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Preface to ”New Trends in Differential and

Difference Equations and Applications”

Differential and difference equations, their methods, their techniques, and their huge variety

of applications have attracted interest in different fields of science in the last few years. Not only

their solvability and the study of qualitative properties have been the aim of many research papers,

but, also, their role in different types of boundary value problems have allowed the study of many

real-world phenomena.

This Special Issue provides examples of some new methods and techniques on research topics,

such as sufficient conditions to obtain heteroclinic solutions for phi-Laplacian equations, invariants,

local and global solutions, stability theory (asymptotic, exponential, Lipsichtz, etc.), numerical

methods for partial differential equations, fuzzy integro-differential equations, divided-difference

equations, limit-periodic solutions for difference equations, Bäcklund transformations for nonlinear

equations and systems, and coupled systems with functional boundary conditions that include the

periodic case.

These topics, which encompass several areas of mathematical research, give the reader a

comprehensive and quick overview of the trends and recent research results, which may be useful

in their research or in future research topics.

Feliz Manuel Minhós, João Fialho

Special Issue Editors
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Abstract: In this paper, we consider the second order discontinuous differential equation in the
real line, (a (t, u) φ (u′))′ = f (t, u, u′) , a.e.t ∈ R, u(−∞) = ν−, u(+∞) = ν+, with φ an increasing
homeomorphism such that φ(0) = 0 and φ(R) = R, a ∈ C(R2,R) with a(t, x) > 0 for (t, x) ∈ R2,
f : R3 → R a L1-Carathéodory function and ν−, ν+ ∈ R such that ν− < ν+. The existence and
localization of heteroclinic connections is obtained assuming a Nagumo-type condition on the real line
and without asymptotic conditions on the nonlinearities φ and f . To the best of our knowledge, this
result is even new when φ(y) = y, that is for equation(a (t, u(t)) u′(t))′ = f (t, u(t), u′(t)) , a.e.t ∈ R.
Moreover, these results can be applied to classical and singular φ-Laplacian equations and to the
mean curvature operator.

Keywords: φ-Laplacian operator; mean curvature operator; heteroclinic solutions; problems in the
real line; lower and upper solutions; Nagumo condition on the real line; fixed point theory

2010 Mathematics Subject Classification: 34C37; 34B40; 34B15; 47H10

1. Introduction

In this paper, we study the second order non-autonomous half-linear equation on the whole
real line, (

a (t, u) φ
(
u′))′ = f

(
t, u, u′) , a.e.t ∈ R, (1)

with φ an increasing homeomorphism, φ(0) = 0 and φ(R) = R, a ∈ C(R2,R) such that a(t, x) > 0 for
(t, x) ∈ R2, and f : R3 → R a L1-Carathéodory function, together with the asymptotic conditions:

u(−∞) = ν−, u(+∞) = ν+, (2)

with ν+, ν− ∈ R such that ν− < ν+. Moreover, an application to singular φ-Laplacian equations will
be shown.

This problem (1) and (2) was studied in [1,2] . This last paper contained several results and criteria.
For example, Theorem 2.1 in [2] guarantees the existence of heteroclinic solutions under, in short,
the following main assumptions:

• φ grows at most linearly at infinity;
• f (t, ν−, 0) ≤ 0 ≤ f (t, ν+, 0) for a.e.t ∈ R;

Axioms 2019, 8, 22; doi:10.3390/axioms8010022 www.mdpi.com/journal/axioms1
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• there exist constants L, H > 0, a continuous function θ : R+ → R+ and a function λ ∈ Lp([−L, L]),
with 1 ≤ p ≤ ∞, such that:

| f (t, x, y)| ≤ λ(t) θ (a(t, x) |y|) , for a.e. |t| ≤ L, every x ∈
[
ν−, ν+

]
,

|y| > H,
+∞∫ s1− 1

q

θ(s)
ds = +∞;

• for every C > 0, there exist functions ηC ∈ L1(R), ΛC ∈ L1
loc([0,+∞)), null in [0, L] and positive

in [L,+∞), and NC(t) ∈ L1(R) such that:

f (t, x, y) ≤ −ΛC(t)φ (|y|) ,

f (−t, x, y) ≥ ΛC(t)φ (|y|) , for a.e. t ≥ L, every x ∈
[
ν−, ν+

]
,

|y| ≤ NC(t),

| f (t, x, y)| ≤ ηC(t) if x ∈
[
ν−, ν+

]
, |y| ≤ NC(t), for a.e.t ∈ R.

Motivated by these works, we prove, in this paper, the existence of heteroclinic solutions for (1)
assuming a Nagumo-type condition on the real line and without asymptotic assumptions on the
nonlinearities φ and f . The method follows arguments suggested in [3–5], applying the technique
of [3] to a more general function a, with an adequate functional problem and to classical and singular
φ-Laplacian equations. The most common application for φ is the so-called p-Laplacian, i.e., φ(y) =
|y|p−2 p, p > 1, and even in this particular case, verifying (4), the new assumption on φ.Moreover,
this type of equation includes, for example, the mean curvature operator. On the other hand, to the
best of our knowledge, the main result is even new when φ(y) = y, that is for equation:

(
a (t, u) u′)′ = f

(
t, u, u′) , a.e.t ∈ R.

The study of differential equations and boundary value problems on the half-line or in the
whole real line and the existence of homoclinic or heteroclinic solutions have received increasing
interest in the last few years, due to the applications to non-Newtonian fluids theory, the diffusion of
flows in porous media, and nonlinear elasticity (see, for instance, [6–16] and the references therein).
In particular, heteroclinic connections are related to processes in which the variable transits from an
unstable equilibrium to a stable one (see, for example, [17–24]); that is why heteroclinic solutions are
often called transitional solutions.

The paper is organized in this way: Section 2 contains some notations and auxiliary results.
In Section 3, we prove the existence of heteroclinic connections for a functional problem, which is used
to obtain an existence and location theorem for heteroclinic solutions for the initial problem. Section 4
contains an example, to show the applicability of the main theorem. The last section applies the above
theory to singular φ-Laplacian differential equations.

2. Notations and Auxiliary Results

Throughout this paper, we consider the set X := BC1(R) of the C1(R) bounded functions,
equipped with the norm ‖x‖X = max {‖x‖∞ , ‖x′‖∞}, where ‖y‖∞ := sup

t∈R
|y(t)|.

By standard procedures, it can be shown that (X, ‖.‖X) is a Banach space.
As a solution of the problem (1) and (2), we mean a function u ∈ X such that t 	→

(a (t, u(t)) φ (u′(t))) ∈ W1,1(R) and satisfying (1) and (2).
The L1-Carathéodory functions will play a key role throughout the work:

Definition 1. A function f : R3 → R is L1-Carathéodory if it verifies:

(i) for each (x, y) ∈ R2, t 	→ f (t, x, y) is measurable on R;

2
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(ii) for almost every t ∈ R, (x, y) 	→ f (t, x, y) is continuous in R2;
(iii) for each ρ > 0, there exists a positive function ϕρ ∈ L1(R) such that, for

max

{
sup
t∈R

|x(t)| , sup
t∈R

|y(t)|
}

< ρ,

| f (t, x, y)| ≤ ϕρ(t), a.e. t ∈ R. (3)

The following hypothesis will be assumed:

(H1) φ is an increasing homeomorphism with φ(0) = 0 and φ(R) = R such that:
∣∣∣φ−1(w)

∣∣∣ ≤ φ−1(|w|); (4)

(H2) a ∈ C(R2,R) is a continuous and positive function with a(t, x) → +∞ as |t| → +∞.

To overcome the lack of compactness of the domain, we apply the following criterion, suggested
in [25]:

Lemma 1. A set M ⊂ X is compact if the following conditions hold:

1. M is uniformly bounded in X;
2. the functions belonging to M are equicontinuous on any compact interval of R;
3. the functions from M are equiconvergent at ±∞, that is, given ε > 0, there exists T(ε) > 0 such that:

| f (t)− f (±∞)| < ε and
∣∣ f ′(t)− f ′(±∞)

∣∣ < ε,

for all |t| > T(ε) and f ∈ M.

3. Existence Results

The first existence result for heteroclinic connections will be obtained for an auxiliary functional
problem without the usual asymptotic or growth assumptions on φ or on the nonlinearity f .

Consider two continuous operators A : X → C(R), x 	−→ Ax, with Ax > 0, ∀x ∈ X, and
F : X → L1(R), x 	−→ Fx, the functional problem composed of:

(
Au(t) φ

(
u′(t)

))′
= Fu(t), a.e. t ∈ R, (5)

and the boundary conditions (2).
Define, for each bounded set Ω ⊂ X,

m(t) := min
x∈Ω

Ax (t) (6)

and for the above operators, assume that:

(F1) For each η > 0, there is ψη ∈ L1(R), with ψη(t) > 0, a.e. t ∈ R, such that |Fx(t)| ≤ ψη(t), a.e.
t ∈ R, whenever ‖x‖X < η.

(A1) Ax(t) → +∞ as |t| → +∞ and:

+∞∫
−∞

φ−1

(
2
∫ +∞
−∞ ψη(r)dr

m(s)

)
ds < +∞. (7)

3
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Theorem 1. Assume that conditions (H1), (F1), and (A1) hold and there is R > 0 such that:

max

⎧⎪⎪⎨
⎪⎪⎩

|ν−|+
∫ +∞
−∞ φ−1

(
2
∫ +∞
−∞ ψR(r)dr

m(s)

)
ds,

sup φ−1
(

2
∫ +∞
−∞ ψR(r)dr

m(t)

)
⎫⎪⎪⎬
⎪⎪⎭ < R. (8)

Then, there exists u ∈ X such that Au · (φ ◦ u′) ∈ W1,1(R), verifying (5) and (2), given by:

u(t) = ν− +
∫ t

−∞
φ−1

(
τu +

∫ s
−∞ Fu (r) dr
Au(s)

)
ds. (9)

where τu is the unique solution of:

∫ +∞

−∞
φ−1

(
τu +

∫ s
−∞ Fu (r) dr
Au(s)

)
ds = ν+ − ν−. (10)

Moreover, for R > 0 such that ‖x‖X < R,

τu ∈ [w1, w2] , (11)

with:
w1 := −

∫ +∞

−∞
ΨR(r)dr, (12)

and:
w2 :=

∫ +∞

−∞
ΨR(r)dr. (13)

Proof. For every x ∈ X, define the operator T : X → X by

Tx(t) = ν− +
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

where τx ∈ R is the unique solution of:

∫ +∞

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds = ν+ − ν−.

To show that τx is the unique solution of (10), consider the strictly-increasing function in R:

G(y) :=
∫ +∞

−∞
φ−1

(
y +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds,

and remark that:

lim
y→−∞

G(y) =
∫ +∞

−∞
φ−1 (−∞) ds = −∞,

and:
lim

y→+∞
G(y) =

∫ +∞

−∞
φ−1 (+∞) ds = +∞. (14)

Moreover, for w1 given by (12) and w2 given by (13), G(w1) and G(w2) have opposite signs, as:

G(w1) =
∫ +∞

−∞
φ−1

(
w1 +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds ≤ 0 < ν+ − ν−,

4
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G(w2) =
∫ +∞

−∞
φ−1

(
w2 +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds ≥ 0.

As G is strictly increasing in R, by (14), there is k ≥ 0 such that w3 = w2 + k and G(w3) ≥ ν+ − ν−.
Therefore, the equation G(y) = ν− − ν+ has a unique solution τx, and by Bolzano’s theorem, τx ∈
[w1, w2] , when ‖x‖X < R, for some R > 0.

It is clear that if T has a fixed point u, then u is a solution of the problem (5) and (2).
To prove the existence of such a fixed point, we consider several steps:

Step 1. T : X → X is well defined

By the positivity of A and the continuity of A and F, then Tx and:

T′
x(t) = φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)

are continuous on R, that is Tx ∈ C1(R).
Moreover, by (H1), (F1), (A1), and (10), Tx and T′

x are bounded. Therefore, Tx ∈ X.

Step 2. T is compact.

Let B ⊂ X be a bounded subset, x ∈ B, and ρ0 > 0 such that ‖x‖X < ρ0. Consider m(t) given
by (6) with Ω = B.

Claim: TB is uniformly bounded in X.

By (4), (11), and (A1), we have:

‖Tx‖∞ = sup
t∈R

∣∣∣∣∣ν− +
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤ sup

t∈R

(∣∣ν−∣∣+ ∫ t

−∞
φ−1

(∣∣∣∣∣τx +
∫ s
−∞ Fx (r) dr
Ax(s)

∣∣∣∣∣
)

ds

)

≤ sup
t∈R

(∣∣ν−∣∣+ ∫ t

−∞
φ−1

(
|τx|+

∫ s
−∞ |Fx (r)|

Ax(s)
dr

)
ds

)

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
|τx|+

∫ s
−∞ Ψρ0(r)dr
Ax(s)

)
ds

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr

m(s)

)
ds < +∞,

and:

∥∥T′
x
∥∥

∞ = sup
t∈R

∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)∣∣∣∣∣ ≤ sup
t∈R

φ−1

(
|τx|+

∫ t
−∞ |Fx (r)| dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
|τx|+

∫ +∞
−∞ Ψρ0(r)dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr + k

m(t)

)
< +∞.

Therefore, TB is uniformly bounded in X.

Claim: TB is equicontinuous on X.

For M > 0, consider t1, t2 ∈ [−M, M], and without loss of generality, t1 < t2.

5
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Then, by (4), (11) and (A1),

|Tx(t1)− Tx(t2)| =

∣∣∣∣∣
∫ t1

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

−
∫ t2

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t2

t1

φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤

∫ t2

t1

φ−1

(
|τx|+

∫ s
−∞ |Fx (r)| dr
Ax(s)

)
ds

≤
∫ t2

t1

φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr

m(s)

)
ds

−→ 0, uniformly as t1 → t2,

and:

∣∣T′
x(t1)− T′

x(t2)
∣∣ =

∣∣∣∣∣φ−1

(
τx +

∫ t1
−∞ Fx (r) dr
Ax(t1)

)

− φ−1

(
τx +

∫ t2
−∞ Fx (r) dr
Ax(t2)

)∣∣∣∣∣
−→ 0, uniformly as t1 → t2.

Therefore, TB is equicontinuous on X.

Claim: TB is equiconvergent at ±∞.

Let u ∈ B. As in the claims above:

∣∣∣∣Tx(t)− lim
t→−∞

(Tx(t))
∣∣∣∣ =

∣∣∣∣∣
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤

∫ t

−∞
φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr

m(s)

)
ds

−→ 0, as t → −∞,

and:

∣∣∣∣Tx(t)− lim
t→+∞

(Tx(t))
∣∣∣∣ =

∣∣∣∣∣
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

−
∫ +∞

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ +∞

t
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤

∫ +∞

t
φ−1

(
2
∫ +∞
−∞ Ψη(r)dr

m(s)

)
ds

−→ 0, as t → +∞.

6
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Moreover, by (A1),

∣∣∣∣T′
x(t)− lim

t→−∞
T′

x(t)
∣∣∣∣ =

∣∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)
− φ−1

⎛
⎝ τx

lim
t→−∞

Ax(t)

⎞
⎠
∣∣∣∣∣∣

≤
∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Ψρ0(r)dr
Ax(t)

)∣∣∣∣∣
−→ 0, as t → −∞,

and:

∣∣∣∣T′
x(t)− lim

t→+∞
T′

x(t)
∣∣∣∣ =

∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)

− φ−1

⎛
⎝τx +

∫ +∞
−∞ Fx (r) dr

lim
t→−∞

Ax(t)

⎞
⎠
∣∣∣∣∣∣

−→ 0, as t → +∞.

Therefore, TB is equiconvergent at ±∞, and by Lemma 1, T is compact.

Step 3. Let D ⊂ X be a closed and bounded set. Then, TD ⊂ D .

Consider D ⊂ X defined as:

D = {x ∈ X : ‖x‖X ≤ ρ1} ,

with ρ1 such that:

ρ1 := max

{
|ν−|+

∫ +∞

−∞
φ−1

(
K

m∗(s)

)
ds, sup

t∈R
φ−1

(
K

m∗(t)

)}
,

with:
K := 2

∫ +∞

−∞
Ψρ1(r)dr

and:
m∗(t) := min

x∈B
Ax (t) .

Let x ∈ D. Following similar arguments as in the previous claims, with m(t) given by (6) and
Ω = D,

‖Tx‖∞ = sup
t∈R

|Tx(t)|

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
|τx|+

∫ s
−∞ Ψρ1(r)dr
Ax(s)

)
ds

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
2
∫ +∞
−∞ Ψρ1(r)dr

m∗(s)

)
ds < ρ1,

7
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and:

∥∥T′
x
∥∥

∞ = sup
t∈R

∣∣T′
x(t)

∣∣ ≤ sup
t∈R

φ−1

(
|τx|+

∫ t
−∞ |Fx (r)| dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
2
∫ +∞
−∞ Ψρ1(r)dr

m∗(t)

)
< ρ1.

Therefore, TD ⊂ D. By Schauder’s fixed point theorem, Tx has a fixed point in X. That is, there is
a heteroclinic solution of the problem (5) and (2).

To make the relation between the functional problem and the initial one, we apply the lower and
upper solution method, according to the following definition:

Definition 2. A function α ∈ X is a lower solution of the problem (1) and (2) if t 	→ (a (t, α(t)) φ(α′(t))) ∈
W1,1(R), (

a (t, α)) φ(α′)
)′ ≥ f (t, α, α′), a.e. t ∈ R, (15)

and:
α(−∞) ≤ ν−, α(+∞) ≤ ν+. (16)

An upper solution β ∈ X of the problem (1) and (2) satisfies t 	→ (a (t, β(t)) φ(β′(t))) ∈ W1,1(R) and
the reversed inequalities.

To have some control on the first derivative, we apply a Nagumo-type condition:

Definition 3. A L1-Carathéodory function f : R3 → R satisfies a Nagumo-type growth condition relative to
α, β ∈ X, with α(t) ≤ β(t), ∀t ∈ R if there are positive and continuous functions ψ, θ : R → R+ such that:

sup
t∈R

ψ(t) < +∞,
∫ +∞

0

∣∣φ−1 (s)
∣∣

θ (|φ−1 (s)|)ds = +∞, (17)

and:
| f (t, x, y)| ≤ ψ(t) θ(|y|), for a.e. t ∈ R and α(t) ≤ x ≤ β(t). (18)

Lemma 2. Let f : R3 → R be a L1-Carathéodory function f : R3 → R satisfying a Nagumo-type growth
condition relative to α, β ∈ BC(R), with α(t) ≤ β(t), ∀t ∈ R. Then, there exists N > 0 (not depending on u)
such that for every solution u of (1) and (2) with:

α(t) ≤ u(t) ≤ β(t), for t ∈ R, (19)

we have:
‖u′‖∞ < N. (20)

Proof. Let u be a solution of (1) and (2) verifying (19). Take r > 0 such that:

r > max
{∣∣ν−∣∣ ,

∣∣ν+∣∣} . (21)

If |u′(t)| ≤ r, ∀t ∈ R, the proof would be complete by taking N > r.
Suppose there is t0 ∈ R such that |u′(t0)| > N.

8
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In the case u′(t0) > N, by (17), we can take N > r such that:

a(t,u))φ(N)∫
a(t,u))φ(r)

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣)ds > M

(
sup
t∈R

β(t)− inf
t∈R

α(t)

)
(22)

with M := supt∈R ψ(t), which is finite by (17).
By (2), there are t1, t2 ∈ R such that t1 < t2, u′(t1) = N , u′(t2) = r, and r ≤ u′(t) ≤ N, ∀t ∈ [t1, t2].

Therefore, the following contradiction with (22) holds, by the change of variable a(t, u)φ(u′(t)) = s
and (17):

a(t,u)φ(N)∫
a(t,u)φ(r)

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣)ds =

a(t,u)φ(u′(t1))∫
a(t,u)φ(u′(t2))

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣)ds

=
∫ t1

t2

u′(s)
θ(u′(s))

(
φ
(
u′ (s)

))′ ds

= −
∫ t2

t1

f (s, u(s), u′(s))
θ(u′(s))

u′(s) ds

≤
∫ t2

t1

| f (s, u(s), u′(s))|
θ(u′(s))

u′(s) ds

≤
∫ t2

t1

ψ(s) u′(s) ds ≤ M
∫ t2

t1

u′(s) ds

≤ M (u (t2)− u (t1))

≤ M

(
sup
t∈R

β(t)− inf
t∈R

α(t)

)
.

Therefore, u′(t) < N, ∀t ∈ R.
By similar arguments, it can be shown that u′(t) > −N,∀t ∈ R. Therefore, ‖u′‖∞ < N,∀t ∈ R.

The next lemma, in [26], provides a technical tool to use going forward:

Lemma 3. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define:

q(x, u) = max{v, min{u, w}}.

Then, for each u ∈ C1(I), the next two properties hold:

(a) d
dx q(x, u(x)) exists for a.e.x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I), then:

d
dx

q(x, um(x)) → d
dx

q(x, u(x)) for a.e. x ∈ I.

The main result will be given by the next theorem:

Theorem 2. Suppose that f : R3 → R is a L1-Carathéodory function verifying a Nagumo-type condition and
hypotheses (H1), (H2), and (8). If there are lower and upper solutions of the problem (1) and (2), α and β,
respectively, such that:

α(t) ≤ β(t), ∀t ∈ R,

then there is a function u ∈ X with t 	→ (a (t, u(t)) φ (u′(t))) ∈ W1,1(R), the solution of the problem (1)
and (2) and:

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

9
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Proof. Define the truncation operator Q : W1,1(R) → X ⊂ W1,1(R) given by:

Q(x) := Qx(t) =

⎧⎪⎨
⎪⎩

β(t), x(t) > β(t)
x(t), α(t) ≤ x(t) ≤ β(t)
α(t), x(t) < α(t).

Consider the modified equation:

(
a(t, Qu)) φ

(
d
dt

Qu

))′
= f

(
t, Qu(t),

d
dt

Qu(t)
)

(23)

+
1

1 + t2
u(t)− Qu(t)

1 + |u(t)− Qu(t)|
,

for a.e. t ∈ R, which is well defined by Lemma 3.

