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Abstract: Worldwide sustainable development is threatened by current agricultural land change
trends, particularly by the increasing rural farmland abandonment and agricultural intensification
phenomena. In Mediterranean countries, these processes are affecting especially traditional olive
groves with enormous socio-economic costs to rural areas, endangering environmental sustainability
and biodiversity. Traditional olive groves abandonment and intensification are clearly related
to the reduction of olive oil production income, leading to reduced economic viability. Most
promising strategies to boost traditional groves competitiveness—such as olive oil differentiation
through adoption of protected denomination of origin labels and development of value-added
olive products—rely on knowledge of the olive varieties and its specific properties that confer their
uniqueness and authenticity. Given the lack of information about olive varieties on traditional groves,
a feasible and inexpensive method of variety identification is required. We analyzed leaf spectral
information of ten Portuguese olive varieties with a powerful data-mining approach in order to verify
the ability of satellite’s hyperspectral sensors to provide an accurate olive variety identification. Our
results show that these olive varieties are distinguishable by leaf reflectance information and suggest
that even satellite open-source data could be used to map them. Additional advantages of olive
varieties mapping were further discussed.

Keywords: traditional olive groves; olive cultivars; remote sensing; Sentinel 2; spectral reflectance;
sustainable development; agricultural abandonment; agricultural intensification

1. Introduction

Sustainable development at a worldwide scale is crucially dependent on changes in land use
structure [1], particularly with respect to the increasing global food demand and increasing land
scarcity for agricultural production [2,3]. In terms of landscape dynamics, there have been three
dominant agricultural land change processes with impact on biodiversity and nature values over
the last half-century [4,5]: (1) In big cities surrounding areas, agricultural land was converted to
urban use associated with rapid urbanization processes as a response to growing demographic
demands [6]; (2) more economically productive areas have been intensified, incorporated into larger
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assemblages particularly within developed countries [7]; and (3) conversely, unproductive farm areas
were increasingly abandoned, reforested, or included in rewilding for nature values with the creation
of nature reserves or parks [8–10].

Agricultural land change phenomena—rural farmland abandonment and agricultural
intensification—are ongoing processes all over the world and particularly in Europe, with potential
important negative social and environmental impacts. Agricultural land abandonment has been an
increasing problem, mostly in Southern Europe throughout the last decades [11], contrasting with
Northern and Western Europe where agriculture intensification/expansion is the dominating land-use
change process [12]. The extent of such landscape changes raises deep concerns in European authorities
since they could entail significant negative impacts. Despite the potential positive role of abandoning
areas on, for example, forest regrowth, natural regeneration, biodiversity and carbon sequestration,
there is great concern on increased fire risk due to homogenization of woody vegetation [13–15].
Likewise, the loss of landscape heterogeneity, the decline in resource diversity and changes in
disturbance regime associated with land abandonment may equally be responsible for significant
biodiversity losses [16,17]. The integration of traditional agricultural lands into a more cost-efficient
and intensive agricultural model capable of a higher food production also raises concerns as such
practices often carry higher negative implications compromising ecosystem functioning, biodiversity,
fresh water supply, preservation of the soil and natural restoration [16–19]. Additional concerns are
raised regarding the loss of regional identities linked to the threat of cultural landscapes, essential for
the sustainable development of specific communities [18,20–22].

In the Mediterranean agriculture scenario, both abandonment and intensification have been
particularly relevant in traditional olive groves [23–26]. World olive growing occupies an area of
10.2 million hectares with more than 90% of the total area located in the Mediterranean Basin [27].
Traditional olive farming is a low-intensity farming system [28], associated with a low density of
old olive trees, absence of irrigation, minimal pesticides and fungicides inputs and a low degree of
mechanization. They are highly environmentally sustainable, supporting high levels of biodiversity and
low rates of soil erosion [28], and play an important social-economic role in rural areas while providing
income and employment [29]. Among other agro-economic systems, ancient traditional olive groves
are recognized as Globally Important Agricultural Heritage Systems since they play a crucial role for
agrobiodiversity conservation and livelihood [30]. The traditional olive groves may play an important
role in building ecological and social resilience to climate change while maintaining ecological diversity,
improving adaptability and putting into practice a sustainable model of land use which may go beyond
business-as-usual logics [31,32]. In a food security realm, at a time when the actual intensification
processes lead to the installation of monovarietal olive groves, preservation of traditional local adapted
varieties plays an important role in environmental and climate change crop adaptation as well as aid
in coping with genetic vulnerability issues by acting as diversity reservoirs [33–35]. The abandonment
and the intensification of traditional olive groves entails environmental and social costs; it likely
threatens the local economy, rural employment and agroecosystem’s resilience to climate change,
as well as to other environmental disturbances, inherently affecting the food production ability in
the future.

