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Preface

The Ninth Edition of the International Workshop “Dynamical Systems Applied
to Biology and Natural Sciences (DSABNS)” was held at the Department of
Mathematics of the University of Torino, Italy, from February 7th to 9th, 2018.
The workshop program included both theoretical methods and practical applica-
tions, covering research topics in population dynamics, epidemiology of infectious
diseases, eco-epidemiology, molecular and antigenic evolution, and methodological
topics in the natural sciences and mathematics.

Since 2010, the DSABNS workshop, which was upgraded to a conference in
2019, has been organized by the Mathematical Biology Group of the Center for
Mathematics, Fundamental Applications and Operations Research (CMAF-cIO) of
Lisbon University, in collaboration with professors and researchers from Portugal,
Italy, and the Netherlands. From 2010 to 2015, the event was held at Lisbon
University, during which time it acquired a broad organizational structure and
attracted an increasing number of participants. From 2016 to 2017, the workshop
was held in Évora (Portugal) and it then moved to Italy, being held in Torino in
2018 and Naples in 2019. As a traditional “no registration fee” scientific event,
the DSABNS attracts researchers and students from different countries around the
world who draw on their own funding to attend and present their recent scientific
results. A book of abstracts (with ISBN number) is also published at the end of each
event.

The Ninth DSABNS 2018 in Torino attracted the participation of 133 delegates
from 30 countries. There were 13 plenary talks, 10 invited talks, 58 contributed
talks, and a poster session. In this book, we have collected papers based on
the research topics presented during DSABNS 2018, centering mainly on topics
involving ecology and epidemiology but even touching on waste recycling and a
genetic application. Some contributions also involve the application of numerical
techniques to problems of structured populations.

In ecology, the contributions range from a theoretical investigation aimed at
reconstructing the interactions of populations from a niche theory to other issues
as the study of suitable techniques for the assessment of the patterns generated by
invasive species in the spatiotemporal domain.
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In the former case, chapter “Modelling Ecological Systems from a Niche Theory
to Lotka-Volterra Equations”, the concept of fitness landscape allows a stochastic
description of species dynamics and the introduction of the notion of fitness
potential for the evolution of a mutual ecosystem. Feasibility of its thermodynamic
equilibrium, whose distribution is a multinomial negative distribution, is provided
by the study of a master equation. In chapter “Accurate Recognition of Spatial
Patterns Arising in Spatio-Temporal Dynamics of Invasive Species”, it is remarked
that being able to distinguish between the patchy spatial density patterns and
continuous front spatial density patterns is essential for the implementation of
control measures against invasive species. A model consisting of two integro-
difference equations is proposed to investigate various spatial density distributions.
With it, several topological characteristics are generated, among which it is found
that the number of objects in the visual image of a spatial distribution offers the
most reliable conclusion for distinguishing between continuous and patchy spatial
structures. The two most relevant features of the monitoring protocol are found,
namely the threshold density value and the number of sampling locations.

More abstract problems related to population theory are studied in the next
two chapters. In chapter “Collocation Techniques for Structured Populations Mod-
eled by Delay Equations”, an improved numerical scheme is proposed based on
piecewise polynomial collocation to reduce delay systems to systems of ordinary
differential equations or to approximate a periodic solution. For realistic models of
structured populations, the proposed method substantially improves performances
in comparison with the existing ones that rely on an external ordinary differential
equations solver. Its adaptability for the computation of periodic solutions is
demonstrated.

A view differing from the classical predator-prey models is taken in chap-
ter “Herding Induced by Encounter Rate, with Predator Pressure Influencing Prey
Response”, where the effects of herding are investigated, observing that populations
living together have less than well-mixed interactions. A range of models is thus
obtained for a single population, specifically hyperbolic models which exhibit
intermediate growths between the exponential and the logistic ones. In the context
of Lotka-Volterra intermingling populations, this formulation stabilizes coexistence.
For predators, predation pressure is reduced, as well as access to resources. The
latter is modeled via a reduction in carrying capacity with increasing predator
pressure, while predator escape is formulated in terms of the degree of herding. The
latter is the stronger, the larger the predator pressure becomes. Hopf bifurcations
are possible, leading to stable limit cycles for specialist predators and unstable ones
when generalist predators are considered.

Still in the context of ecology, in chapter “Harvesting Policies with Stepwise
Effort and Logistic Growth in a Random Environment” constant and variable effort
harvesting policies to maximize the expected total discounted profit are investigated
over a finite horizon in the presence of stochastic fluctuations naturally occurring
in real-life ecological situations. Due to the inapplicability and other shortcomings
of the optimal variable effort policy, constant effort policies were considered. They
are easy to implement, have no such shortcomings, and surprisingly provide a profit
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that is only slightly lower. The paper then studies variable effort stepwise strategies,
where the effort is kept constant over one or two years and then updated. These
stepwise policies are easy to implement at the cost of reducing the already low
profit advantage of the optimal variable effort strategy.

