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A B S T R A C T

Objectives: This study explored the correspondence between stable isotope ratios and indicators of non-specific
(periostitis and/or osteomyelitis) and specific (venereal syphilis) disease in a sample of human skeletons from a
Portuguese archaeological collection. Additionally, this study examined stable carbon (δ13C) and nitrogen (δ15N)
isotope ratios between individuals at different disease stages.
Materials and methods: δ13C and δ15N data from previously analysed skeletons without signs of infectious disease
or physiological stress (n= 32) were compared to new data from skeletons with active (n=6), healed (n= 7)
or a combination of both lesions (n=10). Skeletons with lesions (n=23) were also grouped as having only
healed tibial periostitis (n= 7), generalised non-specific (n= 5) and generalised specific infections (n= 2). The
skeletons with lesions that did not fit into these groups (n= 9) were not used in this analysis.
Results: The δ15N from skeletons with non-specific generalised infections in several bones differed significantly
when compared to skeletons that had either only healed tibial periostitis or were without lesions. Skeletons with
venereal syphilis had similar mean δ13C and δ15N to either skeletons without signs of disease or those with only
healed tibial periostitis.
Discussion: These results suggest different diets may be linked into an individual's susceptibility to these pa-
thogens. Diet influences resistance to infectious disease, while infections decrease nutrient availability, increase
malabsorption and resting energy expenditure. Potentially therefore, combining isotopic evidence of diet with
pathology may contribute to a new understanding of health and lifestyle in the past.

1. Introduction

1.1. Effect of diet on health

Nutritional stress may result in either greater susceptibility to
physiological stress or greater resilience to stress later in life (Bogin
et al., 2007). Malnutrition impairs the immune system (e.g. Calder,
2013; Calder and Jackson, 2000; Scrimshaw and SanGiovanni, 1997).
Individuals with poorer nutrition are less resistant to infectious dis-
eases, and infectious disease decreases nutrient availability (e.g.
Martorell, 1980; Mata et al., 1971). The effect of protein-energy mal-
nutrition on aspects of immune function and susceptibility to infection
(e.g. Calder and Jackson, 2000; Kuvibidila et al., 1993; Scrimshaw and

SanGiovanni, 1997; Woodward, 1998; Woodward, 2001) affects prac-
tically all forms of immunity, in particular cell mediated immunity
(Kuvibidila et al., 1993; Woodward, 1998, 2001), immune barrier
function (Deitch et al., 1990; Sherman et al., 1985) and the functioning
of lymphoid organs (Lee and Woodward, 1996; Woodward and Miller,
1991). On the other hand, infections can decrease nutrient availability
due to malabsorption (e.g. Mitra et al., 1997) and increase resting en-
ergy expenditure, altering the metabolism and redistribution of nu-
trients (Calder, 2013). However, if nutrition is adequate, diseases like
tuberculosis may have a less severe infection, instead of an exacerbated
infection, resulting in prolonged chronic infections with a higher
probability to affect the skeleton (Ulijaszek et al., 2012).
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1.2. Skeletal lesions as health indicators

Health is a complex state that can be reflected through skeletal in-
dicators of physiological stress (Temple and Goodman, 2014). Physio-
logical stress can be related to a wide variety of factors such as disease
and nutritional deficiencies (Armelagos, 2003; Goodman and Martin,
2002; Huss-Ashmore et al., 1992;). Even though systemic physiological
stress is not directly observable in the skeleton their consequences, in
some cases, are (Klaus, 2014).

Infectious diseases were a significant cause of death in past popu-
lations, particularly prior to the antibiotic era (Ortner and Putschard,
1985). Pathogens can reach the skeleton by direct infection through
wounds, extensions from adjacent soft tissue infections or spread by the
blood from the site of a remote infection (Ortner and Putschard, 1985;
Ortner, 2003). The body reacts to infection through an inflammatory
response which aims to neutralize the pathogen and repair the resultant
damage (Weston, 2012). Infection damages the normal cells and ac-
celerates the cell turnover (inflammatory process) (Ragsdale and
Lehmer, 2012). Inflammation affects the bone tissue at some level
through the production of pathological skeletal phenotypes (e.g.
Ragsdale and Lehmer, 2012; Redlich and Smolen, 2012). However,
inflammation can be caused by other factors (e.g. Ortner, 2003; Ortner
and Putschard, 1985). Bone reacts in a limited number of ways (pro-
duction or destruction of bone, or a combination of production and
destruction of bone) for either infection or other causes such as trauma
(e.g. Ragsdale and Lehmer, 2012; Weston, 2008, 2009). However, by
analysing the skeleton as a whole and taking into account other bone-
forming disorders, systemic non-specific infection remains a con-
textually plausible diagnostic option (Klaus, 2014).

The bone changes associated with periostitis, an inflammation of the
periosteum resulting in deposition of new bone (Bush, 1989), vary from
one or more layers of woven or compact bone to spiculae perpendicular
to the surface of the bone (Ortner, 2003). Periostitis not associated with
a specific skeletal syndrome, particularly on the tibiae, can be linked to
pathogens such as Staphylococcus or Streptococcus (Goodman and
Martin, 2002). However, the periosteum responds in a similar way re-
gardless of the etiology (Weston, 2008, 2009). Tibial periostitis is the
most commonly reported skeletal lesions in archaeological samples
(e.g. DeWitte, 2010; Weston, 2012), being frequently considered an
indicator of non-specific physiological stress (e.g. DeWitte, 2010; Robb
et al., 2001).

In case of infection leading to pathological new bone formation,
inflammation-derived pathological periosteal new bone formation is
rooted in biological stress (Klaus, 2014). Osteomyelitis is the result of
the introduction of infectious agents into bone, affecting the medullar
cavity (Ortner and Putschard, 1985; Ortner, 2003). Bones with osteo-
myelitis can present a combination of cloacae, sequestrated bone and
involucrum or only reactive bone formation in the marrow and outer
cortex that can result in smooth or lumpy compact bone (Ortner and
Putschard, 1985; Ortner, 2003; Pinhasi, 2008). The expression of os-
teomyelitis can vary depending on age, nature of the initial infection
and immunity of the individual (Pinhasi and Mays, 2008).