Claim 1: Every solution u(t) of the problem (23) and (2) verifies:

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Let u be a solution of the problem (23) and (2), and suppose, by contradiction, that there is t0 such
that α(t0) > u(t0). Remark that, by (16), t0 �= ±∞ as u(±∞)− α(±∞) ≥ 0.

Define:
min
t∈R

(u(t)− α(t)) := u(t1)− α(t1) < 0.

Therefore, there is an interval ]t2, t1] such that u(t)− α(t) < 0, for a.e. t ∈]t2, t1], and by (15),
this contradiction is achieved:

(
a(t, α) φ(α′)

)′
=

(
a(t, Qu(t)) φ

(
d
dt

Qu(t)
))′

= f
(

t, Qu(t),
d
dt

Qu(t)
)
+

1
1 + t2

u(t)− Qu(t)
1 + |u(t)− Qu(t)|

< f (t, α(t), α′(t)) ≤
(
a(α(t)) φ(α′(t))

)′ .

Therefore, α(t) ≤ u(t), ∀t ∈ R. Following similar arguments, it can be proven that u(t) ≤ β(t),
∀t ∈ R.

Claim 2: The problem (23) and (2) has a solution.

Let A : X → C(R) and F : X → L1(R) be the operators given by Ax := a(t, Qx(t)) and:

Fx := f
(

t, Qx(t),
d
dt

Qx(t)
)
+

1
1 + t2

u(t)− Qx(t)
1 + |u(t)− Qx(t)|

.

As, for:
ρ := max

{
‖α‖∞ , ‖β‖∞ ,

∥∥α′
∥∥

∞ ,
∥∥β′∥∥

∞ , N
}

,

with N given by (20),

|Fx| ≤
∣∣∣∣ f

(
t, Qx(t),

d
dt

Qx(t)
)∣∣∣∣+ 1

1 + t2
|u(t)− Qx(t)|

1 + |u(t)− Qx(t)|

≤
∣∣∣∣ f

(
t, Qx(t),

d
dt

Qx(t)
)∣∣∣∣ ≤ ϕρ(t),

then Fx verifies (F1). Moreover, from:

a(t, Qx(t)) ≥ min
t∈R

{a(t, α)), a(t, β)} ,

10
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we have that A satisfies (A1) with 0 < m(t) ≤ min
t∈R

{a(t, α), a(t, β)} .

Therefore, by Schauder’s fixed point theorem, the problem (23) and (2) has a solution, which,
by Claim 1, is a solution of the problem (1) and (2).

4. Example

Consider the boundary value problem, defined on the whole real line, composed by the
differential equation:

[
(t2 + 1)3

(
(u)4 + 1

) (
u′)3

]′
=

1
10000

[
(u(t))2 − 1

]
(u′(t))2

1 + t2 , a.e.t ∈ R, (24)

coupled with the boundary conditions:

u(−∞) = −1, u(+∞) = 1. (25)

Remark that the null function is not solution of the problem (24) and (25), which is a particular
case of (1) and (2), with:

φ(w) = w3,

a(t, x) = (t2 + 1)3
(

x4 + 1
)

,

f (t, x, y) =
1

10000

(
x2 − 1

)
y2

1 + t2 ,

ν− = −1, and ν+ = 1.

All hypotheses of Theorem 2 are satisfied. In fact:

• f is a L1-Carathéodory function with:

ϕρ(t) =
1

10000

(
ρ2 + 1

)
ρ2

1 + t2 ;

• φ(w) verifies (H1), and function a(t, x) satisfies (H2) ;
• the constant functions α(t) ≡ −1 and β(t) ≡ k, with k ∈]1,+∞[, are lower and upper solutions of

the problem (24) and (25), respectively.
• f (t, x, y) verifies (8) for ρ > 1.54 and satisfies a Nagumo-type condition for −1 ≤ x ≤ k with:

ψ(t) =
1

10000
k

1 + t2 and θ(y) = y2.

Therefore, by Theorem 2, there is a heteroclinic connection u between two equilibrium points −1
and one of the problem (24) and (25), such that:

−1 ≤ u(t) ≤ k, ∀t ∈ R, k ≥ 1.

5. Singular φ-Laplacian Equations

The previous theory can be easily adapted to singular φ-Laplacian equations, that is for equations:

(
a (t, u) φ

(
u′))′ = f

(
t, u, u′) , a.e.t ∈ R, (1s)

where φ verifies:

11
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(Hs) φ : (−b, b) → R, for some 0 < b < +∞, is an increasing homeomorphism with φ(0) = 0 and
φ(−b, b) = R such that: ∣∣∣φ−1(w)

∣∣∣ ≤ φ−1(|w|);

In this case, a heteroclinic solution of (1s), that is a solution for the problem (1s) and (2), is a
function u ∈ X such that u′(t) ∈ (−b, b), for t ∈ R, and t 	→ (a (t, u) φ (u′)) ∈ W1,1(R), satisfying (1s)
and (2).

The theory for singular φ-Laplacian equations is analogous to Theorems 1 and 2, replacing the
assumption (H1) by (Hs).

As an example, we can consider the problem, for n ∈ N and k > 0,

⎧⎪⎪⎨
⎪⎪⎩

((
1 + t2) (1 + (u)2n

)
u′√

1−(u′)2

)′
=

((u)2−1)(|u′ |+1)
1000(1+t2)

, a.e.t ∈ R,

u(−∞) = −1, u(+∞) = 1.

(26)

Clearly, Problem (26) is a particular case of (1) and (2), with:

φ(w) =
w√

1 − w2
, for w ∈ (−1, 1),

which models mechanical oscillations under relativistic effects,

a(t, x) =
(

1 + t2
) (

1 + x2n
)

, (27)

f (t, x, y) =

(
x2 − 1

)
(|y|+ 1)

1000 (1 + t2)
, (28)

ν− = −1, and ν+ = 1.

Moreover, the nonlinearity f given by (28) is a L1-Carathéodory function with:

ϕρ(t) =
(
ρ2 + 1

)
(ρ + 1)

1000 (1 + t2)
.

The conditions of Theorem 2 are satisfied with (H1) replaced by (Hs), as:

• the function a(t, x), defined by (27), verifies (H2) ;
• the constant functions α(t) ≡ −1 and β(t) ≡ 1 are lower and upper solutions of

Problem (26), respectively.
• f (t, x, y) verifies (8) for ρ ∈ [1.09, 5.91] and satisfies a Nagumo-type condition for

−1 ≤ x ≤ 1 with:

ψ(t) =
1

1000
and θ(y) = |y|+ 1.

Therefore, there is a heteroclinic connection u between two equilibrium points −1 and one, for
the singular φ-Laplacian problem (26), such that:

−1 ≤ u(t) ≤ 1, ∀t ∈ R.

6. Conclusions

As can be seen in the Introduction, sufficient conditions for the existence of heteroclinic solutions
require strong assumptions on the nonlinearities. The goal of this paper is to weaken these conditions
on the nonlinearity f , replacing them by assumptions on the inverse of the homeomorphism φ,
following the ideas and methods suggested in [27,28].

12
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7. Discussion

The present result guarantees the existence of heteroclinic solutions for a broader set of
nonlinearities, without “asking too much” of the homeomorphism φ.

However, it is the author’s feeling that Condition (8) can be improved, applying other techniques
and method. These are, in my opinion, the next steps for the research in this direction.
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Abstract: In this paper, we study Lipschitz stability of Caputo fractional differential equations with
non-instantaneous impulses and state dependent delays. The study is based on Lyapunov functions
and the Razumikhin technique. Our equations in particular include constant delays, time variable
delay, distributed delay, etc. We consider the case of impulses that start abruptly at some points and
their actions continue on given finite intervals. The study of Lipschitz stability by Lyapunov functions
requires appropriate derivatives among fractional differential equations. A brief overview of different
types of derivative known in the literature is given. Some sufficient conditions for uniform Lipschitz
stability and uniform global Lipschitz stability are obtained by an application of several types of
derivatives of Lyapunov functions. Examples are given to illustrate the results.

Keywords: non-instantaneous impulses; Caputo fractional derivative; differential equations;
state dependent delays; lipschitz stability

AMS Subject Classifications: 34A37, 34K20, 34K37

1. Introduction

Many papers in the literature study stability of solutions of differential equations via Lyapunov
functions. One type of stability, useful in real world problems, is the so-called Lipschitz stability and
Dannan and Elaydi [1] introduced the notion of Lipschitz stability for ordinary differential equations.
As noted in [1], this type of stability is important only for nonlinear problems since it coincides
with uniform stability in linear systems. Based on theoretical results for Lipschitz stability in [1],
the dynamic behavior of a spacecraft when a single magnetic torque-rod is used for achieving a pure
spin condition is studied in [2]. Recently, stability properties of delay fractional differential equations
without any type of impulse are considered and we refer the reader to [3] and the references therein.

In this paper, we study the Lipschitz stability for a nonlinear system of non-instantaneous
impulsive fractional differential equations with state dependent delay (NIFrDDE). The impulses start
abruptly at some points and their actions continue on given finite intervals. Non-instantaneous
impulsive differential equations were introduced by Hernandez and O’Regan in 2013 (see, for
example, [4]). The systematic description of solutions of both ordinary and Caputo fractional
differential equations with non-instantaneous impulse and without delays is given in the

Axioms 2019, 8, 4; doi:10.3390/axioms8010004 www.mdpi.com/journal/axioms15
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monograph [5]. In addition, some results for non-instantaneous fractional equations without any type
of delay are presented in [6–8]. In [9], Caputo fractional differential equations with time varying delays
is considered (we note that the model had no impulses). However, in this paper, for the first time,
we consider together

1. Lipschitz stability;
2. state dependent delays (note a special case is time varying delays); and
3. models with non-instantaneous impulses.

There are two different approaches in the literature for the interpretation of the solution of
fractional differential equations with impulses (for more details, see [6] and Chapter 2 of the book [5]).
In the first interpretation, the lower limit of the fractional derivative is one and the same on the whole
interval of study and at each point of jump we consider a boundary value problem defined by the
impulsive function. In the second interpretation, the lower limit of the fractional derivative changes at
each time of jump with the idea of considering an initial value problem at each jump point.

In this paper, we use the second approach to study Lipschitz stability properties of nonlinear
non-instantaneous impulsive delay differential equations. The delays are bounded and depend on
both the time and the state. Note several stability properties are studied in the literature for Caputo
fractional differential equations (for example, see [10] (without delays), [3] (with delays and no
impulses), and [11] (with multiple discrete delays without impulses)). Our study is based on Lyapunov
functions and the Razumikhin technique. A brief overview in the literature of different types of
derivatives of Lyapunov functions among the studied fractional differential equation is given. Several
sufficient conditions for uniform Lipschitz stability and global uniform Lipschitz stability are obtained
by an application of these derivatives. Some examples illustrating the results are given.

2. Notes on Fractional Calculus

We give the main definition of fractional derivatives used in the literature (see,
for example, [12–14]). We give these definitions for scalar functions. Throughout the paper, we assume
q ∈ (0, 1).

- Riemann–Liouville (RL) fractional derivative :

RL
t0

Dq
t m(t) =

1
Γ (1 − q)

d
dt

t∫
t0

(t − s)−q m(s)ds, t ≥ t0

where Γ(.) denotes the Gamma function.
- Caputo fractional derivative

C
t0

Dq
t m(t) =

1
Γ (1 − q)

t∫
t0

(t − s)−q m′(s)ds, t ≥ t0.

Note that for a constant m the equality C
t0

Dq
t m = 0 holds. However, for any given t∗ ,we denote

C
t0

Dq
t m(t∗) = C

t0
Dq

t m(t)|t=t∗ .
- The Grünwald–Letnikov fractional derivative is given by

GL
t0

Dq
t m(t) = lim

h→0

1
hq

[
t−t0

h ]

∑
r=0

(−1)r
qCr m (t − rh) , t ≥ t0
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and the Grünwald–Letnikov fractional Dini derivative by

GL
t0

Dq
+m(t) = lim sup

h→0+

1
hq

[
t−t0

h ]

∑
r=0

(−1)r
qCrm(t − rh), t ≥ t0,

where qCr =
q(q−1)...(q−r+1)

r! and [ t−t0
h ] denotes the integer part of the fraction t−t0

h .

From the relation between the Caputo fractional derivative and the Grünwald–Letnikov fractional
derivative using Equation (1), we define the Caputo fractional Dini derivative of a function as

C
t0

Dq
+m(t) = GL

t0
Dq
+[m(t)− m(t0)],

i.e.,

C
t0

Dq
+m(t) = lim sup

h→0+

1
hq

[
m(t)− m(t0)−

[
t−t0

h ]

∑
r=1

(−1)r+1
(

q
r

)(
m(t − rh)− m(t0)

)]
.

The fractional derivatives for scalar functions could be easily generalized to the vector case by
taking fractional derivatives with the same fractional order for all components.

3. Statement of the Problem and Basic Definitions

Let the positive constant r be given and the points {ti}∞
1 , {si}∞

1 be such that 0 < si < ti < si+1,
i = 1, 2, . . . . Let t0 ≥ 0 be the given initial time. Without loss of generality, we can assume t0 ∈ [0, s1).

Consider the space PC0 of all functions y : [−r, 0] → R
n, which are piecewise continuous

endowed with the norm ||y||PC0 = supt∈[−r,0]{||y(t)|| : y ∈ PC0} where ||.|| is a norm in R
n.

The intervals (ti, si+1), i = 0, 1, 2, . . . are the intervals on which the fractional differential equations
are given and on the intervals (si, ti), i = 1, 2, . . . the impulsive conditions are given.

The Caputo fractional derivative has a memory and it depends significantly on its lower derivative.
This property as well as the meaning of impulses in the differential equation lead to two basic
approaches to Caputo fractional differential equations with non-instantaneous impulses:

- Unchangeable lower limit of the Caputo fractional derivative: the lower limit of the fractional
derivative is equal to the initial time t0 on the whole interval of consideration.

- Changeable lower limit of the Caputo fractional derivative: the lower limit of the fractional
derivative is equal to the left end ti on the interval (ti, si+1), i = 0, 1, 2, . . . without impulses.

In this paper, we study the case of changeable lower limit of the Caputo fractional derivative.
Consider the initial value problem (IVP) for a nonlinear system of non-instantaneous impulsive

fractional differential equations with state dependent delay (NIFrDDE) with q ∈ (0, 1):

C
ti

Dq
t x(t) = f (t, x(t), xρ(t,xt)) for t ∈ (ti, si+1], i = 0, 1, 2, . . . ,

x(t) = φi(t, x(si)), t ∈ (si, ti], i = 1, 2, . . . ,

x(t + t0) = ϕ(t) for t ∈ [−r, 0],

(1)

where x ∈ R
n, C

ti
Dq

t x(t) denotes the Caputo fractional derivative with lower limit ti for the state
x(t), the functions f : [0, s1]

⋃∞
i=1[ti, si+1] × Rn × PC0 → R

n; ρ : [0, s1]
⋃∞

i=1[ti, si+1] × PC0 → R,
ϕ ∈ PC0; φi : [si, ti] ×R

n → R
n, i = 1, 2, . . . . Here, xt(s) = x(t + s), s ∈ [−r, 0], i.e., represents

the history of the state from time t − r up to the present time t. Note that for any t ≥ 0 we let
xρ(t,xt) = x(ρ(t, x(t + s))), s ∈ [−r, 0], i.e., the function ρ determines the state-dependent delay. Note,
the integer order differential equations with non-instantaneous impulses and state dependent delay
are studied in [15].

Let PC[t0, ∞) be the space of all functions y : [t0 − r, ∞) → R
n which are piecewise continuous on

[t0 − r, ∞) with points of discontinuity si, i = 1, 2, . . . , the limits y(si − 0) = limt→si , t<si y(t) = y(si)

17
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and y(si+) = limt→si , t>si y(t) exist, for any t ∈ (ti, si] the Caputo fractional derivative C
ti

Dq
t y(t), i =

0, 1, . . . , exists and it is endowed with the norm ||y||PC = supt∈[t0−r,∞){||y(t)|| : y ∈ PC[t0, ∞)} where
||.|| is a norm in R

n.
Define the set PCq[t0, ∞) = {y ∈ C(

⋃∞
i=0(ti, si],R

n
) such that for any t ∈ (ti, si] :

∫ t
ti
(t −

s)q−1y(s)ds < ∞, i = 1, 2, . . . }.
We introduce the assumptions:

A1. The function f ∈ C([0, s1]
⋃∞

i=1[ti, si+1]×R
n × PC0,Rn

) is such that for any y ∈ R
n, u ∈ PC0

the inclusion f (., y, u) ∈ PCq[0, ∞) holds.
A2. The function ρ ∈ C([0, s1]

⋃∞
i=1[ti, si+1]× PC0, [−r, ∞)) and for any (t, y) ∈ ⋃k

i=0[ti, si+1]× PC0

the inequalities t − r ≤ ρ(t, y) ≤ t holds.
A3. The functions φi ∈ C([si, ti]×R

n,Rn
), i = 1, 2, . . . .

A4. The function ϕ ∈ PC0.
A5. The function f (t, 0) = 0 for t ∈ [0, s1]

⋃∞
i=1[ti, si+1] and φi(t, 0) = 0 for t ∈ [si, ti], i = 1, 2, . . . .

Remark 1. Assumption A5 guarantees the existence of the zero solution of IVP for NIFrDDE (Equation (1))
with the zero initial function ϕ ≡ 0.

Remark 2. Assumption A2 guarantees the delay of the argument in Equation (1).

Definition 1. Let the conditions A1–A4 be satisfied. The function x ∈ PC[t0, ∞) is a solution of the IVP in
Equation (1) iff it satisfies the following integral-algebraic equation

x(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(t), t ∈ [−r, 0],
ϕ(0) + 1

Γ(q)

∫ t
0 (t − s)q−1 f (s, x(s), xρ(s,xs))ds, t ∈ (0, s1],

φi(t, x(si)), t ∈ (si, ti], i = 1, 2, . . . ,
φi(ti, x(si)) +

1
Γ(q)

∫ t
ti
(t − s)q−1 f (s, x(s), xρ(s,xs))ds, t ∈ (ti, si+1], i = 1, 2, . . . .

(2)

Definition 2. The functions f , ρ are defined only on the intervals without impulses on which the differential
equation is given.

We generalize Lipschitz stability ([1]) for ordinary differential equations to systems of Caputo
fractional non-instantaneous impulsive differential equations with state dependent delay.

Definition 3. The zero solution of NIFrDDE (Equation (1)) is said to be:

- Uniformly Lipschitz stable if there exists M ≥ 1 and δ > 0 such that, for any for any initial time t0 ∈
[0, s1]

⋃∞
k=1[tk, sk] and any initial function ϕ ∈ PC0, the inequality ||ϕ||PC0 < δ implies ||x(t; t0, ϕ)|| ≤

M||ϕ||PC0 for t ≥ t0 where x(t; t0, ϕ) is a solution of Equation (1).
- Globally uniformly Lipschitz stable if there exists M ≥ 1 such that, for any initial time t0 ∈

[0, s1]
⋃∞

k=1[tk, sk] and any initial function ϕ ∈ PC0, the inequality ||ϕ||PC0 < ∞ implies ||x(t; t0, ϕ)|| ≤
M||ϕ||PC0 for t ≥ t0.

Let J ⊂ R+, 0 ∈ J, ρ > 0. Consider the following sets:

M(J) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J, and

a−1(αr) ≤ rqa(α) for some function qa : qa(α) ≥ 1, if α ≥ 1},

K(J) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J, and

a(r) ≤ Kar for some constant Ka > 0},

Sρ = {x ∈ R
n : ||x|| ≤ ρ}.
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Remark 3. The function a(u) = K1u, K1 > 0 is from the class K(R+) with Ka = K1. The function
a(u) = K2u2, K2 ∈ (0, 1] is from the class M([1, ∞)) with q(u) =

√
u

K2
≥ 1 for u ≥ 1.

4. Lyapunov Functions and Their Derivatives among Nonlinear Non-Instantaneous Caputo Delay
Fractional Differential Equations

One approach to study Lipschitz stability of solutions of Equation (1) is based on using
Lyapunov-like functions. The first step is to define a Lyapunov function. The second step is to
define its derivative among the fractional equation.

We use the class Λ of Lyapunov-like functions, defined and used for impulsive differential
equations in [16].

Definition 4. Let J ∈ R+ be a given interval, and Δ ⊂ Rn be a given set. We say that the function
V(t, x) : J × Δ → R+, belongs to the class Λ(J, Δ) if

- The function V(t, x) is continuous on J/{sk ∈ J} × Δ and it is locally Lipschitz with respect to its second
argument.

- For each sk ∈ J and x ∈ Δ, there exist finite limits

V(sk, x) = V(sk − 0, x) = lim
t↑sk

V(t, x) and V(sk + 0, x) = lim
t↓sk

V(t, x).

In connection with the Caputo fractional derivative, it is necessary to define in an appropriate
way the derivative of Lyapunov functions among the studied equation. We give a brief overview of
the derivatives of Lyapunov functions among solutions of fractional differential equations known and
used in the literature. There are mainly three types of derivatives of Lyapunov functions from the class
Λ(J, Δ) used in the literature to study stability properties of solutions of Caputo fractional differential
in Equation (1):

- First type: the Caputo fractional derivative of the function V(t, x(t)) ∈ Λ([a, b), Δ) defined by

c
tk

DqV(t, x(t)) =
1

Γ (1 − q)

t∫
tk

(t − s)−q d
ds

(
V(s, x(s))

)
ds, t ∈ [tk, sk+1) (3)

where x(t) is a solution of Equation (1).
- Second type: Dini fractional derivative of the Lyapunov function V ∈ Λ([t0, ∞),Rn

) among
Equation (1): Let φ ∈ PC0 and t ∈ (tk, sk+1) for a non-negative integer k. Then,

D+
(1)V(t, φ(0), tk, φ) =

lim sup
h→0

1
hq

[
V(t, φ(0))−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrV(t − rh, φ(0)− hq f (t, φ(0), φ(ρ(t, φ0)− t)))

] (4)

where φ0(s) = ψ(s) and φ(ρ(t, φ0) − t) = φ(ρ(t, φ(s)) − t) for any s ∈ [−r, 0]. We note that,
because of Assumption A2, the inequality t − r < ρ(t, φ(s)) < t holds (−r < ρ(t, φ(s))− t < 0),
i.e φ(ρ(t, φ(s))− t) is well defined.