In chapter “Mathematical Modeling of the Population Dynamics of Long-Lived
Raptor Species: Application to Eurasian Black Vulture Colonies”, a stochastic
approach is also employed for the investigation of the population dynamics of
raptor species. The long-lived Eurasian black vulture colonies are examined via
discrete-time branching models, identified by time rather than by generation. A
distinguishing feature in the population is the consideration of the coexistence of
individuals from different generations. The most informative reproductive parame-
ters are estimated in a non-parametric statistical setting using a Bayesian estimation
procedure. Real data coming from the region of Extremadura (Spain) are used in
the simulations. Specifically, the colonies used for the sampling represent two of
the largest breeding colonies worldwide. They are located in the National Park of
Monfragüe and in the Sierra San Pedro.

Control theory is also employed for waste recycling in chapter “On the Role
of Inhibition Processes in Modeling Control Strategies for Composting Plants”, in
particular for the composting process of biocells. It allows optimization of the ways
to provide air when inhibition due to a high concentration of oxygen occurs, thereby
guaranteeing that the aerobic biodegradation process proceeds smoothly. Special
attention is devoted to the assessment of the minimal cost of the control policy thus
devised.

A further application of control is presented in chapter “Optimal Control of
Invasive Species with Budget Constraint: Qualitative Analysis and Numerical
Approximation”. It concerns the optimal removal of invasive species, addressing
the best temporal resource allocation strategy to achieve it. The optimality system
in the state and control variables is derived, and phase-space analysis is used
to provide qualitative insights about the behavior of the optimal solution. In
particular, a practical situation involving plants is considered. The problem is
reduced to a boundary-valued nearly-Hamiltonian system which is solved by
suitable exponential Lawson symplectic approximations. An application to a real
plant ground-reclaiming case is finally provided.

Control theory also represents the link with the second part of the contributions,
describing investigations performed in the domain of epidemiology. A stabilization
problem for an epidemic model, described by a reaction-diffusion system with
feedback, is considered in chapter “A Shape Optimization Problem Concerning the
Regional Control of a Class of Spatially Structured Epidemics: Sufficiency Condi-
tions”, where sanitation measures are envisaged. The main aim is the assessment of
control programs administered only in a given subdomain of the region of interest
that induce an effective disease eradication in the whole habitat. The sufficient
optimality conditions are obtained and an approximate conceptual algorithm is
discussed.

Vaccination, as an explicit disease control measure accounting for people’s
behavior, is considered in chapter “The Interplay Between Voluntary Vaccination
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and Reduction of Risky Behavior: A General Behavior-Implicit SIR Model for
Vaccine Preventable Infections”. Two broad classes of behavior-implicit SIR models
are reviewed: prevalence-dependent vaccination and prevalence-dependent contact
rate. Then behavior-dependent and nonlinear and linear forces of infection are set in
a general framework that also encompasses epidemic memory. These two different
issues are here combined in a single unified approach that allows an assessment of
the complicated interplay between the different behavioral responses due to various
epidemiological parameters. As a result, sustained oscillations of vaccine coverage,
risky behavior, and infection prevalence are obtained.

In epidemiology, a fundamental concept is the disease basic reproduction number
R0. In the presence of parameter uncertainties, the sensitivity estimation of the
stochastic model is allowed by suitable numerical methods using polynomial chaos
expansions. Evaluation of Sobol indices by polynomial chaos-based methods are
presented in chapter “PC-Based Sensitivity Analysis of the Basic Reproduction
Number of Population and Epidemic Models”, showing how R0 is affected by
varying the input parameters. The newly developed computational model for R0
introduced here allows for the efficient and versatile treatment of rather complex
epidemic models.

Finally, an application to genetics is presented in chapter “Linear Dynamics
of mRNA Expression and Hormone Concentration Levels in Primary Cultures
of Bovine Granulosa Cells”. The Gene Regulatory Matrices technique is here
generalized to encompass also hormones, specifically estradiol (E2) and proges-
terone (P4), by constructing a directed weighted graph to model the interactions
of several mRNA encoding enzymes. This allows the calculation of hormone
concentration from the concentration of mRNA. This approach had previously been
attempted only via differential equations, which are, however, limited by the need
for accurate knowledge of the decay rates of hormones and mRNA. The novel
technique with Gene and Hormone Regulatory Matrices allows estimation of the
concentration on the whole network by using only a subset of its nodes. The models
are constructed from data obtained in experiments providing gene expression and
hormone concentration levels for primary bovine granulosa cells.

The collection of selected papers presented in this SEMA SIMAI Springer
Series followed the traditionally rigorous reviewing standards of journals that are
traditional to this series. The authors are indebted and express their thanks to Luca
Formaggia and SIMAI for the kind invitation to contribute to this series.

