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Introduction
Networks of chaotic dynamical systems are present in a wide range of situations, so that 
the study of their behavior is a very important matter. The synchronization is a relevant 
feature of that behavior [1–5]. Moreover, a relevant feature of chaotic dynamical system 
is its vulnerability or resistance to be controlled, with several ways that the control may 
be done [6–13]. So, it is also relevant to study the possibility that network synchronizes 
in a controlled way. In a previous paper [14], we considered that the control is made by 
adding a new node. In fact, if the new node is connected in an appropriate way to the 
network and if the network has some special properties, the new node can control the 
network. We considered that the new node is connected in what we called a full-com-
manded way. In “Full-commanding a network”, we recall the results presented in that 
paper, while in “Examples of full-commanding and another result” we illustrate them by 
their application to some particular situations that provide us more insight into how a 
network is more vulnerable or resistant to a full-command, suggesting us a new result.

Full‑commanding a network
There are many situations in which identical systems are connected in a linear way. We 
consider such a network, i.e., a network of the following type:
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where n is the number of identical systems connected, f is their free dynamic, 
−→
x (t) =

[

x1(t) x2(t) . . . xn(t)
]T , 

−→
f
(−→
x (t)

)

=
[

f (x1(t)) f (x2(t)) . . . f (xn(t))
]T , 

aii = −
∑n

j=1

j �=i

aij and A =
[

aij
]

 . Such a network admits the completely synchronized 

solution s(t) ·
−→
1  , with 

−→
1 = [11...1]T and s(t) such that s(t + 1) = f (s(t)) . In fact, since 

� = 0 is an eigenvalue of the coupling matrix A, corresponding to the eigenvector −→1  , we 
have

Adding a new identical dynamical system, y, to the network, we want to analyze the pos-
sibility that, after a transient period, this new node imposes its iterates to all the oth-
ers. In a coupling, we obtain that using a one-way connection with a coupling strength 
greater than 1− e−h , where h is the Lyapunov exponent of the coupled systems [17]. So, 
we consider that the new node is one-way connected to all nodes of the network, i.e., we 
consider the new network

where −→x0 (t) =
[

x1(t) x2(t) ... xn(t) y(t)
]T and A0 =

[

A− ǫIn
−→
1 ǫ

−→
0 T 0

]

 and we say that 

the new node y is full-commanding the network A.

(1)

xi(t + 1) = f (xi(t))+

n
∑

j = 1

j �= i

aij ·
[

f
(

xj(t)
)

− f (xi(t))
]

, ∀i=1,...,n

⇔

xi(t + 1) = (1−

n
∑

j = 1

j �= i

aij) · f (xi(t))+

n
∑

j = 1

j �= i

aij · f
(

xj(t)
)

, ∀i=1,...,n

⇔

−→
x (t + 1) = (In + A) ·

−→
f
(−→
x (t)

)

,

(In + A) · f (s(t) ·
−→
1 ) = (In + A) · f (s(t)) ·

−→
1

= s(t + 1) ·

(−→
1 + A ·

−→
1

)

= s(t + 1) ·
−→
1 .

(2)



















xi(t + 1) = f (xi(t))+
n
�

j = 1

j �= i

aij ·
�

f
�

xj(t)
�

− f (xi(t))
�

+ ǫ ·
�

f
�

y(t
�

− f (xi(t))
�

, ∀i=1,...,n

y(t + 1) = f
�

y(t)
�

⇔


















xi(t + 1) = (1−
n
�

j = 1

j �= i

aij − ǫ) · f (xi(t))+
n
�

j = 1

j �= i

aij · f
�

xj(t)
�

+ ǫ · f (y(t)), ∀i=1,...,n

y(t + 1) = f
�

y(t)
�

⇔
−→
x0 (t + 1) = (In+1 + A0) ·

−→
f
�−→
x0 (t)

�

,
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In order that the new node imposes its free evolution to all the others nodes, it is 
needed that y(t) ·

−→
1  , with y(t) such that y(t + 1) = f (y(t)) , be an exponentially stable 

solution of (2). The following proposition determines conditions for that to happen.

Proposition 1  If |ǫ − (1+ �i)| < e−h, for all the eigenvalues �i of the diagonalizable 
coupling matrix A of the network (1), then the network is full-commanded by a new node 
y, i.e., −→x0 (t) = y(t) ·

−→
1 , with y(t) such that y(t + 1) = f (y(t)), is an exponentially stable 

solution of (2). If |ǫ − (1+ �i)| > e−h for an eigenvalue �i, then network (1) is not full-
commanded by a new node.