The abandonment of traditional olive farming practices is clearly linked with its economic
trade-offs. The fragmented structure hampers farm competitiveness by escalating production costs [36],
while intensive farming pulled down the overall market price making most olive traditional farms
barely viable or even unviable [37–39]. Notwithstanding the complexity of current socio-economic
dynamics, it is very likely that Mediterranean “traditional” olive farmers will continue following one of
two main trajectories: (1) leaving the traditional farming practices and moving towards more profitable
models, like intensive (200–400 plant/ha) or super-intensive (600–2000 plant/ha) olive farming, or
even switching to a more promising and profitable crop, like almonds [23,25,26]; (2) searching for
alternative economic opportunities outside the agricultural sector which consequently results in further
abandonment of farmlands [40,41].
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New approaches have been suggested to farmers in order to make traditional olive groves
sustainable and viable again, in the context of the actual highly competitive international markets.
Strategies of income diversification recommended to traditional agricultural businesses [42] can
equally be implemented to traditional olive farms, such as (1) olive oil differentiation (by shifting
from traditional to organic management or by adoption of specific production process and/or quality
requirements [39,43,44]), (2) crop diversity (promoting diversification of agricultural production [45,46]),
(3) development of non-agricultural products (such as olive oil related agro-tourism activities [47]) and
(4) development of new agricultural-related products (innovative value-added by-products [48,49]).
For implementation of the promising diversification strategies based on olive oil differentiation or
on the development of innovative value-added products, a high quality of palatable products is
required; this in turn relies on the olive varieties used, as each variety produces olive fruits with
distinct organoleptic proprieties and chemical compositions. It seems thus clear that the sustainability
of traditional olive groves in the Mediterranean region is dependent on the knowledge of the olive
varieties and its specific properties that confer their uniqueness and authenticity.

Bearing in mind that traditional production is based on centennial olives which were empirically
selected by growers centuries ago, the identification of the varieties can no longer be guaranteed with
certainty. In this context, an automatic, feasible, low-cost and accurate technique to determine olive
varieties is highly valuable for both farmers and authorities (e.g., assisting in the decision-making
process of the olive crop management system and of the best value-added product, enabling higher
control of the composition of products, or the implementation of certification or labelling processes).
At a national/European level, an olive variety identification technique that could be generally applied
to a broad area with limited resources would allow for assessing the olive germplasm status and its
geographical distribution, being an important tool in landscape management and sustainability.

Currently, as far as we know there is no prompt, effective and feasible technique that can determine
olive varieties with reliable accuracy, independent of orchard dimension. Until recent years, variety
identification has been based on olive morphological and agronomic traits, classically [50–54] (made
difficult by morphological changes raising from the age of the trees, the phenological stage of the plants
or even the specificities of the local environmental conditions) or aided by image analyses tools and
a semi-automatic algorithm [55,56] (to accommodate variability issues). Pattern recognition through
molecular methods has also been achieved [57]. Both approaches are promising in terms of olive
variety discrimination, however, they are both not applicable to large olive grove areas as they rely on
the collection of individual biological and visual data in the field (which is extremely costly, spatially
limited and time-consuming).

Remarkable advances in recent years in satellites’ remote sensors technology, particularly with the
launch of satellites with hyperspectral sensors with very-high resolution [58], enable its use to small-scale
applications like trees species identification (e.g., [59–61]). We hypothesized that the appropriate use of
such remote technology could provide feasible and accurate olive variety identification on traditional
olive groves. Our objective was to disclose the existence of different patterns in spectral reflectance
signatures among olive varieties to support this hypothesis. Therefore, we carried out an intensive data
mining classification approach using several machine learning classifiers and leaf spectral reflectance
data. We further show that these spectral signatures can be used in a classification process that allows
olive variety discrimination.

2. Materials and Methods

2.1. Olive Leaves Spectral Data

Leaf spectral reflectance data of ten representative Iberian olive varieties were collected using
a handheld non-imaging spectroradiometer, the FieldSpec® 3 (Analytical Spectral Devices (ASD),
Inc., Boulder, CO, USA), coupled with both Plant Probe and Leaf Clip accessories. ASD FieldSpec®

3 portable spectroradiometer consists of three detectors specifically designed to acquire different
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electromagnetic radiation. One covers the visible (VIS, 350 to 700 nm) and near-infrared (NIR, 701 to
1000 nm) regions of the electromagnetic spectrum with a spectral resolution of 3 nm. The other two
cover the short-wave infrared (SWIR1, 1001 to 1830 nm; SWIR2,1831 to 2500 nm) spectral range with
a spectral resolution of 10nm (ASD, 2007. FieldSpec® 3 user manual) The Leaf Clip is designed to
minimize measurement errors associated with the stray light while using the Plant Probe accessory,
which integrates a halogen bulb that emits radiation over the 350 to 2500 nm spectral range.