Trento, Italy Maira Aguiar
Évora, Portugal Carlos Braumann
Amsterdam, The Netherlands Bob W. Kooi
Trento, Italy Andrea Pugliese
Lisbon, Portugal Nico Stollenwerk
Torino, Italy Ezio Venturino
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Harvesting Policies with Stepwise Effort
and Logistic Growth in a Random
Environment

Nuno M. Brites and Carlos A. Braumann

Abstract Recently, we have developed optimal harvesting policies based on profit
optimization in random varying environments. Namely, we have considered a
logistic stochastic differential equation growth model, with the purpose of dis-
cussing the use of variable versus constant effort harvesting policies in terms of
the expected accumulated discounted profit during a finite time interval. Using
realistic parameters, we have concluded that there is only a slight reduction in
profit when choosing the applicable constant effort policy instead of the variable
effort policy, which presents strong disadvantages. Here, we apply a logistic growth
model and a more general profit structure to present alternative policies based on
variable effort, named stepwise policies, where the harvesting effort is determined,
under the optimal variable effort policy, at the beginning of each year (or of each
biennium) but is kept constant during that year (biennium). Replacing the optimal
variable effort policy by these stepwise non-optimal policies has the advantage of
applicability but, at best, considerably reduces the already small profit advantage the
optimal variable effort policy has over the optimal constant effort sustainable policy.
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1 Introduction

Stochastic optimal control methods have been applied to derive optimal harvesting
policies in a randomly varying environment [1, 9]. Since the population size
experiences random fluctuations, it cannot be kept at an equilibrium size. Therefore,
the fishing effort, E(t), must be adjusted at every instant, so that the size of the
population does not go above some threshold value. So, the optimal harvesting effort
will have sudden frequent transitions between maximum or high harvesting efforts
and low or null harvesting efforts. These transitions in effort are not compatible
with the logistics of fisheries. Besides, the period of low or no harvesting poses
social and economical undesirable implications (intermittent unemployment is just
one of them). In addition to such shortcomings, these optimal policies require the
knowledge of the population size at every instant, to define the appropriate level of
effort. The estimation of the population size is a difficult, costly, time consuming
and inaccurate task. Therefore, these policies should be considered unacceptable
and inapplicable.

Braumann [3–5] has considered Stochastic Differential Equation (SDE) harvest-
ing growth models with a constant fishing effort, E(t) ≡ E. For a large class
of models it was found that, taking a constant fishing effort, there is, under mild
conditions, a stochastic sustainable behaviour. Namely, the probability distribution
of the population size at time t will converge, as t → +∞, to an equilibrium
probability distribution (the so-called stationary or steady-state distribution) having
a probability density function (the so-called stationary density). For the logistic
and the Gompertz models, the stationary density was found, and the effort E that
optimizes the steady-state yield was determined. The issue of profit optimization,
however, was not addressed.

In [6] we have determined the constant effort that maximizes the expected profit
per unit time at the steady-state for the specific case of the logistic model. One
might think that a constant effort policy would result in a substantial profit reduction
compared with the optimal variable effort policy, but we have shown that this is not
the case. This new policy, rather than switching between large and small or null
fishing effort, keeps a constant effort and is therefore compatible with the logistics
of fisheries. Furthermore, this alternative policy does not require knowledge of the
population size.

Since the optimal variable effort policy is not applicable, we present here for
the logistic model, intermediate sub-optimal policies, named stepwise policies,
where the harvesting effort is determined at the beginning of each year (or of each
biennium) under the optimal variable effort policy and kept constant during that
year (biennium). These policies are not optimal, but have the advantage of being
applicable, since the changes in effort are less frequent and compatible with the
fishing activity. Furthermore, although we still need to keep estimating the fish stock
size, we do not need to do it so often. Replacing the optimal variable effort policy by
these stepwise policies has the advantage of applicability but, at best, considerably
reduces the already small profit advantage the optimal variable effort policy has over
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the optimal constant effort policy. In some cases, the optimal sustainable policy even
outperforms these stepwise policies in terms of profit (although it might seem so at
first glance, there is no contradiction). In [6] a linear price structure was considered.
We now generalize that structure, and take a more realistic approach, by considering
a quadratic form for the price function.

Section 2 presents the variable effort harvesting policy by applying a dynamic
programming method. In Sect. 3 we present the sustainable approach based on
constant effort. Section 4 shows an application for the Pacific halibut (Hippoglossus
hippoglossus) with realistic biological and fishing parameters in which the stepwise
effort policies are compared with the others by using numerical and Monte Carlo
methods. We end up, in Sect. 5, with the conclusions.

2 Variable Effort Optimal Policy

In a random environment the dynamics of a population subject to harvesting and
following a logistic growth model can be described, as in [6], by the SDE

dX(t) = rX(t)

(
1 − X(t)

K

)
dt−H(t)dt+σX(t)dW(t), X(0) = x > 0, (1)

where X(t) is the population size at time t , measured as biomass or as number of
individuals, r is the population intrinsic growth rate, K is the environment carrying
capacity, H(t) is the harvesting rate, σ measures the strength of environmental
fluctuations, W(t) is a standard Wiener process and x > 0 is the population size
at time 0, which we assume known.