As proved in [14] this is just the result of applying the following proposition (a vari-
ation of similar others [15, 16]) to network (2), i.e., the result of considering that the 
matrix A of the following proposition is A0.

Proposition 2  Considering the dynamical network (1) with A a diagonalizable 
matrix such that �1 = 0 is an eigenvalue of multiplicity 1, if all the other eigenvalues 
�i ( i = 2, ..., n ) are such that |1+ �i| < e−h, where h is the Lyapunov exponent of the 
nodes, then the completely synchronized solution −→x (t) = x1(t) ·

−→
1 , with x1(t) satisfying 

x1(t + 1) = f (x1(t)), is exponentially stable. If |1+ �i| > e−h for a non-zero eigenvalue �i, 
then there is no exponentially stable completely synchronized solution.

All the same, we define full-command-window and full-commandable network, in 
the following way.

Definition 1  We define full-command-window (FCW) of the network (1) as the open 
set of values of the commanding coupling strength ǫ ∈ [0, 1] for which the synchronized 
solution −→x0 (t) = y(t) ·

−→
1  is an exponentially stable solution of (1). If FCW  = ∅ , we say 

that network (1) is full-commandable.

Proposition 1 determines that

As we noted in [14], there are networks that are not full-commandable, for instance 
the ones that have a diagonalizable coupling matrix A with an eigenvalue such that 
Im(�) > e−µ or such that its distance to another eigenvalue is greater than 2e−µ . We also 
presented in that paper the following results that are useful for obtaining the ones we 
add in this paper.

Proposition 3  Considering a network (1) such that A is diagonalizable, all its eigen-
values are real and �n is the smallest one, then the network is full-commandable if 
�n > −2e−h and FCW reduces to

FCW =

n
⋂

i=1

{

ǫ ∈ [0, 1] : |ǫ − (1+ �i)| < e−h
}

.

FCW =
]

1− e−h, 1+ �n + e−h
[

∩ [0, 1].
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Proposition 4  A completely disconnected network, i.e., a network (1) with a zero matrix 
A, is full-commandable and its full-command-window is 

]

1− e−h, 1
]

..

Proposition 5  A completely connected network, i.e., a network (1) with

where c is the global coupling strength, is full-commandable if nc < 2e−h and its full-com-
mand-window is 

]

1− e−h, 1− nc + e−h
[

∩ [0, 1].

We note that for a network satisfying the conditions of any of the these proposi-
tions in order to be full-commandable, the smallest commanding coupling constant 
is ǫ = 1− e−h , a value that does not depend on the structure of the network, it only 
depends on the dynamic of the nodes. This value is exactly the same that it is needed in a 
one-way linear coupling for a dynamical system to command the other one [17]. Further, 
a completely connected network is as more resistant to a full-command as greater is the 
network (i.e., as greater is n) and as stronger are the connections between the dynamical 
systems (i.e., as greater is c).

Examples of full‑commanding and another result
Now we consider several examples of networks, not only to illustrate the previous 
results, but also to get insight into some aspects of the behavior of such a way of com-
manding a network. In doing so, there is a practical problem related to the fact that when 
dynamical systems with bounded iteration intervals are connected, some iterations may 
assume values outside the iteration interval. Instead of restricting the coupling strength 
ǫ of the new node so that does not happen, we adopt a more permissive strategy: we let 
that coupling strength assume any value in [0, 1] and when there are iterations that leave 
the iteration interval, we put them again in the iteration interval in a random way. This 
way we do not discard any exponentially stable full-commanded solutions due to the 
boundness of the iteration interval.

We consider networks of four logistic dynamical systems [18] and we start by 
analyzing the two referred extreme situations: a completely disconnected net-
work and a completely connected one. For the completely connected network, 
we use three values of the coupling strength, namely c = 0.1 , c = 0.2 and c = 0.27 . 
In Figs.  1 and 2, we sketch the network and present the graphs of the iterates 
D(t) = 1

4
·
(∣

∣x1(t)− y(t)
∣

∣+
∣

∣x2(t)− y(t)
∣

∣+
∣

∣x3(t)− y(t)
∣

∣+
∣

∣x4(t)− y(t)
∣

∣

)

 . If the net-
work is fully commanded by the new node, then after a transient period D(t) ≃ 0 , 
and that is why we just register the iterates after that period, namely for t > 100 . So, 
we are able to visualize the full-commanded windows that this numerical approach 
provides, i.e., the values of ǫ for which D(t) ≃ 0 . As determined by Proposition 4, 
the completely disconnected network is full-commandable and the smallest coupling 
strength that is required to the new node is ǫ = 0.5 . In fact, since the Lyapunov expo-
nent of the logistic map is h = ln 2 , that value is 1− e−h = 0.5 . This is also its value for 

A = c ·











−(n− 1) 1 1 ... 1

1 − (n− 1) 1 ... 1

1 1 − (n− 1) ... 1

... ... ... ... ...