The derivative of Equation (4) keeps the concept of fractional derivatives because it has a memory.
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- Third type: Caputo fractional Dini derivative of a Lyapunov function V ∈ Λ([t0, ∞),Rn
)

among Equation (1): Let the initial function ϕ ∈ PC0 be given and the function φ ∈ PC0

and t ∈ (tk, sk+1) for a non-negative integer k. Then,

c
(1)D

q
+V(t, φ; tk, ϕ(0)) = lim sup

h→0+

1
hq

{
V(t, φ(0))− V(tk, ϕ(0))

−
[

t−tk
h ]

∑
r=1

(−1)r+1
qCr

(
V(t − rh, φ(0)− hq f (t, φ(0), φ(ρ(t, φ0)− t)))− V(tk, ϕ(0))

)}
,

(5)

or its equivalence

c
(1)D

q
+V(t, φ; tk, ϕ(0)) =

lim sup
h→0+

1
hq

{
V(t, φ(0)) +

[
t−tk

h ]

∑
r=1

(−1)r
qCrV(t − rh, φ(0)− hq f (t, φ(0), φ(ρ(t, φ0)− t)))

}

− V(tk, ϕ(0))
(t − tk)

qΓ(1 − q)
.

(6)

The derivative c
(1)D

q
+V(t, φ; tk, ϕ(0)) given by Equation (6) depends significantly on both the

fractional order q and the initial data (tk, ϕ) of IVP for FrDDE (Equation (1)) and it makes this
type of derivative close to the idea of the Caputo fractional derivative of a function.

Remark 4. For any initial data (tk, ϕ) ∈ R+ × PC0 of the IVP for NIFrDDE (Equation (1)) and any function
φ ∈ PC0 and any point t ∈ (tk, si+1) for a non-negative integer k the relations

c
(1)D

q
+V(t, φ; tk, ϕ(0)) = D+

(1)V(t, φ(0), tk, φ)− RL
tk

Dq
(

V(tk, ϕ(0))
)

,

c
(1)D

q
+V(t, φ; tk, ϕ(0)) = D+

(1)V(t, φ(0), tkφ), if V(tk, ϕ(0)) = 0 (7)

c
(1)D

q
+V(t, φ; tk, ϕ(0)) < D+

(1)V(t, φ(0), tk, φ), if V(tk, ϕ(0)) > 0. (8)

are satisfied.

Remark 5. A derivative of V(t, x) ∈ Λ(J, Δ) among a system of Caputo fractional differential equations
without delays was introduced by V. Lakshmikantham et al. [17] in 2009. Later, it was generalized for fractional
equations with delays ([18–20]):

D+
(1)V(t, φ(0), φ) = lim sup

h→0

1
hq

[
V(t, φ(0))− V(t − h, φ(0)− hq f (t, φ))

]
, t ≥ t0 (9)

where φ ∈ C([−τ, 0], Δ).
This definition is a direct generalization of the well known Dini derivative among differential equations

with ordinary derivatives. However, for equations with fractional derivatives, it seems strange. It does not
depend on the order q of the fractional derivative nor on the initial time t0. The operator defined by Equation (9)
has no memory, which is typical for the fractional derivative.

The derivative D+
(1)V(t, φ(0), φ) defined by Equation (9) is applied in [18] to study stability of fractional

delay differential equations where in the proof of the main comparison result (Theorem 4.3 [18]) the derivative
D+
(1)V(t, φ(0), φ) is incorrectly substituted by the Caputo fractional derivative (see Equations (20) and (30)

in [18]). A similar situation occurs with the application of the derivative of Equation (9) in [20] for studying
stability of impulsive fractional differential equations.
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In the next example to simplify the calculations and to emphasize the derivatives and their
properties, we consider the scalar case, i.e. n = 1.

Example 1. (Lyapunov function depending directly on the time variable). Let V(t, x) = m(t) x2 where
m ∈ C1(R+,R+).

Case 1. Caputo fractional derivative. Let x be a solution of NIFrDDE (Equation (1)). Then, the
fractional derivative

c
t0

DqV(t, x(t)) = c
t0

Dq
(

m(t) x2(t)
)
=

1
Γ(1 − q)

∫ t

t0

m′(s)x2(s) + 2m(s)x(s)x′(s)
(t − s)q ds

is difficult to obtain in the general case for any solution of Equation (1). In addition, the solution x(t)
might not be differentiable on the intervals of impulses.

Case 2. Dini fractional derivative. Let φ ∈ PC0 and t ∈ (tk, sk+1) for a non-negative integer k. Then,
applying Equation (4), we obtain

D+
(1)V(t, φ(0), tk, φ)

= lim sup
h→0

1
hq

[
m(t) (φ(0))2 −

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrm(t − rh)(φ(0)− hq f (t, φ(0), φ(ρ(t, φ0)− t))))2

]

= lim sup
h→0

1
hq

[
m(t)

(
(φ(0))2 − (φ(0)− hq f (t, φ(0), φ(ρ(t, φ0)− t))))2

)

+ (φ(0)− hq f (t, φ(0), φ0))
2
[

t−tk
h ]

∑
r=0

(−1)r
qCrm(t − rh)

]

= φ(0) m(t) f (t, φ(0), φ(ρ(t, φ0)− t))) + (φ(0))2 RL
tk

Dq
(

m(t)
)

.

Case 2. Caputo fractional Dini derivative. Let ϕ, φ ∈ PC0 and t ∈ (tk, sk+1) for a non-negative integer
k. Then, we use Equation (6) and obtain

c
(1)D

q
+V(t, φ; tk, ϕ(0))

= lim sup
h→0+

1
hq

{
φ(0)2m(t)−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrm(t − rh) (φ(0)− hq f (t, φ(0), φ(ρ(t, φ0)− t))))2

}

− (ϕ(0))2m(tk)
(t − tk)

−q

Γ(1 − q)

= 2φ(0)m(t) f (t, φ(0), φ(ρ(t, φ0)− t))) + (φ(0))2 RL
tk

Dq
(

m(t)
)
− (ϕ(0))2m(tk)

(t − tk)
−q

Γ(1 − q)

= D+
(1)V(t, φ(0), tk, φ)− V(tk, ϕ(0))

(t − tk)
−q

Γ(1 − q)
.

�

5. Comparison Results

Lemma 1. [17]. Let v ∈ C([a, b],R) be such that (t − a)1−qv ∈ C([a, b],R) and there exists a point
τ ∈ (a, b]: v(τ) = 0 and v(t) ≤ 0 for t ∈ [a, τ]. Then, C

a Dq
τv(τ) ≥ 0.
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We use the following comparison scalar fractional differential equation with
non-instantaneous impulses:

C
ti

Dq
t u(t) = g(t, u(t)) for t ∈ (ti, si+1], i = 0, 1, 2, . . . ,

u(t) = ψi(t, u(si − 0)), t ∈ (si, ti], i = 1, 2, . . . ,

u(t0) = u0,

(10)

where u, u0 ∈ R, g : [0, s1] ∪∞
k=1 [tk, sk]×R → R, ψk : [sk, tk+1]×R → R (k = 1, 2, 3, . . .).

We obtain some comparison results. Note some comparison results for fractional time delay
differential equations are obtained in [18] by applying the derivative defined by Equation (9) and
substituting it incorrectly as a Caputo fractional derivative (see Remark 5).

We introduce the following conditions:

A6. The function g(t, u) ∈ C([0, s1]
⋃∞

k=1[tk, sk+1] × R+,R) is strictly decreasing with respect to
its second argument, and for any k = 1, 2, . . . the functions ψk : [sk, tk] × R+ → R+ are
nondecreasing with respect to their second argument.

A7. The function g(t, 0) = 0 for t ∈ [0, s1]
⋃∞

k=1[tk, sk+1] and for any k = 1, 2, . . . the function
ψk(t, 0) = 0 for t ∈ [sk, tk].

A8. For all k = 1, 2, . . . , the functions ψk satisfies ψk(t, u) ≤ u, t ∈ [sk, tk], u ∈ R.

In our main results, we use the Lipschitz stability of the zero solution of the scalar comparison
non-instantaneous impulsive fractional differential in Equation (10).

Example 2. Let tk = 2k, k = 0, 1, . . . and sk = 2k − 1, k = 1, 2, . . . . Consider the scalar non-instantaneous
impulsive fractional differential equation

C
ti

D0.25
t u(t) = u(t) for t ∈ (ti, si+1], i = 0, 1, 2, . . . ,

u(t) = ψk(t, u(sk − 0)), t ∈ (si, ti], i = 1, 2, . . . ,

u(0) = u0,

(11)

where u, u0 ∈ R.

Case 1. Suppose for all natural numbers k = 1, 2, . . . the equality ψk(t, u) = u
2t , u ∈ R, t ∈ [sk, tk]

holds. Then, the solution of Equation (11) is given by

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0E0.25(t0.25), t ∈ (0, 1],
u0(E0.25(1))k

2t ∏k−1
i=1 (4i)

, t ∈ (2k − 1, 2k], k = 1, 2, . . . ,

u0(E0.25(1))k

∏k
i=1(4i)

E0.25((t − 2k)0.25), t ∈ (2k, 2k + 1], k = 1, 2, . . . .

(12)

The solution of Equation (11) is uniformly Lipschitz stable with M1 = 30 (see Figure 1 for the
graph of the solutions with various initial values).

Case 2. Suppose for all natural numbers k = 1, 2, . . . the equality ψk(t, u) = tu, u ∈ R, t ∈ [sk, tk]

holds. Then, the solution of Equation (11) is given by

u(t) =

⎧⎪⎨
⎪⎩

u0E0.25(t0.25), t ∈ (0, 1],
u0(E0.25(1))k ∏k−1

i=1 (2i) t, t ∈ (2k − 1, 2k], k = 1, 2, . . . ,
u0(E0.25(1))k ∏k

i=1(2i)E0.25((t − 2k)0.25), t ∈ (2k, 2k + 1], k = 1, 2, . . . .
(13)

The solution of Equation (11) is unbounded (see Figure 2 for the graph of the solution).
Therefore, for ψk(t, u) = u

2t ≤ u the solution is Lipschitz stable but for ψk(t, u) = u
2t ≥ u it is not

(compare with condition (A8)). �
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Figure 1. Example 2. Graph of the solution of Equation (11) with ψk(t, u) = u
2t for various initial values.
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Figure 2. Example 2. Graph of the solution of Equation (11) with ψk(t, u) = tu.

In our study, we use some comparison results. When the Caputo fractional derivative is used,
then the comparison result is:

Lemma 2. (Caputo fractional derivative). Assume the following conditions are satisfied:

1. Assumptions A1–A4 and A6 are satisfied.
2. The function x∗(t) = x(t; t0, ϕ) : [t0, T) → Δ, x∗ ∈ PCq([t0, T)) is a solution of Equation (1) where

Δ ⊂ R
n, 0 ∈ Δ, T ≤ ∞.

3. The function V ∈ Λ([t0, T), Δ) is such that

(i) For any i = 0, 1, 2, · · · : (ti, si+1) ∩ [t0, T) �= ∅ and for t ∈ (ti, si+1) ∩ [t0, T), the inequality

C
ti

Dq
t V(t, x∗(t)) ≤ g(t, V(t, x∗(t)))

holds.
(ii) For all i = 1, 2, 3, · · · : (si, ti) ∩ [t0, T) �= ∅ the inequality

V(t, φi(t, x∗(si − 0))) ≤ ψi(t, V(si − 0, x∗(si − 0))) for t ∈ (si, ti] ∩ [t0, T)

holds.
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If sups∈[−r,0]V(t0, ϕ(s)) ≤ u0, then the inequality V(t, x∗(t)) ≤ r(t) for t ∈ [t0, T) holds, where
r(t) = r(t; t0, u0) is the maximal solution on [t0, T) of Equation (10) with u0 ≥ 0.

Proof. We use induction with respect to the intervals to prove Lemma 2. Let m(t) = V(t, x∗(t)), t ≥ t0.
We prove

m(t) ≤ u(t), t ≥ t0. (14)

Let t ∈ [t0, s1]. Let ε > 0 be an arbitrary number. We prove

m(t) < u(t) + ε, t ≥ [t0, s1]. (15)

Note m(t0) = V(t0, ϕ(0)) ≤ sups∈[−r,0] V(t0, ϕ(s)) ≤ u0, i.e. the inequality in Equation (15) holds for
t = t0. If the inequality in Equation (15) is not true, then there exists a point t∗ ∈ (t0, s1] such that
m(t∗) = u(t∗) + ε, m(t) < u(t) + ε, t ∈ [t0, t∗).

From Lemma 1 with a = t0, b = s1, τ = t∗ and v(t) = m(t) − u(t) − ε the inequality
C
t0

Dq
t m(t∗) ≥C

t0
Dq

t u(t∗) = g(t∗, u(t∗)) holds.
From Assumption A6 and Condition 3(i), the inequality C

t0
Dq

t m(t∗) ≤ g(t∗, m(t∗)) = g(t∗, u(t∗) +
ε) < g(t∗, u(t∗)) holds. The contradiction proves the validity of Equation (15). Since ε is an arbitrary
positive number, we obtain the inequality in Equation (14) for t ∈ [t0, s1].

Let t ∈ (s1, t1]. Then, from the impulsive equality in Equation (1), Condition 3(ii), Assumption A6
and the inequality in Equation (14) for t = s1 − 0, we obtain m(t) = V(t, x∗(t)) = V(t, φ1(t, x∗(s1 −
0))) ≤ ψ1(t, V(s1 − 0, x∗(s1 − 0))) = ψ1(t, m(s1 − 0)) ≤ ψ1(t, u(s1 − 0)) = u(t), i.e. Equation (14)
holds on (s1, t1].

Let t ∈ (t1, s2]. Let ε > 0 be an arbitrary number. We prove Equation (15) for t ∈ [t1, s2]. Note that
Equation (15) is true for t = t1. If the inequality in Equation (15) is not true, then there exists a point
t∗ ∈ (t1, s2] such that m(t∗) = u(t∗) + ε, m(t) < u(t) + ε, t ∈ [t1, t∗).

From Lemma 1 with a = t1, b = s2, τ = t∗ and v(t) = m(t) − u(t) − ε, the inequality
C
t1

Dq
t m(t∗) ≥C

t1
Dq

t u(t∗) = g(t∗, u(t∗)) holds.
From Assumption A6 and Condition 3(i), the inequality C

t1
Dq

t m(t∗) ≤ g(t∗, m(t∗)) = g(t∗, u(t∗) +
ε) < g(t∗, u(t∗)) holds. The contradiction proves the validity of Equation (15) and the inequality in
Equation (14) for t ∈ (t1, s2]. Continuing this process and an induction argument prove Equation (14)
and Lemma 2.

Lemma 3. [10] Let m ∈ C([t0, T],R) and there exists τ ∈ (t0, T], such that m(τ) = 0 and m(t) < 0 for
t ∈ [t0, τ). Then, the inequality GL

t0
Dq
+m(τ) > 0 holds.

When the Dini fractional derivative defined by Equation (4) or Caputo fractional Dini derivative
defined by Equation (5) is used then the comparison result is:

Lemma 4. (Dini fractional derivative/Caputo fractional Dini derivative). Assume:

1. Assumptions A1–A4 and A6 are satisfied.
2. The function x∗(t) = x(t; t0, ϕ) : [t0, T) → Δ, x∗ ∈ PCq([t0, T)) is a solution of Equation (1) where

Δ ⊂ R
n, 0 ∈ Δ, T ≤ ∞.

3. The function V ∈ Λ([t0, T), Δ) is such that

(i) For any i = 0, 1, 2, · · · : (ti, si+1) ∩ [t0, T) �= ∅ and for t ∈ (ti, si+1) ∩ [t0, T), the inequality

D(1)V(t, φ, ti) ≤ g(t, V(t, φ(0))
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holds where φ(Θ) = x∗(t + Θ), Θ ∈ [−r, 0], and D(1)V(t, φ, ti) is one of the following two
derivatives: the Dini fractional derivative D+

(1)V(t, φ(0), ti, φ) defined by Equation (4) or the Caputo

fractional Dini derivative c
(1)D

q
+V(t, φ; ti, ϕ(0)) defined by Equation (5).

(ii) For all i = 1, 2, 3, · · · : (si, ti) ∩ [t0, T) �= ∅, the inequality

V(t, φi(t, x∗(si − 0))) ≤ ψi(t, V(si − 0, x∗(si − 0))) for t ∈ (si, ti] ∩ [t0, T)

holds.

If sups∈[−r,0]V(t0, ϕ(s)) ≤ u0, then the inequality V(t, x∗(t)) ≤ r(t) for t ∈ [t0, T) holds, where
r(t) = r(t; t0, u0) is the maximal solution on [t0, T) of Equation (10) with u0 ≥ 0.

Proof. The proof is similar to the one in Lemma 2 where instead of the Caputo fractional derivative
of the Lyapunov function, we use the Dini fractional derivative or the Caputo fractional Dini
derivative which are less restrictive with respect to the properties of Lyapunov functions (for example,
differentiability is not required). We sketch the proof emphasizing the differences with Lemma 2.

Case 1. Let D(1)V(t, φ, ti) =
c
(1)D

q
+V(t, φ; ti, ϕ(0)), i = 1, 2, . . . in Condition 3(i) of Lemma 4.

We use induction with respect to the intervals to prove Lemma 4. We prove the inequality in
Equation (14).

Case 1.1. Let t ∈ [t0, s1]. We prove Equation (15) with ε > 0 an arbitrary number. Note that
Equation (15) holds for t = t0. If the inequality in Equation (15) is not true, then there exists a point
t∗ ∈ (t0, s1] such that p(t∗) = 0 and p(t∗) < 0 for t ∈ [t0, t∗) where p(t) = m(t)− u(t)− ε. From
Lemma 3 with τ = t∗ we get the inequality

GL
t0

Dq
+m(t∗) >GL

t0
Dq
+u(t∗) +GL

t0
Dq
+ε.

Thus

C
t0

Dq
t m(t∗) =GL

t0
Dq
+(m(t∗)− m(t0)) =

GL
t0

Dq
+m(t∗)− GL

t0
Dq
+m(t0)

> GL
t0

Dq
+(u(t

∗)− u0) =
C
t0

Dq
t u(t∗).

(16)

Following the proof of Lemma 3 [3] from the choice of the point t∗, the definition of the function
m(t), the definition of the derivative c

(1)D
q
+V(τ, φ(0); t0, ϕ(0)), Assumption A2 and x(t + s) = φ(s),

xρ(t,xt) = xρ(t,φ0)
= x(ρ(t, φ0)) = x(t + (ρ(t, φ0)− t)) = φ(ρ(t, φ0)− t), Assumption A6 and Condition

3(i) of Lemma 4, we obtain the inequality

C
t0

Dq
t m(τ) = GL

t0
Dq
+(m(t∗)− m(t0)) ≤ c

(1)D
q
+V(t∗, φ(0); t0, ϕ(0))

≤ g(t∗, V(t∗, φ(0)) = g(t∗, m(t∗)) = g(t∗, u(t∗) + ε) ≤ g(t∗, u(t∗))

=C
t0

Dq
t u(t∗)

(17)

with φ(Θ) = x(τ + Θ), Θ ∈ [−τ, 0].
The inequality in Equation (17) contradicts the inequality in Equation (16). The contradiction

proves the validity of Equation (15) and, therefore, the validity of Equation (14) on [t0, s1].
Case 1.2. Let t ∈ (s1, t1]. From the impulsive equality in Equation (1), Condition 3(ii) of Lemma 4,

Assumption A6 and the inequality in Equation (14) for t = s1 − 0, we obtain for t ∈ (s1, t1] the
inequalities m(t) = V(t, x∗(t)) = V(t, φ1(t, x∗(s1 − 0))) ≤ ψ1(t, V(s1 − 0, x∗(s1 − 0))) = ψ1(t, m(s1 −
0)) ≤ ψ1(t, u(s1 − 0)) = u(t), i.e. Equation (14) holds on (s1, t1).

Case 1.3. Let t ∈ (t1, s2]. The proof of the inequality in Equation (15) for t ≥ (t1, s2] is similar to
the one in Case 1.1 by replacing t0 with t1.
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Case 2. Let D(1)V(t, φ, ti) in Condition 3(i) of Lemma 4 be the Dini fractional derivative
D+
(1)V(t, φ(0), ti, ϕ) defined by Equation (4). Then, based on the proof in Case 1 and Remark 4,

we establish Lemma 4.

6. Main Results

Theorem 1. (Caputo fractional derivative) Let the following conditions be satisfied:

1. Assumptions A1–A8 are fulfilled.
2. There exist a function V ∈ Λ(R+,Rn

) and

(i) The inequalities
b(||x||) ≤ V(t, x) ≤ a(||x||), x ∈ R

n, t ∈ R+

holds, where a ∈ K([0, ρ]), b ∈ M([0, ρ]), ρ > 0;
(ii) For any initial data and any solution x(t) of Equation (1) defined on [t0, ∞) such that for any τ ∈

(tk, sk+1), k is a non-negative integer, such that x(t) ∈ Sρ, t ∈ [t0, τ] and V(τ, x(τ)) ≥ V(s, x(s))
for s ∈ [t0, τ] the inequality

C
ti

Dq
t V(t, x(t)) ≤ g(t, V(t, x(t))), t ∈ (ti, si+1] ∩ [t0, τ], i = 0, 1, 2, . . . , k

holds.
(iii) For any k = 0, 1, 2, . . . and t ∈ (sk, tk+1], y ∈ Sρ the inequality

V(t, φk(t, y)) ≤ ψk(t, V(sk − 0, y))

holds.

3. The zero solution of Equation (10) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

Then, the zero solution of Equation (1) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

Proof. Let the zero solution of Equation (10) be uniformly Lipschitz stable. Let t0 ≥ 0 be an arbitrary.
Without loss of generality, we assume t0 ∈ [0, s1). From Condition 3, there exist M ≥ 1, δ1 > 0 such
that for any u0 ∈ R : |u0| < δ1 the inequality

|u(t; t0, u0)| ≤ M |u0| for t ≥ t0 (18)

holds, where u(t; t0, u0) is a solution of Equation (10) with the initial data (t0, u0).
From the inclusions a ∈ K([0, ρ]) and b ∈ M([0, ρ]), there exist a function qb(u) and a positive

constant Ka. Without loss of generality, we can assume Ka ≥ 1. Choose the constant M1 such that
M1 > max{1, qb(Ka), qb(M)Ka} and δ2 ≤ ρ

2M1
. Therefore, 2M1δ2 ≤ ρ.

