregation index 1000 0.023 [-0.13; 0.29] 0.27 0.00  

  Numb. canopy patches 100 0.004 [-0.05; 0.08] 0.25 0.00  

  Canopy cover 100 -0.001 [-0.02; 0.02] 0.25 0.00  
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 Model    RVI  

Species type Variables Scale Estimate CI95% partial full P 

C. chloris GM (Intercept) - -0.787 [-1.85; 0.27]    

(cont.)  Numb. trees - -0.013 [-0.03; 0.00] 0.97 0.02 * 
  Shrub density - 0.004 [-0.01; 0.03] 0.36 0.01  

  Mean shrub height - -0.020 [-0.36; 0.22] 0.28 0.00  

  Diameter at breast height - 0.000 [-0.01; 0.01] 0.25 0.00  

Dendrocopos PH (Intercept) - -2.046 [-4.71; 0.62]    

  major  Shrubland 100 -12.888 [-5131; 5095] 0.73 0.06  

(Great spotted   Shannon's diversity 100 -1.361 [-6.12; 1.21] 0.55 0.04  

   woodpecker)  Pine forest 200 0.007 [-0.01; 0.05] 0.41 0.03  

  Soft edge 500 0.000 [0.00; 0.00] 0.35 0.03  

 PC (Intercept) - -1.949 [-3.84; -0.05]   * 
  Medium forest cover  100 -0.028 [-0.09; 0.01] 0.71 0.00  

  Low forest cover  100 -8.639 [-4156; 4123] 0.52 0.00  

  Shannon's diversity 500 0.014 [-3.05; 3.17] 0.23 0.00  

  High forest cover  200 0.000 [-0.03; 0.03] 0.21 0.00  

 GC (Intercept) - -4.844 [-25.68; 15.99]    

  Canopy cover 100 0.059 [-0.02; 0.18] 0.77 0.00  

  Clumpiness 100 1.277 [-1.77; 8.14] 0.40 0.00  

  Numb. canopy patches 100 -0.030 [-0.45; 0.29] 0.38 0.00  

  Aggregation index 500 -0.032 [-0.47; 0.22] 0.26 0.00  

 GM (Intercept) - -8.769 [-14.45; -3.09]   ** 
  Diameter at breast height - 0.045 [0.01; 0.08] 1.00 0.86 ** 
  Numb. trees - 0.018 [0.00; 0.05] 0.78 0.63  

  Shrub height cov - 1.337 [0.01; 4.07] 0.66 0.58  

  Shrub density - 0.002 [-0.03; 0.05] 0.22 0.24  

Erithacus  PH (Intercept) - -0.771 [-1.57; 0.03]   (.) 

  rubecula  Young plantations 1000 -0.004 [-0.05; 0.02] 0.29 0.05  

(Robin)  Non-native plantations 1000 -0.004 [-0.07; 0.04] 0.26 0.05  

  Pine forest 200 -0.001 [-0.01; 0.01] 0.25 0.04  

  Shrubland 200 -0.033 [-1.42; 1.13] 0.22 0.04  

 PC (Intercept) - -1.450 [-2.87; -0.03]   * 
  High forest cover  100 0.003 [0.00; 0.02] 0.39 0.14  

  Numb. patches 500 0.009 [-0.04; 0.09] 0.32 0.10  

  Total edge 500 0.000 [0.00; 0.00] 0.30 0.10  

  Medium forest cover  100 0.000 [-0.02; 0.01] 0.21 0.08  

 GC (Intercept) - -2.289 [-8.1; 3.52]    

  Clumpiness 500 1.515 [-2.02; 9.13] 0.43 0.11  

  Canopy cover 1000 -0.001 [-0.04; 0.03] 0.26 0.07  

  Aggregation index 100 0.034 [-0.65; 0.94] 0.24 0.06  

  Numb. canopy patches 200 -0.001 [-0.04; 0.03] 0.21 0.06  

 GM (Intercept) - -0.924 [-1.73; -0.12]   * 

  Diameter at breast height - -0.001 [-0.01; 0.01] 0.29 0.05  
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 Model    RVI  

Species type Variables Scale Estimate CI95% partial full P 

E. rubecula  Mean shrub height - 0.026 [-0.17; 0.35] 0.29 0.05  

(cont.)  Shrub density - -0.002 [-0.03; 0.01] 0.28 0.05  

  Numb. trees - 0.000 [-0.01; 0.01] 0.23 0.05  

Fringilla PH (Intercept) - -0.050 [-0.86; 0.77]    

  coelebs  Pine forest 500 0.012 [0.00; 0.02] 1.00 0.01 * 

(Common   Shrubland 200 -0.312 [-1.20; 0.12] 0.58 0.01  

   chaffinch)  Young plantations 200 0.002 [0.00; 0.02] 0.40 0.00  

  Non-native plantations 500 -0.063 [-1.44; 0.97] 0.27 0.00  

 PC (Intercept) - 1.540 [0.66; 2.42]   *** 
  Low forest cover  1000 -0.041 [-0.08; -0.01] 0.95 0.80 * 
  Total edge 500 0.000 [0.00; 0.00] 0.60 0.52  

  Numb. patches 500 -0.015 [-0.06; 0.01] 0.54 0.49  

  Very high forest cover  200 0.001 [0.00; 0.01] 0.35 0.32  

 GC (Intercept) - -2.193 [-7.09; 2.7]    

  Canopy cover 200 0.012 [0.00; 0.03] 0.74 0.04  

  Aggregation index 100 0.218 [-0.21; 1.05] 0.52 0.02  

  Clumpiness 200 -0.432 [-2.26; 0.47] 0.48 0.02  

  Numb. canopy patches 200 0.004 [-0.02; 0.05] 0.30 0.01  

 GM (Intercept) - -0.015 [-0.66; 0.63]    

  Diameter at breast height - 0.005 [0.00; 0.01] 0.94 0.00 * 
  Numb. trees - 0.002 [0.00; 0.01] 0.65 0.00  

  Shrub density - 0.003 [0.00; 0.01] 0.55 0.00  

  Shrub height cov - -0.021 [-0.72; 0.55] 0.24 0.00  

Lophophanes PH (Intercept) - -0.902 [-2.24; 0.44]    

   cristatus  Shrubland 200 -0.681 [-2.32; 0.19] 0.64 0.17  

(Crested tit)  Pine forest 200 0.005 [0.00; 0.02] 0.59 0.16  

  Non-native plantations 1000 0.020 [-0.01; 0.08] 0.54 0.15  

  Soft edge 100 0.000 [0.00; 0.00] 0.27 0.07  

 PC (Intercept) - 0.205 [-0.73; 1.14]    

  Numb. patches 200 -0.111 [-0.33; 0.02] 0.71 0.19  

  Low forest cover  200 -0.411 [-1.53; 0.15] 0.60 0.17  

  Shannon's diversity 200 -0.145 [-1.51; 0.74] 0.38 0.11  

  High forest cover  200 0.002 [-0.01; 0.02] 0.27 0.09  

 GC (Intercept) - -0.049 [-4.48; 4.38]    

  Clumpiness 200 -1.443 [-3.92; 0.06] 0.75 0.24  

  Aggregation index 100 0.014 [-0.01; 0.06] 0.55 0.18  

  Numb. canopy patches 1000 0.000 [0.00; 0.00] 0.48 0.16  

  Canopy cover 500 -0.007 [-0.05; 0.01] 0.38 0.14  

 GM (Intercept) - -0.451 [-1.47; 0.56]    

  Mean shrub height - -0.070 [-0.28; 0.03] 0.56 0.04  

  Diameter at breast height - 0.003 [0.00; 0.01] 0.51 0.03  

  Numb. trees - 0.001 [0.00; 0.01] 0.26 0.01  
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 Model    RVI  

Species type Variables Scale Estimate CI95% partial full P 

  Shrub height cov - 0.003 [-1.25; 1.27] 0.22 0.00  

Lullula PH (Intercept) - -4.937 [-7.65; -2.23]   *** 

   arborea  Shrubland 200 2.973 [1.15; 4.79] 1.00 0.78 ** 

(Woodlark)  Soft edge 1000 0.000 [0.00; 0.00] 0.84 0.65  

  Shannon's diversity 100 0.485 [-0.46; 2.47] 0.48 0.38  

  Numb. patches 200 0.001 [-0.22; 0.23] 0.29 0.22  

 PC (Intercept) - -3.931 [-6.94; -0.92]   * 
  Medium forest cover  100 0.015 [0.00; 0.04] 0.76 0.01  

  Shannon's diversity 100 1.070 [-0.02; 2.86] 0.75 0.02  

  High forest cover  1000 0.023 [-0.02; 0.11] 0.51 0.01  

  Low forest cover  200 0.131 [-0.66; 1.49] 0.31 0.00  

 GC (Intercept) - -2.484 [-14.41; 9.44]    

  Clumpiness 100 3.201 [0.20; 7.18] 0.87 0.12  

  Numb. canopy patches 100 0.053 [-0.01; 0.17] 0.65 0.09  

  Canopy cover 100 -0.007 [-0.05; 0.02] 0.42 0.06  

  Aggregation index 500 -0.016 [-0.29; 0.16] 0.25 0.04  

 GM (Intercept) - -0.766 [-2.28; 0.75]    

  Numb. trees - -0.010 [-0.03; 0.00] 0.75 0.00  

  Mean shrub height - -0.182 [-0.74; 0.14] 0.61 0.00  

  Shrub density - 0.007 [-0.02; 0.06] 0.37 0.00  

  Diameter at breast height - -0.002 [-0.02; 0.01] 0.32 0.00  

Parus PH (Intercept) - -0.546 [-1.49; 0.40]    

  major  Pine forest 100 0.683 [0.02; 1.57] 0.86 0.61  

(Great tit)  Non-native plantations 100 0.526 [0.02; 1.47] 0.71 0.52  

  Shrubland 200 -0.429 [-1.69; 0.2] 0.58 0.42  

  Soft edge 1000 0.000 [0.00; 0.00] 0.42 0.33  

 PC (Intercept) - 0.170 [-0.82; 1.16]    

  Low forest cover  200 -0.402 [-1.19; 0.06] 0.71 0.06  

  High forest cover  1000 -0.004 [-0.04; 0.01] 0.33 0.03  

  Total edge 1000 0.000 [0.00; 0.00] 0.26 0.02  

  Shannon's diversity 100 0.008 [-0.56; 0.63] 0.21 0.02  

 GC (Intercept) - -1.555 [-4.54; 1.43]    

  Aggregation index 100 0.014 [-0.01; 0.05] 0.62 0.04  

  Clumpiness 100 0.126 [-0.72; 1.55] 0.30 0.01  

  Numb. canopy patches 500 0.000 [0.00; 0.00] 0.27 0.01  

  Canopy cover 500 0.001 [-0.01; 0.02] 0.25 0.01  

 GM (Intercept) - -0.431 [-1.07; 0.21]    

  Diameter at breast height - 0.001 [0.00; 0.01] 0.40 0.02  

  Shrub height cov - 0.200 [-0.36; 1.44] 0.37 0.02  

  Numb. trees - 0.001 [0.00; 0.01] 0.35 0.02  

  Shrub density - 0.000 [-0.01; 0.01] 0.23 0.00  
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 Model    RVI  

Species type Variables Scale Estimate CI95% partial full P 

Periparus PH (Intercept) - -0.482 [-1.17; 0.21]    

   ater  Shrubland 200 -3.365 [-6.02; -0.71] 1.00 0.23 * 

(Coal tit)  Soft edge 200 -0.001 [0.00; 0.00] 0.66 0.14  

  Non-native plantations 100 -10.599 [-3885; 3851] 0.63 0.14  

  Numb. patches 100 0.074 [-0.34; 0.82] 0.31 0.08  

 PC (Intercept) - -0.705 [-1.60; 0.19]    

  Medium forest cover  100 -0.050 [-0.09; -0.01] 1.00 0.59 * 
  Low forest cover  100 -11.103 [-3821; 3788] 0.66 0.38  

  Total edge 200 0.000 [0.00; 0.00] 0.26 0.18  

  Numb. patches 500 0.003 [-0.05; 0.08] 0.25 0.16  

 GC (Intercept) - -12.906 [-33.68; 7.87]    

  Aggregation index 100 0.124 [-0.01; 0.34] 0.76 0.10  

  Numb. canopy patches 200 -0.035 [-0.15; 0.02] 0.54 0.07  

  Canopy cover 500 0.003 [-0.03; 0.05] 0.24 0.03  

  Clumpiness 100 0.025 [-2.60; 2.83] 0.21 0.03  

 GM (Intercept) - -3.332 [-5.29; -1.37]   *** 
  Diameter at breast height - 0.017 [0.00; 0.03] 1.00 0.00 ** 
  Numb. trees - 0.005 [0.00; 0.02] 0.61 0.00  

  Shrub height cov - 0.600 [-0.58; 3.16] 0.47 0.00  

  Mean shrub height - -0.006 [-0.23; 0.18] 0.26 0.00  

Serinus PH (Intercept) - -0.610 [-2.15; 0.93]    

   serinus  Shrubland 1000 -5.237 [-10.5; -1.02] 0.91 0.20 (.) 

(Serin)  Shannon's diversity 100 0.698 [-0.04; 2.13] 0.67 0.15  

  Hard edge 1000 0.000 [0.00; 0.00] 0.36 0.08  

  Numb. patches 1000 0.002 [-0.01; 0.02] 0.33 0.07  

 PC (Intercept) - -2.442 [-4.32; -0.56]   * 
  Shannon's diversity 200 1.374 [-0.73; 4.68] 0.70 0.05  

  Total edge 200 0.000 [0.00; 0.00] 0.38 0.03  

  Numb. patches 1000 0.002 [-0.02; 0.03] 0.26 0.02  

  Medium forest cover  1000 0.002 [-0.05; 0.07] 0.21 0.01  

 GC (Intercept) - 6.751 [-18.23; 31.74]    

  Clumpiness 100 0.915 [-0.55; 4.10] 0.52 0.03  

  Aggregation index 500 -0.085 [-0.44; 0.09] 0.49 0.02  

  Numb. canopy patches 1000 0.000 [0.00; 0.00] 0.42 0.02  

  Canopy cover 100 -0.001 [-0.02; 0.01] 0.25 0.00  

 GM (Intercept) - 0.025 [-1.04; 1.09]    

  Mean shrub height - -0.246 [-0.56; -0.04] 0.83 0.48  

  Shrub density - -0.004 [-0.04; 0.02] 0.37 0.23  

  Numb. trees - -0.002 [-0.02; 0.01] 0.36 0.23  

  Shrub height cov - -0.084 [-1.76; 1.08] 0.25 0.17  
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 Model    RVI  

Species type Variables Scale Estimate CI95% partial full P 

Turdus PH (Intercept) - -1.334 [-2.16; -0.51]   ** 

   merula  Shannon's diversity 100 0.175 [-0.46; 1.5] 0.34 0.08  

(Common   Numb. patches 500 0.006 [-0.02; 0.06] 0.33 0.07  

   blackbird)  Soft edge 1000 0.000 [0.00; 0.00] 0.29 0.07  

  Hard edge 500 0.000 [0.00; 0.00] 0.23 0.05  

 PC (Intercept) - -1.338 [-3.11; 0.44]    

  Low forest cover  200 -0.468 [-2.11; 0.37] 0.54 0.17  

  Medium forest cover  100 0.004 [-0.01; 0.03] 0.42 0.13  

  High forest cover  1000 0.001 [-0.04; 0.05] 0.21 0.08  

  Shannon's diversity 1000 0.024 [-2.50; 2.74] 0.20 0.08  

 GC (Intercept) - 2.039 [-11.39; 15.47]    

  Aggregation index 500 -0.041 [-0.28; 0.08] 0.41 0.09  

  Canopy cover 1000 0.007 [-0.03; 0.07] 0.36 0.08  

  Numb. canopy patches 1000 0.000 [0.00; 0.00] 0.22 0.06  

  Clumpiness 100 -0.030 [-2.16; 1.86] 0.20 0.05  

 GM (Intercept) - -1.354 [-2.29; -0.42]   ** 
  Mean shrub height - 0.017 [-0.16; 0.29] 0.26 0.05  

  Numb. trees - 0.000 [-0.01; 0.01] 0.25 0.04  

  Shrub density - 0.001 [-0.01; 0.02] 0.24 0.04  

  Shrub height cov - 0.033 [-1.35; 1.64] 0.23 0.04  
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III.1. ABSTRACT 

Landscapes are showing increased fragmentation and habitat loss due to land-use 

conversion and intensification, leading to species-poor and homogeneous communities. 

The identification of ecological thresholds above which major changes in community 

composition take place may prevent the critical downfall of biodiversity while improving 

the effectiveness of conservation, resource management and restoration practices. In 

this study, we provide a new insight on how species distribute along a highly variegated 

agro-ecosystem in the Mediterranean region. We aim to define the thresholds of 

occurrence of a bird community inhabiting a tree canopy gradient and determine the 

patterns of community change. We fit Huisman-Olff-Fresco models to bird occurrence 

data (assuming non-linear responses) to identify species-specific responses to the 

gradient, species richness and turnover patterns. The tree canopy gradient is responsible 

for major changes in bird community likely related to the variation of the tree stratum 

and canopy enclosure, which reflect different niche segregation opportunities. 

Maximum species richness was reached at 10% canopy cover while total turnover rate 

was higher than expected from a null model up to 10% canopy cover. Ecological 

thresholds can be used as indicators of specific resource limits responsible for changes 

in community composition and species occurrence, identifying where populations may 

be more sensitive. Choosing a single management scheme will invariably result in 

winners and losers, but optimal levels of management can be explored in order to 

maximize species diversity across Mediterranean agro-ecosystems. 

 

III.2. KEYWORDS 

Ecological thresholds; Bird community; Turnover patterns; Tree canopy cover gradient; 

Agroecosystems; Variegated landscape; Huisman-Olff-Fresco models. 
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III.3. INTRODUTION 

Several studies (e.g., Andrén, 1994; Monkkonen and Reunanen, 1999; Fahrig, 2001) 

specify the existence of ecological thresholds to gradients of habitat alteration (the 

fragmentation threshold), beyond which major changes in species occupancy occur. 

Ecological thresholds provide an alternative to usual post-disturbance reactive tools 

such as endangered species legislation (Johnson, 2013) and costly restoration practices 

(Holl and Howarth, 2000), by establishing preventive targets on biodiversity loss to guide 

policy and resource management (Huggett, 2005). Moreover, it may improve the 

effectiveness of conservation efforts in natural resource management (Huggett, 2005), 

by documenting the sensitivity of species to threatening processes such as habitat loss, 

simplification or fragmentation (e.g., Betts et al., 2007), loss of genetic diversity 

(Bruggeman et al., 2010) or threat by invasive species (With, 2004). As landscapes 

worldwide have experienced strong changes over the last decades, caused by land-use 

conversion and intensification (Newbold et al., 2015), such concrete environmental 

tools are needed to guide policy goals aiming to prevent biodiversity loss (Balmford et 

al., 2003). 