1 1 1 ... − (n− 1)











,
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Fig. 1  Iterates D(t) for a completely disconnected network as a function of ǫ

Fig. 2  Iterates D(t) for a completely connected network as a function of ǫ for c = 0.1 (top right), c = 0.2 
(bottom left) and c = 0.27 (bottom right)
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the completely connected network, as Proposition 5 states, but this other network is 
only full-commandable if c < 2e−h

n  , i.e., if c < 0.25 . That is why, in Fig. 2, the full-com-
mand-window disappears for c = 0.27 . For c = 0.1 and c = 0.2 , the full-command-
windows are ]0.5, 1] and ]0.5, 0.7[, respectively, as determined by Proposition 5.

Now, we consider two other networks with four nodes, neither as disconnected as a 
completely disconnected one nor as connected as a completely connected one, namely a 
network “in line” and a network “in star”, corresponding to the sketches shown in Figs. 3 

and 4 and, respectively, to the coupling matrixes AL = c ·







−1 1 0 0

1 − 2 1 0

0 1 − 2 1

0 0 1 − 1






 and 

AS = c ·







−3 1 1 1

1 − 1 0 0

1 0 − 1 0

1 0 0 − 1






 (used for instance in [16]). They have both three connec-

tions, but the way they are done determines a different resistance to a full-command. To 
highlight this, we considered for both of the networks the same three values of the cou-
pling strength c that we used for the completely connected network, namely c = 0.1 , 

Fig. 3  Iterates D(t) for the network “in line”, i.e., the network associated with the coupling matrix AL , as a 
function of ǫ for c = 0.1 (top right), c = 0.2 (bottom left) and c = 0.27 (bottom right)
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c = 0.2 and c = 0.27 , and we show in Figs. 3 and 4 the values of iterates of D(t) after the 
transient period.

Proposition 3 confirms the full-command-windows that the graphs exhibit. In fact, 
since the eigenvalues of A1 are �1 = 0 , �2 = (−2+

√
2)c , �3 = −2c , �4 = (−2−

√
2)c , 

the network “in line” is full-commandable for c < 1

2+
√
2
≃ 0.293 , so that for all the three 

values of c we obtain a non-empty full-command-window with the already referred left 
endpoint 0.5, while the right endpoints are 1, 0.817 and 0.578, since the values of 
1+ �4 + e−h for c = 0.1 , c = 0.2 and c = 0.27 are 1.159, 0.817 and 0.578, respectively. In 
the same way, since the eigenvalues of A2 are �1 = 0 , �2 = �3 = −c , �4 = −4c , the net-
work “in star” is full-commandable for c < 0.25 , so that the full-command-window for 
c = 0.27 is empty, while the ones corresponding to c = 0.1 and c = 0.2 have right end-
points 1 and 0.7, since 1+ �4 + e−h for c = 0.1 and c = 0.2 are 1.1 and 0.7, respectively.

These examples show that for networks with the same number of nodes, the same 
value of the coupling strength and the same number of connections, the resistance to 
a full-command depends on the way those connections are made, namely a network 
“in star” is more resistant to a full command than a network “in line”. Further, the 

Fig. 4  Iterates D(t) for the network “in star”, i.e., the network associated with the coupling matrix AS , as a 
function of ǫ for c = 0.1 (top right), c = 0.2 (bottom left) and c = 0.27 (bottom right)
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similarity between the results of Figs. 2 and 4 suggests that a network connected “in 
star” seems to be as resistant to a full command as a completely connected network 
where there are many more connections. This is in fact true and results from the fol-
lowing proposition.

Proposition 6  A network “in star” i.e., a network that has a node connected to all the 

other nodes, corresponding to a coupling matrix AS = c ·











−(n− 1) 1 1 ... 1

1 − 1 0 ... 0

1 0 − 1 ... 0

... ... ... ... ...

1 0 ... − 1











 

has a full-commanded-window FCW ⊂
]

1− e−h, 1− nc + e−h
[

∩ [0, 1].

Proof  AS has as eigenvalue � = −nc , since AS ·











−(n− 1)

1

1

...

1











= −nc











−(n− 1)

1

1

...