Acute infections are usually associated with rapid death rarely af-
fecting the skeleton but it may also stimulate new bone formation
(Ortner and Putschard, 1985; Ortner, 2003). Rapid bone formation
produces woven bone (active lesions) that typically is the initial stage in
many abnormal bone forming lesions caused by infection (Ortner and
Putschard, 1985; Ortner, 2003). In chronic or healing stages (healed
lesions) the woven bone is remodelled into compact bone (Ortner and
Putschard, 1985; Ortner, 2003). However, chronic infectious diseases
often have various acute phases. Chronic infections are very in-
formative about the nutritional adequacy of the diet, the state of waste
disposal and hygiene in a specific community (Goodman and Martin,
2002). Infectious pathologies, especially when linked with malnutri-
tion, are the largest contributor to morbidity and mortality worldwide
(Keusch and Farthing, 1986). The study of nutrition-infection

interactions is important to understand the complexity of the relation-
ships of these factors with immunological status, co-morbidity and
mortality (Ulijaszek et al., 2012), especially in pre-antibiotic societies.

New bone formation can also be considered an indicator of phy-
siological stress and has been associated with lower socioeconomic
status (e.g. Goodman and Martin, 2002; Peck, 2013; Robb et al., 2001),
systematic infections (e.g. Goodman and Martin, 2002; Larsen, 2002;
Ortner, 2003), malnutrition (e.g. Weston, 2012) and niacin deficiency
(Paine and Brenton, 2006), which can leave the individuals more sus-
ceptible to pathogens. Deposits of new bone may also be associated
with elevated risks of mortality and are therefore informative about ill
health (e.g. DeWitte and Wood, 2008).

1.3. Stable isotope analysis

Analysis of stable isotope ratios from mineralized tissue has been
widely used for dietary reconstruction. This technique is based on the
assumption that “you are what you eat (plus a few ‰)” (DeNiro and
Epstein, 1976), as a consumer's tissues reflect the isotopic array of the
ingested foods.

There is enrichment in δ13C in an animal's body tissues relative to its
diet due to the fractionation that occurs during the tissue's formation
(Van der Merwe and Vogel, 1978). Consumers have a carbon fractio-
nation factor (enrichment in δ13C) of approximately 5‰ in their bone
collagen relative to their diet (Ambrose and Norr, 1993; Van der Merwe
and Vogel, 1978) and an enrichment of 1‰ between trophic levels
(DeNiro and Epstein, 1978; Tieszen et al., 1983). There is an increment
in δ15N of 3‰–5‰ between trophic levels when compared with con-
sumer's diet (Bocherens and Drucker, 2003; Minagawa and Wada, 1984;
Schoeninger and DeNiro, 1984; Schoeninger et al., 1983). This frac-
tionation enables the use of stable nitrogen isotopes (δ15N) to infer
trophic level and high δ15N recorded in bone collagen usually indicates
high-protein diets (Sponheimer et al., 2003). There are other factors
that can raise bone δ15N, such as aridity (Ambrose and DeNiro, 1986;
Heaton, 1987; Heaton et al., 1986; Sealy et al., 1987), physiological
(Deschner et al., 2012; D'Ortenzio et al., 2015; Gaye-Siessegger et al.,
2004; Katzenberg and Lovell, 1999; Oelbermann and Scheu, 2001) or
protein stress (Hobson et al., 1993; Steele and Daniel, 1978).

Previous research on archaeological samples with and without le-
sions indicative of leprosy showed no significant differences in δ13C or
δ15N, suggesting that there were not dietary differences between the
two groups (Bayliss et al., 2004; Linderholm and Kjellström, 2011).
However, other studies showed marked differences between individuals
who survived childhood and those who did not (Beaumont et al., 2015;
Reitsema et al., 2016), with the ones who survived having higher an-
imal protein in their post-weaning diets (Reitsema et al., 2016) sug-
gesting that investigation of dietary protein, using stable isotopic ana-
lysis, might be used to better understand disease and physiological
stress in past populations. Skeletal indicators of physiological stress,
such as low stature and cribra orbitalia, have also been related to long-
term effects on health throughout reduced lifespan (Watts, 2013) and
increased risk of death during epidemics (DeWitte and Hughes-Morey,
2012; DeWitte and Wood, 2008).

1.4. Diet at Tomar

People living in Tomar had a complex diet, low in terrestrial animal
protein and high in aquatic protein intake, despite its inland location
(Curto et al., 2018). Being controlled by religious military orders
(Conde, 1996; Valente, 1998), it is possible that their presence in the
town would have an impact on the general population particularly on
their diet (Curto et al., 2018), due to religious fasting (Barber and Bate,
2002; Müldner et al., 2009; Müldner and Richards, 2007; Salamon
et al., 2008). Fish was an expensive food source, particularly further
away from the coast (Gonçalves, 2004; Vicente, 2013), therefore higher
amounts of fish consumption may reflect higher socio-economic status
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(Curto et al., 2018).
There were no significant differences found between sexes or age

groups for bone collagen δ13C and δ34S, however δ15N did differ sig-
nificantly with age (lower δ15N in older individuals), which may be
related to tooth loss in old individuals (Curto et al., 2018). There was
one outlier, a young adult male, with higher values of both δ15N and
δ13C and lower δ34S than the other skeletons analysed, suggesting he
may be an outsider (Curto et al., 2018). There were no differences
between inferred social status, estimated through burial type and
proximity to the church (Curto et al., 2018).

1.5. Research questions and predictions

The main objective of this study is to determine if there is a link
between diet and health assessed by δ13C and δ15N ratios from bone
collagen in skeletons that retain evidence of non-specific disease. The
stable isotope ratios from long bones’ collagen are a long-term measure
of dietary protein consumed by an individual over a period of about 10
years of life (Hedges et al., 2007). Thus, we seek to determine if longer
term diet corresponds with disease at the point of death. Our predic-
tions are as follows:

Protein malnutrition over a long period of time impairs the immune
system and increases the likelihood of an individual contracting an
infectious disease (e.g. Calder, 2013; Scrimshaw and SanGiovanni,
1997; Woodward, 1998; Calder and Jackson, 2000; Woodward, 2001).
Therefore, individuals with skeletal signs of infectious diseases might
have had different diets than those without skeletal lesions. Skeletons
with signs of infection might have had a diet poorer in animal protein,
than the individuals without lesions, which might have lowered their
resistance to disease (e.g. Calder, 2013; Kuvibidila et al., 1993;
Scrimshaw and SanGiovanni, 1997; Woodward, 1998; Calder and
Jackson, 2000; Woodward, 2001; Ulijaszek et al., 2012; Weston, 2012).

