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Abstract

Hutchinson’s pioneering work on the niche concept, dating from 1957, inspired

the development of many ecological models. The first proposals, BIOCLIM and

HABITAT, were simple geometric approximations to the shape of the niche.

Despite their simplicity, they combine two features that make them adequate

for the purpose of exploring the niche: they fit a predefined shape to the empiri-

cal data; and produce binary or ordinal predictions rather than continuous pre-

dictions. Thus, both explicitly delineate a precise boundary for the niche.

However, the two methods present some limitations: BIOCLIM assumes that

the variables are independent in their action on the species; and HABITAT,

although not having that limitation, only delineates the boundaries of the

niches without distinguishing levels of suitability for the species. We propose,

discuss and illustrate: (1) the use of depth functions to identify regions with dis-

tinct suitability inside the niche; and (2) a general framework to assess overlap

of the niches of two species, which can be applied to predictions from models

that decompose the niche into a finite number of measurable regions.

Introduction

In 1957 Hutchinson formalized the niche of species as ‘an

n-dimensional hypervolume where every point in it corre-

sponds to a state of the environment which would permit

the species to exist indefinitely’ (Hutchinson 1957, p. 416).

Hutchinson called this hypervolume in the space defined

by n environmental variables, the fundamental niche, which

bounds the species physiological limits on each variable.

Nowadays there is a proliferation of methods that assess

the adequacy of ecological conditions to support species,

using the Hutchinson’s environmental hyperspace.

Some methods, such as BIOCLIM (Nix 1986; Busby

1991) and HABITAT (Walker & Cocks 1991), have the

main purpose of delineating the niche boundary, fitting a

predefined geometric shape to the sampling set of species

occurrences, in the environmental hyperspace. In this arti-

cle, we focus on these kinds of delineation-oriented mod-

els, which produce binary or ordinal predictions, and

therefore a finite number of iso-suitability regions.
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We start by (1) pointing out some mathematical aspects

underlying Hutchinson’s niche concept; then we (2) ana-

lyse the extent by which the geometric approaches BIOC-

LIM and HABITAT capture some properties behind

Hutchinson’s niche, and indicate their limitations; (3) pres-

ent a mathematical concept, data depth, and show how this

concept can be used (4) to resolve limitations of the

geometric models; and (5) to assess niche overlap.

Some considerations on Hutchinson’s niche concept

Hutchinson (1957) clearly states that the fundamental

niche is a region bounded by ‘the limiting values (of each

variable) permitting a species to survive and reproduce’.

When represented in a space of variables, this implies that

the fundamental niche is contained in the hyperrectangle

defined by the limiting values (minimum and maximum)

of each of the n variables. Hutchinson also states that, ‘if

the variables are independent in their action on the spe-

cies’, the fundamental niche is the above hyperrectangle,

‘each point of which corresponds to a possible environ-

mental state permitting the species to exist indefinitely’. In

particular, this implies, in the case of independence, that

the fundamental niche defines a convex region. A set of

points is convex if every point on the straight line segment

joining two points in the set is also in that set. In this con-

text, convexity reads as: if the species exists indefinitely in

two environmental states, it also exists in any state that is a

weighted average (where the non-negative weights sum

to 1) of the two states.

It is unrealistic to assume that all variables act indepen-

dently on a species. For instance, many species only exist

at their maximum tolerated temperatures if humidity is

higher and far from the humidity lower toleration point.

Indeed, it can be inferred from Hutchinson’s words that

the effects of variable dependencies over the niche’s shape

are not straightforward to find, although ‘the area (niche)

will exist whatever the shape of its sides’. Therefore, it is

reasonable to assume that, in the case of dependencies,

peripheral regions of the hyperrectangle could be

excluded, as representing combinations of variables not

tolerated by the species.

