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Abstract. In the present work we prove an existence and location result for the
fourth order fully nonlinear equation

u() = f(tu, u',u”,u”/) , O0<t<l,
with the Lidstone boundary conditions

u(0) = v (0) = u (1) = u” (1) = 0,

where f : [0,1] xR* — R is a continuous function satisfying a Nagumo type condition.
The existence of at least a solution lying between a pair of well ordered lower and
upper solutions is obtained using an a priori estimate, lower and upper solutions
method and degree theory.

1. Introduction. In this work we apply the lower and upper solutions method to
the fourth order fully nonlinear equation

W(8) = f (#u() (1) ()" (1), 0<t<1, M

with f:[0,1] x R* — R a continuous function.

This equation can be used to model the deformations of an elastic beam and
the type of boundary conditions considered depends on how the beam is supported
at the two endpoints (see [10, 11] and the references therein). We consider the
Lidstone boundary conditions

u(0) =u"(0) =u(l) =u" (1) =0, (2)

meaning that both endpoints are simply supported.

This problem has been studied by many authors using the variational formu-
lation, in the cases where the nonlinearity depends only on w or w” ([9, 10, 12]),
the topological technique ([1, 2, 14]) or both ([4]). However, in all the referred pa-
pers there are no dependence on the odd-order derivatives. Recently several papers
([5, 6]) apply the lower and upper solutions method to the fully equation (1) with
nonlinear boundary conditions.

2000 Mathematics Subject Classification. 34B15.

Key words and phrases. Fourth order boundary value problem, Nagumo condition, a priori
estimate, a pair of lower and upper solutions, degree theory.

*Partially supported by Fundagdo Calouste Gulbenkian, Project 429934/2004, and by
Fundag@o Luso- Americana para o Desenvolvimento, Project 210/04.

662



EXISTENCE AND LOCATION RESULT FOR A FOURTH ORDER BVP 663

The present work follows the arguments used in [3] for second order, in [7] and [8]
for third order and higher order and it is not cover by the results in [6] because we
deal with a weaker assumption than the monotonicity of f (see (7)) and different
definitions of lower and upper solutions. In fact we consider a reversed relation
between o’ and 3" and the nonlinear boundary conditions for the lower and upper
functions do not include our definition if they verify the relation

a(0) <0< B(0) or o/(1)<0<pg(1).

The paper is organized like it follows. In section 2 it is defined the well ordered
lower and upper solutions, i.e., a (t) < B (t), for every ¢ € [0, 1]. On the other hand,
lower and upper solutions must be defined as a pair, that is, they can not be defined
independently (see Definition 1, (#47), and the Counter-example in last section).

A Nagumo-type condition will have an important role to prove an a priori bound
for the third derivative and to obtain the existence result, in section 3, using the
Leray-Schauder theory. The location part, inherent to the lower and upper solutions
technique, may be useful, for instance, to prove the existence of positive solutions,
indeed, it will be enough to consider a non-negative lower solution.

2. Definitions and a priori bound. The lower and upper solutions for problem
(1)-(2) used in this paper require a "well ordered” relation in the second derivatives
and a definition like a pair of functions.

Definition 1. The functions a, 3 € C*(]0,1[) N C3 ([0, 1]) verifying
o’ (t) < B (), Vtelo,1], (3)

define a pair of lower and upper solutions of problem (1)-(2) if the following condi-
tions are satisfied:

(@) (@) = f(Lat),d 1), (1), a" (1),

B () < f(8,8(t), 5 (1), 8" (). 8" (1)

(i) a(0)<0, a”(0)<0, a’(1)<0,
B(0) =0, B"(0)=0, B"(1)=0,

(wi) o' (0) = F'(0) <min{3(0) - B(1),a (1) —a(0),0}.

Remark 1. a) Condition (¢#) can not be removed, as it will be proved in the next
section (See Counter-example).
b) By integration, from (7i7) and (3), we obtain
a(t)<B@), o@)<p @), Vvtelo,1],
i.e. lower and upper solutions and their first derivatives are well ordered, too.
To have an a priori estimate on u'”’
condition.

it must be defined a Nagumo-type growth

Definition 2. Given a subset £ C [0,1] x R*, a continuous function f : E — R
is said to satisfy the Nagumo-type condition in F if there exists a real continuous
function hg : RS — [a, +oo|, for some a > 0, such that

|f (t7$0,$1,$2,x3)| < hE (|x3|)a V(tvaaxlvvamz‘l) € Ev (4)
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with

+o0 s
/0 7 (s )d5*+oo (5)

Lemma 1. Let f:[0,1]xR* — R be a continuous function, verifying Nagumo-type
conditions (4) and (5) in

