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This work addresses the Dirichlet boundary condition
for momentum in the lattice Boltzmann method
(LBM), with focus on the steady-state Stokes flow
modelling inside non-trivial shaped ducts. For this
task, we revisit a local and highly accurate boundary
scheme, called the local second-order boundary
(LSOB) method. This work reformulates the LSOB
within the two-relaxation-time (TRT) framework,
which achieves a more standardized and easy to
use algorithm due to the pivotal parametrization
TRT properties. The LSOB explicitly reconstructs the
unknown boundary populations in the form of a
Chapman–Enskog expansion, where not only first-
but also second-order momentum derivatives are
locally extracted with the TRT symmetry argument,
through a simple local linear algebra procedure,
with no need to compute their non-local finite-
difference approximations. Here, two LSOB strategies
are considered to realize the wall boundary condition,
the original one called Lwall and a novel one Lnode,
which operate with the wall and node variables,
roughly speaking. These two approaches are worked
out for both plane and curved walls, including
the corners. Their performance is assessed against
well-established LBM boundary schemes such as
the bounce-back, the local second-order accurate
CLI scheme and two different parabolic multi-
reflection (MR) schemes. They are all evaluated for
3D duct flows with rectangular, triangular, circular
and annular cross-sections, mimicking the geometrical
challenges of real porous structures. Numerical tests
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confirm that LSOB competes with the parabolic MR accuracy in this problem class, requiring
only a single node to operate.

This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems:
recent results and new methods’.

1. Introduction
The computational fluid dynamics (CFD) modelling of flows in porous media is relevant in a wide
range of applications [1]; from the groundwater movement in aquifers to smaller-scale systems
associated with transport in soils. In all cases, the simulation accuracy gets strongly determined
by the discretization of the bounding geometry [2]. While the lattice Boltzmann method (LBM)
displays numerous advantages as a CFD tool, see [3,4], it formulates on an uniform Cartesian
mesh, by default. Therefore, the task of prescribing boundary conditions over arbitrarily shaped
surfaces requires particular care in order to avoid the inaccurate staircase discretization. This
task is further complicated by the fact that LBM’s working variables correspond to mesoscopic
populations, rather than macroscopic fields [5]. Thus, the LBM realization of hydrodynamic
boundary conditions tends to be made implicitly, through conditions set at the level of the
mesoscopic populations. Such difficulties explain the relentless interest in this topic, which
continues an active area of research [3,4,6]. The motivation of researchers is common: to formulate
LBM boundary schemes that are simultaneously accurate and easy to use. These two assets gain even
greater relevance in the modelling of porous media flows, typically governed by Stokes flow, and
that is bounded by complex and irregular geometries [7–9]. For that reason, below we briefly
revise the state of affairs on the LBM implementation of the no-slip Dirichlet boundary condition.1

Broadly speaking, two families of LBM boundary schemes can be identified to realize the no-slip
condition; they differ according to their operation principle.

The first strategy is the link-wise approach that expresses the unknown incoming populations
through a linear combination of the known components, all restricted to the same link. This family of
boundary schemes is very popular to model Dirichlet conditions in irregular geometries, possibly
due to the good trade-off between accuracy and simplicity of implementation, e.g. [11–20]. The
hallmark of link-wise boundary schemes is the bounce-back (BB) rule [14,15]. The BB is mostly
advocated for its ease of implementation, locality, and exact mass conservation; however, its
application is plagued by two noteworthy deficiencies: (i) grid shifted no-slip walls are located
within first-order accuracy, and (ii) artificial ‘Knudsen-layers’ are developed that accommodate,
but also may distort, the inner flow solution [13,21,22]. These accuracy limitations have motivated
the development of many enhanced link-wise boundary strategies, such as Filipova–Hänel
treatment [23], interpolated BB [24], unified interpolated BB [25], or equilibrium interpolation [18].
While sacrificing some of the BB assets, these strategies improve the geometrical fidelity of
the, otherwise, staircase approximation of mesh-inclined boundaries. Despite this improvement,
the accuracy of the accommodation of flow solutions on walls is still limited to first-order
derivative terms, which justifies their labelling as linear schemes as opposed to parabolic schemes;
the terminology proposed in [11] and also used here. Since the flow curvature dominates the
low Reynolds flow regimes, the account of the second-order derivatives is therefore crucial in
porous flow, and the classical Poiseuille flow clearly demonstrates this standpoint [14]. A related
drawback of these linear schemes is that they tend to corrupt the parametrization properties of the
bulk solution, e.g. leading to viscosity-dependent numerical errors [24,25]; though some of them
were improved [11,18] and implemented locally [11]. The multi-reflection (MR) methods [16] were
designed to methodologically improve these limitations for arbitrarily shaped walls. Compared
to the accuracy of linear schemes, the ‘parabolic’ MR methods correctly describe the first- and
second-order derivative terms in the accommodation of the flow solution, which is consistent
with the order of derivative terms captured by LBM in bulk. The parabolic level of accuracy is

1Other types of boundary conditions in the LBM framework can be found in [10–12] for further details on this topic.
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also supported by the MLI schemes [11] that capture the flow curvature through the directional
velocity Laplacian explicit construction; these ‘parabolic’ schemes model exactly arbitrary grid
rotated Poiseuille flow with their two-point boundary rule. While the two offer the highest
‘parabolic accuracy’ on various problem classes, e.g. [10,26–28], they deal with the shortcomings:
(i) non-locality; (ii) modification of the scheme on edge/corner nodes (missing next directional
neighbour); and (iii) difficulty to independently prescribe normal/tangential conditions [11,12].

The second strategy is the node-based approach where the boundary node populations are
split into equilibrium and non-equilibrium parts, and this latter is approximated by the content
predicted by the Chapman–Enskog expansion [29]. Although these two points are the same as
with the MR rules, in the node-based approach the Chapman–Enskog approximation is applied
differently and simultaneously for all populations lying on the same node, but pertaining to
different links. Since its shear-stress components are only required for the formal derivation
of the Navier–Stokes equation, the Chapman–Enskog series is commonly truncated after the
first-order derivatives, following the finite-difference reconstruction of Skordos [30] or moments-
based approach of Noble [31]. Contemporary to these works, and originally motivated by
the intention to match the grid aligned (straight or diagonal) BB Poiseuille solution exactly,
the second-order derivatives were included into the Chapman–Enskog reconstruction of the
boundary populations, both analytically [14] and numerically [32]. The application of Skordos or
Noble approaches is presently more popular on simple straight in-node walls that are coincident
with the boundary nodes, e.g. [33–40]. Nonetheless, their extension to operate on more complex
boundary shapes has also been devised, e.g. [41–46]. The first-order derivatives appearing
there are usually computed through finite difference stencils [43,45], but exceptions exist, such
as [36,40,42,47], which perform this task by locally extracting the first-order derivatives from
other known mesoscopic populations. Overall, these approaches pertaining to the node-based
class share the same level of accuracy as the linear schemes; a result that has been confirmed by
several numerical studies, e.g. [42–47]. In practice, a formal equivalent accuracy is achievable with
the local implementation of ‘linear’ MR schemes [11], while the finite-difference approximations
involve a larger stencil. Contrary to these approaches, the local LSOB reconstruction [21,48] also
includes the second-order derivatives into: (i) the population expansion, following [14]; and (ii)
the Taylor expansion along the normal direction between the grid and the wall, following [32].
The distinctive point is that the LSOB derives the two sets locally, from the stress and the so-called
‘ghost’ moments, respectively. Thus, the LSOB differs from the other LBM boundary schemes,
either link-wise or node-based, in that it supports the parabolic accuracy in a local manner, either
at planar [21] and/or curved [48] surfaces. The LSOB idea was further adapted in [41] for a
moving free-interface front based on the first-order Chapman–Enskog expansion expressed in
interface-aligned, rotated frame; more recently, a downgraded version of LSOB, truncated at first
order, but extended to Navier–Stokes equilibrium just like in [41], was devised by [47], which
implements the no-slip condition on curved walls within the LBM-BGK framework. Although, in
our experience, the linear (local) MR rules tend to be more stable than the parabolic (two-point)
schemes, according to the reports in [7,36,43,45], the non-local finite-difference reconstruction of
the first-order gradient, e.g. [43,45], appears to be more stable than the local one, e.g. [42,47].
Such a seeming contradiction appears to confirm the heuristic stability analysis of the MR
rules; that is, rather than the stencil, it is the scheme coefficients range that determines the MR
stability. Finally, we note that the operation principle of LSOB and MR methodologies retains
the known populations untouched and only prescribes the unknown ones, as opposed to, e.g.
‘regularized’ in-node approaches [36]; the rationale behind the procedure followed here is that
the unreconstructed, high-order kinetic component of the conserved populations shares the bulk
truncation, parametrization and may better serve for invisible accommodation [13,49].