Hutchinson was also concerned about how species’

interactions and intersection of their niches relate. Besides

the quantification of this intersection, also its location

within each niche seems to be relevant for species competi-

tion, co-occurrence and other ecological phenomena. This

implicitly assumes that there are distinct parts of the fun-

damental niche. Indeed, Hutchinson’s original niche con-

cept assumes ‘that all points in each fundamental niche

imply equal probability of persistence of the species’, but

he discusses this property as a strong limitation given that

‘ordinarily there will however be an optimal part of the

niche with markedly suboptimal conditions near the

boundaries’. This has since been reinforced by Pianka

(2000) when referring to fitness gradients inside the

niche space. That is, species find distinct levels of suitable

conditions inside their tolerance limits, and optimal condi-

tions are deemed to occur in themost interior regions.

Geometric approaches to Hutchinson’s niche

Geometric procedures (i.e. approaches that only rely on

topological relationships, not depending on metric proper-

ties), such as BIOCLIM and HABITAT, enclose some fea-

tures that make them particularly adequate for the

purpose of exploring the niche: (1) they fit a predefined

shape, explicitly delineating a precise boundary for the

niche (a hyperrectangle in the case of BIOCLIM and a con-

vex hull in the HABITAT procedure); (2) they produce bin-

ary or ordinal predictions; and (3) in the case of BIOCLIM,

it decomposes the niche into a finite number of regions,

with non-null volumes, of environments (i.e. non-negligi-

ble sets of environments) with similar effects on species.

Other methods, which are more prediction-oriented (such

as GLM, GAM, Maxent, Mahalanobis distance, DOMAIN,

ENFA, among others) produce continuous predictions

and, therefore, depend on thresholds to delineate a niche

boundary (see Elith et al. 2006; Tsoar et al. 2007). Some

methods, such as GLM, GAM, Maxent, Genetic Algorithm

for Rule-set Production (GARP) and artificial neural net-

works, even after applying user-defined suitability/proba-

bility thresholds, may produce unlimited hypervolumes.

These are quite distinct features, compared to the delinea-

tion-oriented models referred above, where unbounded

regions do not occur.

BIOCLIM estimates the niche as the bounding hyperrec-

tangle enclosing all records of a species in the n-dimen-

sional environmental space, creating a rectilinear envelope

defined by the most extreme values of each variable in the

set of the occurrences. It thus assumes independence of

the variables in their effect on species (see Fig. 1a).

Different environments presumably affect differently

the species performance (i.e. fitness, growth rate, intake

capacity, etc.) and, as mentioned above, species are

expected to perform optimally in environmental condi-

tions closer to the innermost parts of the niche. BIOCLIM

discriminates the niche accordingly, identifying nested

hyperrectangles of environments with increasing levels

of suitability. This is geometrically achieved using the

percentiles of the environmental values recorded on

each occurrence point. More specifically, a point in the

n-dimensional environmental space has predicted suitabil-

ity 2a if the coordinate with the minimum percentile is a

100a or 100(1�a) percentile, considering the values of the

corresponding variable for all the occurrence points. A
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point in the region with higher suitability (the median

region) has all coordinates in the 50-percentile. Figure 1c

depicts the six different regions of iso-suitability obtained

by BIOCLIM with percentiles procedure, in respect to the

set of ten points (occurrences) represented in the four pan-

els of Fig. 1.

If R and S are consecutive nested hyperrectangles, with

R⊃S, the points in R\S are environmental states considered

similar with respect to species performance. Inner hyper-

rectangles are expected to include more favourable envi-

ronmental states for the species.

It is noteworthy that the process used by BIOCLIM to

discriminate suitability regions within the niche reinforces

the convexity assumption, leading to the following strong-

est assumption: if two environments e and e’ have quanti-

fied levels of suitability s(e) and s(e’), respectively, and if e’’

is any environment on the straight line segment joining e

to e’, then the suitability is s(e’’) ≥ min{s(e), s(e’)}. We call

this assumption ‘reinforced convexity’ on the niche. In other

words, it states that any environment that is a weighted

average (where the weights are non-negative and sum to

1) of two environmental states, is at least as suitable as the

less suitable of the two. Reinforced convexity is not exclu-

sive from this particular approach. Actually, any given col-

lection of nested convex regions of the environmental

space, combined with any function that assigns the same

values to points in R\S, where R⊃S are two consecutive

nested regions, with values increasing when moving to

innermost sets, satisfy the reinforced convexity assump-

tion.