We choose the harvesting rate H(t) as

H(t) = qE(t)X(t),

which is the most traditional form (see, for instance, [7–9]), where q > 0 is a
constant representing the fraction of biomass harvested per unit of effort and per
unit time and E(t) corresponds to the effort exerted on the population at time
instant t . We assume E(t) to be non-anticipating, i.e., it only depends on information
available up to time t (included) and to be constrained as

0 ≤ Emin ≤ E(t) ≤ Emax < ∞. (2)

The profit per unit time can be defined as the difference between sales revenues
and fishing costs, i.e.,

P(t) := R(t)− C(t) = p(H(t))H(t)− c(E(t))E(t), (3)
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where R(t) are the revenues per unit time from the harvested fish, C(t) is the cost
per unit time derived from fishing with effort E(t), p(H(t)) denotes the price per
unit yield and c(E(t)) is the cost per unit effort. We assume that the unit prices and
costs have, respectively, the form

p(H(t)) = p1 − p2H(t) and c(E(t)) = c1 + c2E(t),

where p1 ≥ 0, p2 ≥ 0, c1 ≥ 0 and c2 > 0 are constants, slightly generalizing the
price structure appearing in [6]. Thus, (3) becomes

P(t) = (
p1qX(t)− c1 − (p2q

2X2(t)+ c2)E(t)
)
E(t).

Given the stochastic nature of X(t), we work with the expected profit per unit time

E [P(t)] = E

[(
p1qX(t)− c1 − (p2q

2X2(t)+ c2)E(t)
)
E(t)

]
. (4)

For our purposes, harvesting begins at the time instant t = 0 and the corresponding
population size is X(0) = x > 0. Furthermore, harvesting continues up to the time
horizon T < +∞ and we work with the profit present value, i.e., future profits are
discounted by a rate δ > 0 accounting for interest rate and cost of opportunity losses
and for other social rates. For a time t in the time interval [0, T ], we define

J (y, t) := E

⎡

⎣
T∫

t

e−δ(τ−t )P (τ )dτ

∣∣∣∣X(t) = y

⎤

⎦ , (5)

which is the expected discounted future profits when the population size at that time
is y.

The determination of the optimal variable effort harvesting policy is in fact
an optimal control problem (OCP), and consists in maximizing the expected
accumulated discounted profit per unite time during a finite time interval, i.e., for
0 ≤ τ ≤ T ,

V ∗ := J ∗(x, 0) = max
E(τ)

Ex

⎡

⎣
T∫

0

e−δτP (τ )dτ

⎤

⎦ , (6)

subject to (1), (2) and to the boundary condition J (X(T ), T ) = 0, obtained from (5).
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The above OCP can be solved by the stochastic dynamic programming theory
through Bellman’s principle of optimality (as in [2]). The associated Hamilton-
Jacobi-Bellman (HJB) equation (see [2, 10]) is

−∂J ∗(X(t), t)

∂t
=max

E(t)

{(
p1qX(t)− c1 − (p2q

2X2(t)+ c2)E(t)
)
E(t)− δJ ∗(X(t), t)

+ ∂J ∗(X(t), t)

∂X(t)

(
r

(
1 − X(t)

K

)
− qE(t)

)
X(t)

+ 1

2

∂2J ∗(X(t), t)

∂X2(t)
σ 2X2(t)

}
. (7)

The optimal variable effort is obtained from the HJB equation (7). Let D be a
function that represents the control switching term present in (7), that is,

D(E) = (
p1qX(t)− c1 − (p2q

2X2(t)+ c2)E(t)
)
E(t)− ∂J ∗(X(t), t)

∂X(t)
qE(t)X(t),

(8)

and denote by E∗
f ree(t) the unconstrained effort resulting from the maximiza-

tion carried out in Eq. (8). Thus, E∗
f ree(t) is obtained by solving the equation

dD(E)/dE = 0 with respect to E, which gives

E∗
f ree(t) =

(
p1 − ∂J ∗(X(t),t)

∂X(t)

)
qX(t)− c1

2
(
p2q2X2(t)+ c2

) . (9)

Representing the constrained optimal effort by E∗(t) and replacing E(t) by E∗(t)
in Eq. (7) yields the maximized HJB

−∂J ∗(X(t), t)

∂t
= (p1qX(t)− c1)E

∗(t)− (p2q
2X2(t)+ c2)E

∗2(t)− δJ ∗(X(t), t)

+ ∂J ∗(X(t), t)

∂X(t)

(
r

(
1 − X(t)

K

)
− qE∗(t)

)
X(t)

+ 1

2

∂2J ∗(X(t), t)

∂X2(t)
σ 2X2(t), (10)

where the effort is given by

E∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Emin, if E∗
f ree(t) < Emin

E∗
f ree(t), if Emin ≤ E∗

f ree(t) ≤ Emax

Emax, if E∗
f ree(t) > Emax,

with E∗
f ree(t), given by (9), being the unconstrained effort (see [8]).
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In summary, to determine the optimal variable effort policy, that is, to determine
the values J ∗(x, 0) and E∗(t), we need to solve (9) and (10) subject to the growth
dynamic given by Eq. (1), and the boundary and initial conditions given above. We
have obtained the solutions of (9) and (10) with numerical methods using a Crank-
Nicolson discretization scheme (as in [6, 10]).