Therefore, the present work intends to revive the long time developed LSOB method [21,48],
by taking a modern look at it. The following three main tasks are undertaken. First, we devise
a more transparent, easy to use formulation of the original LSOB methodology, by re-expressing
it in the TRT symmetrized structure for the d3Q19 lattice. Second, we resolve some issues not
fully contemplated previously, such as the construction of the LSOB linear algebra problem
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and its effect on the method’s support of the viscosity-independent numerical errors [22]. Third
and finally, we compare the LSOB performance against several link-wise schemes, from the
simplest BB and local linear CLI scheme [11] to the two most accurate MR families [11,16]. The
common point for the LBM boundary schemes considered herein is that they support viscosity-
independent numerical errors: this property is not automatic even with the parabolic boundary
rules according to analysis [11,22] but, on top of the physical consistency, it is the only reasonable
way for comparison between their steady-state accuracies. Here, as the first level of verification,
we study the simulation of 3D duct flows featuring different cross-sections [50]. This problem
class is interesting as analytical solutions are available for benchmarking in several non-trivial
geometries [51]. Moreover, pipes are the elemental building blocks of generic porous media
configurations, which is the application goal of this work. Finally, we note that the formulations
and the tests presented here complement the exact application of LSOB to grid inclined 2D
channels early studied [21]. The two works cover the different configuration scenarios expected
in the discretization of no-slip boundaries in pipes.

2. The lattice Boltzmann method two-relaxation-time model: overview
The LBM [3–5] solves for the populations fq(x, t), defined on space x and time t, along a discrete
velocity set, called the lattice, with one immobile c0 = 0 and Qm = Q − 1 non-zero velocity vectors
cq per grid node. The LBM evolves through a succession of streaming and collision steps. Here, the
collision step is the two-relaxation-time (TRT) model [11] formulated on the symmetry argument
that any lattice quantity ψq can be decomposed onto symmetric and anti-symmetric components
as ψ±

q = 1
2 (ψq ± ψq̄), where cq̄ = −cq. Overall, the LBM-TRT evolution rule reads

fq(x + cq, t + 1) = f̂q(x, t), q = 0, 1, . . . , Q − 1, (2.1a)

f̂q(x, t) = [fq + n̂+
q + n̂−

q + Sq](x, t), q = 0, 1, . . . ,
Qm

2
, (2.1b)

f̂q̄(x, t) = [fq̄ + n̂+
q − n̂−

q − Sq](x, t), q = 1, . . . ,
Qm

2
. (2.1c)

The post-collision state f̂q in (2.1) includes the external force source Sq = t�q cqα Fα and the
non-equilibrium post-collision components n̂±

q , which are given by n̂±
q := −n±

q /τ
± with: (i)

non-equilibrium n±
q := (f ±

q − e±
q ), where e±

q denotes the (symmetric/anti-symmetric) equilibrium
components, and (ii) relaxation times τ± of the (symmetric/anti-symmetric) collision modes.
With this parity decomposition introduced, the post-stream populations fq expressed at generic
space/time location (x, t) are written as follows:

fq(x, t) =
[
e+

q + e−
q − τ+ n̂+

q − τ− n̂−
q

]
(x, t). (2.2)

In hydrodynamic models, τ+ determines the fluid kinematic viscosity, as ν = 1
3 (τ+ − 1

2 ), thanks
to the adoption of the hydrodynamic weights t�q [52] (defined below), while τ− is a free tunable

parameter. The two define the key relaxation collision parameter Λ= (τ+ − 1
2 )(τ− − 1

2 ), which
controls the stationary field of non-dimensional TRT solutions [22] at exact discrete level, i.e.
beyond the second-order hydrodynamic limit. The LBM-BGK collision model [52] is retrieved
for τ+ = τ− = τ , which unavoidably recovers Λ= 9ν2.

This work focuses on the simulation of slow flows, modelled by linear Stokes hydrodynamics

∂αP − Fα = ν ∂ββ jα , ∂α jα = 0. (2.3)

Hereinafter the summation convention applies for all d-dimensional vectors, denoted by Greek
letters. The hydrodynamic parameters in (2.3) consider: P pressure (or ρ mass density2), jα flow

2With the equation of state P = c2
s ρ, where c2

s ∈]0, 1[ is a free lattice-dependent parameter in a thermal models [19,20].
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momentum3 and Fα body force density. They are determined by the following discrete velocity
moments ρ =∑Q−1

q=0 fq, jα =∑Q−1
q=1 fq cqα + 1

2 Fα and Fα =∑Q−1
q=1 Sq cqα , where α= 1, . . . , d.

Stokes flow equations are reproduced in LBM-TRT with the prescription of the e±
q equilibrium

e+
q = t�q P(ρ), e−

q = t�q cqα

(
jα − 1

2
Fα

)
, (2.4)

where t�q are isotropic lattice weights, see [4,16,52], which are t�q = {tc, td} = {1/6, 1/12}, for,
respectively, the first (coordinate) and second (diagonal) links for the d3Q19 model. The whole
equilibrium is recovered as eq = e+

q + e−
q . We emphasize that the quadratic velocity term [53,54]

and its possible associated force correction are not required for the Stokes flow modelling.
The non-equilibrium part of populations nq = fq − eq can be accessed through the second-order

Chapman–Enskog expansion [16], which unfolds nq through the perturbation parameter ε, defined
as the ratio of the lattice unit over a characteristic length scale L, i.e. ε = 1/L. This expansion
reads nq = ε n(1)

q + ε2 n(2)
q + O(ε3), which transcribed to TRT framework leads to nq = n+

q + n−
q =

−τ+ n̂+
q − τ− n̂−

q , implying that each term of the approximation obeys n̂+
q ∼ n+(1)

q and n̂−
q ∼ n−(2)

q
in flow problems [11]. This relation permits writing the content of n̂±

q , up to O(ε3) in the modelling
of laminar incompressible flow, as follows [4,11,16,21]:

n̂+
q = t�q cqαcqβ ∂β jα (2.5a)

and
n̂−

q = −ν t�q
(
3cqαcqβcqγ − cqα δβγ − cqβ δαγ − cqγ δαβ

)
∂βγ jα . (2.5b)

The substitution of (2.4) and (2.5) into (2.2) permits the explicit reconstruction of the TRT
populations, up to O(ε3) within the Chapman–Enskog scaling, as follows:

fq = t�q P + t�q cqα

(
jα − 1

2
Fα

)
− τ+ t�q cqαcqβ∂β jα

+ τ− ν t�q
(
3cqαcqβcqγ − cqα δβγ − cqβ δαγ − cqγ δαβ

)
∂βγ jα . (2.6)

Remark. The form of (2.6) in multiple-relaxation-time (MRT) hydrodynamic models [20,41]
only differs with respect to the symmetric (viscous-stress) component, whenever bulk and
kinematic viscosities are computed with different eigenvalues. Yet, for incompressible flow
models, the projection on the bulk viscosity eigenvector vanishes due to the zero divergence value
(see appendix A in [41]), then no change is required, with: (i) n̂+

q determined as in TRT or through
summation over the viscous-tensor post-collision projections, and (ii) n̂−

q determined as in TRT or
through summation over all post-collision projections on the odd-order polynomial eigenvectors
(i.e. third- and fifth-order in d3Q19 lattice). The extension of the reconstruction (2.6) to weakly
compressible Navier–Stokes MRT models may follow [41].

3. Local second-order boundary method
In standard LBM, the geometry is discretized on an uniform Cartesian mesh, with the
computational nodes identified in three types. (i) Solid nodes are sites outside the fluid domain
(ii) Fluid nodes are sites inside the fluid region, where LBM, (2.1), applies; (iii) Boundary nodes xb
are sites also belonging to the fluid region, but with at least one link connected to the outside solid
domain, i.e. xb + cq ∈ solid. At xb we cannot apply (2.1), as the populations entering from outside
the fluid region are unknown. Hence, it is useful to separate the populations f (xb) into two sets:

K = {q | fq is known} and U = {q | fq is unknown}, (3.1)

with dim(K) + dim(U) = Q. In reality, rather than Q, only Qm populations are considered in this
work, as focus is given to steady flows where the rest population f0 shall play an irrelevant role
when reaching its equilibrium.