The HABITAT procedure outlines the niche as the

convex hull of all the records of the species in the n-dimen-

sional environmental space. Even if HABITAT is a multi-

step procedure, hereafter we consider HABITAT as the step

that outlines the niche as a convex hull. The convex hull

of a set of points is the smallest convex region containing

all points (see Fig. 1b). For HABITAT, the niche is tighter

to the occurrence points when compared with the hyper-

rectangle. HABITAT does not assume independence of

variables for their action on the species.

Although the convex hull seems to be more realistic

(assuming a representative sampling) than the hyperrec-

tangle to delineate niche boundaries, no consistent geo-

metric procedure, such as the BIOCLIM with percentile

approach, has been proposed to distinguish suitable

regions inside it. However, this can be achieved using a

mathematical concept called data depth that is a multivari-

ate analogue of univariate order statistics.

Data depth

In statistics, several measures have been introduced as gen-

eralizations of the median and percentiles to dimensions

>1. The motivation for these generalizations came from

the need for robust measures of central location in multi-

variate data, given that the mean is highly sensitive to

extreme observations. Such measures are generally called

data depth. Fukuda & Rosta (2005) provide a unified frame-

work for the main data depthmeasures.

A depth function is a process to measure the centrality

of a point within a data cloud on a multi-dimensional

space. Each function determines a particular centre-out-

ward ranking of points within a given multivariate data

set. A depth function is any function that satisfies certain

postulates, including affine invariance (i.e. depth does

not change under linear transformations of data, thus, in

particular, it is invariant on scale of variables), and

monotone on rays (i.e. depth monotonically decreases

when moving from a point of maximum depth along a

straight line). Interestingly, it is worth noting that BIOC-

LIM with percentiles verifies all postulates that define a

depth function.

Tukey depth (Tukey 1975) is a prominent example of

depth function, particularly suitable to the purpose of

discriminating regions within the convex hull.

The Tukey depth of a point x with respect to a set X of k

points in Rn is m/M, where m is the minimum number of

points that have to be removed from X such that x is no

(a)

(c) (d)

(b)

Fig. 1. Geometric representations of species niche. Points are presences

in a two-dimensional environmental space. Grey areas define the niche. (a)

outer rectangle obtained by BIOCLIM; (b) convex hull used by HABITAT; (c)

nested regions of increasing levels of suitability obtained by BIOCLIM with

percentile; (d) nested regions of increasing levels of suitability obtained by

the convex hull with Tukey depth.
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longer in the convex hull of the remaining points of X, and

M is the maximum value of m, which is the largest integer

not greater than (k�n + 1)/2. Tukey depth ranges from 0

to 1. In particular, points outside the convex hull of X have

0 Tukey depth, whereas points located in the innermost

part of the convex hull of X, called Tukey median region,

score 1. Figure 1d represents five nested regions of increas-

ing Tukey depths, with respect to the set of ten points.

Convex hull with Tukey depth

Tukey depth is the natural depth function to incorporate

in HABITAT in order to discriminate inside the niche, and

we propose to score suitability using depth values with

respect to the set X of occurrences. Thus, the set of points

with positive suitability is the convex hull of X, which is

the niche defined by HABITAT.

The use of Tukey depth within the convex hull is an

analogue for the percentile procedure used in BIOCLIM.

Indeed, similar to what happens in BIOCLIM, Tukey depth

enables us to discriminate geometrically, decomposing the

environmental space into a finite number of regions with

similar suitability values (with non-zero volumes), and

satisfies the reinforced convexity property.

Themain difference between the two procedures is that,

while in BIOCLIMwith percentiles the regionRs of suitabil-

ity greater thanor equal to s is a rectanglewith the sides par-

allel to the axis, assuming independence of the effects of

each variable on the species; in convex hull with Tukey

depth in this region is tighter. Thus, Rs contains the corre-

sponding regionobtainedbyconvexhullwithTukeydepth.