δ15N in particular are very informative of trophic level and high
δ15N usually indicate high-protein diets (Schoeninger et al., 1983;
Minagawa and Wada, 1984; Schoeninger and DeNiro, 1984; Bocherens
and Drucker, 2003). Therefore we predict that skeletons without signs
of infectious disease have higher δ15N than the ones with skeletal le-
sions. However, there are other factors that can raise the δ15N including
physiological (Katzenberg and Lovell, 1999; Oelbermann and Scheu,
2001; Gaye-Siessegger et al., 2004; Deschner et al., 2012; D'Ortenzio
et al., 2015) and/or nutritional stress (Steele and Daniel, 1978; Hobson
et al., 1993), which have been associated with δ15N increase due to
protein catabolism. In prolonged cases of disease, nutritional or phy-
siological stress, dietary protein cannot adequately replace nitrogen
losses (Grossman et al., 1945; Powanda, 1977; Welle, 1999). Conse-
quently, the body proteins are recycled resulting in enriched δ15N (e.g.
Steele and Daniel, 1978; Hobson et al., 1993; Deschner et al., 2012;
D'Ortenzio et al., 2015).

Periostitis generally reflects a reaction to pathologic changes of the
underlying bone, or part of it, but can also result from trauma and/or
inflammation of the surrounding tissues (Ortner and Putschard, 1985;
Ortner, 2003). Generalised infections (various bones with periostitis
and/or osteomyelitis), on the other hand, might represent severe in-
fections which spread across the body (Ortner and Putschard, 1985;
Ortner, 2003). However, the presence of skeletal lesions can also re-
present good physiological state, allowing these individuals to survive
long enough to the disease for it to be visible on their bones (Wood
et al., 1992). Periostitis reflects physiological stress and morbidity but
frequently represents later phases of the inflammation and succeeding
recovery from the stress incident (Klaus, 2014). For this reason bone
collagen δ15N and δ13C from skeletons without lesions (and other ske-
letal markers of physiological stress; Curto et al., 2018) will be com-
pared with bone collagen δ15N and δ13C from 1) skeletons with only
healed tibial periostitis, 2) skeletons with non-specific generalised in-
fections and 3) skeletons with venereal syphilis.

Woven bone is produced during rapid bone formation and when it is

observed in adults it is considered of pathological origin (Ortner and
Putschard, 1985; Ortner, 2003). Since in chronic or healing stages the
woven bone is rapidly remodelled into compact bone, woven bone is
considered a lesion which was active perimortem, while compact bone is
considered a lesion which was healed perimortem (Ortner and
Putschard, 1985; Ortner, 2003). Chronic infectious diseases can also
have various acute phases and be very informative about the nutritional
adequacy of the diet in a specific community (Goodman and Martin,
2002). Therefore, bone collagen δ15N and δ13C from skeletons without
lesions (and other skeletal markers of physiological stress) will be
compared with bone collagen δ15N and δ13C from 1) skeletons with
only active lesions, 2) skeletons with only healed lesions and 3) skele-
tons with both healed and active lesions. Since Protein malnutrition
impairs the immune system (e.g. Calder, 2013; Scrimshaw and
SanGiovanni, 1997; Woodward, 1998; Calder and Jackson, 2000;
Woodward, 2001), we predict that skeletons without lesions have
higher δ15N than those with lesions, with the ones with only active
lesions having the lowest δ15N. The skeletons with only healed lesions
are expected to have δ15N similar to the skeletons without lesions as
they survived the disease long enough for the bone to remodel into
compact bone (Ortner and Putschard, 1985; Ortner, 2003; Wood et al.,
1992).

2. Materials and methods

Santa Maria do Olival necropolis, at Tomar (Fig. 1), is one of the
largest in Europe (6792 individuals recovered: 4991 adults and 1801
non-adults) but has not been continuously studied yet. Even though
Tomar was a Templar town the distribution of the skeletons, of all ages
and both sexes, within the necropolis suggests that Santa Maria do

Fig. 1. Map of Portugal showing the location of Tomar. Adapted from d-maps.
com.
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Olival collection represents the general population of Tomar and not, or
at least not only, the individuals from the military orders (Curto et al.,
2018).

Bone collagen stable isotope data (carbon, nitrogen and sulphur)
from 32 human adult tibiae (15 females; 18 males) and 13 faunal re-
mains (2 wild Sus; 2 domestic Sus; 1 juvenile Sus; 1 Canidae; 3 Bos; 1
Equus; 3 Ovicapridae) from Tomar (11th – 17th century) were pre-
viously analysed to reconstruct the general diet of the population (Curto
et al., 2018). These are reused here and compared to new isotope data
from skeletons with signs of disease (Table 1). These data are compared
to new isotope ratios from 23 adult individuals (8 females; 14 males; 1
undetermined) with skeletal lesions compatible with non-specific
(n=21) and specific (venereal syphilis, n= 2) infectious diseases.

All samples are from Santa Maria do Olival graveyard (areas 13 to
20; 11th to 17th centuries) in Tomar. The individuals without lesions
(n=32), previously analysed (Curto et al., 2018), were used to esti-
mate the baseline diet at Tomar and were selected based on the absence
of skeletal lesions or skeletal stress markers (see Curto et al., 2018 for
more detail; the outlier was not considered for this study). There were
no significant differences found between sexes or inferred social status,
estimated through burial type and proximity to the church (Curto et al.,
2018).

2.1. Estimating age and sex

Sex was estimated based on pelvic (Phenice, 1969; Buikstra and
Ubelaker, 1994) and cranial features (Buikstra and Ubelaker, 1994).
Adult age at death estimates employed a combination of skeleton ma-
turation (Scheuer and Black, 2000), pubic symphysis degeneration
(Brooks and Suchey, 1990; Buikstra and Ubelaker, 1994) and auricular
surface degeneration (Lovejoy et al., 1985). The skeletons analysed
were grouped as young (18–30 years; n = 5), mature (31–60 years;
n = 8) and old (60 + years; n = 4) adults; for six skeletons it was not
possible to estimate age.