3In this work, momentum and velocity are regarded as interchangeable quantities, based on jα = ρ0 uα with ρ0 = 1, e.g. [34].
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The purpose of the boundary scheme is to assign the boundary populations within the set
U . This work revives the LSOB approach [21,48], employing a d3Q19 cubic lattice [52,55] in
lieu of the d4Q24 hypercubic lattice, originally used in [21,48], which greatly modernizes and
simplifies the formulation. For illustrative purposes, LSOB is explained through the modelling of
fully-developed flows within channel-like geometries of non-trivial cross-section [51], as is common
with porous media flows. Let us introduce the 3D Cartesian coordinate system (x, y, z) to
describe the unidirectional flow j = jx ex, driven by constant body-force F = Fx ex and/or pressure-
gradient ∇P = ∂xP ex, which undergoes negligible (or zero in periodic case) streamwise variations
∇jx · ex = ∂xjx = 0, so that jx(y, z) is effectively the only momentum unknown. By applying these
simplifications at boundary node xb, the n̂±

q presented in (2.5) reduces to

n̂+
q (xb) = t�q cqx

[
cqy ∂y jx(xb) + cqz ∂z jx(xb)

]
(3.2a)

and
n̂−

q (xb) = −ν t�q cqx

[(
3c2

qy − 1
)
∂yy jx(xb) +

(
3c2

qz − 1
)
∂zz jx(xb)

]
, (3.2b)

where q = 1, . . . , Qm/2. Similarly, the populations fq, in full form given by (2.6), reduce at xb to:

fq(xb) = t�q P(xb) + t�q cqx

(
jx(xb) − 1

2
Fx − τ+ [cqy ∂yjx(xb) + cqz ∂zjx(xb)

]
+ τ− ν

[(
3c2

qy − 1
)
∂yyjx(xb) +

(
3c2

qz − 1
)
∂zzjx(xb)

])
. (3.3)

The reconstruction of fq(xb), with q ∈ U , requires specifying the hydrodynamic fields. The non-
equilibrium fields in (3.3) require the prescription of the momentum derivatives. However,
instead of resorting to finite differences, e.g. [30,32,35,43,45], the unknown derivatives in (3.3)
are directly accessed through the n̂±

q relations in (3.2), which can be made available4 for any
set K due to the TRT decomposition: n̂+

q = n̂+
q̄ and n̂−

q = −n̂−
q̄ for cq = −cq̄; this avoids looking

for particular subsets of populations, considerably simplifying the original methodology [21,48],
where the momentum derivatives are accessed by selecting specific subsets within {fq} and/or {̂fq}
for each q ∈K, which unavoidably produces a case by case formulation in irregular walls.

The boundary node equilibrium momentum jx(xb) in (3.3) is also unknown. We can use two
approximate methods to relate jx(xb) to the available wall information. These two methods, called
Lnode and Lwall, are explained below.

(i) The Lnode procedure, first proposed in the unpublished work [48], obtains the
momentum in (3.3) from its known value at the wall location xw by means of the
second-order Taylor series expansion

jx(xb) = jx(xw) + δn ∂njx(xb) − δ2
n
2
∂nnjx(xb). (3.4)

(ii) The Lwall procedure, originally developed in [21], approximates both the momentum
in (3.3) and the momentum derivatives in (3.3) and (3.2) from the wall location xw towards
the boundary node xb through the second-order Taylor series expansions

jx(xb) = jx(xw) + δn ∂njx(xw) + δ2
n
2
∂nnjx(xw)

∂β jx(xb) = ∂β jx(xw) + δn∂nβ jx(xw)

∂nβ jx(xb) = ∂nβ jx(xw),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.5)

where the bound indices β are taken in {y, z}, and δn = (xb − xw) · n, where δn ≥ 0 represents the
distance between the boundary node and the wall location, with n the wall normal unit vector
directed into the fluid domain.

4Except in corner nodes, where the access to n̂±
q is limited, as explained in §4.
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When pressure is unknown, e.g. when it cannot be set to an arbitrary constant, one can locally
determine its boundary value, P(xb), by adapting the algorithms [21,34]. The idea is to reformulate
the zeroth-order mass moment as follows P/c2

s =∑q∈K fq +∑q∈U fq at xb and then replace the fq
from the U set using (2.2); the result reads:

P(xb) = 1

c−2
s −∑q∈U t�q

⎡⎣∑
q∈K

fq + (jx − 1
2 Fx)

∑
q∈U

t�qcqx − τ+ ∑
q∈U

n̂+
q − τ− ∑

q∈U
n̂−

q

⎤⎦ (xb), (3.6)

with jx(xb) in (3.6) approximated by equation (3.4) in Lnode or by (3.5) in Lwall procedures.
Given that the Taylor series approximation of jx(xb) requires the knowledge of the momentum
derivatives, the P(xb) variable is computed after these derivative terms are determined.

With the momentum derivatives and pressure at xb obtained, the boundary populations fq(xb),
with q ∈ U , cf. (3.3), can be finally reconstructed, closing the LBM boundary value problem. The
LSOB algorithm in both Lnode and Lwall procedures is summarized in appendix A. Next, in
§4 and §5, we will illustrate how LSOB (via Lnode or Lwall) imposes the Dirichlet momentum
condition on plane and curved walls, respectively.

4. Application of local second-order boundary to plane walls
Plane surfaces are conveniently described with Cartesian coordinate systems. We consider fixed (y, z)
and rotated (y′, z′) frames, with y′ = y cos θ + z sin θ and z′ = −y sin θ + z cos θ parallel to wall
tangent and wall normal vectors, respectively. Next, Lnode and Lwall methods are described.

(a) Lnode on plane walls
In Lnode, it is convenient to work on the fixed coordinate frame (y, z). By taking the inward unit
normal vector to the plane wall, given by n = nz′ ez′ , and defining δz′ = δn nz′ with δn ∈ [0, 1], then
the Taylor series approximation of the momentum jx(xb), given by (3.4), applies as follows:

jx(xb) = jx(xw) + δz′ ∂z′ jx(xb) − δ2
z′

2
∂z′z′ jx(xb)

= jx(xw) + δz′
(− sin θ ∂yjx(xb) + cos θ ∂zjx(xb)

)
− δ2

z′

2

(
sin2 θ ∂yyjx(xb) + cos2 θ ∂zzjx(xb) − sin 2θ ∂yzjx(xb)

)
. (4.1)

By inserting (4.1) into (3.3), the unknown boundary populations, fq(xb) with q ∈ U , read

fq(xb) = t�q P(xb) + t�q cqx

(
jx(xw) − 1

2
Fx

+ [−δz′ sin θ − τ+ cqy
]
∂yjx(xb) + [δz′ cos θ − τ+ cqz

]
∂zjx(xb)

+
[
− δ

2
z′

2
sin2 θ + τ− ν(3c2

qy − 1)

]
∂yyjx(xb)

+
[
− δ

2
z′

2
cos2 θ + τ− ν(3c2

qz − 1)

]
∂zzjx(xb) +

[
δ2

z′

2
sin 2θ

]
∂yzjx(xb)

)
. (4.2)

The unknown momentum derivatives in (4.2) are X = {∂yjx, ∂zjx, ∂yyjx, ∂zzjx, ∂yzjx}ᵀ. In Lnode
to determine X , attention must be paid to the types of boundary nodes arising from the
discretization; they can be distinguished as regular, singular and corner nodes, see figure 1.
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(a) (b) (c)

Figure 1. Examples of boundary node types for different wall discretizations on the d3Q19 computational cell with discrete
velocities∈ U marked in light grey color. Here, we illustrate for walls co-planar with the x-coordinate axis, but other rotated
orientations are supported by the LSOBmethod (while not covered here examples are found in [21]). (a) Regular boundary node
[dim(U )= 5]; (b) Singular boundary node [dim(U )= 8]; (c) Corner boundary node [dim(U )= 7].

Regular boundary nodes, characterized by rank [M] ≥ dim(X ), so that (3.2) applies directly as

[
n̂+

q
n̂−

q

]
︸ ︷︷ ︸

N

=
[

t�q cqx cqy t�q cqx cqz 0 0 0
0 0 −ν t�q cqx (3c2

qy − 1) −ν t�q cqx (3c2
qz − 1) 0

]
︸ ︷︷ ︸

[M]

⎡⎢⎢⎢⎢⎢⎣
∂yjx
∂zjx
∂yyjx
∂zzjx
∂yzjx

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

X

.

We note that, in regular nodes, the N set can be formed by any two sub-sets of linearly
independent elements in n̂±

q , as both are always available due to the TRT property: n̂+
q = n̂+

q̄

and n̂−
q = −n̂−

q̄ for cq = −cq̄. Let us illustrate its application for a straight horizontal wall, which
aligns with the underlying mesh, as shown in figure 1a. In this case, θ = 0, the unknown d3Q19
populations reduce to those where cqxcqz �= 0, cqy = 0 in (4.2), and we need only three derivatives
{∂zjx, ∂yyjx, ∂zzjx}. We can then reduce the N set to the minimal system composed of only two
linearly independent populations, using the set K = {‘c’, ’d’} where ‘c’ denotes any coordinate
population cqx �= 0, cqy = 0 with t�c and ‘d’ denotes any known diagonal population cqxcqz �= 0,
cqy = 0 with t�d. Inserting this information into equation (3.2), the reduced system is given by:5⎡⎢⎢⎢⎣

n̂+
c /t�c

n̂+
d /t

�
d

n̂−
c /t�c

n̂−
d /t

�
d

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

N

=

⎡⎢⎢⎢⎣
0 0 0

cdxcdz 0 0
0 νccx νccx

0 νcdx −2νcdx

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

[M]

⎡⎢⎣ ∂zjx(xb)
∂yyjx(xb)
∂zzjx(xb)

⎤⎥⎦
︸ ︷︷ ︸

X

.

The computation of X = [M]−1 N yields

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂zjx(xb) = n̂+
d

t�dcdxcdz

∂yyjx(xb) = 2n̂−
c

3νt�cccx
+ n̂−

d
3νt�dcdx

∂zzjx(xb) = n̂−
c

3νt�cccx
− n̂−

d
3νt�dcdx

.