These approaches based on the median and percentiles,

or their multivariate generalizations, have several interest-

ing properties: (1) only use presences and are invariant to

background; (2) are invariant to scale, as a result of being

obtained from depth functions; (3) are robust to outliers

exactly in the same way as univariate percentiles are

(while the outer regions are very sensitive to outliers, their

influence vanishes for the interior); and (4) keep a tight

relation with the niche concept assuring high interpretabil-

ity of results. However, it should be noticed that these

approaches assume that maximum suitability occurs in a

unique central region of the hypervolume, which may not

always be the case. The approach of Silva et al. (2014) can

be used to identify configurations for which the methods

should not be used.

Niche overlap

Several indices havebeenproposed toassess thenicheover-

lap between two species using raw presence/absence data

or using predictions from an environmental niche model

(see Warren et al. 2008 for a survey). Applications of the

same indices can be extended for comparisons of the niches

of two populations of a same species (native vs invasive or

geographically distant populations) or for assessments of

niche evolution, by evaluating the similarity of species

niche at different time periods. For a recently proposed

statistical framework, seeBroennimannet al. (2012).

Most of these indices are different ways of comparing

vectors, where each vector refers to the suitability of the

ecological conditions of each cell for a particular species,

assuming a discretization of the geographical space in a set

of cells. An important drawback in some of these

approaches is that the suitability of the environments (cor-

responding to these cells) is compared disregarding the

position that the environments occupy within the niches.

For instance, Sørensen similarity index (Sørensen 1948)

and Schoener’s statistic for index overlap (Schoener 1968)

only account for the absolute values of differences d

between the suitability of two species at every cell, e.g. the

differences of suitability d = 1.0–0.7 and d = 0.4–0.1, are

equally accounted as 0.3. Some proposals distinguish

these situations using algebraic manipulations such that

differences between the higher suitability values account

for less than differences between the low suitability values.

0 0

1/3

2/3

1

A B
0

0

1/2

1

A B

Fig. 2. Overlap of niches, for species A and B, estimated by convex hull with Tukey depth. Left (right) panel highlights the regions of iso-suitability based

on seven (five) occurrences for species A (B).
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For instance, the similarity statistic index introduced by

Warren et al. (2008) uses a square root function to achieve

this goal (e.g. the ‘modified difference’ between suitability

1.0 and 0.7 is ð ffiffiffiffiffiffiffi
1:0

p � ffiffiffiffiffiffiffi
0:7

p Þ2 = 0.027, while the ‘modified

difference’ between 0.4 and 0.1 is ð ffiffiffiffiffiffiffi
0:4

p � ffiffiffiffiffiffiffi
0:1

p Þ2 = 0.1).

These approaches are formulae refinements with no clear

ecological explanation. Moreover, indices that are based

on comparisons of vectors of suitability only account for a

finite number of points on the environmental space,

instead of considering the predictions for the whole envi-

ronmental space.

We next describe an approach for niche overlap estima-

tion that takes into account suitability of every point of the

environmental space, and that has a straightforward eco-

logical interpretation. The procedure applies, but is not

limited, to the outputs of BIOCLIM or HABITAT incorpo-

rating the depth functions described in the previous sec-

tions. It can be applied whenever there is a finite number

of measurable iso-suitability regions, such as the regions

arising from binary or ordinal predictions.

Consider two species A and B and the partitions of the

environmental space into kA and kB finite sets of predicted

iso-suitability for each species. Compute, for every pair (i.j)

of predicted suitability i for species A and j for species B,

the volume Vi,j of the (possibly disconnected) region com-

posed by all the environments having suitability i for spe-

cies A and j for species B. Let MV = [Vi,j] be the kA 9 kB
matrix with the volumes for all these regions. Figure 2

illustrates the regions of iso-suitability of the two species,

obtained from the convex hull with Tukey depth based on

seven occurrences for species A and five occurrences for

species B. The corresponding matrix of volumes MV is

presented in Table 1.