Let δ = min
{

δ1, δ2, δ1
Ka

}
. Choose the initial function ϕ ∈ PC0([−r, 0]) such that ||ϕ||PC0 < δ.

Therefore, ||ϕ||PC0 < δ ≤ δ2 ≤ ρ, i.e. ϕ(s) ∈ Sρ for s ∈ [−r, 0]. Consider the solution y(t) = y(t; t0, ϕ)

of the system in Equation (1) for the chosen initial data (t0, ϕ).
Let u∗

0 = sups∈[−r,0] V(t0, ϕ(s)). From the choice of ϕ and the properties of the function a(u)
applying condition 2(i) we get u∗

0 = V(t0, ϕ(ξ)) ≤ a(||ϕ(ξ)||) ≤ a(||ϕ||PC0) ≤ Ka||ϕ||PC0 < Kaδ ≤ δ1.
Therefore, the function u∗(t) satisfies Equation (18) for t ≥ t0 with u0 = u∗

0, where u∗(t) = u(t; t0, u∗
0)

is a solution of Equation (10) with initial data (t0, u∗
0).

Let ε ∈ (0, M1δ] be an arbitrary number. We prove

V(t, y(t)) < b(M1||ϕ||PC0 + ε), t ≥ t0. (19)

For t = t0, we get V(t0, y(t0)) = V(t0, ϕ(0)) ≤ a(||ϕ(0)||) ≤ a(||ϕ||PC0 ≤ Ka||ϕ||PC0 ≤
b(qb(Ka)||ϕ||PC0) ≤ b(M1||ϕ||PC0) < b(M1||ϕ||PC0 + ε), i.e. the inequality in Equation (19) holds.
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Assume Equation (19) is not true.
Case 1. There exists a point T > t0, T ∈ ⋃∞

k=0(tk, sk+1] such that V(t, y(t)) < b(M1||ϕ||PC0 + ε)

for t ∈ [t0, T), V(T, y(T)) = b(M1||ϕ||PC0 + ε), i.e. V(s, y(s)) ≤ V(T, y(T)) for s ∈ [t0, T]. Then,
from Condition 2(i), we obtain the inequalities ||y(t)|| ≤ b−1(V(t, y(t)) ≤ M1||ϕ||PC0 + ε < 2M1δ ≤
2M1δ2 ≤ ρ for t ∈ [t0, T], i.e., y(t) ∈ Sρ for t ∈ [t0, T] and, according to Condition 2(ii) of Theorem 1
with τ = T, it follows that Condition 3(i) of Lemma 2 is satisfied for the solution y(t) on the interval
[t0, T] and Δ = Sρ.

According to Lemma 2, we get

V(t, y(t)) ≤ u∗(t) for t ∈ [t0, T]. (20)

From the inequality in Equation (20) and Condition 2(i), we obtain

M1||ϕ||PC0 = b−1(V(T, y(T))) ≤ b−1(u∗(T))

≤ b−1(M |u∗
0 |) = b−1(MV(t0, ϕ(ξ))) ≤ qb(M)V(t0, ϕ(ξ))

≤ qb(M)a(||ϕ(ξ)||) ≤ qb(M)a(||ϕ||0) ≤ qb(M)Ka||ϕ)||PC0 < M1||ϕ||PC0 .

(21)

The contradiction proves the validity of Equation (19). From the inequality in Equation (19) and
Condition 2(i), we have Theorem 1.

Case 2. There exists a point T > t0, T ∈ ⋃∞
k=1(sk, tk) such that V(t, y(t)) < b(M1||ϕ||PC0 + ε) for

t ∈ [t0, T), V(T, y(T)) = b(M1||ϕ||PC0 + ε). Then, as in Case 1 we get y(t) ∈ Sρ for t ∈ [t0, T]. Let T ∈
(sj, tj+1) for a natural number j. According to Condition 2(iii) of Theorem 1, we obtain b(M1||ϕ||PC0 +

ε) = V(T, y(T)) = V(T, φj(T, y(sj − 0))) ≤ ψj(T, V(sj − 0, y(sj − 0))) ≤ ψj(T, b(M1||ϕ||PC0)) <

ψj(T, b(M1||ϕ||PC0) + ε). The contradiction proves this case is not possible.
Case 3. There exists a natural number k such that V(t, y(t)) < b(M1||ϕ||0 + ε) for t ∈ [t0, sk]

and V(sk + 0, y(sk + 0)) > b(M1||ϕ||0 + ε). Therefore, ψk(sk, b(M1||ϕ||0)) ≥ ψk(sk, V(sk, y(sk))) ≥
V(sk + 0, φk(sk, y(sk − 0))) = V(sk + 0, y(sk + 0)) > b(M1||ϕ||0). The contradiction proves this case is
not possible.

The proof of globally uniformly Lipschitz stability is analogous so we omit it.

Theorem 2. Let the conditions of Theorem 1 be satisfied where Condition 2(i) is replaced by:
2∗(i) the inequalities λ1(t)||x||2 ≤ V ≤ λ2(t)||x||2, x ∈ Sρ, t ∈ R+ holds, where λ1, λ2 ∈

C(R+, (0, ∞)) and there exists positive constant A1, A2 : A1 < A2 such that λ1(t) ≥ A1, λ2(t) ≤ A2 for
t ≥ 0, and ρ > 0.

If the zero solution of Equation (10) is uniformly Lipschitz stable (uniformly globally Lipschitz stable), then
the zero solution of Equation (1) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

Proof. The proof is similar to the one in Theorem 1 where M1 =
√

M A2
A1

.

Theorem 3. (Dini fractional derivative/ Caputo fractional Dini derivative) Let the following conditions
be satisfied:

1. Assumptions A1–A8 are fulfilled.
2. There exist a function V(t, x) ∈ Λ(R+,Rn

), ρ > 0 and

(i) The inequalities
b(||x||) ≤ V(t, x) ≤ a(||x||), x ∈ R

n, t ∈ R+

holds, where a ∈ K([0, ρ]), b ∈ M([0, ρ]).
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(ii) For any function φ ∈ PC0 : φ(s) ∈ Sρ for s ∈ [−r, 0] such that for any t : t ∈ (tk, sk+1), k is a
non-negative integer, such that V(t + s, φ(s)) ≤ V(t, φ(0)), s ∈ [−r, 0] the inequality

D(1)V(t, φ, tk) ≤ g(t, V(t, φ(0)))

holds where D(1)V(t, φ, tk) is one of the following two derivatives: the Dini fractional
derivative D+

(1)V(t, φ(0), tk, φ) defined by Equation (4) or the Caputo fractional Dini derivative
c
(1)D

q
+V(t, φ; tk, ϕ(0)) defined by Equation (5) and ρ > 0.

(iii) For any k = 0, 1, 2, . . . and t ∈ (sk, tk+1], y ∈ Sρ the inequality

V(t, φk(t, y)) ≤ ψk(t, V(sk − 0, y))

holds.

3. The zero solution of Equation (10) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

Then, the zero solution of Equation (1) is uniformly Lipschitz stable (uniformly globally Lipschitz stable).

The proof of Theorem 3 is similar to the one in Theorem 1 where Lemma 4 is applied instead of
Lemma 2.

Example 3. Let tk = 2k, k = 0, 1, 2 . . . and sk = 2k − 1, k = 1, 2, . . . . Consider the non-instantaneous
impulsive fractional differential equations

C
ti

D0.25
t x1(t) = 0.25x1(t)− x2(t) + 0.25x1(t)(xρ(t,xt))

2
2,

C
ti

D0.25
t x2(t) = 0.25x2(t) + x1(t) + 0.25x2(t)(xρ(t,xt))

2
1

for t ∈ (ti, si+1], i = 0, 1, 2, . . . ,

x1(t) =
x1(si − 0)√

2it
, x2(t) =

x2(si − 0)√
2it

, t ∈ (si, ti], i = 1, 2, . . . ,

(22)

where x = (x1, x2), ρ(t, u) = t − sin2(u) : t − 1 ≤ ρ(t, u) ≤ t, xρ(t,xt) = ((xρ(t,xt))1, (xρ(t,xt))2) and
(xρ(t,xt))i = xi(t − sin2(xi(t + s))), s ∈ [−1, 0], i = 1, 2.

Let V(t, x) = x2
1 + x2

2, x = (x1, x2).
Let x(t) be a solution of Equation (22). Let the point τ ∈ (tk, sk+1], k is a non-negative integer,

be such that x(t) ∈ S1, t ∈ [0, τ] and x1(τ)
2 + x2(τ)

2 ≥ x1(s)2 + x2(s)2, s ∈ [0, τ]. Using the notation
xρ(τ,xτ) and Assumption A2, it follows that ρ(τ, xj(τ + Θ)) ∈ [τ − r, τ], j = 1, 2, Θ ∈ [−r, 0] and
therefore (xρ(τ,xτ))

2
1 + (xρ(τ,xτ))

2
2 ≤ x1(τ)

2 + x2(τ)
2 or

x2
1(t)(xρ(t,xt))

2
2 ≤ x2

1(t)(xρ(t,xt))
2
1 + x2

1(t)(xρ(t,xt))
2
2 ≤ x2

1(t)(x1(τ)
2 + x2(τ)

2) ≤ x1(t)2

and

x2
2(t)(xρ(t,xt))

2
1 ≤ x2

2(t)(xρ(t,xt))
2
1 + x2

2(t)(xρ(t,xt))
2
2 ≤ x2

2(t)(x1(τ)
2 + x2(τ)

2) ≤ x2(t)2.

28



Axioms 2019, 8, 4

Then, for all i = 0, 1, 2, . . . , k] and t ∈ (ti, si+1] ∩ [0, τ] , we get the inequality

C
ti

D0.25
t V(t, x(t)) =C

ti
D0.25

t x2
1(t) +

C
ti

D0.25
t x2

2(t)

≤ 2x1(t) C
ti

D0.25
t x1(t) + 2x2(t) C

ti
D0.25

t x2(t)

= 2x1(t)
(

0.25x1(t)− x2(t) + 0.25x1(t)(xρ(t,xt))
2
2

)
+ 2x2(t)

(
0.25x2(t) + x1(t) + 0.25x2(t)(xρ(t,xt))

2
1

)
≤ V(t, x(t)).

(23)

In addition, for any natural number i, x ∈ S1 ⊂ R
2 and t ∈ [si, ti] = [2i − 1, 2i, we get V(t, x√

2it
) =(

x1√
2it

)2
+

(
x2√
2it

)2
= 1

2t

(
x2

1
i +

x2
2
i

)
≤ x2

1+x2
2

2t = V(si ,x)
2t = ψi(t, V(si, x)) with ψi(t, u) = u

2t .
According to Example 2, Case 1 and Theorem 1, the zero solution of Equation (22) is uniformly

Lipschitz stable.

Example 4. Let tk = 2k, k = 0, 1, 2 . . . and sk = 2k − 1, k = 1, 2, . . . . Consider the non-instantaneous
impulsive fractional differential equations

C
ti

D0.25
t x1(t) = 0.5x1(t)− x2(t) + 0.5x1(t)(xρ(t,xt))

2
2 − x1(t)

RL
ti

Dq(cos(0.5π(t + ti + 1)) + 1.1)

cos(0.5π(t + ti + 1)) + 1.1
,

C
ti

D0.25
t x2(t) = 0.5x2(t) + x1(t) + 0.5x2(t)(xρ(t,xt))

2
1 − x2(t)

RL
ti

Dq(cos(0.5π(t + ti + 1)) + 1.1)

cos(0.5π(t + ti + 1)) + 1.1

for t ∈ (ti, si+1], i = 0, 1, 2, . . . ,

x1(t) =
x1(si − 0)√

2it
, x2(t) =

x2(si − 0)√
2it

, t ∈ (si, ti], i = 1, 2, . . . ,

(24)

where x = (x1, x2), ρ(t, u) = t − sin2(u), t − 0.5 ≤ ρ(t, u) ≤ t, xρ(t,xt) = ((xρ(t,xt))1, (xρ(t,xt))2) and
(xρ(t,xt))i = xi(t − 0.5 sin2(xi(t + s))), s ∈ [−0.5, 0], i = 1, 2, p(t) = cos(0.5π(t + tk + 1)) + 1.1 for
t ∈ [tk, sk+1].

Note that, for any t ∈ [tk, sk+1], the inequality p(t) ≤ p(t + s), s ∈ [−0.5, 0] holds.
In this case, the quadratic function and Theorem 1 does not work (as it did in Example 3) because

C
ti

D0.25
t V(t, x(t)) ≤ 2V(t, x(t))(1 −

RL
tk

Dq p(t)

p(t)) ) ≤ 2V(t, x(t))(1 − 10
11

RL
tk

Dq(p(t)) and the solution of the

comparison Equation (10) with g(t, u) = 2u(1 − 10
21

RL
tk

Dq(cos(0.5π(t + tk + 1)) + 1.1) is difficult
to obtain.

Consider the Lyapunov function V(t, x) = p(t)(x2
1 + x2

2), x = (x1, x2).
Let the function φ ∈ PC0, r = 0.5 be such that φ(s) ∈ S1 for s ∈ [−0.5, 0]. Let t : t ∈ (tk, sk+1), k

is a non-negative integer, be such that p(t + s)(φ1(s)2 + φ2(s)2) ≤ p(t)(φ1(0)2 + φ2(0)2), s ∈ [−1, 0].
From the definition of the function ρ, it follows that ρ(t, φj(s))− t = −0.5 sin2(φj(s)) ∈ [−0.5, 0] for s ∈
[−1, 0], j = 1, 2 and therefore p(t + s)((φ1(ρ(t, φ1(s))− t))2 + (φ2(ρ(t, φ2(s))− t))2) ≤ p(t)(φ1(0)2 +

φ2(0)2), s ∈ [−0.5, 0]. Then

p(t)(φ2(ρ(t, φ0)− t))2 ≤ p(t + s)(φ2(ρ(t, φ2(s))− t))2

≤ p(t + s)
(
(φ1(ρ(t, φ1(s))− t))2 + (φ2(ρ(t, φ2(s))− t))2

)
≤ p(t)

(
φ1(0)2 + φ2(0)2

)
, s ∈ [−0.5, 0].

(25)

Similarly, we get p(t)(φ1(ρ(t, φ0)− t))2 ≤ p(t)
(

φ1(0)2 + φ2(0)2
)

.
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Then, using Example 1, Case 2 and the notations xt = φ0, xρ(t,xt) = φ(ρ(t, φ0) − t), i.e.,
f (t, x(t), xρ(t,xt)) = f (t, φ(0), φ(ρ(t, φ0)− t)), we get the inequality

D+
(24)V(t, φ(0), tk, φ) = φ1(0)p(t) f1(t, φ(0), φ(ρ(t, φ0)− t)) + φ2(0)p(t) f2(t, φ(0), φ(ρ(t, φ0)− t))

+
(

φ2
1(0) + φ2

2(0)
)RL

tk
Dq p(t)

= φ1(0)p(t)
(

0.5φ1(0)− φ2(0) + 0.5φ1(0)(φ2(ρ(t, φ0)− t))2 − φ1(0)
RL
tk

Dq p(t)
p(t)

)

+ φ2(0)p(t)
(

0.5φ2(0) + φ1(0) + 0.5φ2(0)(φ1(ρ(t, φ0)− t))2 − φ2(0)
RL
tk

Dq p(t)
p(t)

)

+
(

φ2
1(0) + φ2

2(0)
)RL

tk
Dq p(t)

≤ V(t, φ(0)).

In addition, for any natural number i, x ∈ S1 ⊂ R
2 and t ∈ [si, ti] = [2i − 1, 2i, we get V(t, x√

2it
) =(

x1√
2it

)2
+

(
x2√
2it

)2
= 1

2t

(
x2

1
i +

x2
2
i

)
≤ x2

1+x2
2

2t = V(si ,x)
2t = ψi(t, V(si, x)) with ψi(t, u) = u

2t .
According to Example 2, Case 1 and Theorem 3, the zero solution of Equation (24) is uniformly

Lipschitz stable.
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Abstract: This paper presents a new efficient method for the numerical solution of a linear time-
dependent partial differential equation. The proposed technique includes the collocation method with
Legendre wavelets for spatial discretization and the three-step Taylor method for time discretization.
This procedure is third-order accurate in time. A comparative study between the proposed method
and the one-step wavelet collocation method is provided. In order to verify the stability of these
methods, asymptotic stability analysis is employed. Numerical illustrations are investigated to show
the reliability and efficiency of the proposed method. An important property of the presented method
is that unlike the one-step wavelet collocation method, it is not necessary to choose a small time step
to achieve stability.

Keywords: Legendre wavelets; collocation method; three-step Taylor method; asymptotic stability;
time-dependent partial differential equations

MSC: 35K05, 41A30, 65M70

1. Introduction

In recent years, many kinds of wavelet bases have been utilized to solve functional equations;
for example, Shannon wavelets [1], Daubechies wavelets [2] and Chebyshev wavelets [3,4]. In this
paper, we utilize Legendre wavelets. Legendre wavelets are derived from Legendre polynomials [5].
These wavelets have been used in solving different kinds of functional equations such as integral
equations [6,7], fractional equations [8,9], ordinary differential equations [5], partial differential
equations [10,11], etc.

In solving time-dependent problems, Legendre wavelets are often used for spatial discretization.
Different techniques are implemented for time discretization. In some articles, Legendre wavelets
are also applied for time discretization. Therefore, the collocation points should be defined for both
time and spatial variables. Also in this technique, multi-dimensional wavelets should be used to
approximate required functions, which deal with large matrices and require large storage space.
For example, readers can refer to [9].

There are many contexts that use collocation methods in solving functional equations.
For example, Luo et al. [12] presented three collocation methods based on a family of barycentric
rational interpolation functions for solving a class of nonlinear parabolic partial differential equations.
Furthermore, for solving a class of fractional subdiffusion equation, Luo et al. in 2016 [13] used the
quadratic spline collocation method.

Another path for time discretization uses a finite difference method. Islam et al. [10] used a
fully implicit scheme, which is based on the first-order Taylor expansion. Yin et al. [11] employed

Axioms 2018, 7, 70; doi:10.3390/axioms7040070 www.mdpi.com/journal/axioms32
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the θ-weighted scheme for nonlinear Klein–Sine–Gordon equations. Stability is the important
point in using finite difference methods. Thus, methods that are first-order accurate in time might
be inappropriate.

Here, we exploit the three-step finite element method for time discretization [14–16]. For the
suitable differentiable function F(t), these three steps are defined as follows:

F(t +
Δt
3
) = F(t) +

Δt
3

∂F
∂t

(t), (1)

F(t +
Δt
2
) = F(t) +

Δt
2

∂F
∂t

(t +
Δt
3
), (2)

F(t + Δt) = F(t) + Δt
∂F
∂t

(t +
Δt
2
). (3)

It can be shown that the above equations are equivalent to the third-order Taylor expansion.
Therefore, this method is third-order accurate in t. The first idea of using these three steps has been
demonstrated by Jiang and Kawahara [14]. Equations (1)–(3) are usually accompanied by the Galerkin
finite element method, which is known as the three-step Taylor–Galerkin method [17]. Kumar and
Mehra [2] proposed a three-step wavelet Galerkin method based on the Daubechies wavelets for
solving partial differential equations subject to periodic boundary conditions. In this paper, motivated
and inspired by the ongoing research, we develop a new effective method, which combines the
Legendre wavelets collocation method for spatial discretization and the mentioned three steps for time
discretization in the numerical solution of a linear time-dependent partial differential equation subject
to the Dirichlet boundary conditions. We call this method the three-step wavelet collocation method.
Furthermore, we explain the asymptotic stability of the proposed method.

The organization of this paper is as follows. In Section 2, fundamental properties of the
Legendre wavelets are described. The three-step wavelet collocation method is presented in Section 3.
The analysis of asymptotic stability is performed in Section 4. Some numerical examples are presented
in Section 5. Finally, Section 6 provides the conclusions of the study.

2. Basic Properties of Legendre Wavelets

Legendre wavelets are defined on the interval [0, 1] as follows [5]:

⎧⎪⎨
⎪⎩

ψl,m(x) =
√

m + 1
2 2

k+1
2 Lm(2k+1x − (2l + 1)),

l
2k ≤ x <

l + 1
2k

0, otherwise

where k can assume any positive integer, m = 0, 1, · · · , M, l = 0, 1, · · · , 2k − 1 and Lm(x) are the
well-known Legendre polynomials of order m.

A function f (x) defined over [0, 1] can be approximated in terms of Legendre wavelets as:

f (x) �
2k−1

∑
l=0

M

∑
m=0

cl,mψl,m(x) = CTΨ(x), (4)

where:
Ψ(x) = [ψ0,0, ψ0,1, · · · , ψ0,M, ψ1,0, ψ1,1, · · · , ψ2k−1,0, ψ2k−1,1 · · · , ψ2k−1,M]T ,

and cl,m =< f (x), ψl,m >, in which < . , . > denotes the inner product.
The derivative of the vector Ψ(x) can be expressed by:

dΨ(x)
dx

= DΨ(x),
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where D is the 2k(M + 1) operational matrix. Mohammadi and Hosseini obtained D and the
operational matrix for the n-th derivative:

dnΨ(x)
dxn = DnΨ(x), (5)

in [5].

3. Three-Step Wavelet Collocation Method

In this section, we explain the main structure of the three-step wavelet collocation method.

3.1. Time Discretization

Consider the following linear time-dependent partial differential equation:

∂u
∂t

= ν(
∂2u
∂x2 ) + μu + f (x, t), (6)

with the initial condition:
u(x, 0) = g(x), 0 ≤ x ≤ 1 (7)

and boundary conditions:

u(0, t) = h0(t), (8)

u(1, t) = h1(t), t ≥ 0. (9)

Assume that n ≥ 0 and Δt denote the time step such that tn = nΔt, n = 0, 1, · · · Nt. By using the
Taylor expansion, the value of the function u(x, t) at the time tn+1 can be expressed as follows:

un+1 = un + Δt(
∂u
∂t

)n +
(Δt)2

2
(

∂2u
∂t2 )

n +
(Δt)3

6
(

∂3u
∂t3 )

n + o[(Δt)4], (10)

where the symbols un and (
∂u
∂t

)n represent u(x, tn) and
∂u
∂t

(x, tn), respectively.