(4.3)

Then, X = [M]−1 N permits closing fq(xb) with q ∈ U in (4.2). While in this example [M]−1

represents the inverse of a square matrix [M], in more general cases, e.g. when employing all

5The advantage of the Lwall approach is that we could equivalently employ all Qm known values n̂±
q and solve for the

pseudo-inverse of the full system, e.g. through SVD, as explained in appendix A.
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Qm known values n̂±
q into set N , then [M] becomes a rectangular matrix so that [M]−1 represents

the pseudo-inverse matrix, cf. appendix A.
Singular boundary nodes correspond to degenerated cases arising from particular discretizations,

where unknown populations pertain to the three Cartesian planes of the d3Q19 lattice, see
figure 1b. These cases are characterized by rank [M]< dim(X ). Here, the exclusive use of n̂±

q is not
sufficient to solve the system, requiring additional conditions to increase the number of known
elements of N . This is done [48] by including physically based constraints, readily available by
differentiating the Dirichlet boundary condition along the wall. When limited to a uniform value
on the flat wall, these conditions read⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂y′ jx(xw) = ∂y′ jx(xb) − δz′ ∂y′z′ jx(xb)

= (cos θ ∂yjx(xb) + sin θ ∂zjx(xb)
)

−δz′
(

1
2 sin 2θ (−∂yyjx(xb) + ∂zzjx(xb)) + cos 2θ ∂yzjx(xb)

)
= 0

∂y′y′ jx(xw) = cos2 θ ∂yyjx(xb) + sin2 θ ∂zzjx(xb) + sin 2θ ∂yzjx(xb) = 0

(4.4)

Combining (3.2) with the additional constraints (4.4), the singular node system reads as

⎡⎢⎢⎢⎣
n̂+

q
n̂−

q
0
0

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Nh

=

⎡⎢⎢⎢⎣
t�q cqx cqy t�q cqx cqz 0 0 0

0 0 −ν t�q cqx (3c2
qy − 1) −ν t�q cqx (3c2

qz − 1) 0
cos θ sin θ 1

2 δz′ sin 2θ − 1
2 δz′ sin 2θ −δz′ cos 2θ

0 0 cos2 θ sin2 θ sin 2θ

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

[Mh]

⎡⎢⎢⎢⎢⎢⎣
∂yjx
∂zjx
∂yyjx
∂zzjx
∂yzjx

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

X

,

where the vector Nh is now formed from Qm known n̂±
q post-collision components plus

two constraints. The system inversion provides the elements of X uniquely, which permits
closing (4.2).6 Note, the inclusion of these constraints should be limited to singular nodes;
applied to regular nodes they artificially over-constrain the system, compromising the solution’s
existence.

Corner boundary nodes, characterized by possessing outgoing boundary populations that are cut
by two different walls. In the corner discretization, special type links arise where populations only
travel across solid nodes, so-called buried links [4,33,37]. This limitation can be circumvented, and
allow corner nodes to run as regular ones, through the use of the following two procedures. First,
we develop the jx(xb) approximation in (4.1) individually for each wall of the corner, according
to n = nz′ ez′ . Second, we form two systems, like (3.2), each of them composed of different n̂±

q
elements inside N , and combine them so that, although the size of each N subset is not Qm, as
the two systems share the common unknowns X they can be solved together as done in regular
nodes. Then, the reconstruction of fq(xb) with q ∈ U at corner nodes follows (4.2) again.

Remark. These three types of node configurations describe the main situations encountered in
the discretization of duct flow. We may expect that more complicated cases, e.g. isolated nodes
surrounded by walls bounding all directions except along one link, can be addressed in the same
fashion by combining the ‘singular’ and ‘corner’ systems, namely by adding the surface-known
information for all adjacent walls. Otherwise, the combination of different approaches, e.g. LSOB
and MR, using equivalent or even degraded accuracy, is not forbidden in very particular cases, as
was exemplified in [11,12].

(b) Lwall on plane walls
The Lwall fully operates with the rotated coordinate frame (y′, z′). By taking the inward unit
normal vector to the plane wall, given by n = nz′ ez′ , and defining δz′ = δn nz′ with δn ∈ [0, 1], then

6The hypothesis that additional constraints introduced in special situations are sufficient for the uniqueness of the solution of
the global LBM equation is not yet confirmed or disproved in a rigorous manner, though it is verified in all considered cases.
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the Taylor series approximations in (3.5) along ez′ from xw towards xb, i.e. xb = xw + δz′ ez′ , are
represented as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

jx(xb) = jx(xw) + δz′∂z′ jx(xw) + δ2
z′
2 ∂z′z′ jx(xw)

∂y′ jx(xb) =����∂y′ jx(xw) + δz′∂y′z′ jx(xw)

∂z′ jx(xb) = ∂z′ jx(xw) + δz′∂z′z′ jx(xw)

∂y′y′ jx(xb) =����
∂y′y′ jx(xw)

∂z′z′ jx(xb) = ∂z′z′ jx(xw)

(4.5)

Above, ∂y′ jx(xw) = 0 and ∂y′y′ jx(xw) = 0 assume the uniformity of the flow momentum over the
wall tangent plane; these types of hydrodynamic-based conditions are easily generalized for
any surface tangential velocity. They are intrinsic to the Lwall formulation [21] as it operates
with derivatives expressed at xw, as shown in (4.5). This contrasts with the Lnode, where the
information regarding the momentum derivatives on the wall is only brought up at singular
nodes, via constraints (4.4).

By re-writing (3.3) in the rotated coordinate system (y′, z′) and then by substituting the
expansions given by (4.5), fq(xb) with q ∈ U , are constructed as follows:

fq(xb) = t�q P(xb) + t�q cqx

(
jx(xw) − 1

2
Fx + [δz′ − τ+ cqz′

]
∂z′ jx(xw)

+
[
δ2

z′

2
− τ+ cqz′δz′ + τ− ν

(
(3c2

qy − 1) sin2 θ + (3c2
qz − 1) cos2 θ

)]
∂z′z′ jx(xw)

+
[
−τ+ cqy′δz′ + τ− 3 ν

(
c2

qz − c2
qy

)
sin 2θ

]
∂y′z′ jx(xw)

)
, (4.6)

where cqy′ = cqy cos θ + cqz sin θ and cqz′ = −cqy sin θ + cqz cos θ .
The unknown momentum derivatives in (4.6) form the set X = {∂z′ jx, ∂z′z′ jx, ∂y′z′ jx}. Compared

to Lnode, the size of X in Lwall is two elements smaller. As in Lnode, also in Lwall the elements
of X are accessed from n̂±

q ⊆N . The difference is that the momentum derivatives in N are also
Taylor expanded from xb to xw, in accordance with (4.5). Hence, in Lwall the N set reads by
inserting equation (3.5) into equation (3.2) and accounting for zero surface derivatives:

n̂+
q (xb) = t�q cqx

[
cqy′ δz′ ∂y′z′ jx(xw) + cqz′

(
∂z′ jx(xw) + δz′ ∂z′z′ jx(xw)

)]
(4.7a)

and

n̂−
q (xb) = −ν t�q cqx

[(
(3c2

qy − 1) sin2 θ + (3c2
qz − 1) cos2 θ

)
∂z′z′ jx(xw)

+3
(

c2
qz − c2

qy

)
sin 2θ ∂y′z′ jx(xw)

]
. (4.7b)

In practice, the crucial step of the Lwall approach is that, to determine X based on the linear
algebra problem X = [M]−1 N , the number and type of post-collision components n̂±

q going into
N should be chosen judiciously; though the process is much simpler than [35], since ‘forbidden
combinations’ are obvious here. Two plane wall variants can be distinguished:

(i) Mesh aligned plane walls: consider again the straight horizontal wall where X = {∂zjx, ∂zzjx};
here, to determine X we just need one diagonal population with cdxcdz �= 0 to form N .
Inserting θ = 0 and cdy = 0 into (4.7) we get:[

n̂+
d /t

�
d

n̂−
d /t

�
d

]
︸ ︷︷ ︸

N

=
[

cdxcdz δz cdxcdz
0 −2ν cdx

]
︸ ︷︷ ︸

[M]

[
∂zjx(xw)
∂zzjx(xw)

]
︸ ︷︷ ︸

X
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The computation of X = [M]−1 N provides the momentum derivatives at xw

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂zjx(xw) = n̂+

d
t�dcdxcdz

+ δz
n̂−

d
2νt�dcdx

,

∂zzjx(xw) = − n̂−
d

2νt�dcdx
.

(4.8)

(ii) Arbitrarily inclined plane walls: X = {∂z′ jx, ∂z′z′ jx, ∂y′z′ jx}. The three elements of X can be
uniquely determined via X = [M]−1 N with recourse to the two linearly independent n̂±

q
components inside N , each pertaining to the links cqxcqy′ �= 0 and cqxcqz′ �= 0.