 In agro-ecosystems these changes have been particularly noticed (Tscharntke et 

al., 2005), as the European Common Agricultural Policy (CAP) is triggering a shift from 

traditional extensive agro-forestry management to intensive agriculture and forest 

production areas (Jones et al., 2011). For instance, these changes have had a great 

impact upon the Portuguese ‘montado’, a characteristic large scale variegated landscape 

where tree cover varies gradually from presence of scattered trees to dense forest 

(sensu McIntyre and Hobbs 1999; Pinto-Correia et al., 2011)  classified as High Nature 

Value (HNV) farmland (Andersen et al., 2003). The once structurally variegated 

landscape resulting from centuries of traditional human activities (e.g., agriculture, 

cattle grazing and forestry; Blondel et al., 2010) is changing as a result of either 

management intensification or land abandonment (Pinto-Correia, 2000; Plieninger and 

Schaar, 2008). Intensification is causing the ‘montado’ to disappear as a system, giving 

rise to a more heterogeneous landscape mosaic. Increasing crop cultivation or animal 

production areas with reduced tree cover are intermixed with denser and structurally 

complex forests resulting from land abandonment (Pinto-Correia and Mascarenhas, 

1999). All these on-going changes can have strong impacts on biotic communities.  
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 Significant declines of species are reported worldwide following landscape 

alteration (Billeter et al., 2008; Inger et al., 2015; Jeliazkov et al., 2016), often resulting 

in net changes in ecological assemblages altering community composition (Newbold et 

al., 2015), and in the homogenization of communities while reducing species diversity 

through replacement by widespread species (Clavero and Brotons, 2010; Gámez-Virués 

et al., 2015). In agro-ecosystems, bird community is highly shaped by the open 

grassland-to-forest gradient (Berg, 2002; Catarino et al., 2016; Herrera et al., 2016) and 

changes along the gradient result in turnovers in bird composition (Sirami et al., 2007). 

Some studies report that specialization (i.e., the restricted ecological niche width of a 

species to a given set of resources; Devictor et al., 2010) is most likely to occur at 

extreme ranges of landscape gradients (e.g., Clavero and Brotons, 2010), but the open 

structure of forests can also favour the presence of transition species (Tellería, 2001; 

Sanderson et al., 2009; Bonthoux et al. 2013). However, the limits of species occurrence, 

and where communities are most vulnerable to species loss, are still unknown. In 

addition, changes in habitat are also likely to affect the structure and dynamics of 

species assemblages by tampering with interspecific interactions (Bonthoux et al., 

2013). The adoption of inappropriate and unreliable community-based approaches, that 

do not account for contrasting responses of individual species (Monkkonen and 

Reunanen, 1999; Lindenmayer et al., 2008), have limited the insight on how community 

and overall biodiversity are shaped along environmental gradients (Pardini et al., 2010; 

Bonthoux et al., 2013). Investigating both species and community responses to 

landscape gradients will help to integrate both intraspecific and interspecific processes 

in local biodiversity patterns changing along those gradients (Lepš et al. 2011).  

 Here, we aim to define thresholds of occurrence of a breeding bird community 

inhabiting an open grassland-to-forest gradient in a highly variegated agro-ecosystem in 

the Mediterranean region. We attempt to answer the questions: ‘what are the ranges of 

tree cover most vulnerable to species loss?’ and ‘what ranges of tree cover best fulfil the 

requirements for conservation purposes?’, thus providing a better understanding of how 

agro-ecosystems management can be optimized to meet biodiversity conservation 

targets. We identify patterns of community change based on ecological niche theory 

where species are assumed to respond non-linearly to gradients following unimodal 

(Gaussian-shaped) response curves (Austin, 2007), thus avoiding common constraints of 
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linear approaches (Swift and Hannon, 2010; Johnson, 2013). Our approach applies 

Huisman-Olff-Fresco models (hereafter HOF models; Huisman et al., 1993), which 

incorporate such species-specific response curves. We then use the cumulative changes 

in species distribution to define patterns of variation in community composition and 

identify bird assemblages by means of niche overlap. Thus, our approach integrates the 

(i) assessment of species-specific thresholds of occurrence based on niche width, (ii) 

turnover patterns where strong changes in community composition occur, and (iii) 

identification of species assemblages across a tree cover gradient.  

 

III.4. METHODS 

III.4.1. Study area 

We conducted the study in a highly variegated Mediterranean landscape (McIntyre and 

Hobbs, 1999) of southern Portugal, in the Évora district (centroid: 16271.45, -113395.21; 

EPSG: 3763-ETRS89 / Portugal TM06). The area comprises 426,000 ha, dominated by the 

Mediterranean savannah-like ‘montado’ (Pinto-Correia et al., 2011), an agro-ecosystem 

that includes semi-natural habitats with low intensity farming. The landscape consists of 

a spatially heterogeneous structure, ranging from densely wooded areas dominated by 

evergreen cork (Quercus suber) and holm oaks (Q. rotundifolia) to agricultural plains with 

scarce tree cover. The topography is generally flat, with altitude ranging between 100 

and 450 m a.s.l.. The climate of the region is typically Mediterranean with warm and dry 

summers where temperatures reach up to 40° C, while winters are relatively mild and 

wet. 

 

III.4.2. Tree canopy cover gradient 

Tree cover is one of the most important features in determining bird diversity in 

Mediterranean agro-ecosystems (Godinho and Rabaça, 2010; Catarino et al., 2016). 

Therefore, we used the gradient of tree canopy cover as a surrogate for habitat amount 

(Westfall and Morin, 2012; Godinho et al., 2016). In fact, the spatial variation of open 

grassland to dense oak forest can represent a resource-related continuous gradient 

(Fischer and Lindenmayer, 2006) of basic food and shelter availability, nesting conditions, 

and movement ability for different bird species (Price et al., 2009). The gradient was built 

from aerial photography data – based on colour image segmentation and using the k-



Chapter III  Bird community thresholds in agro-ecosystems 

111 
 

mean algorithm, an automated method of unsupervised classification (Subbiah and 

Seldev, 2012). Total tree canopy cover was determined within buffers centred on each 

bird survey plot. The canopy cover ranged from 0 to 65%, though in further analyses we 

considered a maximum of ~50% due to the lack of spatial replicates at high-density cover 

sites and outlier removal. The gradient was extracted using Orfeo Toolbox 3.20 (Orfeo 

Toolbox Development Team, 2013), in QGIS 2.2 (Quantum GIS Development Team, 

2013). 

 

III.4.3. Bird surveys 

We surveyed bird species by means of 10 min point counts (Bibby et al., 2000) with a 

distance limit of 100m. A total of 152 points were carried out, covering the tree canopy 

gradient with spatial replicates. In order to prevent double counts, a minimum distance 

of 500 m between points was considered. Sampling was conducted during the 2013 

breeding season from 26th April to 24th May, when there is greater bird recruitment and 

spatial stability. A single visit was carried out at each point at the period of highest 

detectability (6:00 to 11:00 a.m.; Palmeirim and Rabaça, 1994). While reducing survey 

effort per site, we increased the number of sites, aiming to provide statistical power and 

the representativeness of the study area (Loos et al., 2015). Fieldwork was conducted 

by one observer recording bird species that were seen or heard (Bibby et al., 2000). Fly-

over individuals or aerial-feeders (e.g., barn swallow Hirundo rustica) were discarded 

from the analysis. Due to difficulty in distinguishing Galerida cristata and G. theklae, 

these species were pooled and analysed together (Delgado and Moreira, 2000). Overall, 

we analysed 33 species (see Appendix III.A for details) present in >10 sampled points 

(Peper et al., 2011). 

 

III.4.4. Species response to tree canopy cover gradient 

HOF models (Huisman et al., 1993) were used to identify species response to single 

gradients (Peppler-Lisbach and Kleyer, 2009; Peper et al., 2011). These consist of seven 

(I-VII) hierarchical models of increasing response complexity (see Jansen and Oksanen, 

2013 for details). Because bimodal responses could over fit data, we considered only five 

model types: I – no trend; II – monotone sigmoidal; III – monotone sigmoidal with an 
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optima plateau; IV – symmetric unimodal; and V – skewed unimodal (Jansen and 

Oksanen, 2013). 

 Bird species presence/absence data were fitted using tree canopy cover as 

explanatory variables. A preliminary multi-scale screening with different buffer distances 

around point count was performed to define an optimal and coherent spatial scale 

across species responses (see Appendix III.B and data therein). The 200m spatial scale 

outperformed the others and was employed in further analyses. 

 To deal with false absences we fitted bird species occurrence data in a single visit 

occupancy model (Lele et al., 2012). We estimated the probability of occupancy of a 

given species as a function of the tree canopy cover gradient while accounting for 

imperfect detection arising from time of day (minutes from sunrise) and time of year 

(days from spring equinox) effects. Occupancy models were performed using the 

package “detect” (Solymos et al., 2016). We used the predicted probability of occupancy 

to correct putative false absences in bird data. A resampling procedure with replacement 

of false absences was applied in a loop routine (100 runs). At each loop, a HOF model 

was fitted to the corrected bird data. The final model was obtained by fitting the most 

frequent HOF model adjusted to the mean response curve of all runs. HOF models were 

run using maximum likelihood estimation and binomial distribution family (log-link 

function). We used Akaike’s information criteria adjusted to small samples (AICc) to 

select the best model for each species (Burnham and Anderson, 2004; Burnham et al., 

2011) after a bootstrap procedure.  

 Optimum location and niche width were extracted from the final HOF model for 

each species. The optimum (sensu Jansen and Oksanen, 2013) refers to a single point 

(type II, IV and V models) or a range of values (type III models) of the canopy gradient 

where the response curve reaches its maximum value. Niche width estimation followed 

the central border approach, where species’ tolerance to the gradient corresponds to e-

0.5 times the maximal probability of occurrence (Heegaard, 2002). This reflects a 

measure of the distance from the optimum (tolerance) (Heegaard, 2002), defining a 

range beyond which the species is subjected to non-optimal environmental conditions. 

We truncated estimates at minimum and maximum values of the canopy cover gradient 

(Jansen and Oksanen, 2013).  
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III.4.5. Changes in community composition 

Changes in community were assessed by examining the patterns of variation of bird 

species richness and community turnover along the tree canopy gradient. Species 

richness was estimated following Peppler-Lisbach and Kleyer’s (2009) approach: we 

summed the predicted probabilities of occurrence of all species, which reflect the 

variation in the number of species along the gradient. To validate species richness 

response we proceeded with two analyses. Firstly, we extracted fitted values from the 

response obtained from the HOF approach and applied Spearman rank correlations to 

check their correlation with the observed number of species. Secondly, the observed 

number of species was also modelled along the tree canopy cover gradient following a 

generalized additive model procedure (GAM, Poisson distribution with log link function). 

Fitted and 95% confidence interval values were extracted from the GAM model and 

plotted together with species richness response obtained from the HOF approach.  

Afterwards, community turnover patterns were computed in order to detect the 

ranges at which composition changes. Total community turnover at each point of the 

canopy cover gradient was derived from the sum of slopes of each species response 

curve (Oksanen and Tonteri, 1995). Turnover rates were arc-tangent transformed to 

avoid the influence of species with steep slopes (Peppler-Lisbach and Kleyer, 2009). We 

divided total community turnover by the sum of predicted probabilities of occurrence 

at each given point to account for the effects of uneven number of species along the 

gradient (Peppler-Lisbach and Kleyer, 2009). Total community turnover was split into 

negative (species showing decreasing probability of occurrence at a given point) and 

positive turnovers (increasing probability of occurrence) (Peppler-Lisbach and Kleyer, 

2009). 

 Turnover changes of species composition were tested against a null model 

through coenocline simulation (Gotelli and McGill, 2006). Species randomized 

occurrence data was simulated from coenoclines restricted to vary according to optimal 

responses, niche width and species density found in empirical data (Peppler-Lisbach and 

Kleyer, 2009). Randomized data was extracted from coenoclines as expected counts 

following a Poisson distribution at each point of the gradient (Simpson, 2014). The null 

model was obtained after the permutation of 1000 simulation runs of random species 

response curves. For each simulation, the resultant turnover rates (total, positive, and 
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negative) were rescaled (i.e., weighted by their respective mean; Peppler-Lisbach and 

Kleyer, 2009; Peper et al., 2011). Confidence intervals (95%) for each turnover rate were 

then calculated based on 1000 randomizations. 

 

III.4.6. Species niche clustering 

Species niche clustering also involved a procedure of coenocline simulation. We used 

significant turnover values and species response curves to distinguish between 

assemblages. Assuming that each significant community turnover reflects a species 

composition change, most species optima would locate outside turnovers. We 

simulated species data for each assemblage following the same criteria defined in the 

community turnover analysis. At both ends of the gradient we simulated dummy species 

occurring at the first or the last 10 observations of the sampled gradient (Peper et al., 

2011). By running HOF models of dummy species we obtained lower and upper virtual 

optima for species groups located at the extremes of the sampled gradient. Since 

modelling coenoclines will be inherently biased as unimodal curves (Gauch and 

Whittaker, 1972), HOF model responses were constrained to behave according to the 

observed specific curve types. For each of the defined assemblages, we ran 1000 

randomizations to limit the 95% confidence intervals for the species turnover. Species 

turnovers falling within the 95% confidence intervals were included as members of an 

assemblage.  

 All analyses were performed in R, version 3.0.2 (R Development Core Team, 

2013). We used packages “eHOF” (Jansen and Oksanen, 2013) for HOF model fitting of 

empirical and simulated data, “mgcv” (Wood, 2006) for GAM, and “coenocliner” 

(Simpson, 2014) for coenocline simulation. All fitted values were calculated at each 

0.05% interval of the tree canopy cover gradient. 
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III.5. RESULTS 

III.5.1. Species responses to tree canopy cover gradient 

Most species showed a clear response to the tree canopy cover gradient (Figure III.1; 

Appendix III.C Figure III.C1), though it varied greatly regarding both optima location and 

niche width. Ten species showed a marked preference for low tree canopy cover areas 

(<1%). Among these, two presented optima at low tree canopy cover (Lanius 

meridionalis and Passer hispaniolensis). All other species occurred mostly in open 

grassland and were constrained by increasing canopy cover (e.g., Tetrax tetrax, Cisticola 

juncidis), showing a decreasing monotone sigmoidal curve (type II). 

 Unimodal patterns were detected in seven species (e.g., Sturnus unicolor, Lanius 

senator), with optima peaking between 1 and 25%. Interestingly, optima location rarely 

overlapped, though these results should be carefully considered, as most of the species 

showed high tolerance to tree canopy cover when niche width occupied almost the 

whole range (e.g., Carduelis carduelis, Chloris chloris). 

 The occurrence of fourteen species was limited by lower tree canopy cover. Yet 

many species showed high tolerance to the scarcity of tree canopy cover (e.g., Cyanistes 

caeruleus, Fringilla coelebs), with their optima promptly peaking before 10% canopy 

cover and spreading along the forested range of the gradient. On the other hand, some 

species showed higher constraints, as optima only emerged at 30 (Turdus merula) or 

40% tree canopy cover (Dendrocopos major). 

 Only two species did not exhibit clear responses to tree canopy cover, as their 

tolerance spreads all over the gradient (Hippolais polyglota and Luscinia megarhyncos), 

whilst showing an increasing monotone sigmoidal curve. 
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Figure III.1 – Optimum (black bars) and niche width (grey bars) of each species response model 
along the tree canopy cover gradient. The roman numbers in brackets refer to the HOF model 
type. 
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III.5.2. Changes in community composition 

The species richness curve suggests a unimodal right skewed response along the tree 

canopy cover gradient with a maximum at 10% canopy cover (Figure III.2). An abrupt 

trend was observed at lower canopy gradients, where the number of species decreases 

with declining canopy. Predicted richness data correlated with empirical data (Spearman 

rank correlation: rs=0.43; P < 0.001). Compared with GAM procedure (P < 0.001; 

adjusted R-square = 0.454; explained deviance = 46.8%), the HOF method slightly 

underestimated species richness. However, the general pattern was similar in both 

methods and HOF predictions were within the 95% confidence interval of GAM 

estimates (Figure III.2). 

 

 

Figure III.2 – Predicted number of species (sum of species occurrence probabilities) along the 
tree canopy cover gradient using HOF approach (thick line) and predicted number of species 
using GAM approach (mean value – thin line; 95% confidence intervals – grey shaded area).  

 

 

Total community turnover rate reached a maximum value at ≈1% canopy cover, 

mostly due to a positive turnover (Figure III.3A, solid black line). The bird community 

underwent a major change due to the emergence of species associated with forested 

areas. A smoother curve in negative turnover was observed at ≈25% (Figure III.3B, solid 
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black line) which can be related to the decrease of the occurrence probability of most 

species with unimodal responses that had their optima below this percentage of canopy 

cover (Figure III.1). Total community turnover was significantly higher than expected 

from the null model until ≈10% canopy cover (Figure III.3A). However, beyond this value 

it did not differ significantly from expected values. Also, only a few species increased 

their likelihood of occurrence, resulting in lower values of positive turnover (Figure 

III.3B). Negative turnover showed moderately high rates below 10% canopy cover, 

meaning that some species had a decreasing probability of occurrence along the tree 

canopy cover gradient (Figure III.3C).  

 

III.5.3. Species niche clustering  

According to the above mentioned results, we defined the following criteria to classify 

the species assemblages: (i) farmland species – species with virtual optima < 1% and 

decreasing monotone sigmoidal response curves with or without optima plateau (type 

II and III), (ii) transition species – species reaching optima between 1% and 25%, with 

unimodal responses (type IV and V), and (iii) forest species – species reaching optima 

>1%, with sigmoidal response curves with or without optima plateau (type II and III).  

Following these criteria, 30 out of 33 species were assigned to one of the 

assemblages (Table III.1). Farmland bird species (n = 8, e.g., Tetrax tetrax, Lanius 

meridionalis) could be discretely separated from other forest species, assuming a strong 

negative rate of occurrence with increasing canopy cover (Figure III.4A). Transition 

species (n = 6, e.g., Lanius senator, Sturnus unicolor) showed an increasing occurrence 

probability, peaking below 25% canopy cover and decreasing afterwards (Figure III.4B). 

Forest species (n = 16, e.g., Cyanistes caeruleus, Dendrocopos major) were separated 

from other species, exhibiting a consistent increase in occurrence probability along the 

gradient, reaching optimum values (null rate of change) as the percentage of canopy 

increased (Figure III.4C). Only three species were not assigned to an assemblage 

(Emberiza calandra, Galerida spp. and Pica pica, see Table III.1) as the larger or narrower 

tolerance of the species did not comply with the expected response defined by the 

criteria. 
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Table III.1 – Species classification within the identified assemblages, and correspondent model 
types with curve response behavior.  