We can use the first-order Taylor expansion for time discretization and Legendre wavelets for
spatial discretization [10]. We call this method the one-step wavelet collocation method. In addition,
the time derivative in the given differential equations is approximated by Euler’s formula:

(
∂u
∂t

)n =
u(x, tn+1)− u(x, tn)

Δt
+ o[(Δt)],

and therefore, we have semi-discrete equation:

un+1 = un + Δt(
∂u
∂t

)n.

The three-step Taylor method for time discretization is derived by applying a factorization process
to the right side of Equation (10) as follows:

(
I + Δt

∂

∂t
[
I +

Δt
2

∂

∂t
[I +

Δt
3

∂

∂t
]
])

un = un + Δt
∂

∂t
[
un +

Δt
2

∂

∂t
[un +

Δt
3
(

∂u
∂t

)n]
]
. (11)

where the symbol I is the identity operator.
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Now, using Equation (11) and employing a new notation, the three-step Taylor method is obtained
as follows:

un+ 1
3 = un +

Δt
3
(

∂u
∂t

)n (12)

un+ 1
2 = un +

Δt
2
(

∂u
∂t

)n+ 1
3 (13)

un+1 = un + Δt(
∂u
∂t

)n+ 1
2 . (14)

It should be noted that un+ 1
3 , un+ 1

2 and un+1 represent the computed solution at time level

(tn +
Δt
3

), (tn +
Δt
2

) and (tn + Δt), respectively.

3.2. Spatial Discretization

After time discretization, the spatial derivatives of u(x, t) are approximated by Legendre wavelets.
The collocation method is utilized in this part. Let the unknown solution u(x, tn) be expanded by:

u(x, tn) � un =
2k−1

∑
l=0

M

∑
m=0

cn
l,mψl,m(x) = (Cn)TΨ(x). (15)

According to Equation (15), we use only one-dimensional Legendre wavelets to approximate the
solution. The solution dependence on the time variable is specified by the coefficient cn

l,m. In other
words, the vector coefficient Cn is calculated at time tn. Therefore, the approximation solution at time
tn+ 1

3
can be written as follows:

un+ 1
3 = (Cn+ 1

3 )TΨ(x). (16)

We can also approximate f (x, t) at time tn as:

f (x, tn) � f n = (Fn)TΨ(x), (17)

where the vector (Fn)T is given by Equation (4) at time tn.
Substituting Equation (6) into Equation (12) results in:

un+ 1
3 = un +

Δt
3

(
ν(

∂2u
∂x2 )

n + μun + f (x, tn)
)

. (18)

Now, by using the operation matrix of the derivative and Equation (5), we have:

∂2u
∂x2 (x, tn) �

2k−1

∑
l=0

M

∑
m=0

cn
l,m

∂2ψl,m

∂x2 (x) = (Cn)T D2Ψ(x). (19)

Then, substituting Equations (15)–(17) and (19) into Equation (18) yields:

(Cn+ 1
3 )TΨ(x) = (Cn)TΨ(x) +

Δt
3

(
ν(Cn)T D2Ψ(x) + μ(Cn)TΨ(x) + (Fn)TΨ(x)

)
. (20)

By using boundary conditions and Equation (16), the following equalities are satisfied:

h0(tn+ 1
3
) = u(0, tn+ 1

3
) � (Cn+ 1

3 )TΨ(0), (21)

h1(tn+ 1
3
) = u(1, tn+ 1

3
) � (Cn+ 1

3 )TΨ(1). (22)
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Considering the initial Condition (7), we have:

g(x) = u(x, t0) � u0 = (C0)TΨ(x) (23)

By substituting Equation (20) in (2k(M + 1)− 2) Gauss–Legendre points {xi}2k(M+1)−2
i=1 and using

Equations (21) and (22), we can obtain a linear system of equations with 2k(M + 1) unknown variables,

cn+ 1
3

l,m , which can be written in matrix form:

ACn+ 1
3 = B, (24)

where A and B are 2k(M + 1)× 2k(M + 1) and 2k(M + 1)× 1 matrices, respectively. Since the vector
C0 is obtained from Equation (23), all entries of B are known.

The above system of linear equations can be solved by numerical methods. Here, for square
matrix A, we use LU decomposition to solve the linear System (24) with partial pivoting. In this
method, the square matrix A can be decomposed into two square matrices L and U such that A = LU,
where U is an upper triangular matrix formed as a result of applying the Gauss elimination method on
A, and L is a lower triangular matrix with diagonal elements being equal to one. Solving the system
ACn+ 1

3 = B is then equivalent to solving the two simpler systems Ly = B and UCn+ 1
3 = y. The first

system can be solved by forward substitution, and the second system can be solved by backward
substitution. Solving the linear system with triangular matrices makes it easy to do calculations in
the process of finding the solution. Since the Gaussian elimination can produce bad results for small
pivot elements, we adopt the partial pivoting strategy. In this strategy, when we are choosing the
pivot element on the diagonal at position aii, locate the element in column i at or below the diagonal
that has the largest absolute value, and make it as the pivot at that step by interchanging two rows.
Applying this strategy to our matrix avoids any distortion due to the pivots being small. For more
details, readers can refer to [18,19].

After solving this system and determining Cn+ 1
3 , we exploit Equation (13) to find Cn+ 1

2 .
In addition, there is a similar process that results in:

(Cn+ 1
2 )TΨ(xi) = (Cn)TΨ(xi) +

Δt
2

(
ν(Cn+ 1

3 )T D2Ψ(xi) + μ(Cn+ 1
3 )TΨ(xi) + (Fn+ 1

3 )TΨ(xi)
)

, (25)

and:

h0(tn+ 1
2
) = u(0, tn+ 1

2
) � (Cn+ 1

2 )TΨ(0), (26)

h1(tn+ 1
2
) = u(1, tn+ 1

2
) � (Cn+ 1

2 )TΨ(1), (27)

where {xi}2k(M+1)−2
i=1 are the same collocation points used in the previous step.

A matrix form of Equations (25)–(27) can be displayed as:

PCn+ 1
2 = Q,

where the dimension of the square matrix P and column vector Q is 2k(M + 1). Since the vector Cn+ 1
3

is obtained from the previous step, all entries of Q are known. Similarly, we use LU decomposition to
solve the above system.

Finally, by implementing similar analysis in the two previous steps, using Equation (14)
with boundary conditions and exploiting Cn+ 1

2 , the vector Cn+1 can be specified in each step for
n = 0, 1, 2, · · · . Therefore, we can obtain the numerical solution, u(x, tn), in any time t = tn.
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4. Stability Analysis

For stability analysis, we use the asymptotic (or absolute) stability of a numerical method, which is
defined in [20]. In a numerical scheme, when we fix the final time t = nΔt and let n → ∞, we want
the corresponding numerical solution to remain bounded; a scheme satisfying this property is called
stable. Therefore, a stability analysis needs a restriction on the mesh size Δt. In practice, we can only
choose a finite and proper mesh size. It is then important to study the region of absolute stability in
order to to choose the proper mesh size in practical computation.

Let us start from the typical evolution equation:

∂u
∂t

= f (u, t), t > 0

u(0) = 0,

where the non-linear operator f contains the spatial part of the partial differential equation. Let us
abbreviate u(xj, tn) by un

j . We shall approximate un
j by Un

j . Following the general formulation of the
proposed method, the semi-discrete version is:

Qj
duj

dt
= Qj fj(uj),

where uj is the spectral approximation to u, f j denotes the spectral approximation to the operator f
and Qj is the projection operator, which characterizes the scheme. Let us set U(t) = Qjuj(t). Then,
the previous discrete problem can be written in the form:

dU
dt

= F(U). (28)

As is often done, we confine our discussion of time-discretizations to the linearized version of (28):

dU
dt

= LU (29)

where L is the diagonalizable matrix resulting from the implementation of spectral method on the
spatial variable of the partial differential equation.

According to different contexts, the time discretization is said to be stable if Un, the computed
solution at the time tn = nΔt, has been upper bounded, i.e., there exists a constant M such that:

‖Un‖ � M. (30)

In many problems, the solution is bounded in some norm for all t > 0. In these cases, a method that
produces the exponential growth allowed by Estimate (30) is not practical for long-time integrations.
For such problems, the notion of asymptotic (or absolute) stability is useful.

Definition 1. The region of absolute stability of a numerical method is defined for the scalar model problem:

dU
dt

= λU

to be the set of all λΔt such that ‖Un‖ is bounded as t → ∞ [20].

Finally, we say that a numerical method is asymptotically stable for a particular problem if,
for sufficiently small Δt, the product of Δt times every eigenvalue of L lies within the region of
absolute stability. In the following items, we summarize some remarkable characteristics of absolute
stability [21]:
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1. An absolutely stable method is one that generates a solution un that tends to zero as tn tends
to infinity,

2. A method is said to be A-stable, if it is absolutely stable for any possible choice of the time-step,
Δt, otherwise a method is called conditionally stable.

3. Absolutely stable methods keep the perturbation controlled,
4. The analysis of absolute stability for the linear model problem can be exploited to find stability

conditions on the time step when considering some nonlinear problems.

Since the three-step Equations (12)–(14) are equivalent to the third-order Taylor expansion,
to demonstrate the stability region and achieve the stability condition, we use Equation (10).
For simplicity, consider Equation (6), where μ = 0 and f (x, t) = 0. Then, successive differentiations of
the obtained equation indicate that:

∂2u
∂t2 = ν2 ∂4u

∂x4 , (31)

∂3u
∂t3 = ν2 ∂4

∂x4 (
un+1 − un

Δt
) + o[(Δt)]. (32)

In Equation (32), we use Euler’s formula to avoid the third-order space derivatives, as it is used
in the finite element context [22]. By rearranging Equation (10) and substitution of Equations (31)
and (32), we have the semi-discrete equation:

(I − ν2Δt2

6
∂4

∂x4 )(
un+1 − un

Δt
) = ν(

∂2u
∂x2 )

n +
(ν2Δt)

2
(

∂4u
∂x4 )

n. (33)

After applying the wavelet collection method, Equation (33) transforms into the following equation:

(
dC
dt

)n � (
Cn+1 − Cn

Δt
) = A−1BCn, (34)

where:

A =
(
(I − ν2Δt2

6
D4) (Ψ(xi))

T
)

,

B =
(
(νD2 +

ν2Δt
2

D4) (Ψ(xi))
T
)

,

and {xi}2k(M+1)
i=1 are the collocation and boundary points. Here, the matrix L, which is introduced in

Equation (29), is defined as L = A−1B.
There is a similar process to the one-step method. Lambert provided an explanation for how

to draw the stability region. Readers can refer to [23], Chapter 3. Briefly, we can plot the region of
absolute stability, RL, by the meaning of the first and second characteristic polynomials. If we set,
ĥ = λΔt, the region of absolute stability is a function of the method and the complex parameter ĥ only,
so that we are able to plot the region RL in the complex ĥ-plane.

First of all, we can write Equation (34) as a usual linear multi-step method given by:

k

∑
j=0

αjCn+j = Δt
k

∑
j=0

β jL(Cn+j), (35)

where k is the number of steps required for the method, and αj and β j are constants subject to
the conditions:

αk = 1, |α0|+ |β0| �= 0.
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According to Equations (34) and (35), we have:

k = 1, α0 = −1, α1 = 1, β0 = 1, β1 = 0. (36)

Afterward, the first and second characteristic polynomials are defined as follows, respectively:

ρ(ξ) =
k

∑
j=0

αjξ
j,

σ(ξ) =
k

∑
j=0

β jξ
j,

where ξ ∈ C is a dummy variable. Using the values of k and {αj, β j}1
j=0 in (36), for the proposed

method, we have:
ρ(ξ) = ξ − 1, σ(ξ) = 1.

Then, we plot the boundary of RL, which consists of the contour ∂RL. The contour ∂RL
in the complex ĥ-plane is defined by the requirement that for all ĥ ∈ ∂RL, one of the roots of
π(r, ĥ) := ρ(r)− ĥσ(r) has modulus one, that is, it is of the form r = exp(iθ). Thus, for all ĥ in
∂RL, the identity:

π(exp(iθ), ĥ) = ρ(exp(iθ))− ĥσ(exp(iθ)) = 0,

must hold. This equation is readily solved for ĥ, and we have that the locus of ∂RL is given by:

ĥ = ĥ(θ) =
ρ(exp(iθ))
σ(exp(iθ))

= exp(iθ)− 1. (37)

Finally, we use (37) to plot ĥ(θ) for a range of θ ∈ [0, 2π] and link consecutive plotted points by
straight lines to get a representation of ∂RL.

Therefore, according to Lambert’s book and the above explanations, the stability region of the
three-step and one-step wavelet collocation methods is the circle with center (−1, 0) and radius one.
Therefore, these methods will be stable if the eigenvalues of the corresponding system and Δt satisfy
Re(λjΔt) ∈ [−2, 0].

5. Numerical Examples

In this section, some numerical examples in the form of Equation (6) with initial and boundary
Conditions (7)–(9) are discussed. The error function is defined as the maximum error L∞:

L∞ = max
1≤i≤2k(M+1)

|uexact(xi, tn)− u(xi, tn)|,

where u is the approximate solution, which is obtained by the proposed method and {xi}2k(M+1)
i=1 are

the Gauss–Legendre and boundary points. All programs have been performed in MATLAB 2016.
In general, the numerical results are sensitive to the selection of parameters such as time step Δt,

final time t and parameters of wavelet order M and k. In the following examples, we choose t = 0.5.
Although the one-step wavelet collocation method needs less calculation, the three-step wavelet
collocation method is more successful in finding the numerical solution. Furthermore, we compare
our method with the three-step method proposed in [17]. They used the finite element method with
standard linear interpolation functions for spatial discretization and the same three-step formula for
time discretization. Numerical results show that utilizing Legendre wavelets with these three steps
gives higher accuracy.
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Example 1. Consider Equation (6) with ν = 1/π2, μ = −3, f (x, t) = 3, g(x) = 1 + sin(πx), h0(t) = 1
and h1(t) = 1. The exact solution of this problem is uexact(x, t) = 1 + e−4t sin(πx) [3].

Numerical results for M = 6 and M = 8 are reported in Tables 1 and 2, respectively. The first two rows of
Table 1 show the obtained results for k = 2. As can be seen from these rows, a change in the length of the time step
makes the one-step method fail to find an approximate solution. In other words, the one-step method is unstable
for Δt = 0.01, while the three-step method gives high accuracy. There is a similar analysis for other parameters.

The exact and three-step approximate solutions of u(x, t) are shown in Figure 1, where M = 8 and
k = 2. Figure 2 shows the absolute stability region based on the three-step and one-step methods with the

position of λjΔt, where {λj}2k(M+1)
j=1 are the eigenvalues of corresponding matrix L. This figure is drawn for

M = 6 and Δt = 0.01. As can be seen in this figure, there are some eigenvalues for the one-step method

with Re(λjΔt) /∈ [−2, 0]; however, the stability region of the three-step method includes all {λjΔt}2k(M+1)
j=1 .

Therefore, the one-step method is not stable for Δt = 0.01, while the three-step method is stable.

Table 1. The L∞ error of Example 1 in M = 6.

k Δt Method in [17] One-Step Method Three-Step Method

2 0.001 2.1847×10−3 1.8061×10−4 1.5183 × 10−4

2 0.01 unstable unstable 1.5179 × 10−4

3 0.0001 1.6291 × 10−3 1.3751 × 10−4 1.0575 × 10−4

3 0.003 unstable unstable 1.0510 × 10−4

Table 2. The L∞ error of Example 1 in M = 8.

k Δt Method in [17] One-Step Method Three-Step Method

1 0.001 2.3446 × 10−3 9.0287 × 10−5 2.1781 × 10−5

1 0.006 2.3325 × 10−3 unstable 1.5179 × 10−4

2 0.001 1.1569 × 10−3 6.5330 × 10−5 2.4159 × 10−5

2 0.005 1.1531 × 10−3 unstable 1.8234 × 10−5

Figure 1. The exact and approximate solutions of Example 1 in the case M = 8, k = 2 and Δt = 0.005.
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(a) Stability region (b) Magnification of (a)

Figure 2. Stability region of Example 1 with the position of λjΔt for M = 6, K = 2 and Δt = 0.01. (b) is
obtained from the magnification of (a).

Example 2. In this example, we consider Equation (6) with ν = 1/π2, μ = −4, f (x, t) = 0, g(x) = sin(πx),
h0(t) = 0 and h1(t) = 0. The exact solution of this problem is uexact(x, t) = e−5t sin(πx) [3].

Table 3 gives the comparison between the three-step wavelet collocation method and one-step wavelet
collocation method for M = 8. We can see from this table that the one-step wavelet collocation method tends to
be unstable with a small change in time length. However, the three-step method keeps its stability for bigger Δt.

The exact and approximate solutions for the three-step wavelet collocation method are shown in Figure 3.
The stability region for both three-step and one-step methods by choosing M = 8, k = 1 and Δt = 0.006 is
shown in Figure 4. As can be seen from this figure, there are some eigenvalues in the system of the one-step
collocation method with Re(λjΔt) /∈ [−2, 0]. Therefore, this method is not stable for Δt = 0.006. In general,
for k = 1, the one-step collocation method shows a stable and accurate result if Δt � 0.001, while the three-step
collocation method is stable for Δt � 0.006.

Table 3. The L∞ error of Example 2 in M = 8.

k Δt Method in [17] One-Step Method Three-Step Method

1 0.001 8.6091 × 10−4 7.3255 × 10−5 3.0210 × 10−5

1 0.006 8.5713 × 10−4 unstable 3.0028 × 10−5

2 0.001 7.2449 × 10−4 5.2636 × 10−5 1.6575 × 10−5

2 0.0016 7.2280 × 10−4 unstable 1.6528 × 10−5

Figure 3. The exact and approximate solutions of Example 2 in the case M = 8, k = 2 and Δt = 0.0016.

41



Axioms 2018, 7, 70

(a) Stability region (b) Magnification of (a)

Figure 4. Stability region of Example 2 with the position of λjΔt for M = 8, K = 1 and Δt = 0.006.
(b) is obtained from the magnification of (a).

Example 3. For the last example, consider Equation (6) with ν = 1/π2, μ = 0, f (x, t) = sin(πx),
g(x) = sin(πx) + cos(πx), h0(t) = e−t and h1(t) = −e−t. The exact solution of this problem is
uexact(x, t) = sin(πx) + e−t cos(πx) [3].

Table 4 shows the maximum error for some different values using the one-step and three-step wavelet
collocation methods. It is clear from this table that the one-step wavelet collocation method is unstable, while the
three-step wavelet collocation method has a more precise response.

Figure 5 shows the three-step approximate solution and the exact solution. The stability region for both
three-step and one-step methods by choosing M = 8, k = 1 and Δt = 0.006 is shown in Figure 6.

Table 4. The L∞ error of Example 3 in M = 8.

k Δt Method in [17] One-Step Method Three-Step Method

1 0.001 5.4341 × 10−3 3.7505 × 10−4 3.7552 × 10−4

1 0.006 6.3181 × 10−3 unstable 3.6961 × 10−4

2 0.001 4.5033 × 10−3 1.7750 × 10−4 1.6859 × 10−4

2 0.0016 4.2377 × 10−3 unstable 1.6772 × 10−4

Figure 5. The exact solution of Example 3 in the case M = 8, k = 2 and Δt = 0.0016.

42



Axioms 2018, 7, 70

(a) Stability region (b) Magnification of (a)

Figure 6. Stability region of Example 3 with the position of λjΔt for M = 8, K = 1 and Δt = 0.006.
(b) is obtained from the magnification of (a).

6. Conclusions

In this paper, we proposed a new numerical method for a linear time-dependent partial
differential equation. We called this method the three-step wavelet collocation method. In this
method, time discretization was performed prior to the spatial discretization. These steps are
equivalent to the third-order Taylor expansion; therefore, this method is third-order accurate in time.
For spatial discretization, Legendre wavelets were used, which resulted in good spatial accuracy and
spectral resolution. A comparison between the proposed method and other methods was presented.
The theoretical aspect of absolute stability was discussed. This stability is based on λjΔt, where {λj}
are the eigenvalues of the corresponding system. Numerical performance shows that the three-step
method leads to an effective time-accurate scheme with an improved stability property.

The proposed method can be easily implemented for other cases of time-dependent partial
differential equations. For example, extending our results with Legendre wavelets in solving nonlinear
partial differential equations or fractional equations is worthwhile for future contribution.
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Abstract: In this article, I consider local solutions of the 3D Navier–Stokes equations and its properties
such as an existence of global and smooth solution, uniform boundedness. The basic role is assigned
to a special invariant class of solenoidal vector fields and three parameters that are invariant with
respect to the scaling procedure. Since in spaces of even dimensions the scaling procedure is a
conformal mapping on the Heisenberg group, then an application of invariant parameters can be
considered as the application of conformal invariants. It gives the possibility to prove the sufficient
and necessary conditions for existence of a global regular solution. This is the main result and one
among some new statements. With some compliments, the rest improves well-known classical results.

Keywords: Navier–Stokes equations; global solutions; regular solutions; a priori estimates; weak
solutions; kinetic energy; dissipation

1. Introduction

During the last century, the Navier–Stokes equations attracted very much attention. The first
essential steps in this way were offered by C. Oseen [1], F. K. G. Oldquist [2], J. Leray [3–5], and
E. Hopf [6]. Later, the Cauchy problem and the boundary value problem were actively studied by
many authors (see, for example, [7,8], the review [9–17] and etc.). The main objects and tools of these
works were weak solutions or fix points of integral operators. Here, a special case is connected with
the existence problem of a global and regular solution in the 3D Cauchy problem. In response to
the new setting of this task by Ch. Fefferman in 2000 (see [18]), O.A. Ladyzhenskaya wrote in her
review [9] that she would put the main question otherwise: “Do or don’t the Navier–Stokes equations
give, together with initial and boundary dates, the deterministic description of fluid dynamics?”

Then, this problem is more difficult and more interesting from the physical point of view.
Therefore, I introduced some invariants for studying solutions properties. At least, it is natural
for applications because invariants are very important and strong tools. Moreover, these invariants
didn’t apply earlier.