2.2. Signs of infection

From the 23 skeletons with lesions (Table 1), 21 have signs of non-
specific infectious diseases and 2 have lesions compatible with specific
infections (venereal syphilis). The 23 individuals were grouped in two
different ways: a) active (n=6), healed (n= 7) and a combination of
both active and healed lesions (n=10); b) Skeletons with only healed
tibial perostitis (n= 7), those with non-specific (n=5) and specific
(n=2) infectious diseases, while individuals who did not fit into these
groups (n=9) were not considered for this analysis. Figs. 2–4 show
examples of the different lesion stages analysed.

Skeletal lesions were considered to be from possible infectious
causes if abnormal bone formation or bone formation and destruction,
compatible with periostitis or osteomyelitis (Ortner and Putschard,
1985; Buikstra and Ubelaker, 1994; Aufderheide and Rodríguez-Martín,

1998; Ortner, 2003), were present and not associated with trauma.
Periostitis usually represents pathologic changes resulting in new bone
growth, which is remodelled into lamellar bone during the healing
process, but it can also result from inflammation of the surrounding
tissues following a trauma (Ortner and Putschard, 1985; Ortner, 2003).

For this study, lesions scored 2 (markedly accentuated longitudinal
striations on the surface of cortical bone; Steckel et al., 2006) to 5
(extensive periosteal reaction involving over half of the diaphysis, with
cortical expansion, pronounced deformation; Steckel et al., 2006) were
considered periostitis. Lesions that were scored as 6 (involving most of
the diaphysis with cloacae; Steckel et al., 2006) were taken as evidence
of osteomyelitis. Periostitis or osteomyelitis associated with fractures
was not considered for this study.

Lesions with unremodelled woven bone were considered active at
the time of death (Ortner and Putschard, 1985; Ortner, 2003). Rapidly
formed woven bone is poorly organized and has a porous appearance
due to the loose organization of the mineralized osteoid fibres (Ortner
and Putschard, 1985; Ortner, 2003). Markedly accentuated longitudinal
striations and compact bony growth, without the presence of woven
bone, were considered healed lesions (Ortner and Putschard, 1985;
Ortner, 2003). The presence of both compact bony growth and woven
bone was considered a combination of both healed and active lesions.
The skeletons with only active lesions represent infectious diseases
active perimortem and the ones with only healed lesions represent
healed individuals. Skeletons with a combination of both types of le-
sions represent chronic infections, to which the individuals survived
long enough to the disease for the bone to heal but with the disease still
present. The skeletons with the different lesions (healed, active and
both) were combined and compared with the individuals without le-
sions, by age group: young without lesions (n=8); young with lesions
(n= 5); mature without lesions (n= 13); mature with lesions (n=8);
old without lesions (n= 4) and old with lesions (n=4).

Since tibial periostitis is frequently used as an indicator of physio-
logical stress (e.g. DeWitte, 2010; Robb et al., 2001) and can be caused
by a variety of factors, including trauma, only individuals with bilateral
healed periostitis on the tibiae were selected (markedly accentuated
longitudinal striations; score 2; Steckel et al., 2006). The cases of ve-
nereal syphilis were diagnosed due to the presence of caries sicca, a sign
specifically characteristic of venereal syphilis (Ortner and Putschard,
1985; Aufderheide and Rodriguez-Martin, 1998; Ortner, 2003). These
groups with signs of infections where then compared with the skeletons
without lesions (n=32; Curto et al., 2018).

The skeletons were grouped in different ways to better understand
how diet may affect the susceptibility to generalised infections (by
grouping non-specific generalised infections, specific generalised in-
fections and individuals with only healed tibial periostitis) or the ability
to recover from infectious diseases (by grouping the skeletons as having
active, healed or a combination of both active and healed lesions).

Only tibiae collagen was analysed in an attempt to estimate the
average long term diet of the individuals and avoid stable isotopes data

Table 1
Summary of type and number of samples collected.

Adults sampled Non-specific Specific

Localised Generalised Venereal syphilis

Active Healed Active & Healed Active Healed Active & Healed Active Healed Active & Healed

Young 0 0 2 2 0 0 0 0 1
Mature 2 4 0 0 0 1 0 0 1
Old 1 0 1 0 0 2 0 0 0
Undetermined 1 3 2 0 0 0 0 0 0

Total 4 7 5 2 0 3 0 0 2
16 5 2
21
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that may represent different diet and/or metabolism during the disease.
Following the attempt to avoid stable isotope values related to faster
bone remodelling and therefore more recent diet, samples were only
collected at areas of the bone without any sign of lesions.

2.3. Collagen extraction and analysis

Collagen extraction was done following Longin (1971), Brown et al.
(1988) and Richards and Hedges (1999). The collagen samples were
weighed into tin capsules and combusted into CO2 and N2 in an isotope-
ratio mass spectrometer at NERC Isotope Geosciences Facility and
HERCULES laboratory. At NERC, δ13C and δ15N were calibrated using
an in-house reference material M1360p (powdered gelatine from British
Drug Houses) with expected δ values of −20.32‰ (calibrated against
CH7, IAEA) and +8.12‰ (calibrated against N-1 and N-2, IAEA) for
carbon and nitrogen respectively. Samples were run in duplicate and
the 1σ reproducibility for mass spectrometry controls for these analyses
were δ15N= ±0.08‰ and δ13C= ±0.07‰. At HERCULES Labora-
tory, δ13C and δ15N were calibrated using IAEA-CH-6 (sucrose,
−10.449‰), IAEA-CH-7 (polyethylene, −32.151‰), IAEA-N-1 (am-
monium sulphate, +0.4‰) and IAEA-N-2 (ammonium sulphate,
+20.3‰). Measurement errors were less than± 0.1‰ for δ13C
and±0.2‰ for δ15N.

Mann-Whitney U non-parametric tests were used for pair-wise
comparisons and Kruskal-Wallis non-parametric tests were used to
compare more than two groups. All statistics were computed in SPSS 24
for Windows and p-values ≤0.05 were considered statistically sig-
nificant.

