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Abstract
This article reports biocolonization assays carried out on yellow and red ochres and

ultramarine blue pigments. These pigments have been most commonly used in tradi-

tional limewash of heritage buildings from southern Portugal (Alentejo) and, in the

case of the yellow and red ochres, also in historical decorative wall paintings since

Roman times. The research aim was to assess the potential role played by microorgan-

isms in colour alterations observed in indoor and outdoor paint layers for conservation

purposes.The assays accomplished several microorganisms previously isolated from

degraded wall paintings with signs of biocontamination. The results show that apart

from the clear physical stress induced in paint layers by the biometabolic activity, fila-

mentous fungi, yeast, and bacteria are capable of inducing discoloration (in particular,

the fungus Aspergillus niger). Raman analysis corroborates their active role in painting

discolouration. This methodology, applied to bioprocesses, can be used as noninvasive

methodology to signal microbial involvement.
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1 | INTRODUCTION

Yellow and red ochres and artificial ultramarine blue pigment
were, and still are, the traditional and standard colours of
Alentejo (southern Portugal) Historic Building Heritage. These
pigments were widely used in the past by the local populations
in limewash outdoor paintings (façades) and, in the case of the
ochres, also for centuries by artists in outdoor and indoor deco-
rative wall paintings with fresco and secco techniques.1-5

Wall paintings are some of the oldest and most important
cultural expressions of mankind and play an important role in
understanding societies and civilizations. These assets have

high economic and cultural values and therefore, their degra-
dation is a problem with social and economic impact, which
must urgently be addressed for their future preservation.6

From a chemical point of view, yellow and red ochres
are earth pigments, that is, natural clay-based materials.
Their colours depend on the presence and nature of the iron
hydroxides and oxides chromophores, especially goethite
and hematite.7-9 The geological sources may vary, as differ-
ent shades occur in many surface deposits (eg, schists, iron
ores, carbonate rocks). Portugal is rich in raw materials,
which were, and can still be, used.6,7,9 Due to their availabil-
ity and ease of extraction and preparation, natural ochres
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were widely used by the population in Alentejo country side
until the first half of the 20th century. On the other hand,
professional painters seem to have always preferred the
industrial processed analogues (industrial ochres), iron
oxides, and the synthetic ultramarine blues. Traditionally,
the blue colour has been more associated to towns of south
Alentejo (near Algarve and the Mediterranean). In the case
of the synthetic blue pigment, lazurite is the major compo-
nent to which other minerals can be added as fillers.3

All these pigments, in particular earth pigments, are inorganic
and usually show physical and chemical stability. However,
under aggressive weathering conditions, colour alteration can
occur. High humidity content, temperature, light, and atmo-
spheric pollution are among the main parameters that strongly
influence the decay of mural paintings.6,7,10-17 In some cases, col-
our alterations in paint layers are detected in the areas showing
signs of biocontamination. Several investigations have shown
that both environmental factors and microbial contamination can
contribute to pigment alteration,18-21 but little is still known about
the interaction itself and how deep microorganisms can be the
main promoters of paint colour decay. Regarding this, knowledge
about the interaction of the microbial population with the physi-
cochemical properties of the materials is considered central to the
understanding of the long-term degradation/deterioration of
indoor and outdoor mural paintings.22-24

In this study, different microorganisms previously isolated
from altered mural paintings with signs of biocontamination,
inserted in distinct environments, were selected to assess the
possible biogenic involvement in the chromatic alteration pro-
cesses that affect ochres and blue pigments.

2 | EXPERIMENTAL

To evaluate the influence of microbiological colonization on
red and yellow ochres and synthetic ultramarine blue, bacte-
rial and fungal isolates, previously isolated from altered wall
paint layers, were selected.

2.1 | In vitro simulation assays

To assess the role of the microorganisms in the pigment
alteration, simulation assays were performed in liquid
culture, in the presence of yellow and red ochre and syn-
thetic ultramarine blue pigments. Four bacterial isolates
(Arthrobacter sp.1-CCLBH-BP301, Bacillus sp.1-
CCLBH-BP102, Arthrobacter sp.2-CCLBH-BP302, and
Bacillus sp.2-CCLBH-BP103) and four fungal isolates (Cla-
dosporium sp.-CCLBH-MP602, Penicillium sp.-CCLBH-
MP102, Aspergillus niger-CCLBH-MP202, and Rhodotorula
sp.-CCLBH-YMP502), belonging to the culture collection of
HERCULES-Biotech Laboratory (CCLBH) of Évora Univer-
sity, were used as biological models.