E={(t.xo,w1,29,23) € [0,1] x R* 1 7, (¢) < 2; < T, (¢), i =0,1,2},

where v; (t) and T'; (t) are continuous functions such that, for each i = 0,1,2 and
every t € [0,1],

Then there is r > 0, such that every solution u (t) of problem (1)-(2) verifying

i (1) <UD (1) < T (1),
fori=0,1,2 and every t € [0,1], satisfies ||u"|| <.
Proof. Define the non-negative real number
1 :=max{I'y (1) =72 (0), 2 (0) =72 (1)}.
Take r > n such that

T s
ds > s (t) — i t). 6
| i =m0 - min 2 0 ©)

Consider u (t) a solution of (1)-(2) such that, for i = 0,1,2,
v (t) <u® (1) <Ti(t), Vtelo,1].

Suppose that v (t)| > n, for every ¢ € [0,1]. If "’ (¢) > n, for every ¢ € [0,1], the
following contradiction is achieved

Ty(1) =72(0) > u”(1)—u"(0)
1 1
- / ’”()dt>/ ndt =Ty (1) =22(0).
0 0

If w" (t) < —n, for every ¢t € [0,1], a similar contradiction is obtained. So, there
exists ¢t € [0, 1], such that |u"’ (¢)] <.

If | ()] <, for every t € [0,1], it is enough to take r := n to finish the proof.
If not, suppose that there is ¢ € [0, 1] such that u””’ (¢) > 1 and consider an interval
I = [to,t1], (or I = [t1,10]) such that v (t9) = n and "’ (t) > n for t € I\ {to}.
Assume I = [tg, ¢1] (the other case is analogous). Applying a convenient change of
variable we have, by (4) and (6), for arbitrary to € I\ {to}

"'(tz) S to u/// (t) ]
ds = / B @) 4y dt =
Lw e () W ey v

(
— /t2 /” (t) f (t u ul u// u///) dt <
Ji hE (u,,, (t)) s Uy ) 9 =

IN

/2 W (E) dt = () — 0 (t) <

to

< max T (¢) — min v /
7

te[0,1] telo, 1] hg (s
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Then v (t2) < r and so we have v’ (t) < r, for every t € I. Arguing as before
in the intervals J, where v’ (t) > n, t € J, we obtain that v (¢t) < r, for every
te0,1].

The proof of w” (t) > —r, for every ¢t € [0,1] such that v (¢) < —n, follows
similar steps. O

Remark 2. Observe that the estimation r depends only on the functions hg, Yo
and I's and it does not depend on the boundary conditions.

3. Existence and location result. The main result is an existence and loca-
tion result, that is, it provides not only the existence of solution but also some
information about the strip where the solution and some derivatives lie.

Theorem 1. Suppose that there exists a pair of lower and upper solutions of (1)-
(2), a(t) and B(t), respectively. Let f :[0,1] x R* — R be a continuous function
such that [ satisfies Nagumo-type conditions (4) and (5) in

E, = {(t, w0, ®1,m2,23) € [0,1] x R* : a(t) < wo < B (1),
o) <a <B (), o (t) <z <[ (1)}
If [ wverifies
fta(t),d (t),ze,23) I (t,mo, 21,20, 23) > (7)
[, B(),6 (t), 2, x3),
for (t,z2,x3) € [0,1] x R? and
(a(t), o () < (wo,z1) < (B(),6 (¢)),

where (zo,21) < (Yo,y1) means xo < yo and x1 <y, then the problem (1)-(2) has
at least a solution u (t) € C*([0,1]), satisfying

a(t)<u(t) <B@), o @) <u' () <B (1), " (t) <u"(t) <B" (1),
forte[0,1].

Proof. Define the auxiliary continuous functions

a®(t)y if z; < al ()
8 (tw) =9 @ if AW zazaD (), i=0,1,2.
BO@  if z; > B (1)
For A € [0,1], consider the homotopic equation
u™ (1) = Af(td0 (tu(t), 61 (tu' (1), 8 (Lu” (), u” () +  (8)

+u”’ () — Noa (¢, u” (1)),

with the boundary conditions (2).
Take 7 > 0 large enough such that, for every ¢ € [0, 1],

—rp <’ (t) < B (t) <, (9)
fta(t),d (t),a" (t),0)—r —a" (t) <0, (10)
f(&B@),08(t),8"(t),0) +r1 = B"(t) > 0. (11)

Step 1. Ewvery solution u(t) of problem (8)-(2) satisfies
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‘u(i) (t)‘ <r, Vteo1],
for i =0,1,2, independently of A € [0,1].