The measurements were carried out on October 2018 in the National Institute for Agricultural and
Veterinary Research (INIAV) experimental station in Elvas, Portugal. One hundred fresh olive leaves
were measured (10 random leaves per olive tree) for each of the following olive varieties: Arbequina,
Azeiteira, Carrasquenha, Cobrançosa, Cordovil da Serra, Galega, Koroneiki, Picual, Redondil and
Verdeal. The exception was Picual, for which only 85 leaves were measured. For each leaf, reflectance
value was obtained for each 1 nm interval over 350–2500 nm wavelength range, which means we
obtained 2150 reflectance values.

2.2. Machine Learning Classifier Algorithms

The discrimination task of olive leaf spectral information between distinct olive varieties relies
on a data mining approach in which several classification supervised learning methods were tested
in order to obtain an accurate classification model. Given the strengths and weaknesses of each
algorithm and how well they fit both the dataset and classification problem, a set of six classification
algorithms was selected for testing, among the most common ones: Classification And Regression
Trees (CART) [62], Stochastic Gradient Boosting Machine (GBM) [63,64], Extreme Gradient Boost
(XGBoost) [65,66], Random Forest (RF) [67], k-Nearest Neighbor (kNN) [68,69] and Support Vector
Machine (SVM) [70,71].

Algorithms with distinct functional principles were included in our set. Decision Tree Algorithms,
like CART, construct a model of decisions made based on actual values of attributes in the data.
The decisions branch in tree structures until a prediction decision is made for a given record. Instance-
based Algorithms, like kNN and SVM, typically build up a database of example data and compare
new data to the database using a similarity measure to find the best match and make a prediction.
GBM, RF and XGBoost algorithms are Ensemble Algorithms where final models composed of multiple
weaker models that are independently trained are used and whose predictions are combined in some
way to make the overall prediction. Those require an enormous effort on the selection of types of weak
learners to combine and the ways in which to combine them.

The entire analysis was carried out using mlr package [72] implemented in R statistical software
which provides an object-oriented and extensible framework for classification for the R language.
For each tested algorithm, mlr package implements specific additional packages for the modelling
process, namely rpart (CART) [73], class (kNN) [74], e1071 (SVM) [75], gbm (GBM) [76], randomForest
(RF) [77] and xgboost (XGBoost) [77].

2.3. Hyperparameters Optimization

Optimization of all classification models involves a hyperparameter-tuning process. For each
classifier algorithm tested there is a different set of hyperparameters that should be tuned in order to
maximise model predictive accuracy (Table 1).

Hyperparameter-tuning is a truly hardware-demanding and time-consuming process when
carried out with most common methods such as Grid Search or Random Search, especially with large
parameters spaces. Those methods roam the full space of available parameter values in an isolated way
without paying attention to past results. The search space grows exponentially with the number of tuned
parameters, while for each hyperparameter combination a model needs to be trained, predictions must
be generated in the validation data and the validation metric must be calculated. As a best combination
between time consumption and suitability of results, we have chosen to tune the hyperparameters
using a Sequential Model-Based Optimization, also known as Bayesian optimization, implemented in
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the mlrMBO package [78]. Bayesian Optimisation typically requires less iterations to get to the optimal
set of hyperparameter values since it selects combinations in an “informed” way, considering past
evaluations when choosing the hyperparameter set to evaluate next [79]. This limits the number of
times a model is trained for validation since only those settings that are expected to generate a better
validation score are passed through for evaluation. The upper and lower limits of search spaces used
in mlrMBO for tuning each one of the hyperparameters are presented in Table 1.

Table 1. Hyperparameter’s type and searching spaces used in the tuning process of each classifier
algorithm tested.