Fresh bacterial and fungal cultures were prepared in solid
nutrient agar and malt extract agar media, respectively. Cell
suspensions (108 CFU) were prepared by washing each slant
with NaCl 0.85% solution. Each microbe isolated was inocu-
lated in the presence/absence of each pigment (previously
sterilized), in 100 mL of nutrient broth (for bacteria) and
malt extract (for fungi) and incubated at 30�C and 28�C,
respectively, at 120 rpm (IKA KS 4000 ic control). Samples
were collected in sterile conditions at 0, 2, 4, 7, 11, 14,
16, 21, 24, and 31 days.

2.2 | Monitoring of simulation assays

2.2.1 | Colour monitoring and microbial
development

Samples (200 μL) from each liquid assay were collected
periodically, as described in Section 2.1, and spectrophoto-
metrically monitored at 200 to 900 nm on the Multiskan Go
Microplate Spectrophotometer (Thermo Scientific).

2.2.2 | Quantification of chromatic alteration

Colour alteration of each simulation assay was also measured
by a noninvasive spectrophotometer Datacolor CheckPlus II
(DataColor, Lawrenceville, New Jersey) equipped with an
integrating sphere, in the following conditions: illumination
8� viewing (in agreement with the International Commission
on Illumination [CIE] publication No. 15.2. Colorimetry),
SCE, and Standard Illuminant/Observer D65/10�. The aper-
ture size used was (5 mm). The results obtained in the CIE
L*a*b* chromatic space defined by the CIE in 1976 represent
the average of three measurements taken on the paint layer
surface. The chromatic coordinates measured were L*, which
represents lightness (0-100); a*, which stands for the red/
green axes; and b*, which stands for the yellow/blue hue axes
(0-100). The C* coordinate, derived from the previous colour
space (CIE L*C*h*), which represents the chroma (colour
purity or saturation), was also analyzed.5

2.2.3 | Cellular viability assessment

Cell viability of the microorganisms tested in the presence of
yellow and red ochre and ultramarine blue pigments was
assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay, as previously described by Mosmann25

and applied and optimized by our investigation group.26

Aliquots (100 μL) of each assay were collected and incu-
bated with 300 μL of MTT stock solution (5 mg/mL in
Phosphate-Buffered Saline 1x), for 4 hours, in the dark, at
37�C. After this period, 350 μL of Dimethyl sulfoxide/ethanol
(1:1) was added to dissolve the formazan crystals formed.
The final suspension was centrifuged at 10 000 rpm for
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15 minutes and the supernatant was spectrophotometrically
(Hitachi, U-3010) analyzed at 570 nm. Each assay was per-
formed in triplicate.

2.2.4 | Detection of pigments alteration

Raman spectra were acquired using a HORIBA Xplora
Raman microscope coupled to external power laser sources
for specimen radiation: 638 nm (He-Ne). Irradiation of

samples was performed using a filter 10% to 50% to prevent
any thermal damage of the material. Ordinary acquisition
time was on the order of 10 to 20 seconds with 5 cm−1 of
spectral resolution. The backscattered light was collected by
the objective (×10 or ×50), and then captured by a charge-
coupled device detector. Spectra were calibrated using the
520.5 cm−1 band of a silicon wafer. Spectra deconvolution
was performed using LabSpec, and the identification was
made with Spectral IDTM 13.

FIGURE 1 Color evaluation of yellow red and blue pigments, by A, UV-Vis spectrophotometry and B, CIELAB colour space, inoculated
with Aspergillus niger and Bacillus sp.2

TABLE 1 Variation of the colorimetric parameters (ΔE represents the differences calculated in beginning and in the end of the assays for each
pigment and microorganism) in the CIELAB colour space

Microorganism Pigment

Chromatic parameters

ΔE*ΔL* Δa* Δb*

Bacillus sp.2 YO 1.32 1.66 2.59 3.35

RO −14.14 8.24 10.95 19.69

SUB −8.12 −0.92 −1.83 8.37

Aspergillus niger YO 21.54 −14.07 −43.76 50.76

RO 2.9 −1.36 −0.75 3.29

SUB 15.8 5.68 38.07 41.61

ΔE*=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔL*2 +Δa*2 +Δb*2
� �q

.