3. Results

3.1. Bone collagen δ13C and δ15N of skeletons with generalised infections or
healed tibial periostitis compared to skeletons without lesions

Osteomyelitits was only observed in the skeletons with venereal
syphilis (skeletons 16.225 and 18.158) and skeleton 16.255

(δ13C=−18.7‰; δ15N=10.0‰), a mature male with osteomyelitis
on the right tibia. Therefore, the results from this study are focused
mainly on lesions within the scope of periostitis.

Fig. 5 illustrates the δ13C and δ15N for skeletons without lesions
(n= 32; Curto et al., 2018), with only healed tibial periostitis (n= 7)
and those with generalised specific (n=2) and non-specific (n=5)
infections. There is one outlier with healed tibial periostitis
(δ13C=−15.6‰; δ15N=11.5‰) that seems to have very different
diet from the general population and therefore was not considered for
the statistical analysis. Among the individuals with skeletal lesions, the
ones with healed tibial periostitis (n= 6; one is an outlier) have the
highest mean values for both δ13C (−18.0 ± 1.1‰; Table 2) and δ15N
(10.9 ± 0.7‰; Table 2), while those with non-specific generalised
infections (n=5) have the lowest mean for δ13C (−18.7 ± 0.8‰;
Table 1) and δ15N (9.9 ± 0.4‰; Table 1). The skeletons with venereal
syphilis (n= 2) have similar mean values (δ13C=−18.5 ± 0.2‰;
δ15N=11.2 ± 0.3‰) to the skeletons without lesions (n= 32;
δ13C=−18.6 ± 0.5‰; δ15N=10.8 ± 0.8‰) and those with only
healed tibial periostitis (n= 6), however the sample size is too small for
an appropriate statistical analysis. The difference in δ15N between
skeletons with non-specific generalised infection
(δ13C=−18.7 ± 0.8‰; δ15N=9.9 ± 0.4‰) and healed periostits
(δ13C=−18.1 ± 1.2‰; δ15N=11.2 ± 0.4‰) is highly significant
(p < 0.003; Table 2) as is the difference between skeletons with non-
specific generalised infection and those without lesions
(δ13C=−18.5 ± 0.7‰; δ15N=10.9 ± 0.9‰) (p < 0.004;
Table 1). There are no statistically significant differences for δ13C
(p > 0.53; Table 2) or between skeletons without lesions and skeletons
with only healed tibial periostitis for both δ13C and δ15N (p > 0.20;
Table 2).

3.2. Bone collagen δ13C and δ15N of skeletons with lesions compared to
skeletons without lesions, by age groups

Fig. 6 illustrates δ13C and δ15N for individuals with (including healed,
active or a combination of both lesions) and without lesions by age group

Fig. 2. Example of healed tibial periostitis (skeleton 15.96).

Fig. 3. Example of a lesion combining active and healed periosteal reactions (skeleton v5.22).
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(Table 3). Young adults without lesions (n=8) have higher δ13C
(−18.5 ± 0.4‰) and δ15N (11.4 ± 0.7‰) than the ones with lesions
(n=5; δ13C=−18.8 ± 0.4‰; δ15N=10.5 ± 0.8‰) but still falling
within the two standard deviations of each other and the general sample
without lesions. There is no statistically significant differences in δ13C or
δ15N for the mature (without lesions: n=13; δ13C=−18.6 ± 0.6‰;
δ15N=10.5 ± 0.7‰; with lesions: n=8; δ13C=−18.5 ± 0.5‰;

δ15N=10.7 ± 0.7‰) and old adults (without lesions: n=4;
δ13C=−18.6 ± 0.3‰; δ15N=10.7 ± 1.2‰; with lesions: n=4;
δ13C=−18.4 ± 0.3‰; δ15N=10.3 ± 0.4‰) (p > 0.38; Table 3).

3.3. Bone collagen δ13C and δ15N of skeletons with active, healed or a
combination of both lesions compared to skeletons without lesions

The only healed lesions were found within the mature adults group
(Fig. 6). Results show there is no statistically significant difference in
δ13C or δ15N when the skeletons without visible lesions (n= 32;
δ13C=−18.6 ± 0.5‰; δ15N=10.8 ± 0.8‰; Table 4) were com-
pared with the skeletons with healed (n=6; δ13C=−18.4 ± 0.4‰;
δ15N=10.8 ± 0.7‰; p=0.53; Table 4), active (n=6;
δ13C=−18.5 ± 0.7‰; δ15N=10.5 ± 0.7‰; p=0.72; Table 4) or a
combination of both lesions (n=10; δ13C=−18.4 ± 0.2‰;
δ15N=10.7 ± 0.8‰; p=0.24; Table 4).

4. Discussion

4.1. Bone collagen δ13C and δ15N of skeletons with generalised infections or
healed tibial periostitis compared to skeletons without lesions

The δ15N enrichment observed in skeletons with only healed tibial
periostitis (N= 6, without the outlier), when compared to those with
non-specific generalised infections (n=5), may represent evidence of
chronic physiological stress (Steele & Daniel, 1978; Hobson et al., 1993;
Gaye-Siessegger et al., 2004; Fuller et al., 2005; Deschner et al., 2012;
D'Ortenzio et al., 2015; Scorrano et al., 2014). However, the individuals
with non-specific generalised infections (n= 5) were also exposed to
chronic physiological stress and survived long enough for it to be ob-
servable in their bones (Wood et al., 1992); yet they display lower δ15N
(9.9 ± 0.4‰) than the individuals without lesions (n= 32;
δ15N=10.8 ± 0.8‰), those with only healed tibial periostitis (n= 6;
δ15N=10.9 ± 0.7‰) and the ones with venereal syphilis (n= 2;
δ15N=10.5 ± 0.6‰).

The only skeleton with osteomyelitis (16.255), besides the ones with

Fig. 4. Example of healed osteomyelitis from an individual with syphilis (skeleton 20.240).

Fig. 5. δ13C and δ15N (‰) for individuals without lesions, with only healed
periostosis, with non-specific generalised infections and with treponematosis.
Data from skeletons without lesions previously analysed in Curto et al. (2018).