Assemblage Species Model type 

Farmland species Alectoris rufa Decreasing monotone sigmoidal curve (type II) 
 Carduelis cannabina Decreasing monotone sigmoidal curve (type II) 
 Cisticola juncidis Decreasing monotone sigmoidal curve (type II) 
 Coturnix coturnix Decreasing monotone sigmoidal curve (type II) 
 Lanius meridionalis Sigmoidal with left optima plateau (type III) 
 Passer hispaniolensis Sigmoidal with left optima plateau (type III) 
 Saxicola rubicola Decreasing monotone sigmoidal curve (type II) 
 Tetrax tetrax Decreasing monotone sigmoidal curve (type II) 
Transition species Carduelis carduelis Right skewed unimodal (type V) 
 Chloris chloris Right skewed unimodal (type V) 
 Lanius senator  Right skewed unimodal (type V) 
 Passer domesticus Right skewed unimodal (type V) 
 Streptopelia decaocto Right skewed unimodal (type V) 
 Sturnus unicolor Symmetric unimodal (type IV) 
Forest species Certhia brachydactyla Sigmoidal with right optima plateau (type III) 
 Columba palumbus Sigmoidal with right optima plateau (type III) 
 Cuculus canorus Sigmoidal with right optima plateau (type III) 
 Cyanistes caeruleus Sigmoidal with right optima plateau (type III) 
 Dendrocopos major Sigmoidal with right optima plateau (type III) 
 Fringilla coelebs Sigmoidal with right optima plateau (type III) 
 Hippolais polyglota Increasing monotone sigmoidal curve (type II) 
 Lophophanes cristatus Sigmoidal with right optima plateau (type III) 
 Lullula arborea Sigmoidal with right optima plateau (type III) 
 Luscinia megarhynchos Increasing monotone sigmoidal curve (type II) 
 Parus major Sigmoidal with right optima plateau (type III) 
 Serinus serinus Sigmoidal with right optima plateau (type III) 
 Sitta europaea Sigmoidal with right optima plateau (type III) 
 Sylvia melanocephala Sigmoidal with right optima plateau (type III) 

 Turdus merula Sigmoidal with right optima plateau (type III) 
 Upupa epops Sigmoidal with right optima plateau (type III) 
Not classified Emberiza calandra Decreasing monotone sigmoidal curve (type II) 
 Galerida spp. Decreasing monotone sigmoidal curve (type II) 
 Pica pica Symmetric unimodal (type IV) 
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Figure III.3 – Rescaled adjusted community 
turnover rates (black lines; A – total, B – 
positive and C – negative turnovers) 
comparatively with 95% confidence interval 
of the null model (dashed lines) set by the 
1000 randomize runs of coenoclines (grey 
shade). 
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Figure III.4 – Species group assemblages 
based on rates-of-change along the tree 
canopy cover gradient (A – farmland, B – 
transition, C – forest species). Shaded grey 
areas show the 95% confidence interval set 
by the 1000 randomized simulations 
marking the range where species turnovers 
are expected to vary considering each 
assemblage. Black lines show species’ 
turnovers that fall inside the range, and 
therefore, belonging to that given 
assemblage, and grey lines show species’ 
turnovers that fall outside the same range, 
thus not belonging to the assemblage. 
Species grouping within the identified 
assemblages are shown in Table III.1. 
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III.6. DISCUSSION 

III.6.1. Critical thresholds of the bird community  

In this study, we developed a framework that allowed us to determine species-specific 

thresholds of occurrence along a resource gradient. Moreover, we were able to define 

community-level thresholds determining species richness, composition turnover and 

assemblage patterns along the gradient.  

 Our results show the existence of environmental thresholds indicating major 

changes in community composition. We identified a rather sharp change occurring early 

in the gradient (between 1% and 10% tree canopy cover) with a strong shift of the bird 

community, mainly due to an increase of forest related species (e.g., Cyanistes 

caeruleus, Sitta europaea) replacing the declining farmland species (e.g., Coturnix 

coturnix, Cisticola juncidis). The persistence of many species within a short range interval 

of tree canopy cover (1 to 25%) increased species richness to peak at 10%. This is in line 

with former studies on similar systems: open woodlands of sparse tree cover increase 

habitat heterogeneity that favours the presence of open, transition and forest species 

(Tellería, 2001; Sanderson et al., 2009; Bonthoux et al., 2013). The right skewed 

unimodal pattern of species richness along the gradient reflects a lower number of 

species at open grassland areas, likely related to a reduction of niche segregation 

opportunities due to the loss of the tree stratum (MacArthur and MacArthur, 1961). 

Beyond 10% canopy cover, the smoother decrease in species richness with increasing 

canopy enclosure suggests that only forest species will prevail at higher cover levels.  

 According to optima location and response curve type, we found support for the 

existence of three assemblages: (i) farmland species with optima below 1% canopy 

cover, (ii) transition species with unimodal responses showing optima between 1 and 

25%, (iii) and forest species with optima plateau. The first two assemblages were 

markedly constrained to distinct ranges of the gradient, related to specific requirements 

of species (narrower niche width); while the later showed a broader distribution within 

the forest range, reflecting the strong plasticity of the species to tree canopy cover 

variation (larger niche width). Our results are in line with those obtained by Clavero and 

Brotons (2010) who found that most of the specialized birds showed preference for 

extreme range of agricultural-forest gradient in Mediterranean landscapes. In our study, 

farmland species show a narrower niche width. In contrast, forest species showed high 
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tolerance to low canopy cover by also occupying islets of isolated trees and areas of 

scarce tree cover, as was found in other studies (e.g., Bonthoux et al., 2013). Assemblage 

segregation within forest communities is not always detected, leading to confounding 

effects in threshold determination (e.g., Radford et al., 2005). However, we were able 

to detect a transition assemblage peaking within a restricted range of canopy cover 

(between 1% and 25%), supporting the suggestion that specialization can occur at 

intermediate levels of tree canopy cover (Tellería, 2001; Bonthoux et al., 2013) or edge 

habitats (Suarez-Rubio et al., 2013).  

 Our results suggest that the bird community is structured in well-defined 

assemblages, as a marked change in community composition occurs segregating open 

grassland from forest assemblages (the community-unit concept, Clements, 1936). 

However, it should be noted that the absence of significant turnovers at intermediate 

levels of tree canopy cover might suggest that many species distribute continuously 

along the forested range (the individualistic continuum concept, Gleason, 1917; 

Gleason, 1926). Therefore, even though co-occurrence patterns of species show that 

they respond in a similar way to landscape change, some still may show an individualistic 

behaviour, adjusting their optima or tolerance ranges to avoid niche overlap (Austin, 

1999). This result suggests a dualistic nature of community assembly reflecting a balance 

between the individualistic behaviour of species and interspecific relations within 

ecological assemblages (see the ‘integrated community’ concept by Lortie et al., 2004).  

 

III.6.2. Management implications  

It is increasingly common for managers and policy-makers to address ecologists and 

conservation researchers on preventive goals that guarantee sustainable exploitation 

levels (Villard and Jonsson, 2009). Our approach attempted to answer the questions: 

‘what are the ranges of tree canopy cover most vulnerable to species loss?’ and ‘what 

ranges best fulfil the requirements for conservation purposes?’. Our study strongly 

suggests the existence of thresholds identifying changes in community composition and 

marking the limits of species occurrence where populations may be more sensitive to 

forest cover management. Ecological thresholds can, therefore, be used as indicators of 

specific resource limits responsible for those changes.  
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Our results also suggest that bird specialization occurs at different ranges of the 

gradient, highlighting the potential of variegated agro-ecosystems to hold high bird 

diversity. In such landscapes, defining a fixed tree cover management scheme across 

landscape will invariably result in winners and losers. Managing for a heterogeneous 

tree cover management scheme (with areas of very low tree cover intermixed with areas 

with higher tree cover) will result in higher species richness. Also, local management 

practices can focus on optimizing the potential of an area by adjusting to more effective 

conservation targets. For instance, species richness can be enhanced by maintaining a 

diverse variegated system averaging low forest cover density (≈10% tree canopy cover). 

Nonetheless, this may result in inadequate protection for the extreme range specialist 

species (Radford et al., 2005). Therefore, to best preserve open grassland threatened 

species very sensitive to tree canopy cover (e.g., Tetrax tetrax; BirdLife International, 

2004) managers should aim at keeping a scarce tree cover (<1% cover). Low forest cover 

areas can promote a rich community of birds, but maintaining a tree canopy density 

between 1% and 25% will also help to safeguard the occurrence of species showing 

current population trends in moderate decline (e.g., Lanius senator; EBCC, 2011).  

 As current management practices are driving Mediterranean agro-ecosystems to 

either management intensification or land abandonment (Pinto-Correia and 

Mascarenhas, 1999; Plieninger and Schaar, 2008), the characteristic savannah-type 

structure often associated with a tree cover gradient may be at risk as the extreme 

ranges of the open grassland-to-forest gradient are presently being favoured. This may 

result in deleterious effects on bird community, as many species find their optima 

between low to medium tree cover, which provide habitat conditions for nesting and/or 

foraging. Also, since both farmland and forest bird species show some tolerance to low 

tree canopy cover, functional connectivity of the landscape may be facilitated by its 

variegated structure or by the existence of small suitable areas that can be used as 

‘stepping stones’ (Fischer and Lindenmayer, 2002; Saura et al., 2014). 

 

III.6.3. Caveats  

In order to acknowledge the potential role of ecological thresholds as a conservation 

tool, managers must be informed on the limitations and potential pitfalls regarding their 

use. Ecological systems are complex, nonlinear, and strongly influenced by stochasticity, 
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and almost any prediction or measurement will contain a given amount of uncertainty 

(Mangel et al., 1996). Therefore, managing near thresholds will further increase the 

susceptibility of a community to breakdown and where extinction scenarios may be 

plausible (Betts et al., 2007). Even small changes in resource-gradients can have a 

pronounced effect on local populations. Furthermore, time lag responses of species to 

local extinction are likely to occur, and presence alone does not infer a population’s 

viability. Some information on productivity and/or long-term monitoring to assess 

population stability is needed.  

In addition, the application of different data sources or procedures to extract tree 

cover gradients (e.g., Godinho et al., 2016) may result in small deviations from the ones 

obtained in this study. Moreover, it is expected that response curve behaviour and 

ecological thresholds should vary with the existence of additional interacting factors 

(Huggett, 2005). Multivariate environmental gradients could better capture landscape 

variability, accounting for both composition and configuration patterns (Betts et al., 

2006; Swift and Hannon, 2010; Herrera et al., 2016). Yet, reading multivariate gradients 

may be highly subjective (see Guénette and Villard, 2005) and hamper the extraction of 

on-the-ground manageable practices.  

 Even though the outcomes provided by our study should be prudently considered 

in agro-ecosystem management and landscape planning, these limitations do not hinder 

the validity of our results. Our approach deals with uncertainty by acknowledging it in 

species responses along the gradient while accounting for imperfect detection. Model 

selection followed a simulation procedure that allowed for the estimation of the best-

fitted model while considering ranges of variation in species response. This information 

can be applied to set preventive targets on exploitation practices to hold viable 

populations of species, richer communities and the provision of natural services. 
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Appendix III.A: Summary of point count data 

 

Table III. A1 – Summary table of point count data. For each species are shown the values of total 
abundance across all point counts, range of species abundances and the number of locations 
where each species was recorded. 

Scientific name Common name 
Total 
abundance 

Range 
Number of 

locations 

Alectoris rufa Red-legged partridge 17 [1; 3] 12 

Carduelis cannabina Common linnet 22 [1; 3] 14 

Carduelis carduelis European goldfinch 117 [1; 4] 67 

Certhia brachydactyla Short-toed treecreeper 160 [1; 4] 92 

Chloris chloris European greenfinch 41 [1; 3] 32 

Cisticola juncidis Zitting cisticola 63 [1; 3] 45 

Columba palumbus Common wood pigeon 14 [1; 2] 13 

Coturnix coturnix Common quail 56 [1; 3] 43 

Cuculus canorus Common cuckoo 38 [1; 3] 34 

Cyanistes caeruleus Blue tit 230 [1; 5] 122 

Dendrocopos major Great spotted woodpecker 12 [1; 2] 11 

Emberiza calandra Corn bunting 378 [1; 9] 122 

Fringilla coelebs Common chaffinch 312 [1; 7] 114 

Galerida spp. Crested and Thekla Larks 156 [1; 6] 82 

Hippolais polyglota Melodious warbler 16 [1; 2] 13 

Lanius meridionalis Southern grey shrike 22 [1; 2] 20 

Lanius senator  Woodchat shrike 38 [1; 4] 31 

Lophophanes cristatus European crested tit 15 [1; 2] 14 

Lullula arborea Woodlark 110 [1; 3] 73 

Luscinia megarhynchos Common nightingale 58 [1; 3] 46 

Parus major Great tit 53 [1; 2] 46 

Passer domesticus House sparrow 49 [1; 13] 19 

Passer hispaniolensis Spanish sparrow 258 [1; 50] 27 

Pica pica Eurasian magpie 17 [1; 4] 11 

Saxicola rubicola Stonechat 49 [1; 3] 38 

Serinus serinus Serin 73 [1; 3] 50 

Sitta europaea Eurasian nuthatch 84 [1; 4] 55 

Streptopelia decaocto Eurasian collared dove 38 [1; 3] 35 

Sturnus unicolor Spotless starling 142 [1; 10] 66 

Sylvia melanocephala Sardinian warbler  77 [1; 3] 55 

Tetrax tetrax Little bustard 18 [1; 3] 11 

Turdus merula Blackbird 58 [1; 2] 50 

Upupa epops Hoopoe 61 [1; 2] 56 
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Appendix III.B: Multi-scale analysis  

 

Multi-scale analysis 

Initially we tested each species response taking into account different spatial scales of 

the explanatory variable (100m, 150m, 200m, 250m, 300m, 400m and 500m). This 

preliminary analysis arose from the need to select a cross-scale coherent response type 

for each species and define an optimal spatial scale. The species-specific model type was 

selected as the one exhibiting the lowest variation (AICc) comparatively to best-fitted 

response with lowest AICc score across all spatial scales (Figure III.B1). Then, we selected 

the spatial scale that consistently showed the lowest AICc scores of the set of selected 

models (Figure III.B2, Table III.B1). The 200m spatial scale outperformed all the others 

(Figure III.B2), which seems to be in line with other studies that postulate a buffer 

interval between 125-250m as optimal scale for bird diversity indicators (Morelli et al., 

2013).  
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Figure III.B1 – AICc scores for each HOF model type (I – dark red; II – orange; III – yellow; IV – 
green; V – blue) considering the seven buffer distances used to test scale effects (100m; 150m; 
200m; 250m; 300m; 400m; 500m). 



Chapter III  Bird community thresholds in agro-ecosystems 

130 
 

 

Figure III.B1 (cont.) – AICc scores for each HOF model type (I – dark red; II – orange; III – yellow; 
IV – green; V – blue) considering the seven buffer distances used to test scale effects (100m; 
150m; 200m; 250m; 300m; 400m; 500m). 
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Figure III.B1 (cont.) – AICc scores for each HOF model type (I – dark red; II – orange; III – yellow; 
IV – green; V – blue) considering the seven buffer distances used to test scale effects (100m; 
150m; 200m; 250m; 300m; 400m; 500m). 
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Figure III.B2 – Mean ΔAICc scores (and respective SE) between the different buffer distances 
tested. ΔAICc scores were calculated for all species considering its specific response (HOF model 
selection). The 200m buffer distance showed an overall lower AIC deviation. 
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Table III.B1 – AICc values of the selected HOF model obtain for the optimal buffer distance by 

species. AICc marks the difference between the optimal buffer distance and the selected buffer 
distance in subsequent analyses (200m). 

  Optimal buffer distance  200m Buffer distance 

Species Model Buffer distance AICc  AICc AICc 

Alectoris rufa II 150m 82.49  82.73 0.24 

Carduelis cannabina II 250m 87.62  88.03 0.41 

Carduelis carduelis V 150m 203.70  204.97 1.27 

Certhia brachydactyla III 250m 151.17  151.86 0.69 

Chloris chloris V 100m 153.14  155.54 2.40 

Cisticola juncidis II 300m 155.62  157.43 1.81 

Columba palumbus III 150m 91.40  91.60 0.20 

Coturnix coturnix II 400m 150.76  152.70 1.94 

Cuculus canorus III 300m 151.22  152.59 1.38 

Cyanistes caeruleus III 200m 89.92  89.92 0.00 

Dendrocopos major III 250m 73.65  74.16 0.51 

Emberiza calandra II 150m 108.22  109.02 0.80 

Fringilla coelebs III 250m 69.76  69.87 0.10 

Galerida spp. II 200m 141.67  141.67 0.00 

Hippolais polyglota II 500m 91.20  91.51 0.31 

Lanius meridionalis III 500m 105.84  110.58 4.74 

Lanius senator V 300m 149.17  150.77 1.60 

Lophophanes cristatus III 200m 87.94  87.94 0.00 

Lullula arborea III 400m 184.24  187.75 3.51 

Luscinia megarhyncos II 500m 184.85  186.13 1.28 

Parus major III 150m 164.61  166.35 1.74 

Passer domesticus V 400m 112.26  121.69 9.42 

Passer hispaniolensis III 250m 136.99  137.14 0.15 

Pica pica IV 500m 46.68  53.90 7.21 

Saxicola rubicola II 150m 168.97  169.74 0.77 

Serinus serinus III 100m 177.72  178.02 0.30 

Sitta europaea III 150m 143.54  143.67 0.13 

Streptopelia decaocto V 500m 159.71  161.98 2.27 

Sturnus unicolor IV 200m 202.41  202.41 0.00 

Sylvia melanocephala III 250m 193.34  193.82 0.47 

Tetrax tetrax II 300m 41.52  42.61 1.09 

Turdus merula III 150m 180.55  180.75 0.20 

Upupa epops III 250m 196.38  197.62 1.23 
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Appendix III.C: Species responses 

 

Figure III.C1 – Fitted HOF models to each species. Dotted line shows response curve using raw 
data. Grey area limits the 100 runs using the predicted probability of occupancy models to 
correct for putative false absences on bird data, and black line the mean curve response of all 
simulations. Dashed line marks the final HOF model fitted to the mean curve response of all 
simulations. 
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Figure III.C1 (cont.) – Fitted HOF models to each species. Dotted line shows response curve using 
raw data. Grey area limits the 100 runs using the predicted probability of occupancy models to 
correct for putative false absences on bird data, and black line the mean curve response of all 
simulations. Dashed line marks the final HOF model fitted to the mean curve response of all 
simulations. 
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Figure III.C1 (cont.) – Fitted HOF models to each species. Dotted line shows response curve using 
raw data. Grey area limits the 100 runs using the predicted probability of occupancy models to 
correct for putative false absences on bird data, and black line the mean curve response of all 
simulations. Dashed line marks the final HOF model fitted to the mean curve response of all 
simulations. 
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IV.1. ABSTRACT 

Local species assemblages are likely the result of habitat and landscape filtering. 

However, there is still limited knowledge on how landscape functional connectivity 

complements habitat in mediating local species assemblages in real-world fragmented 

landscapes. In this study, we set up a non-manipulative experimental design in a 

standard production forest to demonstrate how functional connectivity determines the 

spatial distribution of a bird community. We test single- and multispecies spatially 

explicit, landscape functional connectivity models framed within the circuit theory, 

considering also patch attributes describing habitat amount and quality, to weight their 

effects on species occurrence and community assemblage. We found that single-species 

functional connectivity effects contributed positively for occurrence of each species. 

However, they rarely provided competing alternatives in predicting community 

parameters when compared to multispecies connectivity models. Incorporating 

multispecies connectivity showed more consistent effects for all community parameters 

than single species models, since the overlap between species’ dispersal abilities in the 

landscape shows poor agreement. Habitat amount and quality, though less important, 

were also determinant in explaining community parameters while possibly relating to 

the provision of suitable nesting and foraging conditions. Both habitat and landscape 

filters concur to govern community assembly, though likely influencing different 

processes: while landscape connectivity determines which species can reach a patch, 

habitat quality determines which species settle in the patch. Our results also suggest 

that surrogating multispecies connectivity from single species has potential to source 

bias by assuming species perceive landscape and its barriers similarly. Inference on this 

issue must be gathered from as much species as possible. 

 

IV.2. KEYWORDS 

Community assemblage; Metacommunity; Production forests; Forest management; 

Habitat quality; Landscape filtering. 
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IV.3. INTRODUTION 

The ongoing erosion of biological diversity in present landscapes is mostly driven by the 

loss and fragmentation of habitats (Haddad et al., 2015). Consequently, natural or semi-

natural habitats patches are increasingly scattered and isolated, with wildlife 

populations becoming weakly connected in the remnant suitable patches. 