Classifier Algorithm

Hyperparameters

ID Type
Search Space Limits

Lower Upper

CART cp numeric 0 −6.6439

maxdepth integer 3 30

minbucket integer 5 50

minsplit integer 5 50

kNN k integer 1 ∞

SVM cost numeric 0 ∞

gamma numeric 0 ∞

GBM n.trees integer 1 ∞

interaction depth integer 1 ∞

shrinkage numeric 0 ∞

n.minobsinnode integer 1 ∞

RF nodesize integer 1 ∞

mtry integer 1 ∞

XGBoost nrounds integer 1 ∞

maxdepth integer 1 ∞

gamma numeric 0 ∞

colsamples bytree numeric 0 1

min child weight numeric 0 ∞

subsample numeric 0 1

2.4. Model Training and Validation

The full dataset is composed of 985 leaves reflectance percentage data for each one of the 2150 1nm
intervals between 350–2500 nm, distributed by 10 olive variety classes. For the modelling, we randomly
divided the dataset into training and validation sets, stratified by class, containing respectively 80%
and 20% of the data. As the name says, the training set was used for training, i.e., to fit parameters
of each classifier algorithm tested in order to produce a classification model. The validation set was
then used to judge model performance by achieving their predictive accuracy in independent data.
Confusion matrices resulting from the validation task were used to provide an estimation of the
model’s classification accuracy. Two predictive accuracy assessment measures were computed for each
matrix: overall classification accuracy and Kappa coefficient [80].

2.5. Dimensionality Reduction and Performance Improvement

The hyper-dimensionality of our 2150 features dataset constitute a severe constraint to model
training and validation processes, with high computational demands. Commonly, feature extraction and
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dimensional reduction approaches are implemented to lower computational needs and the time spent.
Pre-processing a full dataset with principal components analysis (PCA), linear discriminant analysis
(LDA), or a sequential combination of both (PCA+LDA) to obtain a set of “most relevant” features to
feed machine learning classification algorithms has been showed to efficiently reduce time involved in
model training and validation processes [81–83], without model accuracy costs. Interestingly, such
approaches can even significantly increase the performance of the classification models.

Despite training and validating our models with a full feature dataset, we repeated the modelling
process with distinct datasets resulting from the implementation of several dimensional reduction
techniques over our original features to attempt enhancing the predictive ability of the classification
algorithms. In the first and second cases we respectively used PCA and LDA resulting features. In the
third case we used the final features dataset resulting from the PCA+LDA two steps approach, in which
we get the linear discriminant features of our original dataset principal components. In addition to
the previous and most common approaches, we also proposed and tested an alternative approach,
a pairwise fashion dimensional reduction method we called Class-Paired LDA. Such a method implies
that linear discriminant features are obtained for each pair of classes—in this case, olive varieties—and
then the computation of coefficients was calculated for the entire dataset using those new features.
Those final features were the ones used in the modelling procedure. Principal components and linear
discriminant features were computed using MASS and psych packages respectively, both implemented
with R statistical software. In our data mining approach, 30 final models were produced covering all
the combinations of algorithms and dimensionality reduction strategies.

3. Results

The spectral reflectance signatures of the 10 olive varieties are presented in Figure 1. Despite
following a similar profile, a careful visual inspection provides evidence for a relative separability of
reflectance signatures in several wavelength ranges among most varieties, such as at 780–1300 nm,
1420–1870 nm and 2000–2400 nm (Figure 2). Those discrepancies between classes are likely incorporated
in the different models produced by tested algorithms to achieve an accurate classification of
olive reflectance.

The hyperparameter optimization process preformed for the different algorithms and datasets
resulted in the sequence of settings presented in Table 2.

Figure 1. Leaf reflectance of olive varieties over 1nm intervals (n ≈ 100). Band central lines represent
average values by variety and shaded area represents the error envelope (Mean Standard Error).
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Table 2. Hyperparameters selected for the final models in each algorithm for the different datasets.

Classifier
Algorithm

Hyperparameter
Dimensional Reduction Approach

Original
Features PCA LDA PCA-LDA Class-paired

LDA

CART cp 3.207201 × 10−3 9.770812 × 10−4 6.315712 × 10−2 1.240644 × 10−3 5.031421× 10−3

maxdepth 24 13 12 25 27

minbucket 5 5 34 5 5

minsplit 5 8 21 14 22

kNN k 5 9 1 9

SVM cost 32741.8 32743.65 108.0261 3.050549 1549.45

gamma 3.058368 × 10−5 1.492811× 10−3 3.053304 × 10−5 4.249793 × 10−2 4.102502 × 10−2