Assume, by contradiction, that the above estimate does not hold for ¢ = 2. So
there exist A € [0,1], ¢ € [0,1] and a solution u of (8)-(2) such that |u” (¢)| > ry.
In the case v (t) > 7 define

" 1
max u’ (t) :=u" (tg) > r1.
tE[O,)l(} () (O)_ !

Asty €10,1[ then v/ (t5) = 0 and u*) (y) < 0. Then by (7) and (11), for A € [0,1],
the following contradiction is obtained

0 > ul™ (t)
Af (to, 00 (o, u(t0)) . 01 (to, v (t0)) , 02 (o, u” (to)) . u” (t0))
+u” (to) — No2 (to,u” (to))
Af (o, 0o (to, u (to)) , 01 (to,u' (o)), 8" (to) ,0) +u” (to) — A" (to)
A (to, B(to), B (to),B” (to),0) +u” (to) — AB" (to)
= A[f(to,B(to), B (to),B" (to),0) + 11— B" (to)] +u” (to) — Ary > 0.
The case v’ (t) < —rq, for all ¢ € [0,1], yields also a similar contradiction.
Therefore |u” (¢)| < r1, Vt € [0,1].

By the boundary conditions (2) there exists £ € |0, 1], such that «’ (§) = 0. Then
by integration we obtain

%

ol |f " (s) ds

[u (t)] = /0 o' (s)ds

Step 2. There is ro > 0 such that, for every solution wu (t) of the problem (8)-(2)

<T1|t—§|§’)"1,

and

<rit <rg.

[u"" (t)| < re, Vte|0,1],
independently of A € [0,1].
Consider the set
E,, = {(t. o, 21,22, 23) € [0,1] x R* : =y < z; <7, i =0,1,2},
and, for A € [0, 1], the function Fy : E,, — R given by
Fy (t,xo, 1, 22,23) = Af(t,00 (¢, 20),01 (L, 1), 02 (¢, x2) ,3) + T2 — A2 (¢, T2) -

In the following we shall prove that the function F) satisfies Nagumo-type conditions
(4) and (5) in E,, independently of A € [0,1]. Indeed, as f verifies (4) in E., then

|F\ (t, 0, 1,22, 23)] < |f (L, 00 (t,20),01 (¢, 1), 02 (¢, 22) , x3)| + |22| + |02 (¢, 22)|
< hp, (|zs]) +2r1.
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So, defining hg, (t) = 2r1 + hp, (t) in Ry, we have that Fy verifies (4) with E and
hg replaced by E,, and hg, , respectively. The condition (5) is also verified since

“+oo s d 400 S d
/o he, () / he, (s)+2r1

1 teo g
ds = +00.
1+ 2 /0 hE, (s)
For r; given by Step 1, taking in Lemma 1
v (t) = —ry and [; (t) = r, for i =0,1,2,

we can conclude that there is 7o > 0 such that
[u" (t)] <re, Vtel0,1].
Since r; and hET1 do not depend on \ we observe that 7y is also independent of .

Step 3. For A =1, the problem (8)-(2) has at least a solution uy (t).
Define the operators

L:C*([0,1]) c C3([0,1]) — C ([0,1]) x R*
by
Lu = (u™,u (0) ,u” (0),u(1) " (1))
and, for A € [0,1], Ny : C3([0,1]) — C ([0, 1]) x R* by
Mu = (Af(t,00 (tu(t),01 (o (1), 0 (tu" (1),u" (t)
+u” () — Nog (t,4u” (¢)),0,0,0,0).
As £ has a compact inverse we can define the completely continuous operator
Tp: (C*([0.1)),R) — (C*([0.1]),R)
by
T (u) = L7'N) (u).
For ry given by Step 2, consider the set
a={zecc(o.1): Hx<i> <72}
By Steps 1 and 2, the degree d (I — 7,,,0) is well defined for every A € [0, 1] and
by the invariance with respect to a homotopy,
d(I-175,Q,00=d( —-7T1,92,0).
The equation x = 7y () is equivalent to the problem

u™) () = u (1),
u(0) =u"(0) =u(l) =u" (1) =0,
and has only the trivial solution. Then by the degree theory,
d(I—1Ty,Q,0) = £1.

Therefore, the equation & = 77 (z) has at least one solution. That is, the problem
composed by

u(®) t) = [f(t 0 tu(t)),d @t (t),d &y (t)),u" (1) (12)
+u” (t) — 62 (t,u” (1)),

and the boundary conditions (2) has at least one solution u; (¢) in Q.

///||

<ry, 1=0,1,2, ||l‘
o0



668 F. MINHOS, T. GYULOV AND A. I. SANTOS

Step 4. The function wuy (t) is a solution of the problem (1)-(2).
The proof will be finished if the above function u; (¢) satisfies the inequalities
a(t) Su(t)<B), o (1) <uy () < B (1), o (1) <ui () <B"(1).
Assume, by contradiction, that there is ¢ € [0, 1] such that uf (¢t) > 3" (¢) and define

max [uf (1) = 8" (0] = (t2) ~ B (12) > 0.