Landscape connectivity relates to both the capacity of the landscape to hold 

viable routes for dispersal through an inhospitable matrix (structural connectivity, 

Calabrese and Fagan, 2004), and the ability of a species to engage in such dispersal 

movements (functional connectivity, Tischendorf and Fahrig, 2000). Enhancing and 

restoring landscape connectivity (Taylor et al., 1993) may facilitate dispersal movements 

(Haddad et al., 2003), the colonization of newly available patches (Haddad et al., 2015), 

and gene flow between populations (Whitlock et al., 2000), thus preventing from local 

extinction (Gonzalez et al., 1998; Bennett et al., 2006; Staddon et al., 2010). Yet, the 

assessment of functional connectivity remains challenging (Correa Ayram et al., 2016). 

In particular, there is still limited insight on how landscape connectivity mediates local 

multispecies assemblages in highly fragmented landscapes (Ryberg and Fitzgerald, 2015; 

Fletcher et al., 2016). 

 Identifying the mechanisms governing multi-species assemblages may allow 

ecologists to understand the spatial and temporal variation of the diversity and 

composition of local communities (Cornell and Harrison, 2014). These mechanisms may 

be dependent on a set of habitat filters that operate locally, determining the set of 

species likely to occur at a given patch. Regarding birds, these features are often related 

with vegetation structure (e.g., Lindenmayer et al., 2012; Martin and Proulx, 2015; 

Salgueiro et al., 2018a), interspecific interactions (Klingbeil and Willig, 2016), or human 

disturbance (e.g., herbicide use, Kroll et al., 2017). However, landscape effects are 

expected to also play a relevant role in a context of high fragmentation or isolation 

(Fahrig, 2002). Because landscapes offer different permeability to different species, local 

assemblages in isolated patches should vary according to species dispersal ability (Liu et 

al., 2018) and sensitivity to barriers (Breckheimer et al., 2014). If patches are highly 

connected for most species, we should expect higher species richness or diversity, as 

most species are able to reach those patches. Otherwise, landscape will filter out species 

for which the unsuitable matrix restricts their movements, and the number of species 
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will be a subset of the regional pool of species. Yet, disentangling the effects of 

landscape connectivity from other key factors for species occurrence (e.g., habitat 

quality) is still lacking in literature (Fletcher et al., 2016). 

Some studies already examined how landscape connectivity influences local 

communities’ diversity. Generally, they acknowledge a positive effect (Fletcher et al., 

2016), though others show equivocal influence when compared to other factors (e.g., 

Ryberg and Fitzgerald, 2015; Lindenmayer et al., 2020). Nonetheless, many studies on 

multispecies connectivity struggle with limitations and much of the evidence today is 

unclear (Frey-Ehrenbold et al., 2013; Kang et al., 2015), and mostly relying on indirect 

inference (Jønsson et al., 2016). For instance, studies often approach landscape 

structural connectivity to measure how it shapes the spatial structure of 

metacommunities (e.g., Velázquez et al., 2019; Lindenmayer et al., 2020). Since these 

approaches solely lie on the spatial arrangement of habitat elements, they often assume 

that different species have the same ability to move between patches of suitable 

habitat, which offers a simplified and sometimes unrealistic view of the effects of 

connectivity.  

In this study, we set up a non-manipulative experimental design taking 

advantage of the patchiness of a landscape subjected to long-standing forestry activity. 

The main aim is to demonstrate how functional connectivity determines the spatial 

distribution of a bird community inhabiting a fragmented landscape. We focus on a 

single most scattered habitat and its distinctive bird community to test single- and 

multispecies connectivity models on species occurrence and community assemblage. By 

depicting habitat amount and quality from all patches and mapping landscape 

attributes, we compare habitat features and landscape filtering effects on local 

communities. We expect that functional connectivity will be able to define species-

specific dispersal abilities, thus proving effective predictors of spatial distribution for 

species. We hypothesize that local community composition and diversity will hence 

respond to the cumulative ability of the species (multispecies connectivity) to reach a 

patch (landscape filtering hypothesis). We test this hypothesis by confronting models 

accounting for multispecies connectivity and models retaining only single-species 

connectivity or neglecting this component. Overall, we envision the effectiveness of 



Chapter IV                                                            Multispecies landscape functional connectivity 

141 
 

multispecies connectivity over single-species approaches, as most species show 

different dispersal abilities or habitat requirements. 

 

IV.4. METHODS 

IV.4.1. Study area 

The study was carried out in Centre-West Portugal (centroid: 39°38’N 9°02’W), covering 

an area of 11,121 ha (Figure IV.1). Landscape is dominated by standard production forest 

involving intensive forestry activities (e.g., logging, plantation, thinning, understory 

management) of maritime pine (Pinus pinaster) and non-native plantations (Eucalyptus 

sp.). Each patch is managed under a rotational scheme of clear-cut patches where shrubs 

prevail (normally persisting for 5 years; ~11.1% cover), newly planted forests subjected 

to regular thinning (~18.0% cover), and old-growth forests (with stands reaching 50 to 

80 years for pines – ~ 41.7% cover; and 9-10 years for eucalypts – ~7.6% cover). This 

resulted in a heterogeneous landscape mosaic of well-defined even-aged stands, which 

vary in composition, density, and age with neighbouring patches. Since forestry is the 

main activity dominating the landscape, open-shrub patches exhibit a scattered 

distribution embedded within the forest matrix (Figure IV.1), thus being highly 

susceptible to fragmentation and isolation effects. Furthermore, they sustain a 

specialized community of shrubland birds confined to such habitats, and may perceive 

forest as a barrier to dispersal due to visual obstruction (e.g., Prevedello et al., 2010). 
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Figure IV.1 – Location and detailed land uses of the total and central study areas where open 
shrubland habitats are embedded in a forest dominated matrix. 

 

 

IV.4.2. Focal species surveys 

We focused our effort in sampling the shrubland bird community. Bird data was obtained 

through 10 min point counts (Bibby et al., 2000) with a distance limit of 100 m. A total 

of 203 point counts were performed on the most representative land uses within the 

study area, 120 of which covered every open-shrub patch (minimum patch size: 0.226 

ha) located at the centre of the study area (central area totalling 3,500 ha, Figure IV.1).  

Sampling took place during the breeding season (between April and May 2014) 

when both resident and migratory species are more conspicuous. Surveys were carried 

out during the period of highest detectability (6:00–11:00 a.m., Palmeirim and Rabaça, 

1994) and with favourable weather conditions (Bibby et al., 2000). All bird species seen 

or heard were recorded, but fly-over individuals were not included in the analysis.  

In order to enhance the statistical power and representativeness of the study area, we 

chose to visit each point once, investing on a larger number of sampled sites at the 

expense of a higher survey effort per site (e.g., Loos et al., 2015). To avoid bias from false 

absences, we calculated the detectability by means of single visit occupancy models 
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(Lele et al., 2012) using the package “detect” (Solymos et al., 2016) (see details in 

Appendix IV.A). After this procedure, we retained four bird species for subsequent 

analyses showing high detectability and representativeness in the study area: Linnet 

(Linaria cannabina), Stonechat (Saxicola rubicola), Dartford Warbler (Sylvia undata) and 

Wren (Troglodytes troglodytes). 

 

IV.4.3. Environmental variables 

We used two types of environmental variables: a set of spatially explicit landscape 

variables, and another set of local vegetation structure and composition to assess 

habitat quality (see Appendix IV.B for a detailed description). 

 Landscape variables relate to topographic characteristics acquired from GIS 

software (version 2.2., Quantum GIS Development Team 2013). A patch-based 

conceptualization was used since it provides a suitable and informative description of 

landscape attributes (Salgueiro et al., 2018b). We produced a thorough land use map 

(minimum patch size: 100 m2) using Bing Maps aerial photography (year: 2014; 

resolution: 30 cm) with field ground validation.  

 We extracted variables describing both landscape composition and 

configuration. Compositional parameters regarded the proportions of the main land 

uses (open shrubland, old-growth pine forest, non-native forest, and young plantations) 

and Euclidean distances to other land uses (urban areas) or roads. Configuration 

patterns were determined by calculating the Shannon’s landscape diversity index, 

number of patches and edge length (considering different edge contrast between the 

vertical structures of the vegetation of adjacent patches; Ries et al., 2004). Each 

candidate variable (except for distances) was measured in two buffer widths from the 

point count (100 m and 250 m) to consider different spatial scales to which species may 

respond (Morelli et al., 2013). 

 We described habitat quality as the characteristics of the patch (habitat amount) 

and vegetation that relate with the provision of appropriate environmental conditions 

for the species at each site (sensu Mortelliti et al., 2010a) regarding the adequacy for 

nesting and foraging purposes. Density (cover) and structure (height and variation of 

height) of vegetation layers (shrubs and trees) were sampled from field measurements. 

Additionally, we identified shrub and tree species occurring at each site, thus providing 
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information on the composition of vegetation. We applied a hierarchical clustering 

technique weighing trait similarity among plant species using package “vegan” (Oksanen 

et al., 2017) to reduce the amount of plant species with similar traits into groups 

providing similar ecological functions to birds (Söderström et al., 2001). We estimated 

vegetation density by pooling together all species belonging to the same group, the most 

relevant being: Trees, Calluna-Erica heath shrublands, Thick thorny shrubs, Sand dunes 

shrubs. 

 

IV.4.4. Functional connectivity modelling 

IV.4.4.1. Species distribution models 

We built spatially explicit, functional connectivity models for each species based on 

circuit theory (McRae et al., 2008). We relied on species distribution models (SDM) to 

infer landscape permeability. This approach has been proved to perform well as a cost-

effective method to build functional connectivity models when data on movement or 

dispersal ability is lacking (Keeley et al., 2016; Ahmadi et al., 2017; Valerio et al., 2019).  

 For SDM, we modelled the occurrence (presence/absence) of each of the four 

focal species in response to the set of spatially explicit landscape variables (GLM with 

binomial error distribution, logistic link function). All variables were standardized (mean 

of 0 and standard deviation of 1) in order to reduce the order of magnitude between 

them and have comparable regression coefficients. Each variable fit was initially 

screened individually (univariated models) while considering the linear and quadratic 

predictor for each of the two buffer distances. We also evaluated interactions between 

shrub understory height and main land uses, since we expected that responses would 

change according to understory’s vertical structure. Modelling selection was based upon 

a stepwise approach where the most parsimonious model (lowest AICc) was selected. 

The model ran on a training subset of data (66%) and was tested on the remaining 

subset. The area under the curve (AUC) was calculated in the testing subset for model 

validation. We repeated this procedure 100 times and averaged the results (coefficients) 

of all models. All four species showed a close relation to shrubland habitats, as we found 

positive responses of the species to either shrub cover or height (see Appendix IV.D). 

The spatially explicit SDM (10 m resolution) was then developed by fitting the averaged 

predicted values for the entire landscape. 
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All models revealed a reasonably high ability to predict species occurrence (AUCLinnet = 

0.86 ± 0.06; AUCStonechat = 0.84± 0.05; AUCDWarbler = 0.82 ± 0.04; AUCWren = 0.74 ± 0.04), 

thus indicating that selected variables were good predictors in describing potential 

suitable areas for each species. 

 

IV.4.4.2. Landscape resistance estimation 

Landscape resistance (the degree to which a landscape restricts movements) was 

computed as an inverse linear function of the SDM. However, since such approaches are 

generally too conservative and species tend to be less demanding when dispersing, we 

additionally considered two negative exponential functions to transform SDM into a 

resistance matrix, following Trainor et al. (2013): 

𝑅 = 100 − 99 ∗
1 − 𝑒−𝑐∗𝐻

1 − 𝑒−𝑐
 

The resistance (R) is an exponential transformation of the predicted probability 

of occurrence from the SDM (H) determined by a factor (c) which defines the non-

linearity of the relation between resistance and habitat suitability. As c increases, the 

steepness of the curve increases, meaning that resistance is low at lower suitability 

values. We generated three resistance surfaces for each species using three 

transformation values: c=0.25 for a linear inverse proportion, c=2 for a slight non-linear 

relation, and c=8 for a steeper non-linear relation (e.g., Valerio et al., 2019). 

 

IV.4.4.3. Modelling procedure 

We created dispersal models based on circuit theory, which represents animal 

movement in the form of an electrical network (McRae et al., 2008) by simulating 

multiple pathways for movement between nodes over a resistance surface. 

 For connectivity modelling purposes, we defined the nodes independently from 

our samples by depicting the patches from the SDM with higher probability of 

occurrence. This avoided high estimates of current density around point samples, which 

could bias our results. We initially determined the cut-off point by looking for the 

threshold that maximized the percentage of correct classifications (presence/absence) 

(Manel et al., 2001; Liu et al., 2005). We then extracted the core areas – high quality 

habitat patches, excluding patches greatly subjected to edge effects due to their shape 
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(e.g., elongated patches; Lindenmayer, 1994). We followed Puddu and Maiorano (2016) 

on these calculations by operating a Morphological Spatial Pattern Analysis on the cut-

off map in the Guidos software (Vogt, 2016). The resulting habitat patches were 

transformed into centroids while retaining the patch size attribute. Minimum patch size 

was set as the minimum area needed to hold a bird’s territory (see Appendix IV.C). 

 Before connectivity modelling, we filtered the number of possible node 

interactions to reduce overestimation of connectivity by neglecting unlikely links. We 

inferred functional distances constrained by each of the resistance matrices using 

package “gdistance” (van Etten, 2017) and used them to calculate the probability of 

connectivity (PC, Saura and Pascual-Hortal, 2007) between all pairs of nodes using the 

‘distance’ parametrization in the Conefor software (version 2.2, Saura and Torné, 2009). 

Node location weighed by its size, and median distance of dispersal of each bird species 

(Appendix IV.C) were used as set-ups for the calculation of PC. All pairwise nodes 

showing PC ≥ 0.5 were considered connected, i.e., we assumed that a node was 

reachable from its pair. All remaining links (PC < 0.5) were discarded from further 

analysis. 

 Finally, to map species-specific functional connectivity we used the Gflow 

software (version 0.1.7, Leonard et al., 2017). Current was set to flow between each pair 

of connected nodes while weighing the conductance (the inverse of resistance 

matrices). After the combinations of likely connected nodes were calculated, current 

density was summed into a single cumulative map representing the probability of 

successful dispersal of an organism (McRae et al., 2008, Koen et al., 2014). This 

procedure was performed for each of the four focal species times the three resistance 

matrices (exponential functions), leading to a total of 12 functional connectivity models. 

 

IV.4.5. Data analysis 

Firstly, we compared the effectiveness of the three functional connectivity scenarios for 

each species in explaining their distribution. At this stage, we focused on bird abundance 

data gathered from open-shrub patches within the central area (Figure IV.1). By 

considering a smaller central area within the modelling range, we avoided several 

misconceptions of landscape connectivity occurring at the limits of study areas (Koen et 

al., 2010; Liu et al., 2018).  
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 We performed GLMs (Poisson error distribution, log link function) to determine 

the effects of each functional connectivity scenario on bird abundance in comparison 

with habitat quality descriptors. Four models were obtained for each of the four focal 

species, one just composed of habitat quality descriptors, and three others additionally 

holding a functional connectivity scenario for each considered c. For each species we 

compared AIC, explained deviance and r-squared values to assess the fit of the models 

and determine which scenario improved the model ability to predict bird abundance. 

Additionally, we calculated the relative importance of each variable through a model 

averaging approach (Burnham and Anderson, 2002). 

 Afterwards, we determined if connectivity would influence shrubland bird 

community-level parameters by testing its effects on species richness, overall 

abundance, dominance of the 1st ranked species, and Simpson’s diversity. The 

effectiveness of single- and multispecies connectivity models was tested for each case 

using GLM (Poisson error distribution for the first two, and Gaussian for both the later). 

Single-species connectivity models consisted on the best resistance scenarios selected 

from the previous species-specific analyses. Multispecies connectivity model was 

defined as the joint cost of shrubland bird species to cross a cell, obtained by averaging 

the values of the best single-species connectivity scenarios (the values were normalized 

to confer the same weight regardless of the species). We also tested the influence of the 

coefficient of variation between all four connectivity models to check the effects of 

uneven values on community parameters. Lower values indicate that all four species 

perceived a given cell with the same cost; otherwise, the cells offered different 

resistance. We used the same modelling procedure and analysed the same parameters 

as for single species models. 

 We further examined species spatial overlap to ascertain if species showed 

similar dispersal abilities. For two species sharing similar dispersal abilities, a higher 

probability of having overlaid conductance paths is expected, and thus a higher 

proportion of spatial overlap. We measured spatial overlap firstly by calculating the 

correlation between pairs of the single-species functional connectivity model (our proxy 

for dispersal ability, Jacobson and Peres-Neto, 2010) using Pearson correlation 

coefficients. Secondly, we determined the spatial overlap by calculating the proportion 

of area (cells) shared by two species in relation to the total amount of area covered by 
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both species, above a given conductance threshold. We have only considered cells 

above the normalized 0.5 value for the multispecies functional connectivity model. We 

compared the observed spatial overlap coefficient for each pair of species with a set of 

100 random permutations of the data, ranging the conductance threshold between 0.2 

and 1 (the lower and higher species-specific normalized values of conductance for all 

species). If two species agree on the same locations for dispersal at a given threshold, 

then the observed spatial overlap will be above the expected random simulations, and 

species show synergistic relation (Breckheimer et al., 2014). Otherwise, species may 

show conflicting dispersal ability, i.e., the dispersal routes for one species do not fit the 

other and observed overlap will be below the expected. If spatial overlap is the same as 

random, then both species show an independent relation. 

 All modelling procedures were performed in R (version 3.0.2., R Development 

Core Team, 2013).  

 

IV.5. RESULTS 

IV.5.1. Connectivity effects on single-species distribution 

In almost every model, the inclusion of functional connectivity improved its ability to 

predict the occurrence of each of the four shrubland bird species, regardless of the 

exponential function used to describe it (Table IV.1). Nevertheless, the magnitude of 

exponential transformation weighed differently for some species. For Stonechat and 

Wren, functional connectivity based on a resistance matrix with a linear inverse 

proportion (c = 0.25) provided the best-fitted results, while for Linnet and Dartford 

Warbler, a slight non-linear relation (c = 2) offered a better outcome. Steeper non-linear 

relations (c = 8) consistently provided lower fit and less parsimonious models with ΔAIC 

> 4 for all species. Among the most conservative approaches (c = 0.25 and c = 2) only 

minor differences were detected (ΔAIC < 2 for all species), either providing good 

alternatives as the best model. 
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Table IV.1 – Parameter estimates used to evaluate the fit of species abundance models (Akaike’s 
information criterion – AIC, and respective variation – ΔAIC; proportion of explained deviance – 
ExpDev; and r-squared value – Rsq). Values in bold signal the best model. 

 

Model 
parameters 

Habitat 
Habitat +  

FCM (c=0.25) 
Habitat +  
FCM (c=2) 

Habitat +  
FCM (c=8) 

Linnet 

 AIC 175.130 157.84 157.560 166.38 

 ΔAIC 17.570 0.280 0.000 8.820 

 ExpDev 0.159 0.310 0.312 0.243 

 Rsq 0.101 0.300 0.306 0.157 

Stonechat 

 AIC 170.350 155.460 155.560 156.650 

 ΔAIC 14.890 0.000 0.100 1.190 

 ExpDev 0.230 0.370 0.370 0.370 

 Rsq 0.188 0.296 0.279 0.255 

Dartford Warbler 

 AIC 234.61 229.99 228.81 233.2 

 ΔAIC 5.800 1.180 0.000 4.390 

 ExpDev 0.379 0.432 0.442 0.406 

 Rsq 0.382 0.462 0.475 0.413 

Wren 

 AIC 258.090 250.750 251.400 258.41 

 ΔAIC 7.340 0.000 0.650 7.660 

 ExpDev 0.115 0.200 0.194 0.130 

 Rsq 0.151 0.256 0.238 0.162 

 

 Bird species response to functional connectivity (FCM) was unequivocally 

positive in all cases (Figure IV.2). In fact, this was the only variable present at all single 

species models, while revealing high relative importance as well (mean RVI = 0.99, see 

Appendix IV.E for detailed results on model estimates).  