The prescription of corner boundary nodes in Lwall is similar to Lnode. But in Lwall, two
independent systems are constructed that determine two X solutions, rather than a common X
solution as in Lnode. This separation helps distinguish the components of X at different walls,
which is necessary to avoid possible ambiguities from the wall-oriented rotated system (y′, z′).
Then, the reconstruction of fq(xb) with q ∈ U applies (4.6), but individually for each of the two X .

5. Application of local second-order boundary to curved walls
In the description of curved surfaces, it is convenient to adopt a curvilinear coordinate system.
Here, we exemplify the formulation of Lnode and Lwall for a Cylindrical system (r, θ ), with y =
r cos θ and z = r sin θ , centred at middle pipe (y0, z0); generalizations to other cases are simple.

(a) Lnode on curved walls
Similarly to the plane wall case, it is convenient to work on the fixed coordinate frame (y, z). By
taking the inward unit normal vector to the curved wall, given by n = nr er, and defining δr = nr δn

with δn ∈ [0, 1], the Taylor series approximation of the momentum jx(xb), given by (3.4), applies as
follows:

jx(xb) = jx(xw) + δr ∂rjx(xb) − δ2
r
2
∂rrjx(xb)

= jx(xw) + δr

(
1 + δr

2r

) (
cos θ ∂yjx(xb) + sin θ∂zjx(xb)

)
− δ2

r
2

(
∂yyjx(xb) + ∂zzjx(xb)

)+
������
δ2

r

2r2 ∂θθ jx(xb), (5.1)

where r =
√

(yb − y0)2 + (zb − z0)2 is the radial location of boundary nodes, and ∂θθ jx(xb) = 0
follows from the uniform surface momentum condition, (5.3). Then, by inserting (5.1) into (3.3),
the unknown boundary populations, fq(xb) with q ∈ U , are reconstructed as follows:

fq(xb) = t�q P(xb) + t�q cqx

(
jx(xw) − 1

2
Fx

+
[
δr

(
1 + δr

2r

)
cos θ − τ+ cqy

]
∂yjx(xb) +

[
δr

(
1 + δr

2r

)
sin θ − τ+ cqz

]
∂zjx(xb)

+
[
− δ

2
r
2

+ τ− ν(3c2
qy − 1)

]
∂yyjx(xb) +

[
− δ

2
r
2

+ τ− ν(3c2
qz − 1)

]
∂zzjx(xb)

)
. (5.2)

The unknown momentum derivatives in (5.2) are X = {∂yjx, ∂zjx, ∂yyjx, ∂zzjx}ᵀ. As it happened in
the plane wall case, cf. §4a, also in the curved walls the discretization gives rise to different types
of nodes, namely: regular and singular nodes, which need to be treated differently.

Regular boundary nodes are treated the same way for plane or curved walls. The same applies to
singular boundary nodes. The only difference is that the extra constraints, instead of given by (4.4),
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apply the uniformity of the fluid momentum over the curved tangent surface [48]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ jx(xw) = ∂θ jx(xb) − δr ∂θrjx(xb)

= (r − δr)(− sin θ ∂yjx(xb) + cos θ ∂zjx(xb))

− r δr

(
1
2 sin 2θ (−∂yyjx(xb) + ∂zzjx(xb)) + cos 2θ∂yzjx(xb)

)
= 0

∂θθ jx(xw) = −r
(
cos θ ∂yjx(xb) + sin θ ∂zjx(xb)

)
+ r2

(
sin2 θ ∂yyjx(xb) + cos2 θ ∂zzjx(xb) − sin 2θ ∂yzjx(xb)

)
= 0

(5.3)

Note, for singular boundary nodes, our unknowns are X = {∂yjx, ∂zjx, ∂yyjx, ∂zzjx, ∂yzjx}ᵀ. We
conclude with two notes on alternatives to (5.3) on curved walls.

Remark 5.1. It is possible to replace the two constraints in (5.3) by the single constraint:
∂θ jx(xb) = − sin θ ∂yjx(xb) + cos θ ∂zjx(xb) = 0, which explores the circumferential invariance of
momentum. Performance-wise, Lnode with this constraint or with (5.3) yields roughly matching
accuracies. Yet, although this single constraint leads to a slightly simpler formulation, it offers
a much limited range of applicability, as the condition ∂θ jx(�xb) = 0 is only valid in axisymmetric
flows.

Remark 5.2. Alternatively, we may explore the flow field axisymmetry and re-construct fq(xb)
directly on the cylindrical coordinate system (r, θ ). While this is expected to greatly reduce the
number of unknowns to X = {∂rjx, ∂rrjx}ᵀ, this idea (also explored in other LSOB inspired works,
e.g. [47]) is not recommended since it corrupts the TRT parametrization structure, leading to the
inception of viscosity-dependent errors. The reason is due to the structure of the fq populations
in LBM, which by default rest on a Cartesian coordinate system. Hence, their mapping from a
Cartesian to a Cylindrical coordinate system, as only covering terms up to second-order within
the Chapman–Enskog scaling, inevitably conducts to a mismatch with respect to the other
(unaccounted) higher-order terms.

(b) Lwall on curved walls
The Lwall strategy on curved walls does not benefit from the adoption of a rotated frame (y′, z′)
(or any specific curvilinear system as discussed previously in Remark 2 of §5a). Therefore, we
keep the fixed Cartesian frame (y, z) on curved walls. By taking the inward unit normal vector
to the curved wall, given by n = nr er, and defining δr = nr δn with δn ∈ [0, 1], the Taylor series
approximations in (3.5) along er from xw towards xb, i.e. xb = xw + δn er, are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jx(xb) = jx(xw) + δr ∂rjx(xw) + δ2
r
2
∂rrjx(xw)

= jx(xw) + δr

(
1 − δr

2R

) (
cos θ ∂yjx(xw) + sin θ ∂zjx(xw)

)
+ δ2

r
2

(
∂yyjx(xw) + ∂zzjx(xw)

)−������δ2
r

2R2 ∂θθ jx(xw)

∂yjx(xb) = ∂yjx(xw) + δr ∂ryjx(xw)

= ∂yjx(xw) + δr
(
cos θ ∂yyjx(xw) + sin θ ∂yzjx(xw)

)
∂zjx(xb) = ∂zjx(xw) + δr ∂rzjx(xw)

= ∂zjx(xw) + δr
(
cos θ ∂yzjx(xw) + sin θ ∂zzjx(xw)

)
∂yyjx(xb) = ∂yyjx(xw)

∂zzjx(xb) = ∂zzjx(xw),

(5.4)

where R =
√

(yw − y0)2 + (zw − z0)2 is the radius of circular wall surface, and the assumption
∂θθ jx(xb) = 0 is justified on the basis of (5.3). Note that, unlike the plane wall case, the formulation
of Lwall on curved surfaces does not reduce the size of X as conditions ∂θ jx(xw) = 0 and
∂θθ jx(xw) = 0 do not fit naturally into the content of fq populations, as noted at the end of §5a.
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By substituting the expansions given by (5.4) into (3.3), fq(xb) with q ∈ U read as:

fq(xb) = t�q P(xb) + t�q cqx

(
jx(xw) − 1

2
Fx

+
[
δr

(
1 − δr

2R

)
cos θ − τ+ cqy

]
∂yjx(xw) +

[
δr

(
1 − δr

2R

)
sin θ − τ+ cqz

]
∂zjx(xw)

+
[
δ2

r
2

− τ+ δr cqy cos θ + τ− ν (3c2
qy − 1)

]
∂yyjx(xw)

+
[
δ2

r
2

− τ+ δr cqz sin θ + τ− ν (3c2
qz − 1)

]
∂zzjx(xw)

+ [−τ+ δr
(
cqy sin θ + cqz cos θ

)]
∂yzjx(xw)

)
. (5.5)

The unknown momentum derivatives in (5.5) are X = {∂yjx, ∂zjx, ∂yyjx, ∂zzjx, ∂yzjx}ᵀ, which are
accessed from n̂±

q ⊆N in the Lwall frame as follows:

n̂+
q (xb) = t�q cqx

[(
cqy ∂yjx(xw) + cqz ∂zjx(xw)

)+ δr

(
cqy cos θ ∂yyjx(xw)

+cqz sin θ ∂zzjx(xw) + (cqy sin θ + cqz cos θ
)
∂yzjx(xw)

)]
(5.6a)

and
n̂−

q (xb) = −ν t�q cqx

[(
3c2

qy − 1
)
∂yyjx(xw) +

(
3c2

qz − 1
)
∂zzjx(xw)

]
. (5.6b)

Then, by inserting (5.4) into (5.5), we reconstruct fq(xb) with q ∈ U ; here, two notes are in order.