Table 2
Mean, standard deviation and non parametric tests for δ13C and δ15N (‰) of individuals without lesions, with healed periostosis and with generalised infections
(without outliers). Data from skeletons without lesions previously analysed in Curto et al. (2018).

N Mean ± sd Non parametric test

δ13C δ15N δ13C δ15N

Healthy 32 −18.5 ± 0.7 10.9 ± 0.9 95.00 80.00 Mann-Whitney U
Healed periostosis 6 −18.0 ± 1.1 10.9 ± 0.6 0.49 0.21 sig
Healthy 32 −18.5 ± 0.7 10.9 ± 0.9 74.00 19.00 Mann-Whitney U
Non-specific generalised infection 5 −18.7 ± 0.8 9.9 ± 0.4 0.74 0.00 sig
Healed periostosis 6 −18.0 ± 1.1 10.9 ± 0.6 20.00 7.00 Mann-Whitney U
Non-specific generalised infection 5 −18.7 ± 0.8 9.9 ± 0.4 0.53 0.00 sig
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venereal syphilis, has similar δ13C (−18.7‰) and δ15N (10.0‰) to the
individuals with non-specific generalised infections
(δ13C=−18.7 ± 0.8‰; δ15N=9.9 ± 0.4‰; Table 2), suggesting
that a diet lower in animal protein might have made him more sus-
ceptible to infectious disease (e.g. Kuvibidila et al., 1993; Scrimshaw
and SanGiovanni, 1997; Woodward, 1998; Calder and Jackson, 2000;
Woodward, 2001). Venereal syphilis is a sexually transmitted disease
and human hosts have no natural immunity to pathogenic treponemes
(Kiple, 1993). Therefore, the immune system of the individuals before
the disease is not as relevant to the individuals' susceptibility to these
infections. However, good health prior to venereal syphilis infection
may prolong the individual's survival (not only to the treponeme but
also to other infections trough skin ulcers which increase exposure to
other pathogens) and increase the amount and severity of the lesions
(Wood et al., 1992).

The skeletons without lesions were also carefully chosen not only
based on the absence of infectious lesions (including tibial periostitis)

but also other physiological stress indicators such as cribra orbitalia,
porotic hyperostosis, enamel hypoplasias and stature above the average
for the population under study (Curto et al., 2018). Even so, the ske-
letons with only healed tibial periostitis have similar δ13C and δ15N to
those without any sign of physiological stress (Fig. 5).

The osteological paradox (Wood et al., 1992) may explain the
higher δ13C and δ15N for the skeletons with only healed tibial periostitis
when compared to the ones with non-specific generalised infections
(Fig. 5 & Table 2). It is possible that the skeletons with only healed
tibial periostitis had a diet richer in animal protein and therefore were
more resistant to diseases (e.g. Calder, 2013; Kuvibidila et al., 1993;
Scrimshaw and SanGiovanni, 1997; Woodward, 1998; Calder and
Jackson, 2000; Woodward, 2001; Ulijaszek et al., 2012; Weston, 2012)
than those who had non-specific generalised infections. It has been
argued that individuals with healed periostitis are of lower frailty,
having a lower risk of death (e.g. DeWitte, 2010; Ortner, 2003; Wood
et al., 1992).

Fig. 6. δ13C and δ15N (‰) for individuals with and without lesions, by age group (means calculated without outliers). Data from skeletons without lesions previously
analysed in Curto et al. (2018).

Table 3
Mean, standard deviation and non parametric tests for δ13C and δ15N (‰) of individuals with and without lesions, by age group. Data from skeletons without lesions
previously analysed in Curto et al. (2018).

N Mean ± sd Non parametric test

δ13C δ15N δ13C δ15N

Young Without lesions 7 −18.5 ± 0.4 11.4 ± 0.7 7.00 7.00 Mann-Whitney U
With lesions 5 −18.8 ± 0.4 10.5 ± 0.8 0.09 0.09 sig

Mature Without lesions 13 −18.6 ± 0.6 10.5 ± 0.7 60.00 59.00 Mann-Whitney U
With lesions 8 −18.5 ± 0.5 10.7 ± 0.7 0.51 0.49 sig

Old Without lesions 4 −18.6 ± 0.3 10.7 ± 1.2 5.00 6.00 Mann-Whitney U
With lesions 4 −18.4 ± 0.3 10.3 ± 0.4 0.39 0.56 sig
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The diet of the population under study was complex and likely in-
cluded food sources from outside Tomar (Curto et al., 2018). The diet of
these individuals was poor in terrestrial protein and rich in aquatic
protein (δ13C=−18.6‰; δ15N=10.8‰; δ34S=13.1‰; Curto et al.,
2018). Stable isotope values are similar for males and females but the
young adults have higher δ15N (11.4 ± 0.6‰) than the old adults
(10.6 ± 0.8‰), suggesting a higher animal protein intake for the
young individuals (Curto et al., 2018). The high δ15N from skeletons
without lesions seem to be related with higher aquatic protein intake
(Curto et al., 2018), which may be related with these individuals having
better health than those with signs of infection. Since fish was ex-
pensive (Gonçalves, 2004) and the military orders had angling rights
(Vicente, 2013) it is also possible that the individuals without skeletal
stress markers, or only healed tibial periostitis, had a higher socio-
economic status. Socioeconomic status may also have an impact on an
individual's diet, not only directly on their diet but also the type of
pathogens they would be exposed to.

The effect of protein malnutrition on the immune system is well
known (Calder, 2013; Kuvibidila et al., 1993; Scrimshaw and
SanGiovanni, 1997; Woodward, 1998, 2001; Calder and Jackson, 2000)
and the possibility of dietary differences being present before the dis-
ease cannot be excluded. δ15N were significantly different between
skeletons with non-specific generalised infections and those without
lesions (p < 0.004) or with only healed tibial periostitis (p < 0.003).
The higher δ15N observed in the two individuals with venereal syphilis,
may not be related to physiological stress but may be due to the nature
of the disease instead (sexually transmitted infection) and the δ15N
might suggest a richer diet that could have allowed survival despite the
disease and susceptibility to other pathogens. The possibility of these
δ15N differences being related with social status cannot be excluded.
Various studies suggest dietary differences between sex and social
status in Medieval times (e.g. Adamson, 2004; Kjellström et al., 2009;
Linderholm et al., 2008; Polet and Katzenberg, 2003; Schutkowski
et al., 1999; Reitsema et al., 2010; Reitsema and Vercellotti, 2012).
However, a previous study showed no significant stable isotope data
between individuals of different sex or social status in Tomar (Curto
et al., 2018).