Other variables included in the models regarded specific requirements of the 

species. The amount of habitat (PatchArea) was not relevant for Wren only, while all 

other species benefited from increasing patch size. Regarding habitat quality, Stonechat 

occurred in patches with lower shrub height or even in areas with tall shrubs if 

alternatively shrub height was heterogeneous (interaction between ShrbHeight and 

ShrbHeightCV). Dartford Warbler, however, was more abundant in patches with 

homogeneous shrub height. Shrub cover (either as a single factor or in interaction) 

showed a positive, but equivocal, relation to Dartford Warbler and Wren abundances. 

Linnet did not show any particular relation to the structure of the shrub layer, being 

related mostly to its composition. Shrub patches dominated by Calluna/Erica 
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(HeathShrb) and species typical dune vegetation (DuneShrb) tended to have negative 

effects on Linnet abundance. Nevertheless, this species was positively favoured when 

thick, thorny shrubs prevailed (ThornyShrb, namely Genista, Stauracanthus, and Ulex 

species). In fact, the positive effects of this group of plants extended to other species 

such as the Wren and Dartford Warbler. 

 

 

Figure IV.2 – Regression coefficients (dots) and respective confidence interval at 95% (horizontal 
lines) for the best fit model (considering the best functional connectivity model for each case). 
Unequivocal responses (whenever the confidence interval does not cross the zero limit) are 
shown in blue for positive relations, and in red for negative. Otherwise, equivocal responses are 
drawn in black. The plot on the right shows the cumulative stacking of the relative importance 
(RVI) of each variable for each of the species. 

 

 

IV.5.2. Connectivity effects on community assemblages 

Adding multispecies functional connectivity to habitat-only models improved the ability 

to predict total abundance, species richness, 1st rank dominance and Simpson’s 

diversity values (Table IV.2). Single-species functional connectivity rarely provided 

competing alternatives to the multispecies approach, as single models consistently 

produced higher AIC values (ΔAIC > 4 in most cases) and lower fit. Stonechat and Linnet 

showed the best results among single-species functional connectivity, even though its 

influence was not consistent for all parameters: while Stonechat functional connectivity 
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could compete as an alternative for multispecies connectivity model for total 

abundance, Linnet outperforms in all other parameters. Both Dartford Warbler and 

Wren functional connectivity were poor predictors, lowering the fit of the model, in 

some cases to similar levels as the habitat-only model. 

 

Table IV.2 – Estimated values for each of the parameters used to determine the fit of the model 
to community’s parameters (Akaike’s information criterion – AIC, and respective variation – 
ΔAIC; proportion of explained deviance – ExpDev; and r-squared value – Rsq). Values in bold 
signal the best model. 

 

Model  
Parameters Habitat 

Habitat + 
FCMLinnet 

Habitat + 
FCMStonechat 

Habitat + 
FCMD.Warbler 

Habitat + 
FCMWren 

Habitat + 
FCMMultispecies 

Total abundance 

 AIC 419.70 408.65 406.82 413.12 420.78 403.88 

 ΔAIC 15.82 4.77 2.94 9.24 16.90 0.00 

 ExpDev 0.209 0.308 0.321 0.274 0.216 0.359 

 Rsq 0.203 0.308 0.317 0.274 0.206 0.360 

Species richness 

 AIC 342.72 335.76 337.21 338.58 344.23 333.34 

 ΔAIC 9.38 2.42 3.87 5.24 10.89 0.00 

 ExpDev 0.153 0.293 0.270 0.249 0.161 0.331 

 Rsq 0.154 0.305 0.272 0.253 0.157 0.339 

1st rank dominance 

 AIC 16.64 8.72 10.42 15.17 13.68 5.53 

 ΔAIC 11.11 3.19 4.89 9.64 8.16 0.00 

 ExpDev 0.102 0.183 0.169 0.131 0.144 0.207 

 Rsq 0.102 0.183 0.169 0.131 0.144 0.207 

Simpson’s diversity 

 AIC 32.91 26.83 27.20 31.86 30.64 23.33 

 ΔAIC 9.59 3.51 3.88 8.53 7.31 0.00 

 ExpDev 0.148 0.210 0.207 0.172 0.181 0.235 

 Rsq 0.148 0.210 0.207 0.172 0.181 0.235 

 

Multispecies functional connectivity (FCM) showed consistent results for all 

parameters, exhibiting unequivocal positive effects on total abundance, species richness 

and Simpson’s diversity (Figure IV.3). Concurrently, it also revealed a negative effect on 

1st rank dominance. The coefficient of variation of the single-species functional 

connectivity models (FCM_cv) signalling the discrepancy of conductance between 

species, was only selected in the total abundance model, but with an equivocal meaning 

and a poor predictive power. The abundance of dune (DuneShrb) and thorny shrubs 

(ThornyShrb) were also consistent between parameters, revealing the same trends as 
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functional connectivity. However, functional connectivity singled out as the most 

important variable (RVI = 1.00 in all parameters, Appendix IV.F) while dune shrubs 

exhibited lower importance (RVI ranged between 0.73 and 0.85) and thorny shrubs 

showed less consistent values (RVI = [0.87, 1.00]). The amount of habitat (PatchArea) 

was also an important feature (RVI = [0.46, 1.00]) explaining community parameters, 

though it showed inconsistency for species richness. 

All other variables related to shrub structure (height, heterogeneity and cover) 

and composition (abundance of trees and Calluna/Erica heath species) showed 

equivocal (near-zero) effects. Accordingly, their relative importance for the models was 

modest, overall ranging between 0.24 and 0.46. 

 

 

Figure IV.3 – Regression coefficients (dots) and respective confidence interval at 95% (horizontal 
lines) for the best-fit model (considering the multispecies connectivity model for each case) for 
community parameters. Unequivocal responses (whenever the confidence interval does not 
cross the zero limit) are shown in blue for positive relations, and in red for negative. Otherwise, 
equivocal responses are drawn in black. The plot on the right shows the cumulative stacking of 
the relative importance (RVI) of each variable for each community parameter. 

 

IV.5.3. Species spatial overlap 

While comparing dispersal abilities between pairs of species (Figure IV.4), we found that 

results varied between moderate (rs = 0.62 between Linnet and Stonechat; and rs = 0.60 

between Dartford Warbler and Wren) and weak correlations (rs = 0.24 and 0.34 

between Wren and both Linnet and Stonechat, respectively). The proportion of spatial 
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overlap also showed poor agreement between dispersal abilities of the species in some 

cases (Figure IV.4). Wren, for instance, differs from Linnet and Stonechat dispersal 

abilities, since the observed agreement between their conductances is lower than 

expected. Dispersal abilities of these species were, therefore, conflicting. Dartford 

Warbler observed proportion of spatial overlap did not differ greatly from randomized 

simulations. Yet, Linnet and Stonechat agreed between them, so there is a high chance 

that cells with high conductance may serve both species. In fact, both species dispersal 

ability overlap in 50% when considering a threshold of conductance = 0.50. At the same 

threshold, these species overlapped ca. 40% with Dartford Warbler’s dispersal ability 

and a modest 20-30% with Wren.  
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Figure IV.4 – Pairwise comparisons of the dispersal abilities of the four shrubland bird species. 
Top-right corner plots show the Pearson correlation between the conductances of each pair of 
species. Bottom-left plots signal proportion of spatial overlap between two species, measured 
at different thresholds of conductance. Red lines show the observed relation in each case. 
Dashed lines in spatial overlap plots signal the theoretical relationship expected from a 
randomized relation. Species show synergistic relation when the red line is above the expected; 
otherwise, species show conflicting dispersal ability. 

 

IV.6. DISCUSSION 

Our results clearly show that multispecies functional connectivity had a strong and 

positive effect on local community diversity supporting the importance of landscape 

filtering structuring shrub bird community. Highly connected patches held richer and 

more diverse communities, in line with most of the evidence (Fletcher et al., 2016). As 

hypothesized, high landscape connectivity allows birds to move and colonize other 
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suitable patches supporting larger populations and diverse communities (Martensen et 

al., 2008). Conversely, because low connectivity hinders individuals to move freely 

within the matrix, isolated patches hold less species. Therefore, they are more likely to 

be dominated by one or few species for which landscape matrix is more permeable. 

Most importantly, we found the landscape filtering effect to be very consistent and quite 

relevant when compared with other measures of habitat amount or quality, largely 

accounted as utterly important for metacommunity structure (e.g., Ryberg and 

Fitzgerald, 2015; Lindenmayer et al., 2020).  

 However, this does not hinder that habitat filtering still plays a significant role in 

shaping local communities in our landscape. In fact, we also detected similar (though 

slightly smaller) effects of habitat amount: communities that are more diverse occurred 

in larger patches. The response was not conclusive for species richness, though a 

tendency for larger patches to hold more species is noticeable. In a reduced bird 

community like this it is conceivable that even small patches can hold most of the 

species. Nonetheless, this effect may relate to the fact that effective patch size may not 

be restricted to the patch itself, but to the overall network of functionally connected 

patches (Martensen et al., 2008). Thus, connectivity complements habitat amount, 

mitigating possible effects derived from small patch size (the fragmentation threshold 

hypothesis, Fahrig, 2003). 

 Regarding habitat quality, local bird communities tended to be richer and diverse 

in patches where dune and thorny shrubs were more abundant. This may be related to 

the provision of suitable nesting and foraging conditions. For example, concealing nests 

in thorny or thick shrubs may offer additional protection from nest predation. This 

relation has been described for other bird communities (Söderström et al., 2001) or 

species (Svendsen et al., 2015) and was further observed in this study for species usually 

nesting in such conditions (Linnet, Dartford Warbler and Wren). Conversely, this relation 

was not detected in ground-nesting species (Stonechat) (Catry et al., 2010; de Juana and 

Garcia, 2015). Other dune shrubs (e.g., Corema album) often provide edible berries, an 

alternative resource even for mainly insectivorous birds. 

 Our results also show that despite all four species are sympatric each exploits its 

niche in different ways. For instance, Linnet is quite adverse to forested areas, while 

Wren is more tolerant as it also occurs in young pine plantations (Appendix IV.D). 
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Stonechats usually nest and forage on the ground, thus avoiding patches with tall 

shrubs, whereas Dartford Warbler uses dense and thick shrubs for nesting (Catry et al., 

2010). This could explain the modest overlap between single-species functional 

connectivity routes. One may argue that using SDM to build resistance surfaces will 

mostly reflect the occupied niche of each species and may not conveniently capture 

dispersal habitat characteristics (Revilla and Wiegand, 2008; Vasudev et al., 2015), even 

though we compensated for such effects by testing several negative exponential 

transformations. Overlaying data from all species, however, diluted species-specific 

habitat requirements, empowering the multispecies connectivity model. 

 

IV.6.1. Theoretical implications 

Our study provides evidence that community assembly is largely dependent on both 

landscape connectivity and habitat quality. Both these attributes, however, are likely to 

influence different processes of the bird assembly (Lindenmayer et al., 2020). While 

landscape connectivity determines which species are able to reach a patch 

(colonization), habitat quality determines which species are expected to settle in that 

patch (occupancy). Thus, the weight that each of these attributes assumes on 

community assembly will strongly depend on the intrinsic dispersal ability of each 

species to move across the landscape (functional connectivity), as well as on the capacity 

of the patch to provide specific resources for the settlement of different species. For 

instance, while working with mobile species in highly connected landscapes, all of them 

will have the same ability to reach a patch. Since landscape will not offer enough 

resistance to filter species, it is unlikely that landscape connectivity will play a significant 

role in structuring local communities (Poniatowski et al., 2016). The same may hold true 

for impermeable matrices where all species are filtered and only habitat characteristics 

will determine which species occur. Conversely, as species exhibit specific requirements 

while traversing the matrix, the likelihood of each species reaching a patch differs as 

landscape offers uneven resistance. In this study, as landscape matrix filtered out 

species with lower capability to reach a suitable patch, the composition of local 

communities was highly dependent on landscape connectivity. 

 In this context, endorsing one focal or umbrella species to represent an entire 

community (i.e., assume multiple species perceive landscape and its barriers similarly; 
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e.g., Cushman and Landguth, 2012) will hold potential bias, though may seem a cost-

efficient solution (but see Dilkina et al., 2016) when empirical data on movement is 

lacking (Fagan and Calabrese, 2006; Jønsson et al., 2016). Functional connectivity is 

species-specific (Goodwin, 2003; Jacobson and Peres-Neto, 2010) and a suitable 

dispersal habitat/corridor for one species may not favour others (Koen et al., 2014; 

Wang et al., 2018). Our study supports the rationale that umbrella or focal species’ 

connectivity is a poor proxy of multiple species landscape connectivity (McClure et al., 

2016; Wang et al., 2018). Although some approaches show compelling evidence on the 

use of umbrella species, our general recommendation is that approaches dealing with 

communities should not rely only on measuring and enforcing connectivity for a single 

species (see also McClure et al., 2016), but rather gather inference from as much species 

as possible. 

 

IV.6.2. Management implications 

Many studies devoted to understand patterns of biodiversity in fragmented landscapes 

are performed under controlled conditions, using manipulated landscapes (e.g., Haddad 

et al., 2015; Damschen et al., 2019), while this investigation draws evidence from real-

world landscapes. For that reason, our results provide important recommendations for 

management of production forests (e.g., Viljur and Teder, 2018). 

On-the-ground management practices should compromise with both landscape and 

habitat effects. Habitat conditions should relate to the specific requirements of the 

species, mainly those related with the provision of nesting/shelter and foraging 

conditions. In our case, shrubland birds benefited from thick thorny shrubs such as 

Genista triacanthos or Ulex sp. on which they may rely for nesting. Larger patches 

(habitat amount) can hold higher levels of diversity and forest managers should promote 

them instead of smaller patches, thus avoiding small-estate management. Nevertheless, 

even smaller patches can hold significant amounts of diversity if properly connected to 

other suitable patches.  

 Our landscape is quite dynamic since patches are under a rotational scheme 

between short fallow periods where shrubs dominate, and elongated periods of forest 

stand (up to 80 years). For that reason, we suggest that connectivity can be a key factor 

for landscape management. Maintaining connectivity between patches (independently 
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of their size) may guarantee the persistence of animal communities associated to shrub 

patches. In this respect, creating and managing long-lasting shrub corridors that 

compartmentalize landscape should allow the dispersal of species into newly available 

areas as source patches evolve into forest stands. As a positive side effect, this could 

also create discontinuities in the landscape that may prevent the control of forest 

threats such as summer fires. 
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Appendix IV.A: Single visit occupancy model for estimating detectability of shrubland 

birds’ community 

 

In order to enhance the statistical power and representativeness of the study area, we 

chose to visit each point once and invest on a larger number of sampled sites at the 

expense of a higher survey effort per site (e.g., Loos et al., 2015). To avoid bias from 

false absences we only considered for further analysis highly detectable breeding bird 

species common in shrublands of Centre-West Portugal. Therefore, we calculated the 

detectability for Linnet Linaria cannabina, Woodlark Lullula arborea, Iberian Green 

Woodpecker Picus sharpei, Stonechat Saxicola rubicola, Sardinian Warbler Sylvia 

melanocephala, Dartford Warbler Sylvia undata and Wren Troglodytes troglodytes, by 

means of single visit occupancy models (Lele et al., 2012). Bird occurrence was tested 

for probability of occupancy in function of patch size, shrub height and number of trees, 

while accounting for imperfect detection arising from meteorological conditions 

(temperature and nebulosity), time of day (minutes from sunrise) and time of year (days 

from Spring equinox) effects. The models were selected following a backward 

elimination process where the sequential removal of each variable was tested. We 

selected the most informative model with ΔAIC lower than 4. Occupancy models were 

performed using the package “detect” (Solymos et al., 2016). After this procedure, we 

only retained four bird species for subsequent analyses showing higher levels of 

detectability and representativeness in the study area (Table IV.A.1): Linnet, Stonechat, 

Dartford Warbler and Wren. 
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Table IV.A.1 – Single visit occupancy models for each analysed species, estimated detectability 
(d) and standard error (SE), and representativeness in the sampling sites (%). Variables used for 
occupancy estimation: patch area (Patch), mean shrub height (Shrbhei) and number of trees 
(Ntrees). Variables used to estimate detectability: temperature (Temp), cloud cover (Cloud), 
time of day (minutes from sunrise - ToD) and time of year (days from Spring equinox - ToY). 

Species model ( ~ occupancy | detectability) d ± SE % 

Linnet 
Linaria cannabina 

~Patch +ShrbHei +Ntrees | Temp +ToY +ToD 0.661±0.034 24.17 

Woodlark 
Lullula arborea 

~Patch +ShrbHei +Ntrees | Temp +ToY +ToD 0.389±0.008 25.00 

Iberian Green Woodpecker 
Picus sharpie 

~ShrbHei +Ntrees | Cloud +ToY +ToD 0.742±0.040 10.00 

Sardinian Warbler 
Sylvia melanocephala 

~ShrbHei +Ntrees | Temp +Cloud +ToD 0.749±0.030 15.83 

Stonechat 
Saxicola rubicola 

~Patch +ShrbHei +Ntrees | Temp +Cloud +ToD 0.909±0.026 28.33 

Dartford Warbler 
Sylvia undata 

~Patch +ShrbHei +Ntrees | Temp +Cloud +ToY +ToD 0.756±0.008 55.83 

Wren 
Troglodytes troglodytes 

~Patch +ShrbHei +Ntrees | Temp +Cloud +ToY 0.763±0.008 59.17 
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Appendix IV.B: Explanatory variables 

Two types of environmental variables were used in analyses: a set of spatially explicit 

landscape variables, and another set of local vegetation structure and composition to 

assess habitat quality of the patch. 

 Landscape variables relate to topographic characteristics acquired from GIS 

software (QGIS version 2.2, Quantum GIS Development Team, 2013) using a thorough 

land use map. Extracted variables describe both landscape composition and 

configuration (see Table IV.B.1 for additional details). Compositional parameters 

regarded the proportions of the main land uses and Euclidean distances to other less 

representative land uses or infrastructures. Configuration patterns related to the 

landscape Shannon’s diversity index number of patches and edge length. Since the 

landscape shows high patchiness, we explored different edge hardness regarding the 

contrast between the vertical structure of the vegetation of adjacent patches (Ries et 

al., 2004; Reino et al., 2009). Hard (high contrast) edges were considered to exist 

between old-growth pine plantations and open shrubland areas, while soft (low 

contrast) edges were found between old-growth plantations and young plantations, or 

young plantations and open shrubland areas. Total edge considers the sum of both hard 

and soft edges.  

 Habitat quality (sensu Mortelliti et al., 2010) refers to the provision of 

appropriate environmental conditions that promote individual and population 

persistence. We depicted characteristics of the patch (habitat amount) and vegetation 

that relate with density (cover) and structure (height and variation of height) of 

vegetation layers (shrubs and trees) accounted for from field measurements in 20 

random points within 100 m distance from each point count. Additionally, we identified 

shrub and tree species occurring at each site, thus providing information on the 

composition of shrubland habitats. Since different plant species showing similar traits 

may share similar ecological function to birds, we reduced the amount of plant species 

into functional groups (Söderström et al., 2001). We applied a hierarchical clustering 

technique weighing trait similarity among plant species (see Table B.2 for further details 

on plant traits) using package “vegan” (Oksanen et al., 2017). We were able to define 

seven ecological plant groups for which density was estimated pooling together all 

species belonging to the same group: Trees, Shrubs producers of fleshy fruits, Calluna-
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Erica heath shrublands, Degraded heaths dominated by Cistus spp., Thick thorny shrubs, 

Sand dunes related shrubs, and Vines (see Figure B.3 for further details). 