Remark 1. On curved walls, dim(X ) is identical in Lwall and in Lnode. Thus, the application
of Lwall on curved walls needs to distinguish between regular and singular boundary nodes as well.
In singular nodes, the set N , originally given by (5.6), is enlarged with two extra constraints. This
way, we form the augmented system Nh = [Mh]X . These extra constraints invoke the uniformity
of the fluid momentum over the curved tangent surface, applying (5.3) to xw, as follows:⎧⎪⎪⎨⎪⎪⎩

∂θ jx(xw) = R (− sin θ ∂yjx(xw) + cos θ ∂zjx(xw)) = 0

∂θθ jx(xw) = −R
(
cos θ ∂yjx(xw) + sin θ ∂zjx(xw)

)
+ R2

(
sin2 θ ∂yyjx(xw) + cos2 θ ∂zzjx(xw) − sin 2θ ∂yzjx(xw)

)
= 0.

(5.7)

Remark 2. In regular boundary nodes the set N , originally given by (5.6), can be further enriched
by the inclusion of the individual constraint ∂θθ jx(xw) = 0, featuring in (5.7). This will replace the
standard system N = [M]X with Nh = [Mh]X , where only ∂θθ jx(xw) = 0 in (5.7) is considered;
we call this extension the ‘half-augmented’ system. While both standard and ‘half-augmented’
systems converge to an unique solution, our numerical tests suggest that the solution accuracy of
the latter tends to be slightly enhanced.

6. Numerical results
The numerical performance of the LSOB, formulated as Lnode or Lwall, is compared against
other, more well established, LBM link-wise boundary schemes, namely: (i) the BB, due to its
popularity; (ii) the central linear interpolation (CLI) scheme [11], as an example of a linear
accurate scheme, (iii) the multireflection MR1 scheme [16] and (iv) the MCLI scheme [11], as
examples of parabolic accurate schemes. Their explicit algorithms are given in appendix B. These
choices represent a trade-off between accuracy and implementation simplicity; in common, they
all support viscosity-independent numerical errors. Concerning their implementation effort, both
BB and CLI operate locally on one node, while MR1 and MCLI can be implemented with two
nodes [11]. In terms of accuracy, taking grid shifted walls as an example, BB is typically O(ε),
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Figure 2. ‖L2(jx )‖ versusΛ with fixed grid resolution N = 14, for each pipe flow configuration: (a) rectangular duct flow
N = 2H = 2W/ζ ; (b) triangular duct flow N = h; (c) circular pipe flow N = R; (d) annular pipe flow N = R2 − R1. (Online
version in colour.)

CLI is O(ε2), and MR1 and MCLI are formally O(ε3); the proof of these error-scales can be found
in, e.g. [11]. The LSOB gathers the best of both attributes: it is local and formally O(ε3) accurate.

In this work, numerical accuracy is measured as ‖L2(jx)‖ =
√∑

(j(num)
x − j(ex)

x )2/
∑

(j(ex)
x )2 where

sums apply to all non-solid sites; that is, ‖L2(jx)‖ sums bulk and boundary errors. Since we are
modelling Stokes duct flow, the momentum equation (∂2

y jx + ∂2
z jx) = −Fx/ν is similar to a pure

diffusion problem for jx. Consequently, its LBM-TRT modelling leads to a bulk leading-order error
of the form Ebulk ∝ ε2 (Λ− 1/6)(∂4

y jx + ∂4
z jx) + O(ε4) [11,20], whereas at boundaries the leading

error is Ebc ∝O(εn) with n = 1, 2, 3 depending on the boundary scheme.7 The performance of the
six boundary schemes—BB, CLI, MR1, MCLI, Lnode, Lwall—will be examined in this section for
the simulation of four pipe flows featuring different cross-sectional shapes. Figure 2 illustrates the
‖L2(jx)‖ versus Λ behaviour of these six schemes for each pipe flow configuration, running on a
relatively coarse mesh.

(1) Rectangular duct flow with ȳ = y/2W and z̄ = z/2H, where − 1
2 ≤ (ȳ, z̄) ≤ 1

2 , has solution [51]:

j(ex)
x (ȳ, z̄) = 16

π3
Fx H2

ν

∞∑
n=1,3,...

1
n3 (−1)(n−1)/2

[
1 − cosh

(
nπζ ȳ

)
cosh (nπζ/2)

]
cos (nπ z̄) , (6.1)

with 2W and 2H the duct width and height, the cross-section aspect ratio is ζ = W/H, here ζ = 2.
The walls are discretized on a grid-aligned setting placed δn = 3/4 away from the boundary nodes
(in all four walls). This differs from the traditional halfway δn = 1/2, e.g. [33,34], or the on-grid
δn = 0, e.g. [36,37], discretizations. The other challenging feature refers to corners. At these sites,
non-local boundary schemes, such as MR1 and MCLI, do not apply in the two-wall cut diagonal
links and are replaced by the local approximation method proposed in Section 5.2.4 of [11], and
summarized in appendix B.

Figure 2a shows the ‖L2(jx)‖ estimate as a function of Λ, fixing the grid resolution at N =
14, with N = 2H = 2W/ζ . Figure 3 presents the mesh convergence studies, ‖L2(jx)‖ versus N, for
Λ= {1/12, 1/6, 3/16, 1/4}, and table 1 quantifies the corresponding convergence rates.

Overall, parabolic accurate schemes O(ε3) offer the highest accuracy and consistently establish
the minimum error at Λ= 1/6. This observation is theoretically expected as for this purely
diffusive problem the optimal diffusion value Λ= 1/6 [11,56] improves the leading-order bulk
correction to Ebulk ∝ ε4, turning the global error ‖L2(jx)‖ limited by Ebc; for parabolic schemes
Ebc ∝ ε3. Outside this Λ= 1/6 neighbourhood, the leading-order bulk error becomes Ebulk ∝ ε2;
hence, although parabolic schemes still gain in accuracy, particularly for Λ≤ 3/8, as shown in
figure 2a, the global error inevitably stays at O(ε2). This is the order of accuracy of the linearly
accurate CLI scheme. Here, regardless any Ebulk improvement due to Λ, the measure ‖L2(jx)‖
remains controlled by Ebc ∝ ε2. The same happens with the BB rule, but in a rather more punitive
way as Ebc ∝ ε. This error degrades the overall simulation accuracy to first order.

7The structure of these errors in the duct flow modelling results from the fact that in bulk the third-order derivatives vanish
on the account of

∑
q c2

qxc3
qy∂

3
y jx = 0,

∑
q c2

qxc2
qycqz∂

3
yyzjx = 0, etc. because the implicated odd-order velocity moments amount to

zero. However, this form of truncation error does not apply to boundary rules, which implies that third-order derivatives are
typically non-zero. This constrains the boundary error of parabolic schemes to third order.
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Figure 3. Rectangular duct flow. Mesh convergence analyses ‖L2(jx )‖ versus N for Λ= {1/12, 1/6, 3/16, 1/4}. (Online
version in colour.)

Table 1. Quantification of grid convergence rates in figure 3, obtained through a least-square linear fitting of the data points.

Λ= 1/12 Λ= 1/6 Λ= 3/16 Λ= 1/4

BB −1.11 −1.07 −1.10 −1.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLI −2.13 −2.12 −2.12 −2.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MR1 −2.10 −2.72 −2.48 −2.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCLI −1.94 −2.80 −2.29 −1.86
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lnode −1.80 −3.15 −3.29 −1.86
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lwall −2.38 −3.01 −2.75 −2.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, two interesting numerical observations are worth mentioning, which hint at the form
of the higher-order errors in the LSOB prescription of planar mesh-aligned walls. First, when
Λ= 1/4 (which determines the non-equilibrium populations exclusively in the form of directional
finite-differences of the equilibrium components [22,49]) the two parabolic schemes Lnode and
MLI become equivalent and lead to identical solutions (up to the round-off error) ∀ δn ∈]0, 1].
Second, when Λ= 3/16 and δn = 1/2 are fixed, then Lwall and BB lead to identical solutions (up
to the round-off error).8

(2) Equilateral triangular duct flow with − 1
2 ≤ ȳ = y/h ≤ 1

2 and 0 ≤ z̄ = 2/
√

3(z/h) ≤ 1 has the
solution [51]:

j(ex)
x (ȳ, z̄) = 3

16
Fx h2

ν
(1 − z̄)

(
z̄ − 2ȳ

) (
z̄ + 2ȳ

)
, (6.2)

with h the triangle width. Since this duct flow solution is given by a third-order polynomial,
then its Stokes flow modelling is exact in bulk, Ebulk = 0, on account of the explanation given
at the beginning of this section. Consequently, this benchmark test evaluates the ability of the
different boundary schemes to accommodate the flow solution on non mesh-aligned plane walls
and the corners forming sharp acute angles. We note that specific LSOB extensions developed to
third-order polynomials in [48] were shown to be capable of matching this benchmark exactly.

Figure 2b shows the ‖L2(jx)‖ estimate as a function of Λ, fixing the grid resolution at N =
14, with N = h. The triangle discretization is grid-symmetric, with its centroid placed halfway
between grid nodes. Figure 4 presents the mesh convergence studies, ‖L2(jx)‖ versus N, for Λ=
{1/12, 1/6, 3/16, 1/4}, and table 2 quantifies the corresponding convergence rates.