1











 . So, 

Proposition 3 determines that FCW ⊂
]

1− e−h, 1− nc + e−h
[

∩ [0, 1] . �

Conclusions
A network of linearly connected identical chaotic dynamical systems may be full-
commanded by a new identical node if its coupling matrix satisfies some conditions. 
Namely, if the coupling matrix is a diagonalizable matrix with real eigenvalues the 
full-commandability is determined just by its smallest eigenvalue and by the Lyapunov 
exponent of the dynamical systems. In that case, the smallest value of the coupling 
strength ǫ that determines the full-command only depends on the Lyapunov exponent 
of the dynamical systems. While a completely disconnected network is always full-
commandable, a completely connected one is as more difficult to command, as larger 
is the network (larger n) and as stronger are the connections between nodes (larger c). 
Even if a network has the same number of connections between nodes with the same 
coupling strength, a network “in line” is more vulnerable to a full-command than a 
network “in star”. In fact, a network “in star” is as resistant to a full-command as a 
completely connected one.
Acknowledgements
Research partially sponsored by national funds through the Fundação Nacional para a Ciência e Tecnologia, Portugal-
FCT, under the project UID/MAT/04674/2013 (CIMA).

Authors’ contributions
All authors prepared and discussed the results and contributed to the final manuscript. All authors read and approved 
the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Page 9 of 9Grácio et al. Comput Soc Netw            (2019) 6:14 

Author details
1 Department of Mathematics, Universidade de Évora and CIMA-UE, Rua Romão Ramalho, 59, 7000‑671 Évora, Portugal. 
2 Mathematics Unit, ADM, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1949‑014 Lis-
bon, Portugal. 

Received: 21 May 2019   Accepted: 3 December 2019

References
	1.	 Pikovsky A, Rosenblum M, Kurths J. Synchronization, a universal concept in nonlinear sciences. Cambridge: Cam-

bridge University Press; 2001.
	2.	 Hasler M, Maistrenko YL. An introduction to the synchronization of chaotic systems: coupled skew tent maps. IEEE 

Trans Circuits Syst I. 1997;44(10):856–66.
	3.	 Sushchik MM Jr, Rulkov NF, Abarbanel HDI. Robustness and stability of synchronized chaos: an illustrative model. 

IEEE Trans Circuits Syst I. 1997;44(10):867–73.
	4.	 Rangarajan G, Ding MZ. Stability of synchronized chaos in coupled dynamical systems. Phys Lett A. 2002;296:204–9.
	5.	 Ding MZ, Yang WM. Stability of synchronous chaos and on–off intermittency in coupled map lattices. Phys Rev E. 

1997;56(4):4009–16.
	6.	 Ott E, Grebogi C, Yorke J. Controlling chaos. Phys Rev Lett. 1990;64(11):1196–9.
	7.	 Pyragas K. Continuous control of chaos by self-controlled feedback. Phys Lett A. 1992;170(6):421–8.
	8.	 Nijmeijer H, Berghuis H. On Lyapunov control of the Duffing equation. IEEE Trans Circuits Syst I. 1995;42(8):473–7.
	9.	 Bernardo M. An adaptive approach to the control and synchronization of chaotic systems. Int J Bifurc Chaos. 

1996;6(3):557–68.
	10.	 Boccaletti S, Grebogi C, Lai Y, Mancini H, Maza D. The control of chaos: theory and applications. Phys Rep. 

2000;329:103–97.
	11.	 Ge S, Wang C. Adaptive control of uncertain Chua’s circuits. IEEE Trans Circuits Syst I. 2000;47(9):1397–402.
	12.	 Harb A, Zaher Ashraf A. Nonlinear control of permanent magnet stepper motors. Commun Nonlinear Sci Numer 

Simul. 2004;9(4):443–58.
	13.	 Ahlborn A, Parlitz U. Laser stabilization with multiple-delay feedback control. Opt Lett. 2006;31(4):465–7.
	14.	 Grácio C, Fernandes S, Lopes L. Full-commanding a network: the dictator. In: Proc. 7th int. conf. complex networks 

and their applications VII, 2019; vol. 1. https​://doi.org/10.1007/978-3-030-05411​-3_41.
	15.	 Feng J, Jost J, Qian M. Networks: from biology to theory. Berlin: Springer; 2007.
	16.	 Li X, Chen G. Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. 

IEEE Trans Circuits Syst I. 2003;50(11):1381–90.
	17.	 Lopes L, Fernandes S, Grácio C. Complete synchronization and delayed synchronization in couplings. Nonlinear Dyn. 

2014;79:1615–24.
	18.	 Lopes L, Fernandes S, Grácio C. “Windows of Synchronization” and “Non-chaotic Windows”. ESAIM Proc Surv. 

2014;46:161–74.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-05411-3_41

	Full command of a network by a new node: some results and examples
	Abstract 
	Introduction
	Full-commanding a network
	Examples of full-commanding and another result
	Conclusions
	Acknowledgements
	References