 

Table IV.B.1 – Description of the initial set of explanatory variables used in our study. Two sets 
of variables were considered, according to its source: Landscape variables refer to spatially 
explicit topographic characteristics acquired from GIS software, while Patch quality variables 
refer to habitat structure and composition measured on field at each site. 

 Acronym Description Units 

Landscape  
 

Dist2Urban Distance to urban areas m  
Dist2Road Distance to roads  m  
Dist2Edges Distance to edges  m  
Dist2LCEdge Distance to nearest low contrast edge m  
Dist2HCEdge Distance to nearest high contrast edge m  
ShDiv Shannon's diversity index within 100m and 250m -  
NumberHabitats Number of different land uses within 100m and 250m -  
MeanPatchSize Mean patch size within 100m and 250m ha  
LengthLCE Total length of low contrast edges within 100m and 250m m  
LengthHCE Total length of high contrast edges within 100m and 250m m  
LengthTE Total length of all edges within 100m and 250m m  
ShMedHei Medium height shrub undercover within 100m and 250m ha  
ShLowHei Low height shrub undercover within 100m and 250m ha  
ShTallHei Tall height shrub undercover within 100m and 250m ha  
OpenShrb Open shrubland area within 100m and 250m ha  
YoungPlant Young plantation forest area within 100m and 250m ha  
PineFrst Old-growth pine forest area within 100m and 250m ha  
Non-nativeFrst Non-native forest area within 100m and 250m ha 

Patch quality  
 

PatchArea Habitat amount provided by the patch size ha  
ShrbHeight Mean shrub height within the sampling point (<100m) m  
ShrbHeightCV Coefficient of variation (heterogeneity) of shrub height -  
SrhbCover Percentage cover of shrubs within the sampling point (<100m) %  
NumbTrees Number of trees  within the sampling point (<100m) -  
Trees Percentage cover of trees within the sampling point (<100m) %  
HeathShrb Percentage cover of Calluna-Erica heath shrublands within the sampling 

point (<100m) 
% 

 
DuneShrb Percentage cover of sand dunes related shrubs within the sampling 

point (<100m) 
% 

 
DegrHeathShrb Percentage cover of degraded heaths dominated by Cistus spp. shrubs 

within the sampling point (<100m) 
% 

 
ThornyShrb Percentage cover of thick thorny shrubs (Genista and Ulex) within the 

sampling point (<100m) 
% 

 
FleshFruitShrb Percentage cover of shrubs producers of fleshy fruits within the 

sampling point (<100m) 
% 

 
Vines Percentage cover of vines within the sampling point (<100m) % 
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Table IV.B.2 – Ecological group defined by hierarchical clustering of the plant species found during field sampling and respective description of plant traits 
used for analysis. Data on plant traits was gathered from the following databases: Castroviejo et al. (1986-2014), Franco (1971, 1984), Franco e Afonso (1994, 
1998, 2003), Flora-On (2014), Kleyer et al. (2008), Royal Botanic Gardens Kew (2020). 

Ecological 
Group Scientific name Biotypes 

Growth  
form Branching Height Fruit Zoochory Thorns 

Trees Acacia sp. Phanerophytes Tree Compact >1000cm Legume No No 

Eucalyptus sp. Phanerophytes Tree Open >1000cm Dry No No 

Pinus pinaster Phanerophytes Tree Medium >1000cm Dry No No 

Quercus faginea Phanerophytes Tree Compact >1000cm Dry Yes No 

Quercus suber Phanerophytes Tree Medium >1000cm Dry Yes No 
Shrubs producers 
of fleshy fruits 

Arbutus unedo Phanerophytes Shrub, Tree Compact <1000cm Fleshy Yes No 

Cytisus sp. Phanerophytes Shrub, Tree Medium <1000cm Legume Yes No 

Myrtus communis Phanerophytes Shrub Compact <1000cm Fleshy No No 

Olea europea sylvestris Phanerophytes Shrub, Tree Compact >1000cm Fleshy Yes No 

Pistacia lentiscus Phanerophytes Shrub, Tree Medium <1000cm Fleshy Yes No 

Rhamnus alaternus Phanerophytes Shrub, Tree Medium <1000cm Fleshy Yes No 
Calluna-Erica 
heath shrublands 

Calluna vulgaris Phanerophytes, Chamaephytes Shrub Medium <200cm Dry Yes No 

Pterospartum tridentatum Phanerophytes, Chamaephytes Shrub Compact <200cm Dry No No 

Cistus salvifolius Phanerophytes, Chamaephytes Shrub Medium <200cm Dry No No 

Coronilla glauca Phanerophytes Shrub Open <200cm Dry Yes No 

Erica sp. Phanerophytes, Chamaephytes Shrub, Tree Medium <50cm Dry Yes No 

Erica umbellata Chamaephytes Shrub Medium <50cm Dry Yes No 

Halimium halimifolium Phanerophytes, Chamaephytes Shrub Open <200cm Dry No No 

Quercus coccifera Phanerophytes, Chamaephytes Shrub Compact <200cm Dry Yes No 

Rosmarinus officinalis Phanerophytes, Chamaephytes Shrub Medium <200cm Dry No No 
Sand dunes 
related shrubs 

Carpobrotus edulis Chamaephytes Succulent Open <50cm Fleshy  Yes No 

Corema album Phanerophytes Shrub Open <200cm Fleshy No No 

Daphne gnidium Phanerophytes, Chamaephytes Shrub Open <200cm Fleshy Yes No 
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Ecological 
Group Scientific name Biotypes 

Growth  
form Branching Height Fruit Zoochory Thorns 

Phillyrea angustifolia Phanerophytes Shrub Open <1000cm Fleshy Yes No 

Ruscus aculeatus Geophyte Bush Open <200cm Fleshy Yes No 
Degraded heaths 
dominated by 
Cistus spp 

Cistus crispus Chamaephytes Bush Open <200cm Dry No No 

Cistus psilosepalus Phanerophytes Bush Medium <200cm Dry No No 

Halimium calycinum Phanerophytes, Chamaephytes Bush Open <200cm Dry No No 

Helichrysum stoechas Chamaephytes Bush Open <200cm Dry  No No 

Lavandula sp. Phanerophytes, Chamaephytes Bush Open <200cm Dry No No 
Thick thorny 
shrubs 

Genista triacanthos Phanerophytes, Chamaephytes Shrub Medium <200cm Legume No Yes 

Stauracanthus genistoides Phanerophytes Shrub Compact <200cm Legume No Yes 

Ulex minor Chamaephytes Shrub Compact <200cm Legume No Yes 

Ulex sp. Phanerophytes, Chamaephytes Shrub Compact <1000cm Legume No Yes 
Vines Rubia peregrina Chamaephytes, Scandent Vine Open <1000cm Fleshy Yes No 

Rubus ulmifolius Chamaephytes, Scandent Shrub, Vine Compact <1000cm Fleshy Yes Yes 

Smilax aspera Scandent Vine Open <1000cm Fleshy Yes Yes 
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Figure IV.B.3 – Hierarchical clustering results obtained after analysis of trait similarity between 
plant species found during field sampling, and respective ecological group summarizing key 
characteristics for each group cluster: Trees, FleshFruitShrb (Shrubs producers of fleshy fruits), 
HeathShrb (Calluna-Erica heath shrublands), DegrHeathShrb (Degraded heaths dominated by 
Cistus spp), ThornyShrb (Thick thorny shrubs), DuneShrb (Sand dunes related shrubs), Vines. 
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Appendix IV.C: Species traits 

 

Table IV.C.1 – Bird species trait data on dispersal ability and minimum size area needed to hold 
a breeding pair, used to model functional connectivity. Data was gathered from different 
sources: (a) Prugh et al. (2008); (b) Helm et al. (2006); (c) Bibby (1979); (d) Paradis et al. (1998); 
(e) Coleiro (2002); (f) Vincze et al. (2019); (g) Urbina-Tobias and Fontanilles (2018); (h) Cramp 
(1988, 1992); and (i) Cramp and Perrins (1994). 

 
Species 

Mean Dispersal 
 Distance (km) 

Median Dispersal  
Distance (km) 

Wing aspect  
ratio 

Minimum Area  
(ha) 

Linnet 
(Linaria cannabina) 

4.4 (a) 1.97 (d) 5.03 (f) 0.02-0.07 (i) 

Stonechat 
(Saxicola rubicola) 

11.7 (b) 2.2 (b) 4.24 (f) <0.25 (h) 

Dartford Warbler 
(Sylvia undata) 

3.3 (c) 2 (e) (*) 4.44 (f) (**) 
0.23 (Gascogne); 

0.28 (Sardinia) (g,h) 
Wren 
(Troglodytes troglodytes) 

 4.61 (d) 3.82 (f) 
0.3, 0.37, 0.48 
(England) (h) 

(*) no values available, used available values for S. melanocephala 
(**) no values available, used the mean of other phylogenetically related species: S. atricapilla, S. borin, S. curruca, 
S. communis 
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Appendix IV.D: Results of species distribution models 

 

All models were checked for possible over-dispersion of our response data (Anderson, 

2008) using the package ‘AER’ (Kleiber and Zeileis, 2008). Spearman correlation ranks 

were used to detect collinearity and, whenever highly correlated (rs>0.70; Tabachnik 

and Fidell, 1996), we proceeded only with the most ecologically meaningful variable. 

Variance inflation factors (VIF) where calculated using package ‘car’ (Fox and Weisberg, 

2011) to discard collinearity (VIF scores > 2). We plotted both model residuals and partial 

residuals to check for model fitting and assess significant influence on model 

parameters. Residuals were tested for spatial autocorrelation using spline cross-

correlograms (package ‘ncf’, Bjornstad, 2013). 
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Figure IV.D.1 – Spatially-explicit Species Distribution Models for each of the four analysed 
species (brown to green gradient signals the probability of occurrence). From top left to bottom 
right: Linnet (Linaria cannabina); Stonechat (Saxicola rubicola); Dartford Warbler (Sylvia 
undata); Wren (Troglodytes troglodytes). Grey-shaded polygons signal the sampled shrub 
patches within the central area (delimited by a dashed line). 
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Table IV.D.2 – Averaging results of species distribution models from the 100 runs from the stepwise approach for model selection. For each species we present 
the spatial scale to each variable, the coefficient of regression and respective standard deviation, the type of response (l – linear, or q – quadratic), and the 
number of models where each variable entered (out of 100). 

Variables 
Linnet (Linaria cannabina)  Stonechat (Saxicola rubicola)  Dartford Warbler (Sylvia undata)  Wren (Troglodytes troglodytes) 

Scale Coef. ±SD Rp #mod  Scale Coef. Rp #mod  Scale Coef. Rp #mod  Scale Coef. Rp #mod 

PineFrst 100m -5.76±1.6 (l) 96                

YoungPlant 100m -7.72±2.43 (q) 94  100m -2.76±1.35 (q) 34  250m 2.94±0.56 (l) 30  100m 3.35±0.75 (l) 100 

Non-nativeFrst                250m 2.77±0.63 (l) 48 

OpenShrb 100m 3.74±1.25 (l) 8  100m 3.96±0.69 (l) 100  100m 2.93±0.77 (l) 100  250m -2.57±0.45 (l) 8 

ShMedHei           100m 2.71±0.72 (l) 94      

ShTallHei      100m -4.44±3.12 (l) 86  100m 4.05±0.87 (l) 100  100m 3.96±1.12 (l) 99 

ShLowHei:PineFrst 250m 4.81±1.35 (l) 7       100m -2.16±2.84 (l) 9      

ShMedHei:PineFrst                250m 6.46±1.54 (l) 100 

MeanPatchSize 100m -9.56±3.72 (l) 74  100m 1.9±2.63 (l) 13  100m 4.07±0.64 (q) 10  250m 2.56±0.68 (l) 88 

NumberHabitats 250m -4.6±0.91 (l) 46       250m -4.41±1.32 (q) 58  250m -1.01±3.86 (l) 7 

Dist2Urban            2.22±0.59 (l) 73      

Dist2Road            -1.99±0.35 (l) 8   -1.84±0.41 (l) 28 

Dist2LCEdge            -16.06±5.13 (q) 100      

Dist2HCEdge            1.95±5.26 (l) 10   -7.76±2.25 (q) 3 

LengthHCE      250m 2.05±1.07 (l) 27  100m 2.88±0.75 (l) 91  250m 2.08±0.47 (l) 44 

LengthTE 100m -2.2±1.83 (l) 19                

 

 



Chapter IV                                                            Multispecies landscape functional connectivity 

170 
 

 

Appendix IV.E: Results of functional connectivity models 

 

 

Figure IV.E.1 – Functional connectivity models derived from circuitscape for each of the four 
analysed species. From top left to bottom right: Linnet (Linaria cannabina); Stonechat (Saxicola 
rubicola); Dartford Warbler (Sylvia undata); Wren (Troglodytes troglodytes). Red shading signal 
the areas of higher connectivity for each species, while blue shading mark areas of greater 
resistance to movement. Grey-shaded polygons signal the sampled shrub patches within the 
central area (delimited by a dashed line). 
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Table IV.E.2 – Model coefficients for each of the species-specific tested models considering habitat-only characteristics, or adding functional connectivity 
models with different transformation factor (c). The confidence interval at 95% (CI95%), P value (P: ‘.’ for P < 0.1; ‘*’ for P < 0.05; ‘**’ for P < 0.01; ‘***’ for P 
< 0.001) and relative variable importance (RVI) from model averaging are also shown. 

  Habitat  Habitat + FCM (c=0.25)  Habitat + FCM (c=2)  Habitat + FCM (c=8) 

 Variables Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI 

Linnet 

 (Intercept) -1.32 [-1.73;-0.92] ***     -1.56 [-2.02;-1.10] ***     -1.59 [-2.07;-1.11] ***     -1.48 [-1.94;-1.03] ***   

 PatchArea 0.41 [0.10;0.71] ** 0.94  0.44 [0.11;0.77] ** 0.91  0.46 [0.13;0.8] ** 0.95  0.48 [0.16;0.82] ** 0.97 

 ThornyShrb 0.21 [-0.10;0.51]  0.45  0.43 [0.10;0.75] * 0.94  0.44 [0.11;0.76] ** 0.94  0.38 [0.05;0.71] * 0.82 

 HeathShrb -0.52 [-0.86;-0.18] ** 1.00  -0.41 [-0.77;-0.04] * 0.83  -0.43 [-0.79;-0.06] * 0.87  -0.47 [-0.82;-0.12] ** 0.97 

 DuneShrb -0.35 [-0.88;0.18]  0.45  -0.14 [-0.71;0.43]  0.26  -0.18 [-0.75;0.39]  0.26  -0.22 [-0.77;0.33]  0.30 

 FCM           0.68 [0.38;0.98] *** 1.00   0.71 [0.40;1.02] *** 1.00   0.58 [0.21;0.94] ** 1.00 

Stonechat 

 (Intercept) -0.90 [-1.28;-0.57] ***     -1.27 [-1.78;-0.84] ***     -1.28 [-1.79;-0.85] ***     -1.31 [-1.85;-0.87] ***   

 PatchArea 0.36 [0.09;0.63] ** 1.00  0.51 [0.20;0.82] ** 1.00  0.50 [0.20;0.81] ** 1.00  0.57 [0.25;0.91] *** 1.00 

 ShrbHeight -0.56 [-0.96;-0.20] ** 1.00  -0.62 [-1.05;-0.23] ** 1.00  -0.64 [-1.07;-0.24] ** 1.00  -0.65 [-1.09;-0.25] ** 1.00 

 ShrbHeight:ShrbHeightCV 0.65 [0.26;1.12] ** 1.00  0.59 [0.15;1.12] * 1.00  0.58 [0.15;1.11] * 1.00  0.53 [0.14;1.02] * 1.00 

 FCM       1.00   0.69 [0.36;1.03] *** 1.00   0.70 [0.36;1.05] *** 1.00   0.75 [0.37;1.17] *** 1.00 

Dartford Warbler 

 (Intercept) -0.31 [-0.65;0.02] .     -0.41 [-0.78;-0.04] *     -0.42 [-0.78;-0.05] *     -0.34 [-0.69;0.01] .   

 PatchArea 0.20 [0.01;0.40] * 0.73  0.24 [0.02;0.44] * 0.81  0.26 [0.04;0.47] * 0.86  0.26 [0.03;0.49] * 0.84 

 ShrbHeightCV -0.96 [-1.56;-0.35] ** 1.00  -0.90 [-1.49;-0.31] ** 1.00  -0.86 [-1.44;-0.28] ** 1.00  -0.96 [-1.56;-0.35] ** 1.00 

 SrhbCover:ShrbHeightCV 0.64 [0.05;1.23] * 0.97  0.58 [-0.01;1.17] . 0.85  0.57 [-0.01;1.15] . 0.84  0.64 [0.04;1.26] * 0.94 

 Trees 0.19 [0.01;0.37] * 0.73  0.17 [-0.02;0.35] . 0.64  0.17 [-0.01;0.36] . 0.66  0.18 [0.00;0.36] * 0.70 

 ThornyShrb 0.13 [-0.08;0.35]  0.40  0.16 [-0.06;0.38]  0.46  0.16 [-0.06;0.38]  0.49  0.14 [-0.08;0.36]  0.42 

 FCM           0.27 [0.07;0.47] ** 0.92   0.30 [0.08;0.53] ** 0.96   0.26 [-0.03;0.46] . 0.59 
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  Habitat  Habitat + FCM (c=0.25)  Habitat + FCM (c=2)  Habitat + FCM (c=8) 

 Variables Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI 

Wren 

 (Intercept) -0.30 [-0.52;-0.09] **     -0.35 [-0.58; -0.13] **     -0.36 [-0.58;-0.13] **     -0.31 [-0.52;-0.09] **   

 SrhbCover 0.25 [-0.04;0.54] . 0.71  0.13 [-0.18; 0.44]  0.35  0.14 [-0.17;0.45]  0.35  0.24 [-0.06;0.54]  0.62 

 ThornyShrb 0.22 [-0.01;0.45] . 0.68  0.24 [0.03; 0.45] * 0.83  0.26 [0.04;0.47] * 0.87  0.24 [0.01;0.47] * 0.74 

 DuneShrb 0.18 [-0.024;0.39] . 0.66  0.24 [0.03; 0.44] * 0.83  0.25 [0.04;0.46] * 0.86  0.21 [-0.01;0.43] . 0.67 

 FCM           0.34 [0.13; 0.54] ** 1.00   0.34 [0.11;0.57] ** 1.00   0.14 [-0.11;0.38]   0.38 
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Appendix IV.F: Results of multispecies functional connectivity model 

 

 

Figure IV.F.1 – Multispecies functional connectivity model. Red shading signal the areas of 
higher connectivity for all species, while blue shading mark areas of greater resistance to 
movement. Grey-shaded polygons signal the sampled shrub patches within the central area 
(delimited by a dashed line). 
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Table IV.F.2 – Model coefficients for each of the community parameters tested models considering habitat-only characteristics, or adding single-species or 
multispecies functional connectivity models. The confidence interval at 95% (CI95%), P value (P: ‘.’ for P < 0.1; ‘*’ for P < 0.05; ‘**’ for P < 0.01; ‘***’ for P < 
0.001) and relative variable importance (RVI) from model averaging are also shown. 