The absence of bulk errors explains the lack of a common Λ in the minimization of ‖L2(jx)‖, as
visible in figure 2b. Such a difference is attributed to the distinct truncations in boundary schemes
and the associated formation of ‘accommodation layers’ between the bulk solution and the wall
condition [13,21,22,49]. The primary decisive factor is played by the boundary scheme structure,
in terms of link-wise versus node-based. For example, the O(ε3) link-wise schemes, MR1 and

8For halfway walls δn = 1/2, the BB rule establishes the no-slip condition with O(ε3) accuracy when Λ= 3/16 [14,16]. What
this observation further indicates is that BB with Λ= 3/16 is also O(ε3) accurate in the prescription of halfway corner
conditions [48].
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Figure 4. Triangular duct flow. Mesh convergence analyses ‖L2(jx )‖ versus N for Λ= {1/12, 1/6, 3/16, 1/4}. (Online
version in colour.)

Table 2. Quantification of grid convergence rates in figure 4, obtained through a least-square linear fitting of the data points.

Λ= 1/12 Λ= 1/6 Λ= 3/16 Λ= 1/4

BB −1.09 −1.06 −1.06 −1.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLI −2.02 −2.03 −2.05 −2.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MR1 −2.80 −2.77 −2.76 −2.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCLI −2.81 −2.77 −2.77 −2.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lnode −1.88 −1.87 −1.87 −1.89
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lwall −2.70 −2.63 −2.66 −2.91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCLI, display nearly overlapping curves, sharing the ‖L2(jx)‖ minimum at Λ= 1/4 where Eq.
(2.6) is exact in terms of the finite-difference operators. However, they significantly differ from
the node-based LSOB strategies; what is more, within the LSOB formulation, the Lnode and Lwall
display marked differences. The Lwall by making full use of the wall information to determine
X is (i) more accurate, (ii) converges as O(ε3), and (iii) minimizes ‖L2(jx)‖ at Λ= 1/6. The Lnode
by operating without any information from the wall to determine X , at least on regular nodes, is
(i) seemingly less accurate on the discretization of irregular walls, (ii) degrades its convergence
rate to O(ε2) and (iii) is roughly insensitive to Λ.9 By switching to a mixed Lnode/Lwall
procedure, where Lnode is shifted to Lwall only on regular nodes, and Lnode is maintained at
singular and corner nodes, this hybrid LSOB scheme reaches the performance accuracy of Lwall;
this option is worthwhile considering as, at least in corners, Lnode is simpler to implement than
Lwall. Comparatively, the other local boundary schemes tested here, CLI and BB, display a lower
accuracy, where asymptotically the linearly accurate CLI scheme maintains its O(ε2) convergence
rate, while the BB rule is clearly O(ε), as shown in figure 4 and quantified in table 2.

(3) Circular pipe flow with r̄ = r/R, where 0 ≤ r̄ ≤ 1, has solution [51]:

j(ex)
x (r̄) = Fx R2

4ν

(
1 − r̄2

)
, (6.3)

with R the pipe radius. Here, Ebulk = 0 so this is the canonical example to benchmark the
modelling of curved geometries, as the only error source comes from the boundary scheme.

Figure 2, panel (c), shows the ‖L2(jx)‖ estimate as a function of Λ, fixing the grid resolution
at N = 14, with N = R. The circular pipe discretization is grid-symmetric, with its centre placed
halfway between grid nodes. Figure 5 presents the mesh convergence studies, ‖L2(jx)‖ versus N,
for Λ= {1/12, 1/6, 3/16, 1/4}, and table 3 quantifies the corresponding convergence rates.

Parabolic accurate boundary schemes O(ε3) lead to Ebc = 0 in this test. Thus, they exactly
reproduce the parabolic solution (6.3) up to machine precision. In contrast, the less accurate
schemes, BB and CLI, only describe (6.3) approximately. Surprisingly, despite the BB largest

9Technically, these three observations are explained by the Lnode operation principle: the Lnode reconstruction uniformly
mixes the first- and third-order derivatives on regular nodes (alongside with all odd higher-order derivatives). As in this test,
the third-order derivatives play a dominant role, this mixing tends to produce a lower accuracy.
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Figure 5. Circular pipe flow. Mesh convergence analyses ‖L2(jx )‖ versus N forΛ= {1/12, 1/6, 3/16, 1/4}.
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Figure 6. Concentric annular pipe flow. Mesh convergence analyses ‖L2(jx )‖ versus N for Λ= {1/12, 1/6, 3/16, 1/4}.
(Online version in colour.)

Table 3. Quantification of grid convergence rates in figure 5, obtained through a least-square linear fitting of the data points.

Λ= 1/12 Λ= 1/6 Λ= 3/16 Λ= 1/4

BB −1.95 −1.93 −1.92 −1.90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLI −1.78 −1.92 −2.07 −2.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

errors, both BB and CLI follow a O(ε2) asymptotic behaviour; indeed, that is because the
accommodation layers benefit from this problem symmetry and do not distort momentum
(cf. a related NSE Poiseuille flow example in [12]). Compared to other local boundary schemes
presently available, e.g. [42,47], we highlight that LSOB is, to the best of our knowledge, the only
single node-based strategy capable of exactly solving this parabolic profile within a circular pipe
geometry (6.3), as originally shown in [48].

(4) Concentric annular pipe flow r̄ = r/R2, where γ ≤ r̄ ≤ 1, has solution [51]:

j(ex)
x (r̄) = Fx R2

2
4 ν

(
1 − r̄2 + (γ 2 − 1)

log γ
log r̄

)
, (6.4)

with R1 and R2 the inner and outer pipe radii, and their ratio γ = R1/R2, here γ = 3/11.
Figure 2d shows the ‖L2(jx)‖ estimate as a function of Λ, fixing the grid resolution at N =

14, with N = R2 − R1. The annular pipe discretization is grid-symmetric, with its centre placed
halfway between grid nodes. Figure 6 presents the mesh convergence studies, ‖L2(jx)‖ versus N,
for Λ= {1/12, 1/6, 3/16, 1/4}, and table 4 quantifies the corresponding convergence rates.

The simulation of this problem is affected by both bulk and boundary errors. The vanishing
of the leading-order bulk error occurs with Λ= 1/6 (the optimal diffusion value), which leads to
Ebulk ∝ ε4, so that, ‖L2(ux)‖ becomes essentially determined by the boundary scheme accuracy. For
parabolic schemes we confirm the O(ε3) convergence rate at Λ= 1/6. The exception happens for
Lnode, where the convergence rate is somewhat slower, i.e. O(ε2.5), due to the problems already
identified in the triangular duct flow benchmark. Also different from the other parabolic schemes
is the optimalΛ interval in Lwall, which appears to be wider, cf. figure 2d and table 4. Comparing
Lnode against Lwall, the Lnode approach seems better at representing the curved wall shapes
at coarse meshes, while at finer meshes, as the radial location of boundary nodes tends to the
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Table 4. Quantification of grid convergence rates in figure 6, obtained through a least-square linear fitting of the data points.

Λ= 1/12 Λ= 1/6 Λ= 3/16 Λ= 1/4

BB −1.12 −1.03 −1.02 −0.99
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CLI −1.93 −1.89 −1.88 −1.88
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MR1 −2.22 −2.75 −2.37 −1.96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCLI −2.13 −2.76 −2.00 −1.97
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lnode −2.06 −2.45 −2.24 −2.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lwall −2.54 −3.02 −2.99 −2.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

circular wall surface, i.e. limN→∞ r ≈ R, then the performance of Lwall becomes comparable or
even superior. The CLI scheme displays a O(ε2) accuracy for all tested Λ values. Finally, the BB
rule, which leads to a staircase discretization of the real geometry, makes the overall error O(ε).

7. Conclusion
This work revived a long-developed boundary scheme for the Dirichlet momentum boundary
condition in LBM, called the LSOB method. As a novelty, we reformulated the original LSOB idea
to operate within the TRT framework for the d3Q19 lattice; a task that carried many operational
advantages. Two LSOB strategies were considered in this work: Lwall [21] and Lnode [48], each
of which operated on wall and node variables, respectively. Both strategies were exemplified
for planar (mesh-aligned and/or inclined) and curved walls, including corners. Numerical tests
performed here for several non-trivial duct flow geometries indicate the good performance of
LSOB schemes, revealing their matching accuracy with other parabolic accurate schemes, such as
MR1 and MCLI schemes, although the former operate on a single node.