Let us describe them now. The first invariant connected with the Cauchy problem that provided
initial data belongs to a special class C∞

6/5, 3/2 of solenoidal vector fields vanishing at infinity. Here,
outer forces are trivial. Then, the class C∞

6/5, 3/2 is invariant (Theorem 2). This is a new result.
The second invariant is a special parameter λ (see (68)) which is connected with a velocity

changing of E2, where E is a kinetic energy of a fluid flow. If λ ≥ 1 or kinetic energy at a special
moment is not less any mean depending on λ for λ < 1 ( i.e., changing of E2 at moment t = 0 is
negligible), then an ideal, global and smooth motion is determined. In other words, a global regular
solution exists (Theorem 7). This is an essential and qualitative improvement of the classical result
together with a new a priori estimate given by Theorems 8–10. These theorems are new results
in principle.

Axioms 2019, 8, 41; doi:10.3390/axioms8020041 www.mdpi.com/journal/axioms45



Axioms 2019, 8, 41

Finally, the other parameters ε, 0 < ε < 1, (see formula (87)) and μ, 1 < μ < λ−4, or μ = ∞
may also be very useful (see formula (69), Lemma 50). The first of them is a dissipation coefficient of
kinetic energy . The last parameter holds a time interval of a solution regularity. These three numerical
characteristics λ, ε, μ are invariant with respect to the scaling procedure.

By the way, the first attempts to estimate invariant norms were implicitly undertaken in [12,16].
An introduction of a special invariant class of vector fields and invariant parameters gives the

main idea for the proof of basic results. The first step is connected with a change of the construction
offered in [19]. These changes concern solution approximations. The special kind of them gives
many uniform a priori estimates. Approximations of a velocity function are built on a fundamental
system with a condition for Laplacians of approximative solutions. They must be a finite part of
the Fourier series. Simultaneously, approximations of a pressure function are being built. Jointly
with a hydrodynamical potential, these approximations give the following facts and properties of
local solutions:

(1) solutions are bounded with respect to a uniform norm and therefore it belongs to any class Lp, q;
(2) there is a universal time interval [0, T0) where bounded solutions exist;
(3) more exact necessary conditions of a hypothetical turbulence phenomenon if it is;
(4) a lower estimate of the kinetic energy which influences an existence of a global smooth solution.

The last two items are very important. If dissipation of kinetic energy is large (close to the unit),
then blow up is probable.

To the structure of the paper. In the first part (Section 2), there are considered solutions’ properties
of the Cauchy problem in a local form if initial data is smooth enough. Here, there is given a
modification of classical results with some supplements (see Theorem 1).The rest of this part contains
technical lemmas which are proved by application of hydrodynamic potentials and multiplicative
inequalities from Appendix (Appendix A). In the second part (Sections 3 and 4), there are existence
conditions of global solutions studied in this problem, conditions for local solutions’ extensions if the
kinetic energy is small and close to the minimum. A more precise hypothetic blow up time interval is
found. Here, three basic parameters λ, μ, ε are very useful.

The third part (Sections 5 and 6) contains the proof of main statements (Theorems 7–9), which are
based on properties of invariant parameters λ, μ, ε.

I think, in this way, it is convenient to remove any restrictions on a smoothness in some contrast
to the traditional way. The main idea is connected with an invariant form of an a priori estimate for
gradient norms of a velocity. In addition, other norms are estimated in class L6 and, after that, it is
done in class L2. In particular, it is shown that there is a bad solution of a class L6 with some good
properties. As the corollary, this solution has many uniformly bounded norms with respect to time
argument. Only after that, by routine calculations, we prove the bad solution from above belongs to a
class L2. Precisely, this step distinguishes from classical way for the second time (see [7]).

In the considered problem, a boundedness of solutions depends on a smoothness of initial data.
At least, initial data from the Sobolev class W3

2 gives the same in principle.
The offered construction doesn’t permit diminishing the index of smoothness.
In the final (Section 7), we explain the principal difference between the Navier–Stokes equations

in space and plane.
A part of local results in modification (Section 2) and invariants as tools (Section 4) were announced

by author in [20–22].
NOTATION. Now, let us consider the Cauchy problem (n = 3):

Dtuk +
n

∑
i=1

uiuk, i = νΔuk − P, k, k = 1, 2, . . . , n, (1)

divu = 0, u(0, x) = ϕ(x), (2)
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where u is a velocity of flow, P is a pressure function, symbols

Dtu =
∂u
∂t

, uk, i =
∂uk
∂xi

, uk, ij =
∂2uk

∂xi∂xj
, ..., P , k =

∂P
∂xk

indicate a partial differentiation or differentiation in distributions, � is the Laplace operator, and ν

is a positive constant (viscosity coefficient). A mapping ϕ has all derivatives and satisfies conditions
of averaged growth: ϕ ∈ L6/5(R3), ϕ, i ∈ L3/2(R3). The other derivatives belong to classes Lr(R3)

for any r > 1. Furthermore, this class is denoted by symbol C∞
6/5, 3/2. A class C∞

0 (Rn) is the class of
infinitely smooth mappings with a compact support. A norm in a space Lp(Ω) is defined by formula:

‖v‖p =
(∫

Ω
|v(x)|pdx

)1/p
.

A mixed norm is defined by equality:

‖u‖p, q =
(∫ T

0

(∫
Ω
|u(t, x)|pdx

) q
p
dt
) 1

q
.

A symbol Dαv denotes a partial differentiation or distributions with respect to a multi–index α.
An order of the derivative is indicated by |α|. Jacobi matrix of a mapping v with respect to spatial
variables is denoted by ∇v . Its modulus is

|∇v| =
(
∑
i, j

v2
i, j

) 1
2
. (3)

Functions’ properties from the Sobolev classes Wl
p(Ω) are given, for example, in [23–25]. A norm

in this functional space is defined by

‖v‖Wl
p(Ω) = ∑

|α|≤l
‖Dαv‖p.

Let v be a mapping that is determined on the whole space. For the Riesz potential, we
apply notation:

Iα(v)(x) =
1

γ(α)

∫
Rn

v(y)dy
|x − y|n−α

, (4)

where γ(α) = π
n
2 Γ( α

2 )
/

Γ( n−α
2 ) and Γ is the Euler gamma–function. The properties of these potentials

can be found in [24].
The agreement about summation. Everywhere in this article, the repeated indices give a summation

if it is not done reservation specially. For example,

uiuj, i =
n

∑
i=1

uiuj, i, ui, juj, i =
n

∑
i,j=1

ui, juj, i, uiuj, i�uj =
n

∑
i,j=1

uiuj, i�uj,

etc.
Furthermore, ST = [0, T]× R3. A number T0 we define by formula:

T0 =
(9

4

)4 ν3

‖∇ϕ‖4
2

. (5)

We apply the definition of a weak solution given in [7] everywhere.
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2. Preliminaries. Boundedness and Smoothness Properties of Local Solutions in the Cauchy Problem

Here, with some compliments, a local result described by Theorem 1 is basic in this section. The
rest contains only technical statements.

Theorem 1. Let T0 be a number from formula (5) and a mapping ϕ ∈ C∞
6/5, 3/2. Then, on the set ST0 , there

exist weak solutions u and P of problems (1) and (2) with the following properties:

(1) mappings u and P uniformly continuous and bounded on the set ST for every number T, 0 < T < T0;
(2) the solution u belongs to Sobolev classes W2

2 (ST) and W1
6 (ST) for every number T, 0 < T < T0,

moreover, all norms
‖u‖p, ‖∇u‖p, ‖Dtu‖p, ‖u, ij‖p, ‖∇Dtu‖2

are uniformly bounded in spaces Lp(R3), 2 ≤ p ≤ 6, by a constant C = C(ν, ϕ, T) depending on ν, ϕ

and T only, in addition ‖u‖2 ≤ ‖ϕ‖2;
(3) gradients ∇ui, i = 1, 2, 3, ∇P are bounded on the set ST for every number T, 0 < T < T0;
(4) the solution P satisfies uniform estimates:

‖∇P‖q ≤ C,
3
2
< q < ∞, ‖∇DtP‖q ≤ C, ‖P, ij‖q ≤ C,

for all numbers q, 3
2 < q ≤ 3, and t ∈ [0, T], T < T0, with constants C depending on ν, ϕ, T and

q only;
(5) solutions u and P are classical solutions that is for any T < T0 they belong to the class C∞((0, T0)×

R3)
⋂

C(ST).

The proof of the theorem is given to the end of this section. We note items 1, 3, 4 compliment
well-known Ladyzhenskaya’s results (see [7]). Item (2) contains new uniform estimate for norms of
derivatives. Hence, it follows a boundedness of weak solutions and a finiteness of its mixed norms.
Moreover, we have an existence of weak solution with required properties on the interval [0, T0) with
the finite length. To the studying of the smoothness property for weak solutions, the mixed norms
were applied by O. Ladyzhenskaya in [26] (see, also [7]). They were applied by other authors (see,
for example, [8,10,14]). Item (5) is a particular case from [27]. However, from this theorem, a deeper
result follows (see Theorem 7).

2.1. A Priori Estimates of Gradients’ Norms

Lemma 1. Suppose that a mapping w : ST0 → R3 belongs to a class C2 and w(0, x) = ϕ(x). If, for
every t ∈ [0, T0), Laplacian supports are subsets of some ball with a fixed radius and w ∈ L6(R3), ∇w ∈
L2(R3)

⋂
L6(R3), then for all mappings w satisfying condition:

1
2

d
dt
‖∇w‖2

2 + ν‖�w‖2
2 =

∫
R3

wiwk, i�wkdy, (6)

the following estimate holds:

‖∇w‖2 ≤ ‖∇ϕ‖2(
1 − t/T0

)1/4

for all t ∈ [0, T0), where T0 from formula (5).

Proof. We take from Corollary A4 the second inequality. Then, from (6), we obtain:

1
2

d
dt
‖∇w‖2

2 + ν‖�w‖2
2 ≤ a1‖∇w‖3/2

2 ‖�w‖3/2
2 . (7)
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Let y = ‖�w‖2/‖∇w‖3
2. Then, (7) can be rewritten in the form:

1
2‖∇w‖6

2

d
dt
‖∇w‖2

2 ≤ a1y3/2 − νy2.

The maximal mean on the right-hand side is 27a4
1

256ν3 . Therefore, integrating the inequality

1
2‖∇w‖6

2

d
dt
‖∇w‖2

2 ≤ 27a4
1

256ν3

over the interval [0, t], we get:
1

‖∇ϕ‖4
2
− 1

‖∇w‖4
2
≤ 27a4

1
64ν3 t.

Furthermore, we take a number a1 from Corollary A4 and obtain the required estimate.

Lemma 2. Let T0 be a constant from Lemma 1. Assume a mapping w : ST0 → R3 belongs to a class C3 and
w(0, x) = ϕ(x), Dtw(0, x) = ψ(x). Suppose that, for every t, there are fulfilled conditions:

(1) Laplacian supports �w, �Dtw are subsets of a ball with a fixed radius;
(2) mappings

w, Dtw ∈ L6(R3), ∇w, ∇Dtw ∈ L2(R3)
⋂

L6(R3);

(3) with constants k1, l the inequalities hold:

‖∇w‖2 ≤ k1‖∇ϕ‖2,
∫ t

0
‖�w‖2

2dt ≤ l;

(4) the equality

1
2

d
dt
‖∇Dtw‖2

2 + ν‖�Dtw‖2
2 =

∫
R3

(
Dtwi · wk, i + wiDtwk, i

)
�Dtwkdx (8)

is true. Then, for every segment, [0, T] where T < T0 the estimate ‖∇Dtw‖2 ≤ k2‖∇ψ‖2 holds with a constant
k2 which depends on ν, T, k1, l, ‖∇ϕ‖2 only.

Proof. The integral on the right-hand side in formula (8) we rewrite with two integrals J1 and J2.
Applying Corollary A4, we make estimates for every integral. In integral J1, a triple of mappings
u, v, w is the triple Dtw, w, Dtw. In integral J2, a required triple is the triple w, Dtw, Dtw. Therefore,
condition (3) yields estimates:

J1 ≤ a‖∇Dtw‖2‖∇w‖1/2
2 ‖�w‖1/2

2 ‖�Dtw‖2

≤ a
√

k1‖∇ϕ‖1/2
2 ‖∇Dtw‖2‖�w‖1/2

2 ‖�Dtw‖2,

J2 ≤ a‖∇w‖2‖∇w‖1/2
2 ‖�w‖1/2

2 ‖ ≤ ak1‖∇ϕ‖2‖∇Dtw‖1/2
2 ‖�w‖3/2

2 .

Hence, from (8), we get:
1
2

d
dt
‖∇Dtw‖2

2 + ν‖�Dtw‖2
2 ≤ (9)

a
√

k1‖∇ϕ‖1/2
2 ‖∇Dtw‖1/2

2 ‖�Dtw‖2

(
‖�w‖1/2

2 +
√

k1‖∇ϕ‖1/2
2 ‖�Dtw‖1/2

2

)
.

Let g(t) = ‖∇Dtw‖2, h(t) = ‖�Dtw‖2/g(t). Then, formula (9) can be transformed to the formula:

1
2

d
dt

ln g(t) + νh2(t) ≤ a
√

k1‖∇ϕ‖1/2
2 ‖�w‖1/2

2 h(t) + ak1‖∇ϕ‖2h3/2(t).
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Let us integrate over segment [0, t] this inequality. For the next step, we apply to each term the Hölder
inequality for three and two factors, respectively getting quantities h2(t) and ‖�w‖2

2. Hence, from
condition (3), we obtain:

1
2

ln
g(t)
g(0)

+ ν
∫ t

0
h2(t)dt ≤ a

√
k1‖∇ϕ‖2

4
√

t
(∫ t

0
‖�w‖2

2dt
)1/4(∫ t

0
h2(t)dt

)1/2
+

+ak1‖∇ϕ‖2
4
√

t
(∫ t

0
h2(t)dt

)3/4
≤ a

√
k1‖∇ϕ‖2

4√lt
√

y + ak1‖∇ϕ‖2
4
√

ty3/4,

where y =
∫ t

0 h2(t)dt. Let M be a maximal mean of the function

F(y) = a1
√

y + a2y3/4 − νy,

where a1 = a
√

k1‖∇ϕ‖2
4
√

lt, a2 = ak1‖∇ϕ‖2
4
√

t. Then, the last estimates give g(t) ≤ e2Mg(0). From
the definition of function g, we have g(0) = ‖∇ψ‖2.

2.2. A Priori Estimates of Laplacian Norms

Lemma 3. Let w, T0 be a mapping and a number from Lemma 1. Then, for every number T, 0 < T < T0,
there exists a constant l = l(ν, ϕ, T) such that

∫ t

0
‖�w‖2

2dt ≤ l

for all t ∈ [0, T].

Proof. We transform inequality (7) applying the estimate from Lemma 1. Then,

1
2

d
dt
‖∇w‖2

2 + ν‖�w‖2
2 ≤ a

‖∇ϕ‖3/2
2

(1 − t/T0)3/8 ‖�w‖3/2
2 .

This inequality we integrate over the segment [0, t]. Then, we estimate the right-hand side applying
the Hölder inequality and underlining the integral with the term ‖�w‖2

2. If β(t) =
∫ t

0 ‖�w‖2
2dt, then

we get
1
2
‖∇w‖2

2

∣∣∣t
0
+ νβ(t) ≤ a‖∇ϕ‖3/2

2 β3/4(t)
(∫ t

0
(1 − t/T0)

−3/2dt
)1/4

.

The direct calculations of the integral on the right-hand side and the estimate

1√
1 − b

− 1 ≤ b√
1 − b

give the inequality:

1
2
‖∇w‖2

2 + νβ(t) ≤ a‖∇ϕ‖3/2
2 β3/4(t)

4
√

2t
(1 − t/T0)1/8 +

1
2
‖∇ϕ‖2

2.

Take out the first term on the left hand. Then, the required estimate for function β(t) will be obvious.
If β(t) ≤ ‖∇ϕ‖2, then the estimate is acceptable. If β(t) ≥ ‖∇ϕ‖2, then we have:

νβ(t) ≤ a‖∇ϕ‖3/2
2 β3/4(t)

4
√

2t
(1 − t/T0)1/8 +

1
2
‖∇ϕ‖5/4

2 β3/4(t).

Hence, it follows the lemma.
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Lemma 4. Let w be a mapping from Lemma 2 and a number T0 from Lemma 1. Then, for every number T,
0 < T < T0, there exists a constant l1 = l1(ν, ϕ, T) such that

∫ t

0
‖�Dtw‖2

2dt ≤ l1

for all t ∈ [0, T].

Proof. For the mapping w, inequality (9) is fulfilled. Its right-hand side we estimate relying on
Lemma 2. Then,

1
2

d
dt
‖∇Dtw‖2

2 + ν‖�Dtw‖2
2 ≤ (10)

a
√

k1k2‖∇ϕ‖1/2
2 ‖∇ψ‖2‖�w‖1/2

2 ‖�Dtw‖2 + ak1
√

k2‖∇ϕ‖1/2
2 ‖∇ψ‖2‖�Dtw‖3/2

2 .

Let C be a maximal coefficient of factors

‖�w‖1/2
2 ‖�Dtw‖2, ‖�Dtw‖3/2

2 .

Therefore, from formula (10), we have inequality:

1
2

d
dt
‖∇Dtw‖2

2 + ν‖�Dtw‖2
2 ≤ C‖�w‖1/2

2 ‖�Dtw‖2 + C‖�Dtw‖3/2
2 .

This inequality we integrate over segment[0, t] and its right-hand side we estimate applying the Hölder
inequality and underlining terms with norms ‖�Dtw‖2. If

β1(t) =
∫ t

0
‖�, Dtw‖2

2dt

then we have the estimate:

1
2
‖∇Dtw‖2

2

∣∣∣t
0
+ νβ1(t) ≤ C 4

√
t
(∫ t

0
‖�w‖2

2dt
)1/4

β1/2
1 (t) + C 4

√
tβ3/4

1 (t).

We increase the right side using Lemma 3 and deduce the left side taking out the first positive term.
Then, we obtain:

νβ1(t) ≤ C 4√ltβ1/2
1 (t) + C 4

√
tβ3/4

1 (t) +
1
2
‖∇ψ‖2

2.

Hence, we get the lemma in the same way as Lemma 3. If β1(t) > ‖∇ψ‖2, then, from

‖∇ψ‖2
2 < β1/2

1 (t)‖∇ψ‖3/2
2 ,

we obtain the lemma inequality. If β1(t) ≤ ‖∇ψ‖2, then the estimate is acceptable.

2.3. Basic Space of Solenoidal Vector Fields and Orthogonal Systems

Let us consider solenoidal vector fields ϕ : R3 → R3 from class C∞ with a compact support of
�ϕ. A closure of this class is defined by the norm:

‖ϕ‖ = ‖ϕ‖6 + |∇ϕ‖2 + ∑
i, j

‖ϕ, ij‖2. (11)

We denote its by J2
0 (R3). From Lemmas A1 and A2, it follows that elements u ∈ J2

0 (R3) are
represented by the Riesz potentials; moreover, u, ∇u ∈ L6(R3). Otherwise, each element is defined
uniquely by its Laplacian. The class J2

0 (R3) is a separable space as a subspace of the Sobolev classes
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Wl
p(R3), 1 < p < ∞. Therefore, there exists a countable system (ψn)n=1,... of infinite smooth vector

fields satisfying conditions:

(1) div ψn = 0;
(2) supports of �ψn are compact sets;
(3) the closure of a linear span in norm (11) coincides with the space J2

0 (R3).

Now, we apply the Sonin–Shmidt orthogonalization to the fundamental system (ψn)n=1,... and
construct a countable system of mappings (bn)n=1,..., which would be with the orthogonality property
of Laplacians in the space L2(R3). That is, the scalar product

(�bn,�bm) =
∫

R3
�bn

i �bm
i dx = δij, (12)

where δij is Kronecker’s symbol. Then, every mapping bn is a finite linear combination of mappings
(ψk). Therefore, a support of �bn is a compact set. Let

�bn = an. (13)

The system (an) is complete for the space J2
0 (R3); that is, the following proposition is true.

Lemma 5. If in the space L2(R3) for a some vector field u ∈ J2
0 (R3) the scalar product (u, an) = 0 for every

n = 1, 2, . . . then u = 0.

Proof. From chosen mappings an, the equality (u,�ψn) = 0 for each element of the fundamental
system (ψn)n=1,... follows. The Stokes theorem gives

∫
|x|≤r

uk�ψn
k dx = −

∫
|x|≤r

uk, iψ
n
k, idx +

∫
|x|=r

ukψn
k, i

xi
r

dS.

The integral over the sphere vanishes as r → ∞. Actually, from Corollary A2 of Lemma A2, we have:

∣∣∣ ∫
|x|=r

ukψn
k, i

xi
r

dS
∣∣∣ ≤ C1

r2

∫
|x|=r

|u(x)|dS.

Furthermore, we apply Lemma A4 (α = 2, p = 6) taking into consideration a continuity of u. The
passage to the limit yields the equality (u,�ψn) = −(∇u,∇ψn) or (∇u,∇ψn) = 0. We take a
sequence of finite and smooth mappings

(ηn)n=1,..., ηn ∈ J2
0 (R3), ηn =

n

∑
i

βiψ
i,

which converges to the vector field u in the space J2
0 (R3). Hence, (∇u,∇u) = 0. The summability of u

in the space L6(R3) proves lemma equality.

Remark 1. To the fundamental system of mappings (ψn) we can adjoin any solenoidal vector field
ϕ ∈ C∞

0 (R3), ϕ �= 0 or any vector field from the class J2
0 (R3) as the first element of this system.