GBM n.trees 317 264 307 328 153

interaction depth 8 5 9 10 3

shrinkage 0.04550525 0.1688938 0.1347996 0.03450826 0.1730139

n.minobsinnode 18 9 17 10 5

RF nodesize 2 8 2 2 1

mtry 252 10 5 2 7

XGBoost nrounds 96 1097 2116 757 968

maxdepth 6 8 0.2690774 4 6

gamma 0.8234288 1.156659 9.357791 0.3196865 1.658614

colsamples bytree 0.611975 0.6405206 0.5733329 0.5085781 0.4264549

min child weight 3.864695 12.35923 0.3632626 2.421558 0.8988217

subsample 0.7416891 0.8773087 0.374145 0.9138881 0.7521763

Of the 30 models generated in our data mining approach. ranges from models with lower predictive
accuracy (like the worst performer produced by the kNN algorithm with principal components dataset
(PCA) (overall accuracy = 0.2792; Kappa = 0.1983)) to the best performer model (produced by the
SVM algorithm with Class-Paired linear discriminants (Class-Paired LDA) (overall accuracy = 0.8173;
Kappa = 0.7970))(Table 3). In our olive leaf reflectance classification task with the present dataset.
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The SVM algorithm always produced the most accurate model regardless of the implementation of
any dimensional reduction strategy (Table 3). Similarly. the use of Class-Paired LDA has shown to
be the most effective dimensional reduction strategy in terms of improving the model’s performance.
since models produced using Class-Paired linear discriminants always achieved the higher overall
accuracy regardless of the machine learning algorithm used in the classification task (Table 3).

Table 3. Preditive accuracy of the models generated in our data mining approach.

Classifier Algorithm Dimensional Reduction Approach
Model Preditive Accuracy

Acuraccy Kappa

CART

Original features 0.3553 0.2833

PCA 0.3046 0.2267

LDA 0.4518 0.3904

PCA-LDA 0.5381 0.4864

Class-paired LDA 0.6497 0.6109

kNN

Original features 0.3756 0.3058

PCA 0.2792 0.1983

LDA 0.7157 0.684

PCA-LDA 0.6345 0.5936

Class-paired LDA 0.7919 0.7686

SVM

Original features 0.7665 0.7403

PCA 0.6904 0.6557

LDA 0.6802 0.6445

PCA-LDA 0.6802 0.6444

Class-paired LDA ** 0.8173 0.797

GBM

Original features 0.5736 0.526

PCA 0.4822 0.4243

LDA 0.533 0.4806

PCA-LDA 0.6396 0.5993

Class-paired LDA 0.7716 0.7461

RF

Original features 0.5482 0.4977

PCA 0.4518 0.3902

LDA 0.6345 0.5938

PCA-LDA 0.6497 0.6105

Class-paired LDA 0.7563 0.7292

XGBoost

Original features 0.5482 0.4978

PCA 0.467 0.4074

LDA 0.4721 0.4134

PCA-LDA 0.6701 0.6331

Class-paired LDA 0.7565 0.7292

** Best performer model.

The best performer model was produced by the SVM algorithm with a dataset of 45 Class-Paired
linear discriminants (Table 4) and configured with the following hyperparameter values: cost = 1549.45
and gamma = 4.10 × 10−2. This model struggled specially with the classification of Azeiteira and



Sustainability 2020, 12, 3059 9 of 21

Cordovil varieties. both with an accuracy of 70%. the lowest accuracy achieved. Azeiteira was
misclassified mostly as Cobrançosa. The model handled the classification of Carrasquenha. Picual
and Koroneiki extremely well. achieving respectively an accuracy of 95%. 94% and 90% (Table 5).
The remaining classes were classified with an acceptable accuracy of 80% (Table 5).

Table 4. Relative importance of Class-Paired linear discriminants used with the SVM algorithm to
produce the best performer model.