3 Constant Effort Optimal Policy

To apply a constant effort policy, one considers a particular case of Eq. (1) with
E(t) ≡ E, that is,

dX(t) = rX(t)

(
1 − X(t)

K

)
dt−qEX(t)dt+σX(t)dW(t), X(0) = x, (11)

with the assumption r − qE > σ 2/2 to avoid almost sure extinction (see [4]).
From [6], and references therein, we know that the solution of the SDE (11)

exists, is unique and is a homogeneous diffusion process. In addition, there exists
a stationary distribution for the population size, i.e., an equilibrium probability
distribution, with probability density function f (X) = 1

Γ (ρ)
αρXρ−1e−αX (where

Γ (·) represents the Gamma function, ρ = 2(r−qE)

σ 2 − 1 and α = 2r
Kσ 2 ), towards

which the distribution of the population size converges as t →∞. We have denoted
by X∞ the random variable with density f . It has mean value

E[X∞] = K

(
1 − qE

r
− σ 2

2r

)
. (12)

and

E[X2∞] =
(ρ + 1)ρ

α2 = K

(
1 − qE

r

)
E[X∞]. (13)

The expected sustainable profit per unit time (incorporating a generalization of
the price structure presented in [6]) is

E [P∞] = E [(p1 − p2H∞)H∞ − (c1 + c2E)E]

= E

[
(p1 − p2qEX∞)qEX∞ − (c1 + c2)E

2
]

=
(
p1qK

(
1 − qE

r
− σ 2

2r

)
− c1

)
E

−
(
p2q

2K2
(

1 − qE

r
− σ 2

2r

)(
1 − qE

r

)
+ c2

)
E2, (14)
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and the steady-state optimization problem becomes

max
E

E[P∞] =
(
p1qK

(
1 − qE

r
− σ 2

2r

)
− c1

)
E

−
(
p2q

2K2
(

1 − qE

r
− σ 2

2r

)(
1 − qE

r

)
+ c2

)
E2.

If there is a maximum in the admissible range 0 ≤ E <
r−σ 2/2

q
, the optimization

problem consists in solving the cubic equation dE[P∞]/dE = 0, so that the solution
satisfies d2

E[P∞]/dE2 < 0. The resulting optimal sustainable effort, E∗∗, is then
solution of the equation

p1qK

(
1 − qE

r
− σ 2

2r

)
− c1 − p1Kq2

r
E

−2E

(
p2q

2K2
(

1 − qE

r

)(
1 − qE

r
− σ 2

2r

)
+ c2

)

−E2
(
p2q

2K2
(
−q

r

)(
1 − qE

r
− σ 2

2r

)
+ p2q

2K2
(

1 − qE

r

)(
−q

r

))
= 0.

The correspondent optimal expected sustainable profit per unit time, E[P ∗∗∞ ], is

E[P ∗∗∞ ] =
(
p1qK

(
1 − qE∗∗

r
− σ 2

2r

)
− c1

)
E∗∗

−
(
p2q

2K2
(

1 − qE∗∗

r
− σ 2

2r

)(
1 − qE∗∗

r

)
+ c2

)
E∗∗2. (15)

Finally, at the steady-state, the mean value of the population under the optimal effort
E∗∗ is

E[X∗∗∞] = K

(
1 − qE∗∗

r
− σ 2

2r

)
. (16)

Note that the equations presented in [6] correspond to the particular case p2 = 0.

4 Comparison of Policies

In [6] we have presented comparisons between the variable effort optimal policy
and the constant effort optimal sustainable policy in terms of the effort and profit
values and the population size. To perform these comparisons we have used a linear
price structure, but here we will apply the quadratic structure using (4) and (15).
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We notice that the profit values given by (6) and (15) can not be directly compared
since the optimal policy yields the optimal expected accumulated discounted profit,
V ∗, over a finite time horizon and the optimal sustainable policy yields the optimal
expected profit per unit time, E[P ∗∗∞ ], for a large time horizon T →+∞. However,
both profits can be compared by defining the profit per unit time values (∗ refers to
the optimal policy and ∗∗ refers to the optimal constant effort sustainable policy)

P ∗(t) := (p1qX(t)− c1)E
∗(t)− (p2q

2X2(t)+ c2)E
∗2
(t),

P ∗∗(t) := (p1qX(t)− c1)E
∗∗ − (p2q

2X2(t)+ c2)E
∗∗2

,

and using the following quantities of interest:

1. Expected accumulated discounted profit in the interval [0, T ]:

V ∗ := Ex

⎡

⎣
T∫

0

e−δτP ∗(τ )dτ

⎤

⎦ , V ∗∗ := Ex

⎡

⎣
T∫

0

e−δτP ∗∗(τ )dτ

⎤

⎦ . (17)