2.4. Successive Approximations of Solutions and Its Estimates: Velocity

Let (an
1,...) be an orthonormal system of mappings in the space L2(R3) constructed above with the

completeness property in J2
0 (R3) and conditions (12) and (13). Moreover, an ∈ C∞

0 (R3) for all n and
a1 = �ϕ

‖�ϕ‖2
where a vector field ϕ ∈ C∞

0 (R3) is initial data in problems (1) and (2).
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For successive approximations vn, we define changing Ladyzhenskaya’s construction in ([7],
p. 197). Set

�vn(t, x) =
n

∑
q=1

cqn(t)aq(x). (14)

Then, an approximative solution vn is built as a hydrodynamical potential

vn(t, x) = − 1
4π

n

∑
q=1

cqn(t)
∫

R3

aq(y)dy
|x − y| . (15)

Functions cqn are solutions of a system of differential equations:

(
Dtvn, aq

)
− ν

(
�vn, aq

)
+

∫
R3

vn
i vn

k, ia
q
kdx = 0, q = 1, 2 . . . , n, (16)

with initial data: cqn(0) = ‖�ϕ‖2δq1, where δqr is Kronecker’s delta. Hence,

�vn(0, x) = �ϕ(x), vn(0, x) = ϕ(x). (17)

Now, we find an existence interval of a smooth solution in system (16). For every equation
from (16), we multiply by functions cqn and sum them. As a result, we have:

(
Dtvn,�vn

)
− ν|�vn‖2

2 +
∫

R3
vn

i vn
k, i�vn

k dx = 0.

From Corollary A3, we get:

(
Dt∇vn,∇vn

)
+ ν‖�vn‖2

2 =
∫

R3
vn

i vn
k, i�vn

k dx. (18)

From Lemmas A1 and A2 vector fields vn ∈ L6(R3), ∇vn ∈ L6(R3)
⋂

L2(R3). Equalities (17)
and (18) are conditions of Lemma 1 for mappings vn . Therefore, in system (16), an existence of smooth
solutions on some interval [0, t0) is guaranteed by well-known theorems for ordinary differential
equations. By Lemma 1 (see estimates), these solutions can be extended on the interval [0, T0) where
T0 is the constant in Lemma 1 (see also (5)). Thus, we proved the following statement.

Lemma 6. Let [0, T0) be an interval from Lemma 1. Then, for every t ∈ [0, T0), approximations vn constructed
by formulas (14) and (16) satisfy conditions:

(1) ‖∇vn‖2 ≤ ‖∇ϕ‖2

(
1 − t/T0

)−1/4
,

(2) ‖∇vn‖6 ≤ A‖�vn‖2,

where a constant A from Lemma A1.

Proof. Item (1) follows from Lemma 1. Item (2) is the corollary of the second representation in (A1),
Lemma A1 and arguments in the proof of Corollary A4.

Lemma 7. Let [0, T0) be a constant of Lemma 1. Then, for every segment [0, T], T < T0, approximations vn,
which are constructed by formulae (14)–(16), satisfy inequalities:

(1) ‖∇Dtvn‖2 ≤ k2‖∇(ν�ϕ − ϕi ϕ, i)‖2, where a number k2 = k2(ν, ϕ, T) depends on ν, ϕ, T only;
(2) ‖∇Dtvn‖6 ≤ A‖�Dtvn‖2 with the constant A from Lemma A1.
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Proof. The item (2) can be proved in the same way as the estimate (2) from Lemma 6. Let us prove item
(1). We differentiate equalities (16) with respect to t. Then, from each, we multiply by the derivative
c′qn(t) and add together in final. As a result, we have

(
Dttvn,�Dtvn

)
− ν‖�Dtvn‖2

2 +
∫

R3

(
Dtvn

i vn
k, i + vn

i Dtvn
k, i

)
�Dtvn

k dx = 0.

A support of �Dtvn is a compact set. The Stokes theorem and Corollary A3 give:

(
Dtt∇vn,∇Dtvn

)
+ ν‖�Dtvn‖2

2 =
∫

R3

(
Dtvn

i vn
k, i + vn

i Dtvn
k, i

)
�Dtvn

k dx. (19)

From Lemmas A1 and A2, we have

vn, Dtvn ∈ L6(R3), ∇vn, Dt∇vn ∈ L6(R3)
⋂

L2(R3).

By Lemma 3, the vector field vn satisfies the inequality:

∫ t

0
‖�vn‖2

2dt ≤ l(ν, ϕ, T).

Then, mappings vn satisfy Lemma 2. This implies:

‖∇Dtvn‖2 ≤ k2‖∇Dtvn(0, x)‖2 (20)

with some constant k2 = k2(ν, ϕ, T).
Let us estimate the right-hand side of (20). In (16), we take t = 0. Then, we multiply them by

numbers c′qn(0) respectively and add them together. As a result, formula (17) gives

(
Dtvn(0, x),�Dtvn(0, x)

)
−

(
�Dtvn(0, x), T1(x)

)
= 0, (21)

where
T1 = ν�ϕ − ϕi ϕ, i. (22)

We move derivatives with the factor �Dtvn in (21) using Corollary A3 and a finiteness of mapping ϕ.
Then, we obtain

‖∇Dtvn(0, x)‖2
2 =

(
∇Dtvn(0, x),∇T1(x)

)
.

Apply Cauchy–Bunyakovskii’s inequality. Hence, we get the required estimate

‖∇Dtvn(0, x)‖2 ≤ ‖∇T1(x)‖2.

Thus, from (20), a lemma follows.

Lemma 8. Let T0 be a constant of Lemma 1. Then, on every segment [0, T], 0 < T < T0, approximations vn

from formulae (14)–(16) satisfy conditions:

(1) ‖�vn‖2 ≤ C = C(ν, ϕ, T);
(2)

∫ t
0 ‖�Dtvn‖2

2dt ≤ l1;

where constants C and l1 depend on ν, ϕ, T only.

Proof. Condition (1) follows from (18). We apply the Cauchy–Bunyakovskii inequality and estimates
(1) of Lemmas 6 and 7 to the scalar product

(
Dt∇vn,∇vn). Then, |

(
Dt∇vn,∇vn)| ≤ C1(ν, ϕ, T) = C1.

The right-hand side from (18) is estimated by applying Corollary A4, where we take the triple vn, vn, vn.
From (18), we have

ν‖�vn‖2
2 ≤ C1 + a‖∇vn‖3/2

2 ‖�vn‖3/2
2 .
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Apply again estimate (1) of Lemma 6. Then,

ν‖�vn‖2
2 ≤ C1 + C2‖�vn‖3/2

2 .

This implies condition (1). Vector fields vn satisfy Lemma 2 (see the proof of Lemma 6). Then, Lemma 4
gives estimate (2).

Lemma 9. Let T0 be a constant of Lemma 1. Then, approximations vn from (14)–(16) are bounded by a constant
C on the set ST for every T < T0 where a constant C depends on ν, ϕ, T only.

Proof. For approximation vn, we use integral representation (A2). One should replace integration over
whole space by integrations over ball |y − x| ≤ 1 and its complement. Then, vn(t, x) = 1

4π (J1 + J2).
Every term is estimated by application of Hölder’s inequality. We have

|J1| ≤ ‖∇vn‖6

(∫
|y−x|≤1

dy
|x − y|2,4

)5/6
, |J2| ≤ ‖∇vn‖2

(∫
|y−x|≥1

dy
|x − y|4

)1/2
.

Hence,
|J1| ≤ C1|∇vn‖6, |J2| ≤ C2|∇vn‖2,

where C1, C2 are universal constants. The norm ‖∇vn‖6 is estimated in two steps. In the first step,
we apply inequality 2) from Lemma 6. After that, we use inequality (1) from lemma 8. To estimate
another norm ‖∇vn‖2, we can apply inequality (1) from Lemma 6. Hence, we get a boundedness of all
vector fields vn by a general constant.

Lemma 10. Let T0 be a constant of Lemma 1. Then, for every exponent p ∈ [3/2, 6] and every segment
[0, T], T < T0, approximations vn from formulae (14)–(16) satisfy the inequality ‖vn

i vn
, i‖p ≤ C with a

constant C depending on ν, ϕ, T, p only.

Proof. If p = 6, then the statement follows from Lemma 9 and estimates by item (2) of Lemma 6 and
item (1) of Lemma 8. If p = 3/2, then we apply Hölder’s inequality. Hence, we have ‖vn

i vn
, i‖3/2 ≤

‖vn‖6‖∇vn‖2. Estimates of Lemma 6 and Lemma 8 prove the lemma for this exponent. An intermediate
exponents is verified by Lemma A5.

Lemma 11. Let T0 be a constant of Lemma 1. Then, for all t ∈ [0, T0), approximations vn from
formulae (18)–(20) satisfy inequalities

‖vn
, ij‖2 ≤ M|�vn‖2, ‖Dtvn

, ij‖2 ≤ M|�Dtvn‖2,

i, j = 1, 2, 3, with a universal constant M.

Proof. The statement of lemma is the corollary well-known results about integral differentiation with
a weak singularity (see [28]). From the second representation of Lemma A2, we obtain two equalities:
vn

, ij = kij�vn + Tij(�vn), Dtvn
, ij = kij�Dtvn + Tij(�Dtvn), where kij are some constants, Tij are

singular integral operators. Its boundedness in the space L2 gives the required estimates.

Lemma 12. Let T0 be a constant of Lemma 1. Then, for every segment [0, T], T < T0, for all exponents
p ∈ [1, 3/2] and each triple i, j, k = 1, 2, 3 approximations vn from (14)–(16) satisfy inequalities:

(1) ‖vn
i, jv

n
j, ik‖p ≤ C;

(2) ‖vn
i, jDtvn

j, ik‖p ≤ C‖�Dtvn‖2;

(3) ‖Dtvn
i, jv

n
j, ik‖p ≤ C‖�Dtvn‖3/p−2

2 ;
(4) ‖vn

i, jDtvn
j, i‖p ≤ C;
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where constants C depend on ν, ϕ, T, p only.

Proof. Apply Hölder’s inequality. Then,

∫
|hi, jgj, ik|pdx ≤

(∫
|hi, j|2p/(2−p)dx

)1−p/2(∫
|gj, ik|2dx

)p/2
. (23)

Denote h = vn, g = vn. An exponent 2p/(2 − p) ∈ [2, 6]. Then, the first factor in (23) is estimated
by Lemma 1 with an assumption r = 2, s = 6. Uniform estimate (1) follows from Lemma 6 and
Lemma 8. In the same way taking a pair h = vn, g = Dtvn we get estimate (2). Now, denote
h = Dtvn, g = vn. To the first factor from the right-hand side of (23) we apply Lemma A5 relying on
r = 2, s = 6, t = 3 − 3/p. The norm ‖∇Dtvn‖2 has a uniform estimate with respect to t and n by
Lemma 7. Apply the both estimates of this lemma and obtain estimate (3). The other estimates (4) and
(1) we prove in the same way.

2.5. Successive Approximations of Solutions and Its Estimates: Pressure

Let vn be an approximation from formulae (14)–(16). Fix T, T < T0 where T0 is the constant from
Lemma 1. Consider a hydrodynamical potential

Pn(t, x) =
1

4π

∫
R3

vn
i, j(t, y)vn

j, i(t, y)dy

|x − y| . (24)

A product vn
i, jv

n
j, i ∈ L1(R3)

⋂
L3(R3). This follows from estimates of Lemma 6, Lemma 8 and

Hölder’s inequality. By Lemma A4 on every segment [0, T], we have:

‖vn
i, jv

n
j, i‖p ≤ C(ν, ϕ, T, p) = C, 1 ≤ p ≤ 3. (25)

Lemma A1 implies a uniform estimate with respect to t and n:

‖Pn‖q ≤ A(p, q)C(ν, ϕ, T, p) (26)

for any exponent q > 3, where 1
q = 1

p − 2
3 .

Let us decompose integral in (24) by two integrals J1 and J2: over ball |y − x| < 1 and over its
exterior. Every integral we estimate by Hölder’s inequality or a simple estimation. Then,

4π J1 ≤ ‖vn
i, jv

n
j, i‖3

(∫
|y−x|<1

dy
|x − y|1,5

)2/3
≤ C1, 4π J2 ≤ ‖vn

i, jv
n
j, i‖1 ≤ C2.

Thus, with some constant C = C(ν, ϕ, T) on the set ST for all n, we obtain:

|Pn(t, x)| ≤ C. (27)

Function Pn has derivatives in distributions:

Pn
, i, DtPn, DtPn

, i, Pn
, ij, DtPn

, ij.

The differentiation of the integral from (24), the summation and a simple estimation give:

|∇Pn(t, x)| ≤ 1
2π

∫ |∇vn(t, y)|2dy
|x − y|2 , |∇DtPn(t, x)| ≤ 1

2π

∫ |vn
i, j(t, y)|Dtvn

j, i(t, y)|dy

|x − y|2 . (28)

By Lemma A1 for exponents p ∈ (1, 3] and q > 3/2 where 1
q = 1

p − 1
3 , we have:

‖∇Pn(t, x)‖q ≤ 2A(p, q)‖|∇vn|2‖p. (29)
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The right-hand side of (29) is bounded upper by a constant C = C(ν, ϕ, T, p). Here, we apply
inequalities from Lemma 6, Lemma 8 and Lemma A5. Therefore,

‖∇Pn(t, x)‖q ≤ C. (30)

Derivatives
vn

i, j, Dtvn
i, j ∈ L6(R3)

⋂
L2(R3).

Thus, Dt∇Pn ∈ Lq(R3) for any exponent q > 3/2. By Lemma A1, we obtain:

‖∇DtPn‖q ≤ 2A(p, q)‖vn
i, jDtvn

j, i‖p. (31)

Consider two cases: 1 < p ≤ 3/2 and 3/2 < p ≤ 3.
Let 1 < p ≤ 3/2 . Then, the right-hand side of (31) is bounded by a constant C = C(ν, ϕ, T, p).

This follows from estimate 4 of Lemma 12.
Let 3/2 < p ≤ 3. Then, the exponent 6p/(6 − p) ∈ [2, 6]. Applying Hölder’s inequality, we get

‖vn
i, jDtvn

j, i‖p ≤ ‖vn
i, j‖6p/(6−p)‖Dtvn

j, i‖6.

The first factor is estimated uniformly by a some constant C = C(ν, ϕ, T, p). This is proved
by application Lemma A5, Lemmas 6 and 8. The second factor is estimated by inequality (2) from
Lemma 7. Hence, for an exponent q, q > 3, 1

q = 1
p − 1

3 , we get:

‖vn
i, jDtvn

j, i‖p ≤ C‖�Dtvn‖2.

Applying the integral representation for derivative DtPn in the same way we prove another
uniform estimate ‖DtPn‖q ≤ C for every exponent q, q > 3.

As the final result from (26), (27), (30), (31), we obtain the following statement.

Lemma 13. Let T0 be a constant from Lemma 1. Let Pn be a function defined by (24). Then, on every segment
[0, T], T < T0, with some constants C1 = C(ν, ϕ, T), C2 = C(ν, ϕ, T, q), there are fulfilled uniform estimates
with respect to t ∈ [0, T] and n:

(1) |Pn(t, x)| ≤ C1 for all x ∈ R3;
(2) ‖∇Pn‖q ≤ C2 for every q > 3/2;
(3) ‖∇DtPn‖q ≤ C2 for every q ∈ (3/2, 3];
(4) ‖∇DtPn‖q ≤ C2‖�DtPn‖2, ‖Pn‖q ≤ C2, ‖DtPn‖q ≤ C2 for every q > 3.

Lemma 14. Suppose that T0 is the constant from Lemma 1. Let Pn be a function defined by (24). Then, on
every segment [0, T], T < T0, with some constants C2 = C(ν, ϕ, T, q), there are fulfilled uniform estimates
with respect to t ∈ [0, T] and n:

(1) ‖Pn
, km‖q ≤ C2;

(2) ‖DtPn
, km‖q ≤ C2 max(1, ‖�Dtvn‖2);

for every q ∈ (3/2, 3] and every pair of numbers k, m = 1, 2, 3.

Proof. These estimates follow from Lemma A1, Lemma 12 and integral representations for derivatives
extracting from (24). Apply Lemma A1 and item (1) of Lemma 12. Then, we obtain the first inequality.
In the same way, we get the second inequality with an application of estimates (2) and (3) from
Lemma 12.
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Lemma 15. Let T0 be a constant of Lemma 1. Let Pn be a function defined by (24). Then, on every segment
[0, T], T < T0, with some constant C = C(ν, ϕ, T, q), there are fulfilled uniform estimates with respect to
t ∈ [0, T] and n: ‖Pn

, klm‖q ≤ C for every q ∈ (1, 3/2], k, l, m = 1, 2, 3.

Proof. It is sufficient to repeat the proof of Lemma 11 with the application of formula (24).

Lemma 16. Let T0 be a constant from Lemma 1. Supposing that Pn is the function defined by (24), then

�Pn = −vn
i, jv

n
j, i.

Proof. This follows from proposition A3.

2.6. Estimates of Uniform Continuity of Approximations in Spaces L2(R3) and C(ST)

Now, we estimate the integral continuity modulus of gradients and Laplacians for approximations
following [7]. Let T0 be a constant from Lemma 1. Let T, T1 be arbitrary numbers such that T < T1 < T0.
Assume t ∈ [0, T], t + h ∈ [0, T1]. Equations (16) we write by the following form:

(
Dtvn(t + h, ·), aq

)
− ν

(
�vn(t + h, ·), aq

)
+

∫
vn

i (t + h, x)vn
k, i(t + h, x)aq

kdx = 0, (32)

q = 1, . . . , n.

Every equality we multiply by difference cqn(t + h)− cqn(t) respectively and add together them.
Setting z = vn(t + h, x)− vn(t, x), we have

( ∂z
∂h

,�z
)
= ν(�vn(t + h, ·),�z)−

∫
vn

i (t + h, x)vn
k, i(t + h, x)�zkdx.

To the scalar product on the right-hand side, we apply Cauchy–Bunyakovskii’s inequality. The
integral (J is its mean) we estimate by Corollary A4 for the triple vn, vn, z. Then,

|(�vn(t + h, ·),�z)| ≤ ‖�vn‖2‖�z‖2,

|J| ≤ a‖∇vn‖3/2
2 ‖�vn‖1/2

2 ‖�z‖2.

Every factor from the right-hand side of these inequalities is bounded by a constant C = C(ν, ϕ, T1)

uniformly with respect to t, n, h. This follows from estimates of Lemmas 6–8, definition of z and the
choice of means h, T1. Since ( ∂z

∂h
,�z

)
= −1

2
d

dh
‖∇z‖2

2,

then we get inequalities:

−C ≤ 1
2

d
dh

‖∇z‖2
2 ≤ C.

Integrating it over segments [0, h] if h > 0 and [h, 0] if h < 0 in any case we have: ‖∇z‖2
2 ≤ 2C|h|.

Thus, the following statement is proved.

Lemma 17. Let T0 be a constant from Lemma 1. Let T, T1, T < T1 < T0 be arbitrary but fixed numbers.
Then, there exists a constant C = C(ν, ϕ, T1) such that, for all approximations vn, there is a fulfilled inequality:

‖∇vn(t + h, ·)−∇vn(t, ·)‖2 ≤ C
√
|h|,

whenever t ∈ [0, T], t + h ∈ [0, T1].
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Lemma 18. Let T0 be a constant from 1. Let T, T1, T < T1 < T0 be arbitrary but fixed numbers. Then, there
exists a constant C = C(ν, ϕ, T1) such that for all approximations vn there is fulfilled inequality:

‖�vn(t + h, ·)−�vn(t, ·)‖2 ≤ C 8
√
|h|3

whenever t ∈ [0, T], t + h ∈ [0, T1].

Proof. Formulae (16) and (32) yield equalities:

(
Dtz, aq

)
− ν

(
�z, aq

)
+

∫
(zivn

k, i(t + h, x) + vn
i (t, x)zk, i)aq

kdx = 0, q = 1, . . . , n,

where z = vn(t + h, x)− vn(t, x). Every equality we multiply by factor c′qn(t + h) respectively and
add together them. Furthermore, in the second term, we replace differentiation on variable t by
differentiation on variable h. Hence, we obtain:

(
Dtz,�Dtvn(t + h, ·)

)
− ν

(
�z,

∂

∂h
�z

)
=

−
∫
(zivn

k, i(t + h, x) + vn
i (t, x)zk, i)�Dtvn

k (t + h, x)dx = −L1 − L2.

Here, L1, L2 are integrals from the first and the second products sums, respectively. Hence,

(
∇Dtz,∇Dtvn(t + h, ·)

)
+

ν

2
∂

∂h
‖�z‖2

2 = L1 + L2. (33)

The scalar products on the left-hand side of (33) are bounded uniformly. This follows from estimates
of Lemmas 6–8. Therefore, we have:

− C − L1 − L2 ≤ ν

2
∂

∂h
‖�z‖2

2 = C + L1 + L2 (34)

with some constant C = C(ν, ϕ, T1). A uniform boundedness of integrals L1, L2 follows from
Corollary A4. For the verification, we take mappings triples z, vn(t + h, ·), Dtvn(t + h, ·) and
vn(t, ·), z, Dtvn(t + h, ·), respectively. Finally, applying estimates from Lemma 6, Lemma 8 and
Lemma 17, we obtain:

|L1| ≤ a‖∇z‖2‖∇vn(t + h, ·)‖1/2
2 ‖�Dtvn(t + h, ·)‖1/2

2 ‖�z‖2 ≤ (35)

C1

√
|h|‖�Dtvn(t + h, ·)‖1/2

2 ,

|L2| ≤ a‖∇vn‖2‖∇z‖1/2
2 ‖�z‖1/2

2 ‖�Dtvn(t + h, ·)‖2 ≤ C2
4
√
|h|‖�Dtvn(t + h, ·)‖2, (36)

where constants Cm = Cm(ν, ϕ, T1), m = 1, 2 depend on ν, ϕ, T1 only.
We integrate (34) over segments [0, h] if h > 0 and [h, 0] if h < 0. Assume h > 0 without restriction of
the generality. Then, from (35) after Hölder’s inequality application and inequality (2) of Lemma 8,
we get: ∫ h

0
|L1|dh ≤ C1h5/4

(∫ h

0
‖�Dtvn(t + h, ·)‖2

2dh
)1/4

≤ C1
4
√

l1h5/4,

where C1 is a new constant. From (36) in the same way, we obtain another estimate:

∫ h

0
|L2|dh ≤ C2

√
l1h3/4.