There are two outliers among the skeletons sampled for isotopic
analysis (Fig. 5), one without lesions and another one with healed tibial
periostitis. The skeleton without lesions, a young adult male, might be
an outsider as his sulphur isotopes ratios (9.3‰) differ from the other
individuals without lesions (mean δ34S=13.1‰; Curto et al., 2018).
This skeleton was not considered for the statistical analysis. There are
no sulphur isotopes values for the outlier with healed tibial periostitis
but δ13C (−15.6‰) and δ15N (11.5‰) are similar to those of the
outlier without lesions (δ13C=−15.4‰; δ15N=12.3‰).

4.2. Bone collagen δ13C and δ15N of skeletons with lesions compared to
skeletons without lesions

The values for the young adults show a statistical trend towards a
significance (p < 0.09; Table 3) difference in both δ13C and δ15N be-
tween skeletons with (n=5) and without (n=8) lesions. Young in-
dividuals without lesions have higher δ13C (−18.5 ± 0.4‰) and δ15N
(11.4 ± 0.7‰) than those with lesions (δ13C=−18.8 ± 0.4‰;
δ15N=10.5 ± 0.8‰), which may suggest that the individuals with
lesions may have had a diet with lower animal protein (Fig. 6).There is
no difference for mature (p > 0.49; Table 3) and old (p > 0.39;
Table 3) individuals with or without lesions. Previous research on ar-
chaeological samples showed marked differences between individuals
who survived childhood and those who did not (Beaumont et al., 2015;
Reitsema et al., 2016), with the ones who survived having higher an-
imal protein in their post-weaning diets (Reitsema et al., 2016) sug-
gesting that diet at younger ages can have a high impact on the health
status of an individual. The impact of diet on an individual's health
might be prolonged throughout adult life as well. The young adult
skeletons analysed do not have healed lesions, only active or a com-
bination of both active and healed lesions, meaning that they died
during acute phases of the disease (Ortner and Putschard, 1985; Ortner,
2003; Turner-Walker, 2008).

4.3. Bone collagen δ13C and δ15N of skeletons with active, healed or a
combination of both lesions compared to skeletons without lesions

The absence of significant differences in δ13C or δ15N between in-
dividuals without lesions (n= 32; δ13C=−18.6 ± 0.5‰;
δ15N=10.8 ± 0.8‰; Table 4) and those with healed (n=6;
δ13C=−18.4 ± 0.4‰; δ15N=10.8 ± 0.7‰; Table 4), active
(n= 6; δ13C=−18.5 ± 0.7‰; δ15N=10.5 ± 0.7‰; Table 4) or a
combination of both lesions (n=10; δ13C=−18.4 ± 0.2‰;
δ15N=10.7 ± 0.8‰; p=0.24; Table 4) suggests that diet may have a
higher impact on the susceptibility to chronic generalised infections
than to infectious disease in general. It is therefore important to take
into account the severity and stage of the disease. The δ15N average is
slightly higher for the individuals without lesions (10.8‰; n=32) than
for the one ones with active lesions (10.5‰; n=6; Table 4). This slight
difference may indicate that the individuals without lesions had a diet
richer in animal protein than those with active lesions, however the
sample size is too small to make conclusions.

5. Study limitations

One of the limitations of this study is the impossibility of knowing
the cause of death for the individuals analysed, alongside it not being
possible to know which diseases caused most of the lesions and how
long the individuals survived with the infections. The presence of ske-
letal lesions can represent an adaptation to a pathological condition
(Ortner, 2003) indicating that the individual survived long enough for
evidence to manifest in the skeletal tissues (Wood et al., 1992). The
absence of skeletal lesions is ambiguous; it can indicate either good
health, or a fast death as result of an acute disease (DeWitte and
Stojanowski, 2015; Siek, 2013; Ortner, 2003; Wood et al., 1992). An-
other limitation is that, while individuals with poorer nutrition are less
resistant to infectious diseases, infectious disease further lowers nutri-
tional status (e.g. Mata et al., 1971; Martorell et al., 1980; Calder, 2013;
Scrimshaw and SanGiovanni, 1997; Calder and Jackson, 2000).
Funding limitations, associated with the difficulty of finding skeletons
that would fit into the different groups, resulted in small sample sizes
that are also a limitation for interpreting the results from this study.
Therefore, other researchers may find different results when replicating
this study Future research might explore a multivariate approach to the
analyses of isotopic data related to age, sex, burial phase, and burial
type. Such an approach may reveal the different ways multiple lines of

Table 4
Mean, standard deviation and non parametric tests for δ13C and δ15N (‰) of
individuals with different types of lesions and without lesions (without out-
liers). Data from skeletons without lesions previously analysed in Curto et al.
(2018).

N Mean ± sd Non parametric test

δ13C δ15N δ13C δ15N

Without
lesions

32 −18.6 ± 0.5 10.8 ± 0.8 66.00 77.00 Mann-
Whitney U

Healed lesions 6 −18.4 ± 0.4 10.8 ± 0.7 0.53 0.89 sig
Without

lesions
32 −18.6 ± 0.5 10.8 ± 0.8 87.00 73.00 Mann-

Whitney U
Active lesions 6 −18.5 ± 0.7 10.5 ± 0.7 0.72 0.36 sig
Without

lesions
32 −18.6 ± 0.5 10.8 ± 0.8 120.00 134.00 Mann-

Whitney U
Active &

healed
lesions

10 −18.4 ± 0.2 10.7 ± 0.8 0.24 0.44 sig
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evidence can interact to predict isotope data.