2. Expected accumulated undiscounted profit in the interval [0, T ]:

V ∗
u = Ex

⎡

⎣
T∫

0

P ∗(τ )dτ

⎤

⎦ , V ∗∗
u = Ex

⎡

⎣
T∫

0

P ∗∗(τ )dτ

⎤

⎦ . (18)

3. Average expected profit per unit time (average weighted by the discount
factors):

P ∗ = V ∗
∫ T

0
e−δτdτ

, P ∗∗ = V ∗∗
∫ T

0
e−δτdτ

. (19)

4. Average expected profit per unit time (unweighted average):

P ∗
u = V ∗

u

T
, P ∗∗

u = V ∗∗
u

T
. (20)

The above values were computed by performing 1000 Monte Carlo simulations
and using a set of parameter values (r,K, q, p1, c1 and c2) from the Pacific
halibut (Hippoglossus hippoglossus) stock found in [7, 8]. Other parameters with
no information (Emin,Emax, σ, x, p2 and δ) where chosen at reasonable values and
the time horizon was set at T = 50 years. The complete set of parameter values is
listed in Table 1.
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Table 1 Parameter values used in the simulations. The Standardized Fishing Unit (SFU) measure
is defined in [8]

Item Description Values Units

r Intrinsic growth rate 0.71 year−1

K Carrying capacity 80.5 · 106 kg

q Catchability coefficient 3.30 · 10−6 SFU−1year−1

Emin Minimum fishing effort 0 SFU

Emax Maximum fishing effort 0.7r/q SFU

σ Strength of environmental fluctuations 0.2 year−1/2

x Initial population size 0.5K kg

δ Discount factor 0.05 year−1

p1 Linear price parameter 1.59 $kg−1

p2 Quadratic price parameter 5 · 10−9 $year · kg−2

c1 Linear cost parameter 96 · 10−6 $SFU−1year−1

c2 Quadratic cost parameter 0.10 · 10−6 $SFU−2year−1

T Time horizon 50 year

Table 2 Numerical comparison between policies of the expected profits 1. to 4. (see expres-
sions (17) to (20)). The percent relative difference between the two policies is denoted by Δ.
Besides the expected values, we also present the standard deviations (sd). Units are in million
dollars for 1. and 2. and in million dollars per year for 3. and 4.

Profit value sd Profit value sd Δ(%)

1. V ∗ 391.082 34.396 V ∗∗ 378.514 31.865 −3.2

2. V ∗
u 1064.048 80.030 V ∗∗

u 1025.457 80.777 −3.6

3. P ∗ 21.303 1.874 P ∗∗ 20.618 1.736 −3.2

4. P ∗
u 21.281 1.601 P ∗∗

u 20.509 1.616 −3.6

For the variable effort policies, the determination of the expected profit val-
ues (17) to (20) was based on a Crank-Nicolson discretization scheme (see [6, 10])
using a time and state space grid designed with n = 150 intervals for time
(corresponding to a time step Δt = 4 months) and with m = 75 intervals for the
state space (corresponding to a space step Δx = 21.47 · 105 kg, with xmax = 2K).
The resulting profit values are shown in Table 2, where the left side refers to the
optimal variable effort policy, the right side refers to the optimal constant effort
policy, and the last column indicates the percent loss in the profit value when using
the second policy instead of the first. For each profit value, the respective standard
deviation value is also shown.

In the first line of Table 2 appears the expected accumulated discounted
profits (17), V ∗ and V ∗∗, over the time horizon T = 50 years. One can see
that the second policy implies a reduction in the expected profit of only 3.2%
compared to the first policy. Assuming a null value for the depreciation rate, i.e.,
δ = 0, implies a 3.6% expected profit reduction when comparing the expected
accumulated undiscounted profits (18). The percent reductions are the same for the
corresponding profits per year (19) and (20), obtained by taking time averages of
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these quantities over the 50 year horizon. The standard deviation values, which
measure the variability across the simulated trajectories, are very similar for both
policies, with the optimal sustainable policy having a slightly lower variability for
the discounted profit and an opposite behaviour for the undiscounted profit.

The observed profit reductions that occur when considering a constant effort
instead of a variable effort are quite small. Moreover, applying a constant effort
policy, drives the fishery manager to maintain across time the same number of
vessels, hooks or number of hours worked (just to name a few possibilities). Of
course, this is extremely advantageous in terms of implementation, and avoids out-
of-model costs such as the purchase of new equipment to sustain increased effort
periods or payment of unemployment benefits during effort reduction periods.

Figure 1 shows what will happen when applying the optimal variable effort
harvesting policy (left side) and the optimal constant effort sustainable policy (right
side), in terms of the evolution, from time t = 0 to time t = T = 50 years, of the
expected population sizes (top), optimal efforts (middle) and profits per unit time
(bottom).