MatrixMV can be viewed as an encoding of the intersec-

tion pattern of A and B niches. Together with its row and

column indices, which are in fact the distinct levels of suit-

ability for each of the two species, enclose all the informa-

tion given by the predictive model to assess niche overlap.

FromMVwe define the matrixMA (MB) of the asymmet-

ric overlap of species B (A) on A (B), multiplying the rows

(columns) of MV by its row (column) index vector (see

Table 1). Matrix MA (MB) contains, for every region with

iso-suitability (i,j), the volume Vi,jweighted by i (j).

Matrices MV, MA and MB can be related in some conve-

nient mathematical expression to quantify niche overlap

of species A and B. A possibility is

wJ¼

P
i[0

P
j[0

�
MAði;jÞþMBði;jÞ

�
2
P
i

P
j

�
MAði;jÞþMBði;jÞ

�
� P

i[0

P
j[0

�
MAði;jÞþMBði;jÞ

�

which can bewritten as the ratio of weighted volumes,

wJ ¼

P
i[0

P
j[0

ðiþ jÞ �MV ði; jÞ

2
P
i

P
j

ðiþ jÞ �MV ði; jÞ �
P
i[0

P
j[0

ðiþ jÞ �MV ði; jÞ :

It is noteworthy that if suitability is binary predicted

(0/1),MV is a square order 2 matrix, asMb
V binarymatrix in

Table 1, andwJ becomes

Jaccard ¼ Mb
V ð1; 1Þ

Mb
V ð0; 1Þ þMb

V ð1; 0Þ þMb
V ð1; 1Þ

which is the Jaccard index for the volume measure, as the

numerator is the volume of the intersection of the two

convex hulls and the denominator is the volume of the

union.We callwJ the weighted Jaccard overlap index.

Another possibility of a different nature is to consider

the matrices MA and MB as vectors of length kA 9 kB and

to compute the cosine of the angle between the two

vectors, i.e.

Table 1. Matrices of volumes for the data in Fig. 2. Entry (i,j) of MV is the

volume of the intersection of regions with suitability i for species A and j

for species B. (MV(0,0) is arbitrary, here total volume = volume of the

bounding box is 100). Matrix Mb
V is similar to MV but considering a binary

response. Note that the volume of the union of the convex hulls is (100–

31.046), while the volume of the intersection is 15.283. Matrix MA (MB) is

the matrix of volumes weighted by the suitability for species A (B).

Table 2. Overlap indices for the pattern represented in Fig. 2. wJ refers

to the weighted Jaccard volumes index; cos refers to the cosine index.

wJ Jaccard cos Pianka

0.2293 0.2216 0.1535 0.3192
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cos ¼

P
i

P
j

�
MAði; jÞ �MBði; jÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

�
MAði; jÞ

�2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j

�
MBði; jÞ

�2
s

¼

P
i

P
j

ij
�
MV ði; jÞ

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

i2
�
MV ði; jÞ

�2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j

j2
�
MV ði; jÞ

�2
s

Notice that, when discardingMV(i,j) in the above expres-

sion (i.e. making it constant), cos becomes the cosine of the

angle between the vectors of suitability for species A and B,

which is Pianka overlap index (Pianka 1973).

The values for wJ, Jaccard, cos and Pianka indices corre-

sponding to the regions of iso-suitability of two species rep-

resented in Fig. 2, are given in Table 2.

Both wJ and cos range between 0 (no overlap) and 1

(total overlap). While wJ relates volumes of iso-suitability

regions weighted by the suitability of species A and B, cos

measures the similarity of the two vectors regardless the

magnitude of their components.

Conclusion

Combinatorial mathematical tools such as data depth can

be used to improve geometric procedures to explore and

interpret the niche. Moreover, these tools define a finite

number of measurable iso-suitability regions that allow us

to consistently evaluate niche overlap, bringing a closer

link between ecology andmodelling.
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