 
Variables 

Habitat  Habitat + FCMLinnet  Habitat + FCMStonechat 

 Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI 

Total abundance               

 (Intercept) 1.16 [1.05;1.27] ***  
 0.70 [0.42;0.99] ***  

 0.69 [0.42;0.96] ***  

 PatchArea 0.15 [0.04;0.25] ** 0.98  0.15 [0.05;0.25] ** 1.00  0.17 [0.06;0.27] ** 1.00 

 Trees 0.10 [0;0.2] . 0.69  0.10 [-0.01;0.2] . 0.63  0.07 [-0.04;0.17]  0.38 

 ThornyShrb 0.17 [0.06;0.28] ** 1.00  0.22 [0.11;0.34] *** 1.00  0.19 [0.08;0.3] *** 1.00 

 HeathShrb -0.04 [-0.15;0.08]  0.29  -0.01 [-0.12;0.11]  0.23  -0.05 [-0.16;0.06]  0.30 

 DuneShrb 0.08 [-0.05;0.2]  0.43  0.12 [0;0.25] . 0.66  0.14 [0.01;0.27] * 0.77 

 FCM  
 

  
 0.96 [0.43;1.49] *** 1.00  0.90 [0.44;1.35] *** 1.00 

 FCMcv  
 

  
  

 
  

 
    

Species richness     
     

 
    

 (Intercept) 0.87 [0.74;0.99] ***  
 0.44 [0.1;0.78] *  

 0.50 [0.15;0.85] **  

 PatchArea 0.07 [-0.05;0.2]  0.38  0.06 [-0.07;0.19]  0.34  0.08 [-0.05;0.21]  0.39 

 SrhbCover 0.03 [-0.13;0.2]  0.27  0.02 [-0.15;0.19]  0.27  0.01 [-0.17;0.18]  0.26 

 Trees 0.10 [-0.03;0.22]  0.53  0.08 [-0.05;0.21]  0.42  0.07 [-0.07;0.2]  0.35 

 ThornyShrb 0.14 [0;0.27] * 0.75  0.18 [0.05;0.32] ** 0.92  0.16 [0.02;0.29] * 0.83 

 DuneShrb 0.09 [-0.05;0.23]  0.36  0.14 [-0.01;0.29] . 0.63  0.15 [0;0.3] . 0.67 

 FCM    
 

 0.91 [0.28;1.53] ** 0.99  0.73 [0.18;1.28] ** 0.96 

1st rank dominance     
 

 
   

  
   

 (Intercept) 0.61 [0.56;0.66] ***  
 0.77 [0.65;0.89] ***  

 0.73 [0.59;0.87] ***  

 PatchArea -0.04 [-0.09;0.01]  0.56  -0.04 [-0.09;0.01]  0.53  -0.04 [-0.09;0.01] . 0.60 

 ShrbHeight -0.04 [-0.1;0.02]  0.43  -0.04 [-0.11;0.02]  0.46  -0.04 [-0.11;0.02]  0.44 

 ShrbHeightCV 0.02 [-0.04;0.09]  0.30  0.01 [-0.06;0.07]  0.27  0.00 [-0.07;0.07]  0.25 

 ThornyShrb -0.05 [-0.11;0] . 0.67  -0.06 [-0.12;-0.01] * 0.81  -0.06 [-0.11;0] * 0.76 
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Variables 

Habitat  Habitat + FCMLinnet  Habitat + FCMStonechat 

 Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI 

 DuneShrb -0.03 [-0.08;0.02]  0.41  -0.05 [-0.09;0] . 0.65  -0.05 [-0.11;0] * 0.74 

 FCM     
 -0.35 [-0.6;-0.11] ** 1.00  -0.27 [-0.49;-0.05] * 0.91 

Simpson’s diversity     
      

 
   

 (Intercept) 0.43 [0.38;0.48] ***  
 0.27 [0.13;0.42] ***   0.28 [0.14;0.43] ***  

 PatchArea 0.05 [-0.01;0.1] . 0.64  0.04 [-0.01;0.1] . 0.59  0.05 [0;0.1] . 0.7 

 SrhbCover 0.02 [-0.05;0.09]  0.31  0.02 [-0.05;0.08]  0.27  0.01 [-0.06;0.07]  0.25 

 Trees 0.05 [-0.01;0.1] . 0.59  0.04 [-0.01;0.1]  0.55  0.04 [-0.02;0.09]  0.46 

 ThornyShrb 0.07 [0.01;0.12] * 0.91  0.08 [0.03;0.14] ** 0.98  0.07 [0.08;0.55] ** 0.95 

 DuneShrb 0.04 [-0.01;0.1]  0.52  0.05 [0;0.11] * 0.73  0.06 [0.02;0.13] * 0.83 

 FCM     
 0.36 [0.1;0.62] ** 0.96  0.31 [0.01;0.12] ** 0.94 
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Table IV.F.2 (cont.) – Model coefficients for each of the community parameters tested models considering habitat-only characteristics, or adding single-species 
or multispecies functional connectivity models. The confidence interval at 95% (CI95%), P value (P: ‘.’ for P < 0.1; ‘*’ for P < 0.05; ‘**’ for P < 0.01; ‘***’ for P < 
0.001) and relative variable importance (RVI) from model averaging are also shown. 

  Habitat + FCMDWarbler  Habitat + FCMWren  Habitat + FCMMultispecies 

  Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI 

Total abundance               

 (Intercept) 0.70 [0.33;1.07] ***   1.10 [0.81;1.39] ***  
 1.13 [1.02;1.25] ***  

 PatchArea 0.17 [0.07;0.28] ** 1.00  0.15 [0.05;0.25] ** 0.98  0.18 [0.07;0.29] ** 1.00 

 Trees 0.09 [-0.02;0.19]  0.56  0.10 [0;0.2] . 0.68  0.07 [-0.03;0.18]  0.43 

 ThornyShrb 0.18 [0.07;0.29] *** 1.00  0.17 [0.06;0.27] ** 0.99  0.20 [0.09;0.31] *** 1.00 

 HeathShrb -0.05 [-0.17;0.06]  0.33  -0.04 [-0.15;0.07]  0.29  -0.04 [-0.16;0.07]  0.28 

 DuneShrb 0.09 [-0.03;0.22]  0.48  0.08 [-0.05;0.2]  0.41  0.14 [0.01;0.27] * 0.76 

 FCM 0.99 [0.32;1.67] ** 0.98  0.40 [-0.43;1.23]  0.34  0.24 [0.13;0.36] *** 1.00 

 FCMcv          
 0.06 [-0.05;0.18]  0.38 

Species richness          
     

 (Intercept) 0.48 [0;0.95] *   0.84 [0.57;1.11] ***  
 0.84 [0.72;0.97] ***  

 PatchArea 0.09 [-0.04;0.22]  0.45  0.07 [-0.05;0.2]  0.390  0.09 [-0.04;0.22]  0.46 

 SrhbCover 0.01 [-0.16;0.18]  0.26  0.03 [-0.13;0.2]  0.270  -0.02 [-0.19;0.15]  0.26 

 Trees 0.08 [-0.05;0.21]  0.43  0.10 [-0.03;0.22]  0.51  0.07 [-0.06;0.2]  0.34 

 ThornyShrb 0.15 [0.02;0.28] * 0.82  0.13 [0;0.27] * 0.730  0.17 [0.04;0.31] * 0.91 

 DuneShrb 0.10 [-0.04;0.25]  0.47  0.09 [-0.06;0.23]  0.390  0.16 [0.01;0.31] * 0.73 

 FCM 0.93 [0.15;1.72] * 0.88  0.24 [-0.75;1.23]  0.250  0.22 [0.08;0.35] ** 1.00 

1st rank dominance  
    

 
   

     

 (Intercept) 0.69 [0.51;0.86] ***  
 0.76 [0.54;0.97] ***  

 0.61 [0.56;0.66] ***  

 PatchArea -0.04 [-0.09;0.01] . 0.61  -0.05 [-0.11;0] * 0.74  -0.05 [-0.1;0] . 0.72 

 ShrbHeight -0.03 [-0.1;0.04]  0.37  -0.03 [-0.09;0.04]  0.34  -0.02 [-0.09;0.04]  0.32 

 ShrbHeightCV 0.01 [-0.05;0.08]  0.26  0.01 [-0.05;0.07]  0.25  -0.01 [-0.07;0.06]  0.25 

 ThornyShrb -0.06 [-0.11;0] * 0.76  -0.05 [-0.1;0] . 0.66  -0.06 [-0.11;-0.01] * 0.87 
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  Habitat + FCMDWarbler  Habitat + FCMWren  Habitat + FCMMultispecies 

  Coef. CI95% P RVI  Coef. CI95% P RVI  Coef. CI95% P RVI 

 DuneShrb -0.03 [-0.08;0.01]  0.46  -0.03 [-0.08;0.01]  0.46  -0.05 [-0.1;-0.01] * 0.82 

 FCM -0.27 [-0.59;0.04] . 0.61  -0.42 [-0.82;-0.02] * 0.79  -0.08 [-0.13;-0.03] ** 1.00 

Simpson’s diversity  
        

     

 (Intercept) 0.36 [0.18;0.54] ***   0.32 [0.09;0.54] **  
 0.43 [0.38;0.48] ***  

 PatchArea 0.05 [0;0.1] . 0.68  0.06 [0;0.12] * 0.78  0.06 [0.01;0.11] * 0.80 

 SrhbCover 0.02 [-0.05;0.08]  0.29  0.01 [-0.06;0.08]  0.27  0.00 [-0.07;0.06]  0.24 

 Trees 0.04 [-0.01;0.1]  0.55  0.05 [-0.01;0.1]  0.58  0.04 [-0.02;0.09]  0.46 

 ThornyShrb 0.07 [0.01;0.13] * 0.93  0.06 [0.01;0.12] * 0.86  0.08 [0.02;0.13] ** 0.98 

 DuneShrb 0.04 [-0.01;0.1]  0.55  0.04 [-0.01;0.1]  0.55  0.06 [0.01;0.12] * 0.85 

 FCM 0.28 [-0.06;0.62]  0.57  0.40 [-0.03;0.83] . 0.67  0.09 [0.03;0.14] ** 1.00 
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Chapter V General conclusions 

 

Land-use conversion and intensification are at the origin of most human driven 

landscape modifications (Newbold et al., 2015) including habitat loss and fragmentation 

(Lindenmayer et al., 2008; Hooper et al., 2012; Driscoll et al., 2013). Such landscape 

modifications threat global biodiversity (Fischer and Lindenmayer, 2007, Hooper et al., 

2012) and erode genetic diversity (Bruggeman et al., 2010), leading species to the brink 

of extinction and depleting ecosystem services (Haddad et al., 2015; Mitchell et al., 

2015). As landscapes worldwide experience these untamed changes, ecologists need to 

respond with concrete environmental tools and strategies to guide land-use policies and 

propose effective management alternatives aiming sustainable practices (Balmford et 

al., 2003). Understanding the complex interactions between animal communities and 

human-induced landscape changes is pivotal to support these goals. 

This thesis aims at determining the role of structural and functional landscape 

traits and connectivity in mediating the spatial distribution of bird communities 

inhabiting fragmented areas. In order to explore the specific objectives of the thesis as 

well as to depict concrete implications of the studies, we focused on real-world 

landscapes most representative of the Portuguese forestry context, yet largely 

subjected to human intervention. The studies here presented build upon several 

theoretical considerations of the fragmentation research to test their assumptions as 

applied to our specific landscape contexts, uncover the ecological thresholds at which 

changes in species and communities occur, and determine the effects of functional 
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connectivity on the spatial distribution of species and the processes governing 

community assembly. 

The following sections address the main conclusions gathered from the outputs 

of the studies in this thesis. Arising from our findings, we unfold the main contributions 

to the current knowledge and outline further research needed to better understand the 

effects of landscape fragmentation and functional connectivity on bird communities.  

 

V.1. SUMMARY OF THE MAIN FINDINGS 

V.1.1. Assessing patterns of landscape structure in human-modified landscapes 

Inappropriate representations of the landscape can strongly bias species response to 

structural elements, as different conceptualizations of the same landscape differently 

capture its spatial heterogeneity. Chapter II offers a valuable insight on this issue, testing 

the response of several bird species in the two structurally different landscapes to 

measure the adequability of alternative landscape conceptualizations based on 

competing theories (e.g., patch-based approaches derived from the island biogeography 

theory by MacArthur and Wilson, 1967; and gradient-based approaches supported by 

the continuum concept by Austin, 1985; Fischer and Lindenmayer, 2006). 

 We concluded that the adequability of a conceptualization relates to trade-offs 

between the landscape structure and the way species perceive it, namely, how their 

resources are distributed. We found patch-based models to provide suitable 

conceptualizations in both mosaic and variegated landscapes. In mosaic landscapes, 

because patches are internally homogeneous (Bennett et al., 2006), species tended to 

respond similarly as they perceive the landscape structure likewise (Didham et al., 

2012). However, patch-based conceptualizations neglect within patch heterogeneity 

often present in variegated landscapes. In these circumstances, if they are not species-

oriented (i.e., depicting suitable patches from inhospitable matrix for a given species), 

they will likely fail to capture important resources and species responses to their 

availability. Gradient-based approaches, on the other hand, depict spatial heterogeneity 

in a way not achievable by patch-based models, thus better reflecting the spatial 

distribution of resources (e.g., food, nest, shelter). Those models are particularly 

important to understand responses of specialist species to landscape traits (Fischer and 

Lindenmayer, 2006; Price et al., 2009; Stoddard 2010).  
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In a nutshell, patch-based models offer a simplified perception of landscape 

heterogeneity suitable for species with broad requirements (e.g., generalist species), 

since they describe wide attributes of the landscape (e.g., non-forest vs. forest cover). 

Gradient-based models are able to capture spatial heterogeneity, hence providing 

information on the allocation of specific resources, being appropriate for species with 

narrower ecological requirements.  

These results are in agreement with our first hypothesis of the thesis, which 

states that the adequacy of a model to describe species responses to landscape 

structure depends on both landscape topography and species perception. 

These findings imply that species will better respond to landscape models that 

approximate to its own perception of the landscape, and the model that better 

discriminates species-specific resources will be ecologically more meaningful. Since 

different species look for specific resources, their perception of the landscape differs, 

resulting in highly individualistic responses to landscape conceptualization. As corollary, 

artificial landscape classifications despite being able to detect structural landscape 

elements may not serve all species. By overlooking spatial heterogeneity within patches 

we may neglect landscape permeability provided, for instance, by the presence of small 

clusters or scattered trees in large farmland patches (Fischer and Lindenmayer, 2002) 

that can operate as stepping-stones (Saura et al., 2014). 

 

V.1.2. Critical thresholds of the bird community in a highly fragmented landscape 

The variegated structure of the Mediterranean landscape derived from the fuzzy tree 

cover pattern translates into an uneven distribution of resources that change gradually 

and spatially. Therefore, the increasing cover of trees benefits bird species seeking for 

forest habitat conditions providing them with good resources to nest and forage, while 

open farmland birds have the amount and quality of suitable habitat reduced in these 

circumstances. In a landscape where these changes are gradual, we expected that 

species-specific and community-level thresholds occurred along a resource gradient of 

tree canopy cover, determining the spatial patterns of species richness, turnover and 

assemblages (third hypothesis of the thesis; the fragmentation threshold hypothesis by 

Fahrig, 2003). 
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The study presented in Chapter III agrees with the hypothesis by reporting strong 

changes in bird composition occurring between 1% and 10% tree canopy cover, explicitly 

marking the turnover between well-defined assemblages of open-farmland and forest-

dependent birds. However, as many species show some tolerance to low canopy cover, 

open woodlands of sparse tree cover (1 to 25%) favours the co-occurrence of farmland, 

transition and forest species due to the higher habitat heterogeneity (see also, Tellería, 

2001; Sanderson et al., 2009; Bonthoux et al., 2013). This has driven species richness to 

peak at 10% canopy cover. 

 Furthermore, our results also revealed a segregation of species assemblages with 

different species clumping at distinct ranges of the gradient. This segregation was 

somewhat linked to higher levels of specialization (narrower niche width) that constraint 

species to occur at very specific ranges. For instance, farmland species only occurred at 

tree cover canopy densities below 10%, and some of the most emblematic species of 

these systems (e.g., Little Bustard) occurred preferably at densities below 1%. Transition 

species peaked between 1% and 25% canopy cover, suggesting that specialization also 

occurred at intermediate levels of tree canopy cover (Tellería, 2001; Bonthoux et al., 

2013). In contrast, forest species showed a broader distribution within the forest range 

(larger niche width), reflecting the strong plasticity and tolerance of these species by 

also occupying islets of isolated trees and areas of scant tree cover (see also Bonthoux 

et al., 2013). Nevertheless, the probability of occurrence of other forest specialist 

species, which are generally absent in low covered areas, is favoured with increasing 

tree canopy density. 

While aiming at defining the ranges of tree cover most vulnerable to species loss, 

and which best fulfil the requirements for conservation purposes, we face competing 

alternatives that will inevitably result in winners and losers. Managing for 10% tree cover 

may uphold higher bird diversity but may be inadequate to protect other specialist 

species. Because different canopy cover assists different species assemblages, 

prioritizing a single management practice to benefit a single assemblage, may imperil 

the persistence of others in the landscape. Conversely, the traditionally extensive agro-

forestry management resulting from centuries of traditional human activities (e.g., 

agriculture, cattle grazing and forestry; Blondel et al., 2010) that promoted the 

characteristic large scale variegated landscape (Pinto-Correia et al., 2011), may sustain 



Chapter V   General conclusions 

182 
 

a balanced trade-off between species assemblages, as long as isolation effects do not 

hinder the ability of species reaching suitable habitats.  

 

V.1.3. Spatial distribution of bird community driven by functional connectivity  

Landscape functional connectivity strongly and positively influences local community 

diversity by governing the ability of a species to reach a patch while dispersing. In 

Chapter IV we focused this issue by testing the role of single- and multispecies landscape 

connectivity on species’ spatial distribution (fourth hypothesis), and local community 

composition and diversity (fifth hypothesis), following the metacommunities theory by 

Leibold et al. (2004).  

We found that landscape functional connectivity plays a consistent role in 

determining the spatial distribution of species even when compared with descriptors of 

habitat amount or quality whose influence on distribution is largely accounted in the 

literature (e.g., Ryberg and Fitzgerald, 2015; Lindenmayer et al., 2020). We also 

concluded that highly connected patches hold richer and more diverse local 

communities, allowing birds to move and colonize other suitable patches (see also 

Martensen et al., 2008; Fletcher et al., 2016 for similar conclusions). On the other hand, 

less permeable matrices hinder species movement, amplifying the isolation effects of 

patches embedded on them. As a consequence, local communities in more isolated 

patches are less diverse and often dominated by a single species for which landscape 

remains more permeable. 

Further investigating the effectiveness of single-species connectivity to predict 

community composition and diversity, we found that the use of umbrella or focal species 

provided limited information to be used as proxies of multispecies landscape 

connectivity. Because dispersal ability is a species-specific trait (Goodwin, 2003; 

Jacobson and Peres-Neto, 2010) little agreement was found between most species, thus 

concluding that suitable corridors for one species may not favour others (Cushman and 

Landguth, 2012; Koen et al., 2014; Wang et al., 2018). While using a single umbrella or 

focal species one assumes that multiple species perceive landscape and its barriers 

similarly, which will hold potential bias. Although endorsing one single-species can 

provide a cost-efficient solution in some cases (e.g., Cushman and Landguth, 2012; 
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Breckheimer et al., 2014), our general recommendation is that community approaches 

should gather inference from as much species as possible. 

 

V.2. CONTRIBUTION TO THE EXISTING BODY OF KNOWLEDGE 

Our findings contribute to the growing and timely research devoted to understand non-

random spatial patterns of bird distribution and abundance in fragmented landscapes. 