The thin lines of Fig. 1 show what the harvester would typically observe, i.e., one
randomly chosen trajectory corresponding to a possible particular environmental
behaviour. The thicker lines represent averages taken over all the simulated trajec-
tories (the one effectively seen and all the others that might have occurred). The
dashed lines on the right show the exact values at the steady-state for the population
and profit given, respectively, by (16) and (15).

From the harvesters point of view (thin lines), the two policies behave quite
differently. In fact, while the optimal sustainable effort E∗∗ is constant across
time (regardless of the population size), the optimal variable effort E∗(t) changes
quite frequently and abruptly, according to the population dynamics, having periods
of null effort (meaning that the fishery is closed) and periods with maximum
effort (which may involve extra out-of-model costs such as investment in backup
equipment or hiring of extra employees not trained in fishing). This sudden and
frequent changes in effort are not compatible with the fishing activity, since
fishermen cannot accommodate frequent and abrupt changes on the number of
vessels, number of gears, number of hours at the sea, among others. In addition,
since the population size keeps varying, influenced by the random fluctuations of
environmental conditions, a constant evaluation of its size is required.

Besides looking at the variation of the effort over time, it is also interesting to
look at the time variability experienced by the harvester on the the profit per unit
time. If we look at the thin lines at the bottom of Fig. 1 (corresponding to the
environmental conditions randomly selected), we see that the optimal policy has
frequent periods of zero profit (the periods of zero effort) and a much larger profit
variability over time.
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Fig. 1 Mean and randomly chosen sample path for the population, the effort and the profit per
unit time. The optimal variable effort policy is on the left side and the optimal constant effort
sustainable policy is on the right side

Another disadvantage of the optimal variable effort policy is the exhibition of a
possibly dangerous effect near the time horizon, implying a considerable drop of the
average population size (see solid line on top left), corresponding to an increase on
the average effort (see solid line on middle left). This final effort increase is quite
natural. Since “there is no tomorrow”, it is better profitwise to harvest as much as is
profitable “now”, without worrying about stock preservation for near future fishing.
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With the optimal sustainable policy, population size is driven to an equilibrium
probability distribution with an average population size higher than the one of
the variable effort policy. With the constant effort policy, there is no decay of the
expected population size near the end of the time horizon.

So, the optimal policy leads to a highly variable effort, with occurrence of periods
of zero effort and periods of harvesting at maximum effort rates, which imply
frequent and abrupt changes on the number of vessels and gears, number of working
hours and number of fishermen in activity, among others. Thus, the optimal effort
policy is not applicable. We present now a sub-optimal policy, named stepwise
policy, based on the variable effort obtained from the optimal policy, but where
the effort is kept constant during periods of duration τ , say one or two years. We
use τ = vΔt (v is a positive integer) to be a multiple of the time step, Δt , used in
the numerical computations and in the Monte Carlo simulations. Therefore, in this
stepwise policy, for time t in the period [lτ, (l + 1)τ [ = [tlv, t(l+1)v[, we keep the
effort E∗

step(t) = E∗(lτ ) constant and equal to the effort of the optimal policy at the
beginning of the period. We are aware that this policy is not optimal nor stepwise
optimal, but has however the advantage of being applicable, in contrast with the
optimal policy.

We have focused the study on two scenarios: one with constant effort during
periods of one year (annual), denoted by Sa scenario, and the other with constant
effort during periods of two years (biennial), denoted by Sb scenario. For the optimal
sustainable policy, the effort remains unchanged and it is constant for all time
instants, as before.

For scenario Sa , we chose Δt = 4 months = 4/12 years and set the effort
constant during periods of 1 year, i.e., during 3 consecutive time instants (v = 3).
Similarly, for scenario Sb , we kept the effort constant during periods of 2 years,
i.e., we set the effort constant during 6 time instants (v = 6). The case v = 1
corresponds to the discretization required to solve the HJB equation concerning the
previous comparisons between the optimal effort policy and the optimal sustainable
policy.

The first and second columns of Table 3 present, for each scenario, the resulting
profit values (17)–(20) and their standard deviation values, respectively. The third
column shows the percent relative difference between the policy based on stepwise
effort and the optimal variable policy presented before (see values in Table 2).
Similarly, the percent relative difference between the policy based on stepwise effort
and the optimal constant policy (see values in Table 2) is shown in the last column.