Ideally, the use of parabolic accurate boundary schemes, like LSOB, should be advantageous
for a number of reasons. Namely, (i) they tremendously save the computational time in the
asymptotic limit [19,20] and (ii) they provide high levels of accuracy within coarse to moderate
grid resolutions [11,16]. This last asset is particularly important for porous media applications,
where the spacing between the walls bounding the preferential flow path is often limited to a few
grid nodes. Although the ‘ideal’ characteristics of parabolic schemes are conceived to not always
prevail for all flow problem classes in an universal manner, they were globally confirmed to be
satisfied here in the simulation of slow flows within several pipe geometries. Equally important,
the renewed LSOB formulations were verified to support the correct parametrization beyond
the second order, ensuring that, in Stokes flow, the dimensionless flow and relative momentum
errors hold independent of kinematic viscosity. The establishment of this property was one of our
original motivations to revive the LSOB working principle in this work. Still, additional work
requires ‘standardising’ the LSOB application over arbitrary flow classes and/or geometries.
This task includes the method extension to multi-dimensional Stokes and Navier–Stokes flows,
as initiated in [41,42,47]. Also, the generalization of the LSOB formulation to other lattices,
including higher-order lattices [39], is planned for future work, along with the extension of the
LSOB framework to other collision operators. Lastly, a dedicated stability analysis comparing the
parabolic two-point MR and local LSOB schemes, which has not been devised yet, should be
conducted in a future study.

Finally, we conclude with a summary of the main LSOB characteristics. The main drawback of
the LSOB, compared to the parabolic MR schemes, is that the prescription of Dirichlet conditions
is made lattice, dimension and problem dependent, moreover its implementation is presently
restricted to laminar (low Reynolds) flows; however, on the positive side, the LSOB is local and
it offers a larger potential for mixed-type boundary conditions than the directional boundary
schemes in general. These advantageous characteristics of LSOB to prescribe strain-rate, or
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pressure and tangential velocity in flow schemes, but also Neumann- or Robin-type boundary
conditions in flow or ADE problems [56], are planned to be explored in future works.
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Appendix A. Summary of LSOB algorithms in Stokes duct flows

Algorithm 1 . Lnode approach.

Initialization step

1: Identify the boundary nodes xb and the associated links q ∈ U and q ∈K.
2: Identify the set of unknowns X = {∂yjx, . . . , ∂yyjx, . . .}ᵀ, which are more relevant to reconstruct

fq(xb) with q ∈ U , as given by (3.3) with expansion (3.4).
3: Differentiate between regular and singular nodes based on dim(U) and dim(X ) for each xb.

Also identify corner nodes based on the geometry discretisation.
4: Construct matrix of coefficients [M], defined as part of the system:

N = [M]X (A 1)

which is the linear algebra transcription of (3.2); assuming the vector N contains Qm known
post-collision populations, N = {n̂+

q , n̂−
q }ᵀ, which are readily available from the TRT symmetry

argument.
5: Only for singular nodes, i.e. xb sites where rank [M]< dim(X ), add additional constraints

(discussed in Secs. 4 and/or 5) to the linearly independent rows of [M] so that (A 1) gets
replaced by the augmented system:

Nh = [Mh]X , (A 2)

where rank [Mh]> rank [M]. The content of [Mh] is specific to singular xb, cf. Section 4a.
6: Compute the inverse of the matrix of coefficients [M]−1 or [Mh]−1. In regular nodes,

dim(X ) ≤ rank [M], then [M] is typically a rectangular matrix and its pseudo-inverse [M]−1

can be determined through standard numerical programming techniques, such as the singular
value decomposition (SVD);10note, SVD also applies to singular nodes, as given by (A 2).

Main LBM algorithm: Boundary Condition step (computed after TRT collision step)

7: Compute the non-equilibrium hydrodynamic fields X on xb at each time step as follows:

X =
{

[Mh]−1 Nh if xb is singular node,

[M]−1 N otherwise,
(A 3)

where the post-collision populations, {n̂+
q , n̂−

q }ᵀ, to be used in N or Nh, are furnished by the
TRT collision step, and so the full set Qm is readily available from TRT symmetry argument.

8: Reconstruct the post-stream unknown boundary populations, i.e. fq(xb, t + 1) with q ∈ U , by
substituting the X solution into (3.3) with approximation (3.4), plus P computed from (3.6).
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Algorithm 2 . Lwall approach.

Initialization step

1: Identify boundary nodes xb and the associated links q ∈ U and q ∈K.
2: Identify the set of unknowns X , which are more relevant to reconstruct fq(xb) with q ∈ U , as

given by (3.3) with expansion (3.5).
3: If applicable, e.g. over curved walls, differentiate between regular and singular nodes based

on dim(U) and dim(X ) for each xb. Also identify corner nodes based on the geometry
discretization.

4: Construct matrix of coefficients [M], given in the form (A 1); but now vector N contains a
subset of known post-collision populations and vector X the unknown hydrodynamic fields set
at xw, following (3.5). Here, rank [M] = dim(X ) with [M] specific to each xb, cf. 4b and 5b.

5: Compute the inverse of the matrix of coefficients, [M]−1. Since [M] is a square matrix its
inverse [M]−1 is direct (assuming det [M] �= 0). No additional constraints are necessary.

6: If applicable, e.g. over curved walls, augment the Lwall system with additional constraints as
Nh = [Mh]X , cf. 5b, and proceed with solution X = [M]−1 Nh, as explained in steps 5 and 6 of
the Lnode algorithm.

Main LBM algorithm: Boundary Condition step (computed after TRT collision step)

7: Compute non-equilibrium hydrodynamic fields X on xw at each time step as follows:

X = [M]−1 N , (A 4)

using a pre-selected subset of post-collision populations, {n̂+
q , n̂−

q }ᵀ in N that is furnished by
the TRT collision step. If applicable, compute X = [Mh]−1 Nh at singular nodes only.

8: Reconstruct the post-stream unknown boundary populations, i.e. fq(xb, t + 1) with q ∈ U , by
substituting the X solution into (3.3) with approximation (3.5), plus P computed from (3.6).

Appendix B. Summary of link-wise boundary schemes for general flow

(a) Wall surfaces
Section 6 implements the Dirichlet boundary condition on the wall surface considering four types
of link-wise boundary schemes. They can be expressed through the generic boundary update rule,
applied after streaming step [11]:

fq̄(xb, t + 1) = κ1̂fq(xb, t) + κ̄−1̂fq̄(xb, t) + κ0fq(xb, t + 1)

+ κ−1fq(xb − cq, t + 1) + κ̄−2̂fq̄(xb − cq, t) + Fp.c.
q (xb, t) − α(u)j�q w(xw, t), (B 1)

where xb is a boundary node, with xb + cq a solid node and xb − cq the nearest fluid node. For
each link-wise boundary scheme the coefficients {κ1, κ0, κ̄−1, κ−1, κ̄−2} and the parametrization
factor α(u) are provided in table 5. The Dirichlet momentum correction in (B 1) is given by

j�q w = t�q jq w, jq w = cq · jw, (B 2)

and the post-collision correction Fp.c.
q in (B 1) is given by

Fp.c.
q (xb) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for BB and CLI,

α(u)
(
τ− − 1

2

) (
n̂−

q − Sq

)
|(xb) for MR1,

α(u)
(
τ− − 1

2

) (
n̂−

q − Sq

)
|(xb) + α(u) δ

2
q

2 �
2
qjq|F.D.

(xb) for MCLI.

(B 3)

10The SVD is generally effortless, being automatic with command ‘pinv’ in MATLAB or in C++ Math Library, for example.
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Table 5. Coefficients in (A 1), with κ1 = 1 in all schemes, and the corresponding parametrization factorα(u).

BB CLI MR1 MCLI

κ0 0 1−2δq
1+2δq

1−2δq−2δ2q
(1+δq)2

1−2δq
1+2δq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ̄−1 0 −κ0 −κ0 −κ0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ−1 0 0
δ2q

(1+δq)2 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ̄−2 0 0 −κ−1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α(u) 2 4
1+2δq

4
(1+δq)2

4
1+2δq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note, for the MCLI scheme the Fp.c.
q term in (B 3) includes the momentum Laplacian

approximation �2
qjq|F.D. computed through the link-wise second-order finite-difference

�2
qjq|F.D.(xb) = 2

δq + δq̄

(
jq(xw) − jq(xb)

δq
− jq(xb) − jq(xw̄)

δq̄

)
, (B 4)

with xw = xb + δqcq, xw̄ = xb + δq̄cq̄, δq �= 0 and δq̄ �= 0. In our notation, if xw denotes a solid node,
with wall momentum j(xw) (or simply 0 for a resting wall), then xw̄ denotes a fluid node,
meaning δq̄ = 1 and jq(xw̄) is extracted from the LBM bulk solution, unless in corners as considered
below.

(b) Wall corners
At corner nodes there is no next directional neighbour. Hence, the non-local MR schemes, MR1
and MCLI, cannot be applied at these sites. Only at corner nodes do the parabolic schemes
use (B 1) with the parameters of the MCLI scheme, given in table 5 and equations (B 2) and (B 3).
The only difference is that the non-local momentum Laplacian approximation �2

qjq|F.D. is no

longer computed with (B 4). Instead, �2
qjq|F.D. in Fp.c.

q is locally approximated as follows [11]:

�2
qjq|F.D.(xb) = − (τ− − 1/2

)−1
(

n̂−
q − ∂F.D.

q e+
q

)
|(xb), (B 5)

with

∂F.D.
q e+

q (xb) = −
d∑
α=1

(
e+

q (xb + cq̄α) − e+
q (xb)

)
, (B 6)

where cq̄α denotes propagation links parallel to the principal coordinate axis.
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