This investigation provides theoretical and practical contributions from real-world 

landscapes, detaching from studies performed in manipulated landscapes under 

controlled conditions, which offer a limited insight while neglecting the casuistic 

topology of the landscapes and the interplay between different drivers governing 

community assembly. Here, we build upon the results of the three studies performed in 

the framework of this thesis to explore their implications to the ecological theory and 

report the contributions for the management of forest landscapes. 

 

V.2.1. Theoretical and conceptual considerations  

V.2.1.1. Individualistic continuum vs. community-unit concept? 

Do organisms respond independently to change (species-specific), or is there an 

interdependence (dynamic synchrony) effect among organisms occurring at the same 

environmental conditions? The conceptualization of communities as coherent and 

functional assemblages, or the sheer sum of species coincidently occurring in space and 

time, is still a non-consensual topic of discussion. The implications of this topic relate to 

the integration of individual responses in complex community dynamics, and to what 

extent the resulting arrangement surrogates discrete assemblages.  

Throughout the thesis this topic was recursively addressed because we expected 

species to perceive and respond to landscape change uniquely and differently (second 

hypothesis) according to their ecological requirements. This hypothesis arose from two 

main concerns, enunciated in Chapter II. Firstly, species exploit multi-dimensional 

niches, and the way multiple resources are spatially distributed hardly comply with an 

explicit categorization of landscape heterogeneity into suitable/unsuitable habitat 

patches. Secondly, patch delimitation forces species to perceive landscape (and 

resources within) similarly, which may originate biased results (Fischer and 

Lindenmayer, 2006; Lindenmayer et al., 2008).  
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All three papers presented in this thesis (Chapters II to IV) offer, to some extent, 

insights upon this topic. In Chapter II, we analysed species responses to landscape 

conceptualizations. We assumed that, if species perceive landscape similarly, a 

consistent agreement around a given conceptualization should be expected. We found 

that patch-based conceptualizations accurately captured the structure of mosaic 

landscapes (such as standard production pine forests), thus supporting the Clementsian 

hypothesis (community-unit). Yet, some species perceived landscape differently, and 

their occurrence is better explained by conceptualizations that provided information 

about important microhabitat resources (e.g., stand characteristics). As we further 

investigated in Chapter IV, shrubland species, though bounded by the same habitat, 

showed very different requirements in terms of habitat amount and quality, which 

further echoed in the ability of the species to disperse, and on the cues they follow to 

find suitable habitat patches. Since functional connectivity differed among species, the 

use of umbrella or a focal species to surrogate the whole community is a potential 

source of bias.  

In Mediterranean oak woodlands the differences were more marked since the 

variegated structure of the landscape challenges human-oriented patch delimitation 

(Fischer and Lindenmayer, 2002; Dunn and Majer, 2007). In such landscape, gradient-

based conceptualizations were able to capture highly detailed and ecologically 

meaningful information on resource allocation for species with specific requirements, 

while species with broad requirements responded better to simplified patch-based 

conceptualizations (see Chapter II). Chapter III provides a comprehensive approach on 

this topic specifically applied to Mediterranean oak woodlands. We found that many 

species distributed continuously along the forest cover range adjusting their optima or 

tolerance ranges to avoid niche overlap (Austin, 1999), which is compatible with the 

Gleasonian perspective (individualistic continuum). However, the patterns related to 

both richness and turnover rates do not assume a clear constant variation along the 

gradient as expected, showing at least one distinct peak, which agrees with the 

Clementsian hypothesis. Thus, species non-randomly overlap within their niche ranges 

suggesting that the bird community is also structured in well-defined assemblages, e.g., 

a marked change in community composition occurs between open grassland and forest 

assemblages. 
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Strong discontinuities in the landscape (e.g., open grassland or forest) generate 

discontinuities in species distribution (e.g., farmland vs forest species), whereas in 

gradients with low patch contrast species tend to distribute individualistically shaping 

their realised niche in the presence of competitors exploring the same resources (Austin, 

1999). Species traits related to their plasticity in using environmental resources (e.g., 

generalist vs specialist) seem to be key to acknowledge this hypothesis. Yet, our results 

are in agreement with the “integrated community concept” proposed by Lortie et al. 

(2004) which recognizes the synergistic effects between the strength and direction 

(positive or negative) of the interspecific relations and species-specific tolerance that 

will influence the cohesiveness of an ecological assemblage.  

 

V.2.1.2. Filtering processes and community assembly 

It is well established in literature and widely considered that local community 

composition and structure are driven by a set of processes able to hierarchically filter 

species from a regional pool of competitors (Cadotte and Tucker, 2017).  

In Chapter IV we investigated the contributions of both landscape and habitat 

filters to provide evidence that community assembly largely depended on both 

landscape connectivity and habitat amount and quality. As both these attributes likely 

influence different processes of bird assembly (Lindenmayer et al., 2020), the weight 

each attribute assumes depends on the species response regarding the composition and 

configuration of the landscape (functional connectivity), and the suitability of the patch 

to provide appropriate resources for each species integrating the community. 

We found that the composition of local communities was highly dependent on 

landscape connectivity as landscape offered uneven resistance. Since the four bird 

species exhibited different requirements while traversing the unsuitable forest matrix, 

the likelihood of each species reaching a specific patch varied. To a lesser extent, habitat 

filtering (habitat amount and patch quality) also played a significant role in shaping local 

communities. Local communities tended to be more complex in larger patches, possibly 

holding more heterogeneous conditions regarding vegetation structure and 

composition, which may provide suitable nesting and feeding conditions for a larger 

number of species (Söderström et al., 2001; Svendsen et al., 2015). 
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 Chapter III also offers some insight on the effects of habitat filtering on bird 

communities. Tree canopy by changing gradually along the landscape acted like a filter: 

as conditions altered some species were benefited and others impaired. Following the 

ecological niche theory, species’ distributions behaved non-linearly to the gradient 

following unimodal (Gaussian) responses (Austin, 2007). Species, thus, presented an 

optima range where they thrived, and beyond which the likelihood of occurrence 

decayed as the conditions farther apart from it deteriorated, reflecting the process of 

habitat filtering. However, because species showed an individualistic behaviour within 

assemblages, adjusting their optima or tolerance ranges to avoid niche overlap (Austin 

1999), we can likely argue that competition also played a role in shaping local 

communities. The issue here is that the species response patterns do not result from 

independent habitat filtering effects, but from the interplay between habitat and 

interaction filters. This means that the effects of both filters may be indivisible from each 

other, and only by measuring the species persistence in the absence of competitors will 

one determine the isolated effects of habitat filtering (Kraft et al., 2015; Cadotte and 

Tucker, 2017).  

However, since the investigation of competition was beyond the scope of this 

thesis, we can only speculate about the combined effects between filters and the extent 

to which they independently contribute to shape local communities. Nevertheless, our 

results suggest that the contribution of combined filtering processes may outmatch the 

classical overview of independent isolated filters acting at different temporal and spatial 

scales in community assembly. Further theoretical and conceptual considerations, as 

well as studies addressing these issues, should consider the interplay between different 

filters and bridge the combined effects between them. 

 

V.2.2. Practical contributions  

V.2.2.1. Management practices of production pine forests 

Landscapes dominated by production pine forests are quite dynamic since patches are 

under a rotational scheme between short fallow periods where shrubs dominate and 

large periods of forest stands (up to 50-80 years). This causes major constraints to birds 

as overall landscape is continuously changing and some habitat patches are somewhat 

ephemeral in their suitability. Landscape dynamics has two major consequences: (1) 
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changes in the suitability of patches potentiate a habitat filtering effect that will affect 

the likelihood of a species to occupy a patch, and (2) modifications in the permeability 

of the involving matrix may impede or enable the dispersal of a species, thus reflecting 

a landscape filtering effect that influences the probability of a species reaching a patch. 

As the processes governing bird community assembly in production pine forests is 

subjected to both habitat and landscape filters, on-the-ground management practices 

should compromise with both effects. 

Habitat filtering effects report the constraints driven by habitat amount and 

quality. Regarding habitat amount, we found that larger patches were, in general, able 

to hold a higher diversity of birds as predicted by the species-areas relationships theory 

(Arrhenius, 1921). As a standard practice, larger patches should prevail over smaller 

ones; yet, patch size may not be restricted to the patch itself and a network of 

functionally connected small patches may alternatively retain and promote high levels 

of diversity (effective patch size, see Martensen et al., 2008). Habitat quality reflects the 

conditions provided by patches that may or may not comply with the ecological 

requirements of each species, namely the provision of nesting/shelter and foraging 

conditions. Our results show that both the structure (e.g., cover, height) and the 

composition of the vegetation determine the ability of a species to settle in a patch. 

However, because species preferences did not agree regarding vegetation structure, the 

results for the overall community parameters were not often consistent among species. 

Still, our findings point out to a consistent positive effect of thick thorny shrubs (such as 

Genista triacanthos or Ulex sp.) which provide safe nesting places, and of shrubs 

producing fleshy fruits (e.g., Corema album) that often provide edible berries. 

Landscape filtering effects, on the other hand, mainly relate to the quality (i.e., 

permeability) of the matrix instead of the patch. We show that maintaining connectivity 

between patches (independently of their size) facilitated the persistence of bird 

communities associated to shrub patches. Therefore, beyond the patch, a strategic 

approach to forest management at the landscape-scale is also required to effectively 

address sustainable exploitation. One possible practice relates to keeping shrub 

corridors or stepping stones patches with diverse characteristics allowing the dispersal 

of different species into newly available areas as patches evolve to other habitats. In 
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addition, maintaining long-standing, high quality habitat patches in the landscape can 

harbour a large number of species and supply species to the neighbouring habitats. 

 

V.2.2.2. Management practices of Mediterranean oak woodlands  

Current management practices are driving Mediterranean agro-ecosystems to either 

management intensification or land abandonment (Pinto-Correia and Mascarenhas, 

1999; Plieninger and Schaar, 2008). As a consequence, the characteristic savannah-type 

structure and high landscape heterogeneity often associated with the tree cover 

gradient may be at risk as the extreme ranges of the open grassland-to-forest gradient 

are presently being favoured. 

Nevertheless, our results suggest that bird specialization occurs along different 

ranges of the gradient, highlighting the potential of the variegated system to hold high 

bird diversity. For instance, species richness can be enhanced by maintaining a low forest 

cover density (≈10% tree canopy cover), complying with the ranges where transition 

species find their optima. Although many forest species are tolerant to low tree canopy 

cover, forest specialist species are rarer, benefiting mostly from dense forests. However, 

farmland birds would benefit from tree cover below 10%, preferably at about 1%. The 

forest cover thresholds found in our study can be used as indicators of this specific 

resource marking the limits of species occurrence where populations may be more 

sensitive to forest cover management. Local management practices should focus, 

therefore, on optimizing the potential of an area by adjusting tree cover to more 

effective conservation targets. However, opting for a heterogeneous tree cover 

management scheme (with areas of very low tree cover intermixed with higher tree 

cover areas) will result in higher species richness at the regional level. 

Furthermore, since both farmland and forest bird species show some tolerance 

to low tree canopy cover, functional connectivity of the landscape may be facilitated by 

its variegated structure or by the existence of small suitable areas that can be used as 

‘stepping stones’ (Fischer and Lindenmayer, 2002; Saura et al., 2014). This hypothesis 

was explored by Herrera and co-authors (2018) who have corroborated that 

heterogeneous forests (with low or uneven canopy cover) were more likely to provide 

linkage habitats for different bird assemblages, even though such habitats may detach 

from the generally conceived requirements of each species. 
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The multi-functional structure of the Mediterranean woodlands allows the 

existence of a more complex community exploring different niches provided by the 

heterogeneity of the landscape (Mulatu et al., 2016). In addition, the same 

heterogeneity supported by the variegated structure, or the existence of small patches, 

facilitates functional connectivity for various species assemblages (Herrera et al., 2018). 

The intensification of the system promoted by agro-environmental policies privileging 

intensive livestock density may result in the breaking of this structure (Pinto-Correia and 

Mascarenhas, 1999), imperilling bird diversity, as well as hindering ecological processes. 

 

V.3. FUTURE DIRECTIONS 

In the last thirty years we have witnessed a considerable and timely advance in the field 

of landscape ecology. Fuelled by the increasing human pressure driving the modification 

of natural landscapes, the awareness of several sectors of the society has now joined 

the concerns of ecologists in preventing these changes and their pervasive effects on 

overall biodiversity and ecosystem services. Within these years, several seminal or 

highly impacting studies have provided innovative and outstanding perspectives in the 

study of habitat fragmentation (Andrén, 1994; McIntyre and Hobbs, 1999; Fahrig, 2001-

2003; Fischer and Lindenmayer, 2007; Haddad et al., 2015), connectivity (Taylor et al., 

1993; Tischendorf and Fahrig, 2000; Fletcher et al., 2016), and community ecology 

(Austin, 1999, Leibold et al., 2004; Lortie et al., 2004). Especially in the last decade many 

tools have been developed and are now available to explore the effects of both 

structural and functional connectivity and its implications for the conservation of species 

and habitats (e.g., McRae et al., 2008; Saura and Tomé, 2009; McGarigal et al., 2012). 

These tools offer a large set of indices and methods specifically designed for that 

purpose based on graph (e.g., Saura et al., 2011; Luque et al., 2012) or circuit theories 

(McRae et al., 2008). 

 As these tools are continuously being updated to produce more precise and 

informative outcomes, the demand for finer-resolution data also grows in order to feed 

the increasingly complex algorithms. Unfortunately, movement-tracking devices have 

not accompanied the rate of development of the analytical tools, at least for small bird 

species, or at affordable costs. Consequently, quantifying functional connectivity is still 

a major concern in current approaches. Ideally, landscape functional connectivity should 
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rely on empirical movement or dispersal data (Zeller et al., 2012). Although birds are still 

on the upper percentile of the most studied taxa regarding connectivity (due to the rapid 

and feasible accessibility of occurrence data), information on species movement, 

dispersal or genetics still bores significant constraints when studying such small animal 

species in spatially scattered populations (Jacobson and Peres-Neto, 2010). The use of 

resistance surfaces based on habitat use or species niche is one of the most considered 

alternatives (e.g., Ahmadi et al.,2017; Valerio et al., 2019), but it possibly leads to 

overestimate resistance to movements. Because dispersal is often a short time event 

and generally occurs in non-habitat patches (Clobert et al., 2012) such models may not 

conveniently capture dispersal habitat characteristics (Revilla and Wiegand, 2008; 

Vasudev et al., 2015). Building scenarios considering non-linear parameterizations of the 

inversion of habitat models has demonstrated potential to produce more credible 

landscape connectivity measures (e.g., Trainor et al., 2013) as it allows accounting for 

larger portions of the landscape enabling dispersal (Keeley et al., 2016). Yet, the lack of 

robust and reliable movement data hampers the development of further research and 

the attainment of evidence-based results over broader and finer scales to tackle the 

already pressing impacts of fragmentation and habitat loss in human-altered landscapes 

(Virkkala et al., 2013). The amount of effort and investment in logistics needed to gather 

such information is still overwhelmingly inaccessible, thus more research and 

development of such technologies is necessary to advance (Engler et al., 2017). 

 Still on technological grounds, the use of unsupervised methods of landscape 

characterization holds enormous potential to monitor landscape and biodiversity 

changes at larger scales. As several approaches available can extract the same type of 

information, with inevitable differences, the consequences can be dramatic when 

determining exact thresholds marking changes in the occurrence of species. Mainly for 

that reason, the adoption of such measures in conservation should always be regarded 

as preventive, and managers should avoid managing too close to the thresholds. More 

detailed and precise information is thus needed addressing the different dimensions of 

the niche and how they interact with each other. Satellite remote sensing, LiDAR and 

other very high-resolution optical information have been made available in recent years, 

offering innovative and unique data to assess spatiotemporal dynamics of vegetation 

productivity and landscape heterogeneity (e.g., Nagendra et al., 2013; Valerio et al., 
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2020). The acquisition of this information, still struggles with constraints of remote 

sensing technology in acquiring highly detailed habitat structures (Bruton et al., 2015), 

especially regarding the vertical complexity of vegetation, or the logistics and financial 

cost of applying over large areas in case of LiDAR technology. Nonetheless, these 

technologies are already, and will most likely continue, to revolutionize the field of 

landscape ecology. 

 On another subject, most fragmentation and connectivity-related studies target 

topics addressing species distribution, movement and demography, or community 

change and assembly processes (see also Chapter I). Yet, the net impact of habitat 

fragmentation and landscape connectivity can extend well beyond species-specific and 

community attributes, and rebound in ecological processes where they are involved in, 

i.e., the provision of ecosystem services. Theory suggests that ecosystem service 

provision can be negatively affected by increasing habitat fragmentation (Bovo et al., 

2018) and reduced landscape connectivity, since it depends on the flow of organisms 

and matter (Mitchell et al., 2013). By imposing constraints to flow, landscapes filter both 

species and matter, thus controlling the likelihood of biotic and abiotic interplay 

(Mitchell et al., 2015). In other words, the ability of species to move throughout the 

landscape will determine the provision of ecosystem services able to occur at any given 

space and time. Though pressing this issue may be, evidence-based approaches are 

notably lacking in literature (Mitchell et al., 2013), and the topics yet to explore are 

plentiful. Overall, it will be necessary to determine how the functional diversity is 

conditioned by landscape composition and configuration, and how it relates to the 

disruption of connectivity and, concomitantly, to the loss or rewiring (if it occurs) of 

interaction networks. Understanding the trade-offs between connectivity change and 

ecosystem services in fragmented landscapes will endow researchers and practitioners 

with improved tools for landscape planning and management (Mitchell et al., 2013). As 

consequence of the improved benefits associated with those services, greater 

awareness on the importance of managing landscape connectivity will be gathered by 

the overall society. Birds are already well acknowledged as ecosystem service providers 

by pollinating plants (Traveset et al., 2015), dispersing seeds (Costa et al., 2018), 

autoregulating food webs (Lourenço et al., 2018) and ecosystems (namely, crop pests: 
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Rey Benayas et al., 2017), which makes this group a suitable model to explore these 

issues.  

As a final plea, increasing landscape connectivity has the potential to minimize 

or reverse fragmentation effects (Diniz et al., 2020) by improving and restoring the 

permeability of the landscape (Taylor et al. 1993). This can potentially buffer against the 

negative (and synergistic) effects of landscape and climate change (Krosby et al., 2010), 

though assisted by other measures such as the increase of habitat amount and quality 

(Hodgson et al., 2009). Landscape managers and policy-makers increasingly address 

ecologists and conservation researchers demanding for concrete solutions to reverse 

connectivity loss, to prevent further biodiversity loss and restore ecosystems services 

(Villard and Jonsson, 2009; Lindenmayer et al., 2008; Driscoll et al., 2013). Yet, the 

effective use of landscape connectivity as a tool in conservation planning is still very 

limited, mainly due to poor communication among the several actors. Communicating 

the outcomes of the research should be a growing commitment of the ecologists to 

promote effective on-the-ground manageable practices accessible to planners, 

managers, policy-makers and the public. 

This thesis attempted to grasp over these objectives. The topics addressed 

concur with both the theoretical frameworks and practical concerns while advancing on 

the current agenda guiding landscape and community ecology, and ultimately 

contributing to the conservation of the natural assets in the two main forest landscapes 

in Portugal. For that reason, the main findings addressed in each chapter are intended 

to report concrete and clear management options, outlining novel and alternative 

perspectives to approach these landscapes. This thesis is, nonetheless, only a small 

window looking at a limited range of the fragmentation panchreston. In a world in 

change, many issues remain unsolved for the uneasy and questioning mind of the 

ecologist. 
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