Linear Discriminant Classes Permutation Importance

LD45 Redondil & Verdeal 3.44 × 10−2

LD11 Azeiteira & Cobrançosa 2.63 × 10−2

LD34 Cordovil & Redondil 1.18 × 10−2

LD6 Arbequina & Koroneiki 7.81 × 10−3

LD42 Koroneiki & Verdeal 7.58 × 10−3

LD31 Cordovil & Galega 6.77 × 10−3

LD9 Arbequina & Verdeal 6.54 × 10−3

LD12 Azeiteira & Cordovil 5.75 × 10−3

LD15 Azeiteira & Picual 5.22 × 10−3

LD17 Azeiteira & Verdeal 4.94 × 10−3

LD35 Cordovil & Verdeal 4.16 × 10−3

LD18 Carasquenha & Cobrançosa 4.03 × 10−3

LD26 Cobrançosa & Galega 3.93 × 10−3

LD36 Galega & Koroneiki 3.78 × 10−3

LD19 Carasquenha & Cordovil 3.42 × 10−3

LD27 Cobrançosa & Koroneiki 3.24 × 10−3

LD8 Arbequina & Redondil 2.66 × 10−3

LD16 Azeiteira & Redondil 2.66 × 10−3

LD21 Carasquenha & Koroneiki 2.66 × 10−3

LD2 Arbequina & Carasquenha 2.64 × 10−3

LD4 Arbequina & Cordovil 2.59 × 10−3

LD1 Arbequina & Azeiteira 2.56 × 10−3

LD5 Arbequina & Galega 2.51 × 10−3

LD38 Galega & Redondil 2.33 × 10−3

LD29 Cobrançosa & Redondil 2.26 × 10−3

LD7 Arbequina & Picual 2.18 × 10−3

LD14 Azeiteira & Koroneiki 2.15 × 10−3

LD3 Arbequina & Cobrançosa 2.13 × 10−3

LD30 Cobrançosa & Verdeal 2.13 × 10−3

LD43 Picual & Redondil 2.08 × 10−3

LD25 Cobrançosa & Cordovil 1.67 × 10−3

LD41 Koroneiki & Redondil 1.50 × 10−3

LD13 Azeiteira & Galega 1.32 × 10−3

LD28 Cobrançosa & Picual 1.09 × 10−3
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Table 4. Cont.

Linear Discriminant Classes Permutation Importance

LD23 Carasquenha & Redondil 9.89 × 10−4

LD10 Azeiteira & Carasquenha 6.59 × 10−4

LD39 Galega & Verdeal 5.58 × 10−4

LD20 Carasquenha & Galega 5.07 × 10−4

LD40 Koroneiki & Picual 3.80 × 10−4

LD24 Carasquenha & Verdeal 2.79 × 10−4

LD37 Galega & Picual 2.53 × 10−4

LD22 Carasquenha & Picual 1.01 × 10−4

LD33 Cordovil & Picual 1.01 × 10−4

LD32 Cordovil & Koroneiki 2.53 × 10−5

LD44 Picual & Verdeal 0.00 × 10
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Table 5. Confusion matrix (in percentage) obtained with SVM algorithm applied to the Class-Paired linear discriminants dataset.

Reference Data

Classified Data Arbequina Azeiteira Carrasquenha Cobrançosa Cordovil Galega Koroneiki Picual Redondil Verdeal Total User’s
Accuracy

Arbequina 16 1 0 0 0 0 1 0 0 0 18 88.89

Azeiteira 0 14 0 0 1 1 0 0 2 2 20 70.00

Carrasquenha 0 0 19 0 1 0 0 0 0 0 20 95.00

Cobrançosa 0 4 0 16 0 1 0 1 0 0 22 72.73

Cordovil 0 1 0 0 14 1 0 0 0 1 17 82.35

Galega 1 0 0 1 1 16 1 0 0 0 20 80.00

Koroneiki 1 0 0 0 0 0 18 0 0 0 19 94.74

Picual 1 0 0 1 2 1 0 16 0 0 21 76.19

Redondil 1 0 1 2 0 0 0 0 16 1 21 76.19

Verdeal 0 0 0 0 1 0 0 0 2 16 19 84.21

Total 20 20 20 20 20 20 20 17 20 20 197

Producer’s accuracy 80.00 70.00 95.00 80.00 70.00 80.00 90.00 94.12 80.00 80.00

Overall accuracy 81.73 Kappa 0.797
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4. Discussion

The diversity of olive cultivars is very high. showing differences in the bioclimatic envelope and
limiting factors [84]. and also in plant morphology. traits and phenology (e.g., Bacelar et al. [85]).
Despite this. the distinction among olive varieties is not an easy task. The extraordinary accuracy
achieved by our best performer model in the classification of most tested olive varieties is a clear
substantiation that olive varieties yield distinguishable spectral reflectance patterns that can be used
to identify them. Even an accuracy of 70%. the lowest achieved for individual variety classification
(Azeiteira and Cordovil). is acceptable considering the challenging task of distinguishing leaf reflectance
patterns among very closely related conspecifics originating from a recursive selection-hybridization
process among domesticated and existing wild Olea forms [86]. Indeed. several authors have previously
found differences between crop cultivars using non-destructive procedures based on spectral data.
Gutierrez et al. [87] and Gizaw et al. [88] highlighted the potential of multispectral radiometers to detect
differences between wheat genotypes. Silva Júnior et al. [89] used a non-imaging hyperspectral sensor
to discriminate four soybean varieties through their spectral profile. Good results have been achieved
for discriminating cultivars in permanent crops. A Fourier transform NIR spectrometer was used by
Guo et al. [90] to distinguish four peach varieties commonly used in China. Suphamitmongkol et al. [91]
also differentiated three varieties of Thai orange through the use of a short-wavelength spectrometer.