6. Conclusion

This study is part of a larger project that will compare intra-bone
stable isotopic data from sites with and without skeletal lesions com-
patible with diseases and/or physiological stress. This study explored
the dietary differences between individuals with and without skeletal
lesions compatible with infectious diseases to better understand the
impact of diet on individuals' health status and their susceptibility to
infectious disease. There is a highly significant difference in δ15N be-
tween skeletons with healed tibial periostitis and non-specific gen-
eralised infection, as well as a difference at the margin of statistical
significance between skeletons without lesions and those with gen-
eralised infections. These results demonstrate that the individuals with
non-specific generalised infections had diets lower in animal protein
than those without lesions or with only healed tibial periostitis. Poorer

diets may increase susceptibility to pathogens leading more frequently
to generalised infections while richer diets might increase the survi-
vorship and ability to heal from infectious diseases. However, the
possibility of these isotope ratios being a result of the disease cannot be
excluded and more data from different periods of time within the in-
dividual's’ life is necessary to understand when these differences started
to manifest. These results indicate that diet has a higher impact on the
health status of young people than mature or old individuals, being
linked to selective mortality. Our results demonstrate that while non-
specific generalised infections are a sign of ill health and poor diet, only
healed tibial periostitis indicate a state of comparatively good overall
health and diet.
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Appendix

Table A.1
Stable isotope results (δ13C and δ15N) for the skeletons without lesions, with healed periostitis, unspecific generalised infections, specific generalised infections and
localised infections. *Data from skeletons without lesions previously analysed in Curto et al. (2018).

Sex Age Area δ13C %C δ15N %N C/N Type of lesion

*Without lesions Female – 13 −18.8 32.1 10.6 11.2 3.4 No lesion
Female – 14 −18.6 31.3 12.0 10.4 3.4 No lesion
Female Mature 16 −18.3 41.8 10.5 14.8 3.3 No lesion
Female Mature 14 −18.9 41.3 10.2 14.6 3.3 No lesion
Female Old 14 −18.9 21.9 10.3 7.5 3.4 No lesion
Female Old 14 −18.7 41.0 10.5 14.5 3.3 No lesion
Female Mature 18 −19.1 40.8 8.9 14.4 3.3 No lesion
Female Old 20 −18.7 36.7 9.6 12.9 3.3 No lesion
Female Young 20 −18.5 23.2 11.0 7.7 3.4 No lesion
Female Old 18 −18.3 34.5 12.3 11.9 3.4 No lesion
Female Mature 20 −18.6 23.0 11.0 7.9 3.4 No lesion
Female Young 14 −19.0 15.5 11.4 5.2 3.4 No lesion
Female Old 14 −18.7 41.7 10.1 14.3 3.4 No lesion
Female Young 16 −18.9 18.5 10.6 6.1 3.4 No lesion
Female – 19 −17.8 32.7 11.2 11.5 3.3 No lesion
Male – 20 −18.8 39.1 10.2 13.7 3.3 No lesion
Male – 19 −18.9 41.0 9.6 14.1 3.4 No lesion
Male Mature 18 −18.8 36.6 11.2 12.8 3.3 No lesion
Male Mature 19 −18.2 35.3 10.4 12.3 3.4 No lesion
Male Old 18 −19.0 37.9 10.5 12.5 3.4 No lesion
Male Mature 14 −19.4 14.8 11.0 5.2 3.3 No lesion
Male – 17 −17.3 43.0 10.4 14.8 3.4 No lesion
Male Young 18 −18.1 24.1 12.1 8.4 3.4 No lesion
Male Mature 14 −19.1 39.0 9.3 13.3 3.4 No lesion
Male Young 14 −17.8 39.2 12.5 14.4 3.2 No lesion
Male Young 20 −18.5 40.8 11.7 14.1 3.4 No lesion
Male Young 16 −18.3 36.1 10.7 12.6 3.4 No lesion
Male Young 14 −15.4 25.7 12.3 9.0 3.3 No lesion
Male Mature 14 −17.9 42.1 11.2 14.9 3.3 No lesion
Male Mature 15 −18.3 33.7 10.5 11.7 3.4 No lesion
Male Mature 14 −17.6 32.6 11.6 10.9 3.4 No lesion
Male Mature 14 −18.7 41.4 11.8 14.3 3.4 No lesion
Male Mature 17 −19.1 22.8 10.7 7.6 3.4 No lesion

Healed periostitis – – 20.596 −17.9 28.3 11.0 9.9 3.3 Healed
Female – 14.15 −18.4 32.7 10.1 11.5 3.4 Healed
Female Mature 14.392 −19.0 17.5 10.7 5.8 3.5 Healed
Male Mature 14.388 −18.3 15.0 11.0 5.0 3.4 Healed
Male – 15.191 −15.6 34.0 11.5 11.9 3.3 Healed
Male Mature 18.250 −18.6 17.8 11.6 6.0 3.5 Healed
Male Mature 3.73 −18.3 15.1 9.6 4.8 3.4 Healed

Unspecific generalised infections Female Young 16.169 −18.6 41.9 9.7 15.8 3.3 Active
Female Old 14.72 −18.4 28.9 10.1 9.8 3.4 Active & healed
Female Old 15.96 −18.4 15.0 10.0 5.0 3.3 Active & healed
Male Young 14.21 −19.4 42.9 10.1 16.7 3.3 Active
Male Mature V5.22 −18.5 33.8 9.8 11.6 3.4 Active & healed

(continued on next page)
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Table A.1 (continued)

Sex Age Area δ13C %C δ15N %N C/N Type of lesion

Specific generalised infections Male Young 16.225 −18.6 27.0 11.0 9.2 3.4 Active & healed
Male Mature 18.158 −18.3 27.5 11.4 9.5 3.4 Active & healed

Localised lesions Female – 18.3 −18.1 15.5 10.0 5.2 3.3 Active
Female Young 14.22 −18.9 18.5 10.0 6.1 3.3 Active & healed
Female – 17.464 −18.3 34.0 11.9 11.9 3.3 Active & healed
Male Mature 16.255 −18.7 34.4 10.0 11.8 3.4 Active
Male Mature 18.160 −17.7 17.5 10.9 5.8 3.4 Active
Male – 19.42 −18.4 21.4 10.7 7.0 3.3 Active & healed
Male Old 14.130 −18.7 21.4 11.0 7.0 3.4 Active
Male Old 19.45 −18.0 28.9 10.0 9.8 3.3 Active & healed
Male Young 17.556 −18.5 22.1 11.7 7.5 3.4 Active & healed
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