As ty € ]0,1] then v (t2) = 8" (t2) and

u™) (1) < B (ty). (13)
By (7), (12) and Definition 1 we obtain the following contradiction with (13):
u (t2) = f(t2, 00 (t2,un (t2)) 61 (t2, 1) (2)) , 82 (2, ] (2)) , ul’ (t2)

+ uy (t2) — Aoz (ta, uf (t2))

= f(t2,00 (t27u1 (t2)) ;01 (L2, uy (t2)), 6" (t2), 8" (t2))
+uf (t2) = B (t2)

> f(t2,B(t2), B (ta), 8" (t2), " (ta)) +uf (t2) — B” (t2)

> f(t2.B(t2). B (t2), 8" (t2), 8" (t2)) = B (t2) .

Analogously, we prove that
So, we have

On the other hand, by (2),

0 = u(1)—u(0) —/Olu'l(t)dt—/ol(u/l(O)—F/Otu’l’(s)ds)dt
// s)ds dt,

/ / s)ds dt. (15)
Applying the same technique

1 pt 1
[ [ o @dsa—— [ 5@ ds 50 =50)-50)+5 0
and then by Definition 1 (iii), (14) and (15), we obtain
o/ (0) < B(0)—-B(1)+5(0)

//ﬁ” )ds dt < — // s)ds dt = u} (0),

g 0) > (1) +a(0)
- // dsdt>—// s)ds dt = uj (0),

o/ (0) < uy (0) < B(0). (16)

that is

and
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Since, by (14), 6’ (t) — uj (¢) is nondecreasing then, by (16),
B () —ui (t) = 5 (0) —uj (0) 2 0,
and, therefore, ' (t) > v (¢) for every t € [0,1]. By the monotony of 3 (t) — w1 (¥),
B(t) —ui(t) = B(0) —ur (0) = B(0) = 0
and so B (t) > uy (¢t) for every t € [0,1].

The inequalities u} (¢) > o/ (¢t) and g (¢t) > «a(¢), for every t € [0, 1], can be
proved by the same way. Then u; (¢) is a solution of (1)-(2). O

Example: Consider the fourth order boundary value problem

w(v) = _eu _ (u/)3 +2 (u//)5 + |u///|97
{ w(0) = w(l) = u” (0) = u” (1) = 0. (17)

with 6 € [0,2] .The continuous function
f(t, o, 21,20, 03) = —€ — 23 +2 25 + |x3|9
verifies Nagumo-type conditions (4), (5) and assumption (7) on the set
E= {(t,$0,$17x27$3) €0,1] xR*: a(t) < zo < B(1),
o )<z <B(L), (1) Swe < B ()}
where v and (8 are defined by
at):=—t2—t; B(t):=t>+t (18)

The functions « and 3 given by (18) define a pair of lower and upper solutions of
(17). In fact,
ad't)y=-2<3"(t)=2, Vte[0,1],
ftad o a")<—e?— (=3 +2(=2)°<0=a™ (1),
F(t.8.8.6",.0") 2~ =3 +2° 2 0= (1),
a(0) = 0= 3(0)
and
o’ (0) = 8/(0) = min {B(0) — B (1), (1) —a (0)} = —2.

Then, by Theorem 1, there is a solution w () of (17) such that, for ¢ € [0,1] ,

2 —t<ut) <t +t, —2A—-1<d({t)<2t+1, —2<u’(t)<2,
that is, lying in the strip illustraded by Fig.1

Counter-example: To prove that the assumption (4¢7) in Definition 1 can not
be avoided, we consider the fourth order problem

(iv) —_9 /+3 //’
{ 2 (0) = w (1) — 4 (0) — " (1) = 0. (19)
Defining
af) = 2 gy D, (20)
we have
o’ (f)=-1<5"(H) =3, a0)=0=5(0),

. 7 .
™) =0 > 2t — 5= —2d/ +3a", B =0<1-t=-28+33".
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't

FIGURE 1.
Therefore a and [ given by (20) are lower and upper solutions of (19) but assump-
tion (#47) is not satisfied since
. 1
o (0) =3 (0)=0>min{3(0)—B(1),a(l) —a(0)} = T
The problem (19) has only the zero solution u () = 0 and, for ¢ € ]0, [, we have

0=u(t)<a(t)<p),
and for ¢ € ]0, %[

0=u(t)<a' ()< B (1),
that is the location given by Theorem 1 does not hold, as it can be seen in next
figure.

FIGURE 2.
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