A careful analysis of olive leaf reflectance data in the spectral bands range of the satellites integrating
three open-data earth observation projects. the Sentinel 2 (Figure 3a). Landsat 8 (Figure 3b) and
MODIS-Moderate Resolution Imaging Spectroradiometer (Figure 3c). reveal the relative separability
among all olive varieties’ spectral reflectance. At least in one or two of the analyzed spectral bands there
was no overlapping between the average standard error bands of each variety in relation to each other.
a strong indicator that. in such ranges. varietal information is quite dissimilar. This clearly suggests.
in turn. that data produced by these satellites provide the adequate spectral discrimination to support
an olive variety identification process. The combination of multi-satellite and/or multi-temporal data
obtained by different sensors may further increase the classification results obtained with snapshot
single-satellite datasets. since it integrates additional spectral resolution and phenologic differences
between olive varieties (in processes like flowering or fructification) that clearly temporarily affect the
reflectance captured by satellites [92–94]. Concerning spatial resolution limitations. the monovarietal
fashion of traditional olives groves and its typical patch size and distribution enable the use of such
imagery for variety identification purposes. Particularly. Sentinel 2 data and Landsat 8 data. in which
most band information has a spatial resolution that ranges from 10m to 30m. are strong candidates for
the task. Even in lower tree density traditional groves. the olive canopy can easily fill the majority
of the pixel area since in such orchards trees typically handle a much wider canopy than in higher
density olive orchards. Additionally. the coarser spatial resolution information. like that obtained
by the MODIS satellite. could be very helpful in increasing classification model accuracy by adding
valuable additional information.

                                          (a)  
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These findings support our hypothesis that remote sensing data could be used to identify olive
cultivars. Unmanned aerial vehicle (UAV) imagery was used by Avola et al. [95] to distinguish two
olive scions using vegetation indexes. Images obtained by UAV were also used by Kyratzis et al. [96]
for durum wheat phenotyping in Mediterranean drylands. However. Matese et al. [97] showed that
for precision viticulture. the advantage in using UAV is only cost-effective for areas under five hectares
and above such threshold airborne and satellite provide better solutions. Thus. for large-scale areas.
the solution may involve data provided by different sensors. particularly data from the Sentinel-2
mission with high temporal. spatial and spectral resolutions. and which have already been tested to
discriminate and map small-scale crop types (e.g., Griffiths et al. [98]).

4.1. On the Importance of Olive Variety Discrimination

Mapping olive cultivars may be critical for the future of the southern European regions where
natural resources are scarce. especially available water. and where large-scale negative impacts
resulting from climate change are expected for olive yields [99]. Although the olive tree has stomatal
regulation mechanisms to survive in drought conditions [100]. its eco-physiological response to
irrigation is very high. particularly in critical moments of its vegetative cycle [101–107]. This allows
for stabilization of the inter-annual variability in olive production which is a marked characteristic
of olive trees. The results of Gómez-Rico et al. [106] for the cultivar Olea europaea L. cv. Cornicabra
(for virgin olive oil) showed that the production in rain-fed conditions was 35% lower than the one
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obtained through different irrigation regimes. but that the results achieved based on regulated deficit
irrigation were similar to the 100% restitution of the crop evapotranspiration (ETc). Patumi’s et al. [107]
findings. obtained in an intensive olive grove with Olea europaea L. cv. Kalamata (for olive oil and
table olives). highlight that a restitution of 66% of ETc allows for achieving higher yields. and that the
rate of ETc is a threshold above which yield increases were insignificant. The efficient. rational and
sustained use of water is therefore mandatory. and deficit irrigation (application of water below the
total crop needs defined by ETc) is a potential strategy to reduce excess consumption and to avoid
severe and prolonged drought stress in plants. However. given the above-mentioned differences in
the phenology of olive cultivars. the optimization of the irrigation scheme is also varietal dependent.
highlighting the relevance in knowing the spatial distribution of the different cultivars.

The optimization of management practices resulting from knowledge of the spatial distribution of
varieties goes well beyond irrigation issues. Given the differences between olive cultivars in flowering.
fruiting and fruit ripening. and also in fruit retention and detachment forces. the spatial distribution
of the varieties will enhance mechanical harvest efficiency. guaranteeing better quality fruits and
reducing losses [108]. This is even more relevant since fruits ripen earlier in rainfed or poorly irrigated
olive trees [109]. and in this way all the optimal adjustment of the irrigation and harvesting schemes
depend on the integration of this information since the ripening stage has an important role in olive oil
acidity and total phenol content [110]. In referring to pest and diseases. differences in susceptibility are
attributed to tree varieties (e.g. [111–113]) with a high impact on crop management.