Abbreviations: RO, red ochre; SUB, synthetic ultramarine blue; YO, yellow ochre.
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3 | RESULTS AND DISCUSSION

Standard tests containing the pigments yellow, red, and blue,
as well as simulation assays containing each of these pig-
ments in the presence of the selected microorganisms, were
performed in order to evaluate whether the chromatic alter-
ations can be induced by biogenic involvement.

The analysis performed allowed to follow up the micro-
bial growth and to screen the pigment spectra along the sim-
ulation assays.

Figure 1 shows the time scan (Figure 1A) and the colour
evaluation on the CIELAB space (Figure 1B) of the yellow,
red, and blue pigments in the presence of the filamentous
fungus Aspergillus niger and the strain of bacteria Bacil-
lus sp.2.

The spectrophotometric analysis revealed that these
microorganisms possess ability to promote pigment alter-
ation in culture.27 However, the bacterial strains (particularly
Bacillus sp.2) tested induce less colour alterations than the
fungi and show higher alteration capacity for yellow

FIGURE 2 Raman spectra of simulation assays performed with yellow, red, and blue pigments inoculated with A-C, A. niger and D-F,
Bacillus sp.2 ( : yellow ochre standard pigment; : red ochre standard pigment; : ultramarine blue standard pigment; : pigment
inoculated with microorganism)
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pigments. This behavior was more evident with A. niger,
which induced total discolouration of all the pigments, as
shown by the CIELAB system (Figure 1 and Table 1).

To complement the spectral characterization, Raman
spectrometry was also used.

All the simulation assays mentioned above were analyzed
by Raman, results of which indicate that these microorgan-
isms affect the pigment signals, making all the characteristic
peaks of each pigment disappear, as shown in Figure 2.28

Thus, these results evidenced that pigments like yellow
ochre, red ochre, and ultramarine blue suffered total and/or
partial discolouration after 30 days in the presence of fungi
and bacteria, as can be visually observed in Figure 3.

Aspergillus niger revealed high biodeteriorative capacity,
having the ability to incorporate the pigments. The results
show the ability of microorganisms to proliferate and induce
aesthetic alteration on the pigments used in mural paintings by
chromatic alterations. Thus it is necessary to understand if the
pigments affect the normal development of the biocolonizers.
In this way, metabolic assays to monitor the viability of the
cells in the presence of the yellow, red, and blue pigments
were assessed (Figure 4). These microorganisms revealed the
ability to proliferate at high concentrations of these pigments,
remaining metabolically active even after 30 days in contact
with these pigments, which evidences their potential capacity
to colonize and to induce alteration on mural paintings.27,29,30

Cell viability assays corroborate the indications obtained by
colorimetric and spectral monitorization, where the chromatic
degradability of fungi and bacteria was confirmed, as well as
their ability to proliferate in the presence of these pigments,
whose metabolic activity remains active even under reduced
nutritional conditions.

4 | CONCLUSIONS

This work shows that filamentous fungi, yeast, and bacteria
have the capacity to degrade and/or induce chromatic

FIGURE 3 Liquid
simulation assays performed
with A, yellow, red, and blue
standard pigments and the same
pigments inoculated with B,
Bacillus sp.2 and C, A. niger

FIGURE 4 Cell viability assessment of A, Bacillus sp.2 and B,
A. niger in the presence of yellow, red, and blue pigments ( : t0d; : t2d;
: t11d; : t30d)
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alterations on yellow and red ochres and ultramarine blue
pigments widely used in mural paintings and traditional
limewash, which seems to be related to some aesthetic dam-
ages that affect these artworks.

Aspergillus niger promoted high discolouration of the
pigments, evidencing their biodeteriorative ability.

Fungi and bacteria revealed their ability to proliferate at high
concentrations of pigments, remaining metabolically active
even under reduced nutritional conditions, which proves their
capacity to colonize and damage these cultural heritage assets.

The current work is a step forward to the understanding
of biodegradation of pigments; however, further studies are
needed to explore the complete mechanism and pathways
involved in the microbial degradation of mural paintings.
Furthermore, the high tolerance and degradative capacity of
some microorganisms to degrade pigments suggest their
applicability and potential in transversal areas of knowledge.
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