From Table 3 one can see that, for the scenario Sa , the stepwise and applicable
policy gives only slightly lower profit values when compared with the inappli-
cable variable effort policy (−1.0% and −0.8%, respectively for discounted and
undiscounted profits). However, comparing the stepwise policy with the (also
applicable) optimal sustainable policy increases the profit values (+2.2% and
+2.8%, respectively for discounted and undiscounted profits). When the stepwise
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Table 3 Expected discounted and undiscounted profit values for the stepwise scenarios Sa (annual
periods) and Sb (biennial). Besides the expected values, we also present the standard deviations.
The percent relative difference between the stepwise policy and the variable effort policy is denoted
by Δ∗ and the percent relative difference between the stepwise policy and the constant effort policy
is denoted by Δ∗∗. Currency values are in million dollars for V ∗

step and V ∗
step,u, and million dollars

per year for P ∗
step and P ∗

step,u

V ∗
step sd Δ∗(%) Δ∗∗(%)

Sa 387.215 34.687 −1.0 +2.2

Sb 376.844 35.255 −3.6 −0.4

V ∗
step,u sd Δ∗(%) Δ∗∗(%)

Sa 1055.103 81.068 −0.8 +2.8

Sb 1029.606 82.899 −3.2 +0.4

P ∗
step sd Δ∗(%) Δ∗∗(%)

Sa 21.092 1.889 −1.0 +2.2

Sb 20.527 1.920 −3.6 −0.4

P ∗
step,u sd Δ∗(%) Δ∗∗(%)

Sa 21.102 1.621 −0.8 +2.8

Sb 20.592 1.658 −3.6 −0.4

effort is applied during a longer biennial periods (scenario Sb), the profit differences
with the optimal effort policy are higher than in the Sa scenario, resulting in profit
reductions of −3.6% and −3.2%, respectively for discounted and undiscounted
profits. On the contrary, applying the stepwise effort policy instead of the optimal
sustainable policy will reduce the profit in −0.4%. In summary, we can conclude
that, choosing the applicable policy with stepwise effort causes slight profit losses
in comparison with the inapplicable variable effort policy and can be, sometimes,
even more profitable than the constant effort policy. The comparison of policies
in terms of the profits per year gives differences similar to the accumulated profit
differences, since the profits per year are proportional to the accumulated profits.

Figure 2 shows the mean and the randomly chosen sample path for the popu-
lation, the effort and the profit per unit time for both stepwise policies, Sa on the
left and Sb on the right. For both scenarios we can see some periods where the
population and profit sample paths variability increases in relation to the variable
effort policy (see left side of Fig. 1). The increase in variability is more pronounced
when we compare the stepwise policy with the constant effort policy (see right side
of Fig. 1). Looking at the thick lines of Figs. 1 and 2, corresponding to the mean of
the 1000 sample paths, we notice a similar behaviour in terms of variability. At the
center part of Fig. 2 one can check the stepwise effort, for both the sample path and
the mean of all simulated paths. Their depicted lines in a form of staircase lend the
name to the policy: stepwise policy.
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Fig. 2 Mean and randomly chosen sample path for the population, the effort and the profit per
unit time. The stepwise policy (with one year steps, Sa ) is on the left side and the stepwise policy
(with two years steps, Sb) is on the right side

5 Conclusions

In this work we have presented numerical comparisons between the optimal policy
with variable effort, the suboptimal policy with stepwise effort and the optimal
sustainable policy with constant effort. The comparisons were realized in terms of
four profit quantities: the expected accumulated discounted profit in a finite time
interval, the expected accumulated undiscounted profit in a finite time interval,
the average expected profit per unit time weighted by the discount factors and the
unweighted average expected profit per unit time.
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To obtain the profit values we have performed 1000 Monte Carlo simulations
using a Crank-Nicolson discretization scheme in time and space of the HJB equation
and an Euler scheme for the population paths. To compute the simulations we have
applied the logistic model to realistic data with parameters from the Pacific halibut
(Hippoglossus hippoglossus).

The profit differences between the two optimal policies are quite small. Also, we
have seen that the optimal policy has frequent strong changes in effort, including
periods of null effort, posing serious logistic applicability problems, producing
social burdens and out-of-model costs (such as unemployment compensations) and
leading to a great instability in the profit earned by the harvester. Furthermore,
unlike the optimal variable effort policy, in the optimal constant effort policy there
is no need to keep adjusting the effort to the randomly varying population size, and
so there is no need to determine the size of the population at all times. This is a
great advantage, since the estimation of the population size is a difficult, costly,
time consuming and inaccurate task. The optimal policy also can create a possibly
dangerous effect near the time horizon implying, on average, a considerable drop
on the population size. On the contrary, the optimal sustainable policy does not
have these shortcomings, is very easy to implement and drives the population to a
stochastic equilibrium.

Since the optimal policy in not applicable, we have presented sub-optimal
policies, named stepwise policies, based on variable effort but with periods of
constant effort. These policies are not optimal, but have the advantage of being
applicable, since the changes on effort are not so frequent and can be compatible
with the fishing activity. Furthermore, although we still need to keep estimating the
fish stock size, we do not need to do it so often. Replacing the optimal variable
effort policy by these stepwise policies has the advantage of applicability but, at
best, considerably reduces the already small advantages they have over the optimal
sustainable policy. In some cases, the much easier to implement optimal constant
effort policy even outperforms these stepwise policies in terms of profit. The
stepwise policies share with the optimal variable effort policy the disadvantage of
having periods of null or low fishing and periods of fishing at the highest rate, with
the corresponding social implications and out-of-models costs.

Similar work on Gompertz and other population growth models and other
population data is under way.
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