Moreover. the olive varieties also differ in the characteristics of the fruit that limit or enhance
multiple uses [114] and in the quality of the olive oil. namely in its stability and chemical
composition [115,116]. Since the quality of the final products are an added value for the sector.
ensuring its authenticity is imperative. particularly for the extra virgin olive oils [117]. The spatial
distribution of cultivars can be one of the phases of a hierarchical process of traceability and authenticity.
in addition to genomic approaches [118]. whose usefulness may lie in the identification of fraudulent
practices and for varietal and geographical certification.

4.2. Portugal as a Case Study

Olive trees are well adapted to the Mediterranean climate of southern Portugal and have been
traditionally cultivated in dryland areas and managed as non-irrigated farming systems. In the
mid-1980s the National Plan for Oliviculture was approved. with the aim of restructuring the olive
sector by planting new areas and also densifying and/or converting existing ones. Under the reform
of the Common Organization of the Market in Oils and Fats (Council Regulation (EC) n.º 1638/98 of
20 July 1998) was established as an incentive for the production of olive oil and. subsequently. the
European Commission Decision 2000/406/CE of 9 June 2000 allowed Portugal to expand the area of
olive groves by 30,000 hectares.

However. changes at the landscape scale only started to emerge after 2005 [119]. with an increase
of 25,000 hectares in the area covered by olive groves between 2005 and 2008 [120]. According to data
from the Portuguese Institute for Statistics. olive groves are the permanent crop with the largest area
in mainland Portugal. covering 343,557 hectares of agricultural land (and a share of 48%) [121]. About
98% of the Portuguese olive groves are dedicated to the production of olive oil. and only 2% to the
production of table olives [119]. The above-mentioned changes were reflected both in the production
of olives and olive oil. Portugal is currently the fourth largest European producer of olive oil. with
1.0x106 hl in 2013 and 0.7x106 hl in 2014 [91]. In the period 2000–2007. the average annual production
was 390,493.62 hl of olive oil and 252,247.50 ton of olives [121]. and between 2008 and 2014 these
values substantially increased to 677,249.14 hl of olive oil and 421,386.42 ton of olives [121]. Most of
the Portuguese production of olives and olive oil comes from the Alentejo region (69.58% and 68.55%.
respectively; [121]).

This production growth was not only the result of increased area but also due to changes in
management. which is presently much more intensive. The tree density range is between 30–173 trees ha−1
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in traditional rainfed systems to 1700–3000 trees ha−1 in drip irrigated super-intensive olive orchards [122].
In Portugal. more than 46% of the total area covered by olive groves is irrigated. including 45,000 hectares
occupied by intensive [123] and 4000 hectares covered by super-intensive olive groves [124].

However. not all olive cultivars can be managed under this high intensity. This is the reason
behind the expansion of imported varieties in Portugal. such as Olea europea cv. Picual and Olea europaea
cv. Arbequina. which are fast-growth and high-reach yields [125]. In this conversion process. we
are losing varietal composition that contributes to the quality and singularity of the national product.
Its unique organoleptic characteristics and crop resilience.

Thus. changes are taking place very quickly. To counterbalance the tendency and mitigate the
losses. spatial data is needed to discriminate traditionally managed crops making use of regional
well-adapted cultivars. This information is critical for the sustainable management of olive groves in
the future and for the guarantee of quality products with high market value.

5. Conclusions

We provided an approach based on distinguishable spectral reflectance patterns that allow
low-cost. high-sensitivity identification of olive varieties. It supports the ability of satellite remote
sensing that is being used to identify olive varieties in traditional and non-traditional groves in
a cost-free fashion. enabling its mapping and monitoring across time. This approach. by identifying
their olive tree patrimony and their inherent characteristics and uniqueness. can assist traditional olive
farmers in decision-making processes both on crop management strategies and on the best value-added
products to invest towards business viability and sustainability. This is a needed first step to counteract
the abandonment of traditional olive farming practices and to promote their sustainability. paired
with landscape diversification and ecosystem resilience. The optimization of management processes
in areas that have undergone land use intensification and the valorization of products derived from
endogenous varieties may contribute to a more rational use of the available resources to reduce the
negative effects on ecological systems and related functions and services. and to decrease the conflicts
between contrasting territorial policies.
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