Integrating (34) and, gathering last estimates, we get lemma inequality.
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Lemma 19. Let T0 be a number from Lemma 1. Let T, T1, T < T1 < T0 be arbitrary but fixed numbers. Then,
there exists a constant C = C(ν, ϕ, T1) such that for all approximations vn and Pn there are fulfilled inequalities:

|vn(t + h, x)− vn(t, z)| ≤ C(|h|0,375 + |x − z|0,5),

|Pn(t + h, x)− Pn(t, z)| ≤ C(|h|0,375 + |x − z|0,5)

whenever t ∈ [0, T], t + h ∈ [0, T1], |h| ≤ 1, x, z ∈ R3.

Proof. We have | f (t + h, x) − f (t, z)| ≤ | f (t + h, x) − f (t, x)| + | f (t, x) − f (t, z)|. Therefore, one
should find uniform estimates for every modulus on the right-hand side considering mappings vn, Pn.
From representation (A2), it follows: |vn(t + h, x)− vn(t, x)| ≤ 1

4π (J1 + J2), where

J1 =
∫
|y−x|≤1

|∇vn(t + h, y)−∇vn(t, y)|dy
|x − y|2 ,

J2 =
∫
|y−x|≥1

|∇vn(t + h, y)−∇vn(t, y)|dy
|x − y|2 .

To every integral, we apply again Hölder’s inequality. Then,

J1 ≤ ‖∇vn(t + h, ·)−∇vn(t, ·)‖6

(∫
|y−x|≤1

|x − y|−12/5dy
)5/6

,

J2 ≤ ‖∇vn(t + h, ·)−∇vn(t, ·)‖2

(∫
|y−x|≥1

|x − y|−4dy
)1/2

.

The second representation in (A2) and Lemma A1 yield estimate:

‖∇vn(t + h, ·)−∇vn(t, ·)‖6 ≤ A‖�vn(t + h, ·)−�vn(t, ·)‖2.

Therefore, previous inequalities and estimates from Lemma 17 and Lemma 18 give formula:

|vn(t + h, x)− vn(t, x)| ≤ C|h|0,375, (37)

where C is a constant depending on ν, ϕ, T1 only.
Let us estimate the second modulus applying Poisson’s formula (see (A1)). Then,

|vn(t, x)− vn(t, z)| ≤ |x − z|
4π

∫ |�vn(t, y)|dy
|x − y||z − y| =

|x − z|
4π

J3.

From the inequality,

J3 ≤ ‖�vn(t, ·)‖2

(∫
|x − y|−2|z − y|−2dy

)1/2
,

with some constant C1, we obtain:

J3 ≤ C1‖�vn(t, ·)‖2|x − z|−1/2.

Previous estimates and Lemma 8 (estimate (1)) yield:

|vn(t, x)− vn(t, z)| ≤ C|x − z|0,5, (38)

where a constant C depends on ν, ϕ, T1 only. Thus, the first estimate follows from (37) and (38).
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In the same way, we prove an inequality of the kind (38) for the function Pn (formula (24)). The norm
‖∇vn‖4, which appears after applying Holder’s inequality, we must estimate by Lemma A5. Then,

‖∇vn‖4 ≤ ‖∇vn‖1/2
2 ‖∇vn‖1/6

6 .

Furthermore, Lemma 6 (estimates (1), (2)) and lemma 8 (estimate (1)) yield the inequality ‖∇vn‖4 ≤ C,
where C = C(ν, ϕ, T) is some universal constant. Then, it follows:

|Pn(t, x)− Pn(t, z)| ≤ C1|x − z|0,5. (39)

A difference L = Pn(t + h, x)− Pn(t, x) is represented in the following form:

L =
1

4π

∫ (vn
i, j(t + h, y)− vn

i, j(t, y))(vn
j, i(t + h, y)− vn

j, i(t, y))dy

|x − y| .

To obtain this formula, we change summation index for a separate terms (use (24)) and apply Hölder’s
inequality for three factors and two factors. We make estimates separately on a ball |y − x| ≤ 1 and its

exterior. Let m =
(∫

|y−x|≤1 |x − y|−2dy
)1/2

. Then,

∣∣∣∫
|y−x|≤1

(·)dy
∣∣∣ ≤ m‖∇vn(t + h, ·)−∇vn(t, ·)‖6(‖∇vn(t + h, ·)‖3 + ‖∇vn(t, ·)‖3),

∣∣∣∫
|y−x|≥1

(·)dy
∣∣∣ ≤ ‖∇vn(t + h, ·)−∇vn(t, ·)‖2(‖∇vn(t + h, ·)‖2 + ‖∇vn(t, ·)‖2).

In the last case, as the first step, we make a simple estimate, thereupon, we apply Hölder’s
inequality. The analogous arguments that are used above for the proof of the first estimate in lemma
and formula (39) yield the inequality:

|Pn(t + h, x)− Pn(t, x)| ≤ C|h|0,375, (40)

where C = C(ν, ϕ, T1) is some constant depending on ν, ϕ, T1 only. Uniform estimates (39) and (40)
prove the second inequality of lemma.

2.7. Weak Limits Properties of Approximation Sequences

Lemma 20. Let T0 be a number from Lemma 1 and T < T0 be a positive number. Then, the sequence of mappings
(vn)n=1,... defined by (14)–(16) is bounded in the space W1

6 (ST) and the sequence (Pn)n=1,... constructed by
formula (24) is bounded in spaces W1

q (ST), q > 3.

Proof. Estimate (2) from Lemma 6 and estimate (1) from Lemma 8 yield inequality ‖∇vn‖6 ≤ C.
It is fulfilled with some constant C whenever n and t ∈ [0, T]. For all mappings vn, Dtvn integral
representation (A2) is true. Then, by Lemma A1, we obtain:

‖vn‖6 ≤ A‖∇vn‖2, ‖Dtvn‖6 ≤ A‖∇Dtvn‖2.

From inequalities (1) of Lemmas 6 and 8, we conclude that there exist constants C1, C2, such that
‖vn‖6 ≤ C1, ‖Dtvn‖6 ≤ C2. All norms are uniformly bounded with respect to t. Hence, the sequence
(vn)n=1,... is bounded in W1

6 (ST).
Uniform boundedness of these norms ‖Pn‖q, ‖∇Pn‖q, ‖DtPn‖q, q > 3, with respect to t and n follows
from Lemma 13. Therefore, the sequence (Pn)n=1,... is bounded in spaces W1

q (ST).
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Remark 2. The spaces W1
6 (ST), W1

q (ST) are reflexive. Hence, every bounded set from it is a weakly compact
set (see [? ]). Then, by Lemma 20, sequences (vn)..., (Pn)... are bounded in these spaces. It is possible to extract
a weakly converging subsequences from its. Let

u(t, x) = lim
k→∞

vnk (t, x), P(t, x) = lim
k→∞

Pnk (t, x) (41)

be weak limits of these subsequences. Without restriction of generality, we assume that these subsequences
converge to the own weak limits on every compact set of ST. This follows from Arzela’s theorem and Lemma 19.

Lemma 21. Let u and P be weak limits from (41). Then,

(1) mappings u and P are uniformly continuous on a set ST , T < T0, moreover, u(0, x) = ϕ(x);
(2) mappings u and P are bounded on a set ST;
(3) the mapping u ∈ W1

6 (ST) and there exists a constant C = C(ν, ϕ, T) such that following inequalities are
true: ‖u‖6 ≤ C, ‖∇u‖6 ≤ C, ‖Dtu‖6 ≤ C whenever t ∈ [0, T];

(4) ‖∇u‖2 ≤ C‖∇ϕ‖2, ‖∇Dtu‖2 ≤ C‖∇T1‖2 whenever t ∈ [0, T], where vector field T1 from (22),
a constant C = C(ν, ϕ, T);

(5) u has distributions of the second and third orders: u, ij, Dtu, ij, in addition, for all t ∈ [0, T], there are
fulfilled inequalities: ‖�u‖2 ≤ C,

∫ t
0 ‖�Dtu‖2

2dt ≤ l1 where constants C, l1 from Lemma 8;
(6) the function P ∈ W1

q (ST) for every q > 3, in this case, there exists a constant C = C(ν, ϕ, T, q) such
that, for all t ∈ [0, T] estimates ‖P‖q ≤ C, ‖DtP‖q ≤ C are true;

(7) there exist constants Ci = Ci(ν, ϕ, T, q) such that ‖∇P‖q ≤ C1 for every q > 3/2 and ‖∇DtP‖q ≤ C2

for every q ∈ (3/2, 3];
(8) the function P has distributions of the second and third orders: P, km, P, kmj, DtP, i, in addition, there

exists a number C = C(ν, ϕ, T, q) such that, for all t ∈ [0, T], the following inequalities hold:

‖P, km‖q ≤ C, ‖DtP, i‖q ≤ C for every q ∈ (3/2, 3] and ‖P, kmj‖q ≤ C, for every q ∈ (1, 3/2].

Proof. Property (1) follows from Remark 2. A uniform continuity follows from Lemma 19 and a
uniform convergence of subsequences (vnk )k=1,... and (Pnk )k=1,... on compact subsets of ST .

Property (2) follows from a uniform convergence on compact sets, Lemma 9 and Lemma 13 (item
(1)).

Property (3) follows from norm semicontinuity of a weak limit in reflexive spaces.
Property (4) follows from Lemma 11. A uniform boundedness of norms ‖vn

, ij‖2 (see Lemma 8

and Lemma 11) and norms boundedness ‖Dtvn
, ij‖2 in the space W1

2 (ST) (see Lemma 8 and Lemma 11)
guarantee an existence of distributions u, ij, Dtu, ij. Estimates of its norms follow from a semicontinuity
of a weak limit norm.

Properties (5)–(8) are proved in the same way. For the verification, we apply Lemmas 13–15.

Lemma 22. Weak limits from (41) satisfy equalities:

P, k = − 1
4π

∫ ui, j(t, y)uj, i(t, y)(xk − yk)dy
|x − y|3 , u, j =

1
4π

∫ �u(t, y)(xj − yj)dy
|x − y|3 .

Proof. The first equality is fulfilled for mappings vn and Pn. The sequence (∇vn)n=1,... is bounded in
the space W1

2 (ST). In addition, estimates of norms ‖∇vn‖2, ‖vn
, ij‖2, ‖Dtvn

, i‖2 are uniform with respect
to t and n (see Lemmas 6–8 and 11). Apply Sobolev–Kondrashov’s embedding theorem (see [23],
pp. 83–94) to the sequence (∇vn)n=1,.... As a bounded set, it is embedded in the space Lq([0, T]× Ω)

for every ball Ω ⊂ R3. An exponent q satisfies condition

1
q
− 1

2
+

1
m

> 0, q < 4.
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In this case, a dimension of spatial domain [0, T]× Ω) m = 4. Thus, we can assume that a subsequence
(∇vnk )k=1,... converges strongly to a mapping ∇u in the space Lq([0, T]× Ω), q < 4, for every ball
Ω ⊂ R3. Denote the integral from the first equality of the lemma by Qk(t, x). Let dn = Pn

, m − Qm.
From equality

vn
i, jv

n
j, i − ui, juj, i = (vn

i, j − ui, j)(vn
j, i + uj, i),

we deduce:

|dn(t, x)| ≤ 1
4π

∫ |∇vn(t, y)−∇u(t, y)||∇vn(t, y) +∇u(t, y)|dy
|x − y|2 .

Multiply this inequality by |η| where η ∈ C0(ST) an arbitrary test–function. Thereupon, integrate over
the set ST and change integration order. Then,

∣∣∣ ∫
ST

dnηdx
∣∣∣ ≤ ∫ T

0

∫
R3

I2(|η|)|∇vn −∇u||∇vn +∇u|dydt =
∫ T

0
(K1 + K2)dt,

where I2 is the Riesz potential, K1 is the interior integral calculating over ball |y| < r, and K2 is
the interior integral calculating over exterior of this ball. Estimate every integral applying Hölder’s
inequality. Thus, we have

K2 ≤
(∫

|y|≥r
I2(|η|)dy

)1/2
‖∇vn −∇u‖3‖∇vn +∇u‖6.

The second and the third factors on the right-hand side we estimate by constants independent of t and
n (see Lemmas 6, 8, 21 with conditions (3)–(4) and Lemma A5). A radius r is fixed so that the first
factor is less an arbitrary positive number ε. Then, K2 ≤ Cε. Integral K1 we estimate on a subsequence.
Then,

K1 ≤
(∫

|y|≤r
|∇vnk −∇u|3dy

)1/3
‖I2(|η|)‖2‖∇vn +∇u‖6.

The second and the third factors are uniformly bounded by a some constant C. Therefore, the inequality:

∫ T

0
K1dt ≤ C

(∫ T

0

∫
|y|<r

|∇vnk −∇u|3dydt
)1/3 3√T2

is fulfilled. The middle factor is not greater ε if a number k is large enough. This follows from condition
of a strong convergence on a bounded set. Combining all estimates above, we obtain the inequality

|
∫

ST

dnk ηdx| ≤ CεT + Cε
3√T2.

This means that dnk → 0 weakly because a function η is an arbitrary. The first equality is proved.
The second equality is proved in the same way. Consider the difference dn = vn

, j − Rj where Rj
is the integral of the second equality. In the integral dn(t, x), we replace the variable by y = x + z.
Thereupon, we multiply the equality by a test–function η ∈ C0(ST) and integrate its over set ST .
Change integration order and carry over Laplace operator to function η. Then,

∣∣∣∫
ST

dnηdxdt
∣∣∣ ≤ 1

4π

∫ T

0

∫
R3

1
|z|2

∫
R3

|vn(t, x + z)− u(t, x + z)||�η(t, x)|dxdzdt.

Replace variables in the interior integral by x = y − z and change integration order. Hence, we get:

∣∣∣∫
ST

dnηdxdt
∣∣∣ ≤ ∫ T

0

∫
R3

|vn(t, y)− u(t, y)||I1(�η)(y)|dydt.
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Integration with respect to y we make separately over ball |y| < r and its exterior. The furthest
arguments are conducted in the same way as above. A distinction in the following. In this time, we
use an uniform convergence of a subsequence (vnk )k=1,... on compact sets (see Remark 2).

2.8. Weak Solutions and Gradients Boundedness

Lemma 23. Let u and P be weak limits from (41). Then, for every solenoidal vector field ψ ∈ C∞
0 (R3) and

almost everywhere t ∈ [0, T], there is fulfilled integral identity:

(Dtu,�ψ)− ν(�u,�ψ) +
∫

uiuj, i�ψjdx + (∇P,�ψ) = 0.

Proof. Equalities (16) multiply by a test–function η ∈ C∞
0 ([0, T]) and integrate its over segment [0, T] .

If a subsequence (vnk )k=1,... converges weakly, then, for all q = 1, . . . , nk, we have

∫ T

0
(Dtvnk ,�aq)η(t)dt − ν

∫ T

0
(�vnk ,�aq)η(t)dt +

∫ T

0

∫
vnk

i vnk
j, i�aq

j η(t)dxdt = 0.

Fix a some number q . Then, the passage to the limit gives the equality

∫ T

0
(Dtu,�aq)η(t)dt − ν

∫ T

0
(�u,�aq)η(t)dt +

∫ T

0

∫
uiuj, i�aq

j η(t)dxdt = 0. (42)

This is explained by a weak convergence of a sequence (vnk
i vnk

, i )k=1,... to the mapping uiu, i. It is given
by support compactness of a vector field aq, by uniform boundedness with respect to t and n of norms
‖∇vn‖p, 2 ≤ p ≤ 6, and a uniform convergence of subsequence (vnk )k=1,... on compact subsets of ST .
A function η is an arbitrary. Therefore, from (42), we obtain

(Dtu,�aq)− ν(�u,�aq) +
∫

uiuj, i�aq
j dx = 0.

It is already fulfilled for every natural number q. The construction of vector fields aq permits this
integral identity to extend on elements of the fundamental system (ψn

n=1,...) (see (12) and (13)), i.e.,

(Dtu,�ψn)− ν(�u, �ψn) +
∫

uiuj, i�ψn
j dx = 0. (43)

We show that identity (43) is true for every solenoidal vector field ψ ∈ C∞
0 (R3). Let (ξm)m=1,... be a

sequence of a finite linear combinations of mappings ψn, which converges to a vector field ψ ∈ C∞
0 (R3)

in the space J2
0 (R3). Then,

‖∇ξm −∇ψ‖2 → 0, ‖ξm
, ij − ψ, ij‖2 → 0

and equality (43) for mappings ξm is true. Mappings �u, uiu, i belong to the space L2(R3) for a.e. t.
Then,

(�u,�ξm) → �u,�ψ),
∫

uiuj, i�ξm
j dx →

∫
uiuj, i�ψjdx

a.e. as m → ∞. Let us show
(Dtu,�ξm) → (Dtu,�ψ)

as the same condition is. Consider the equality of scalar products

−(Dtu,�ξm) = (Dtu, j, ξm
, j)

and note that the right side tends to (Dtu, j, ψ, j) (see Lemma 21 item (4)). On the other side,
−(Dtu, j, ψ, j) = (Dtu,�ψ). Condition (43) is true for an arbitrary ψ ∈ C∞

0 (R3). From (∇P,�ψ) = 0,
we have the lemma.
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Lemma 24. (see ([7], pp. 41–44), see also [29].) Let B ⊂ R3 be an arbitrary ball. Then, a space L2(B) of any
vector fields has a decomposition by a direct sum L2(B) = G(B)⊕ J0(B) of orthogonal subspaces. A subspace
G(B) is the space of gradients ∇g where g : B → R is locally square–integrable function with a finite norm
‖∇g‖2. A space J0(B) is the closure with respect to the norm L2(B) of all solenoidal vector fields from the
class C∞

0 (B) .

Lemma 25. If u and P are weak limits (41), then there are fulfilled equalities:

Dtuk − ν�uk + uiuk, i + P, k = 0, k = 1, 2, 3,

a.e. on a set ST for any T ∈ [0, T0).

Proof. Let
Hk = Dtuk − ν�uk + uiuk, i + P, k.

Denote h2 = −ν�u, h3 = uiu, i, h6 = Dtu +∇P. Every vector field hp, p = 2, 3, 6, belongs to the space
Lp(R3) (see Lemma 21). Mappings norms hp are bounded by constants independent of t ∈ [0, T]. From
the first equality of Lemma 22, we gather (H,∇g) = 0, where g ∈ C∞

0 (R3) is an arbitrary. We assume
the mapping H and its generators hp belong to the class C∞(R3). Otherwise, we take averages with a
kernel from C∞

0 (R3) for them. For averages, the equality (H,∇g) = 0 and the equality of Lemma 23
are kept. This follows from behind an arbitrary choice of a smooth function g and a field ψ ∈ C∞

0 (R3).
Then, div H = 0. Moreover, a smoothness H and the equality of Lemma 23 imply (�H, ψ) = 0. From
Lemma 24 on every ball B ⊂ R3, we have �H = ∇h. A function h is infinitely smooth. This is given
by smoothness �H . Then, div �H = �h. On the other hand, div �H = �div H = 0. Therefore,
the function h is a harmonic function. Hence, and from above, there is �2H = 0. By Lemma A7, we
have H = 0. Making an average parameter tending to zero, we obtain this equality in the general
case.

Lemma 26. Let u and P be weak limits from (41). Then, there exists a number C = C(ν, ϕ, T) such that, for
almost everywhere, t ∈ [0, T] following conditions are fulfilled:

(1) ‖�u‖6 ≤ C;
(2) |∇uk(t, x)| ≤ C, |∇P(t, x)| ≤ C, k = 1, 2, 3.

Proof. From Lemma 25, we conclude that Laplacian �u is the linear combination of three vector fields
∇P, Dtu, uiu, i. Coordinates ui are bounded on the set ST by Lemma 21 item (2). Then, from Lemma 21
(see estimates (3) and (6)), it follows the first part of the lemma.
Gradients boundness ∇ui we obtain from the second integral representation of Lemma 22 and estimate
‖�u‖6 ≤ C. In the next step, we repeat the proof of Lemma 9.

Gradients boundedness ∇P we get from the first integral representation of Lemma 22 and
gradients boundedness ∇ui with repeating of the proof from Lemma 9.

2.9. Weak Solutions, Integral Equations and Energetic Inequality

Let Γ(x, t) = (4πνt)−n/2e−|x|2/4νt be a Weierstrass kernel. Furthermore, we consider mixed norms
for mappings defined on the set ST = [0, T]× Rn.

Lemma 27. (See [13], Theorem 2.1.) A vector field u : ST → Rn with a finite mixed norm ‖u‖p, q is a weak
solution of problems (1) and (2) if and only if when u is a solution of integral equation

u + B(u, u) = f , (44)

where B is a some nonlinear integral operator, f (t, x) =
∫

Γ(x − y, t)ϕ(y)dy.
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Lemma 28. (See [13], Theorem 3.4.) Let u be a solution of integral Equation (44) with a finite mixed norm
‖u‖p, q where p, q ≥ 2, 3

p + 2
q ≤ 1. Let k be a positive integer such that k + 1 < p, q < ∞. If mixed norms

of derivatives

Dα ∂j f
∂tj

with exponents p1 = p
|α|+2j+1 , q1 = q

|α|+2j+1 are finite whenever |α|+ 2j ≤ k, then also mixed norms of

Dα ∂ju
∂tj

are finite for the same means α, j, p1, q1.

Remark 3. The proof of this result relies on Calderon–Zygmund’s theorem and a boundedness of singular
integral operators of parabolic type (see [30]).

Remark 4. Norms Dα ∂ju
∂tj are bounded by a constant that depends on exponents p, q, derivative order and the

mixed norm ‖u‖p, q. It follows directly from the proof of the theorem in [13].

Lemma 29. If u is a weak limit from (41), then there exists a number C = C(ν, ϕ, T, p, q) such that ‖u‖p, q ≤ C
whenever p, q ≥ 2, 3

p + 2
q ≤ 1.

Proof. Let T < T0 be a positive arbitrary number. Integrate the equality of Lemma 25 over segment
[0, t] where t < T. Then, continuity and absolute continuity on lines of mapping u give:

u(t, x)− ϕ(x) =
∫ t

0
(ν�u(τ, x)− ui(τ, x)u, i(τ, x)−∇P(τ, x))dτ.

Every integrable term has finite norms

‖�u‖2, ‖∇P‖2, ‖uiu, i‖2.

In addition, every norm is bounded by a constant C = C(ν, ϕ, T) depending on ν, ϕ, T only. It follows
from Lemma 21 (see estimates (5) and (7)) for the first and the second norms. A boundedness of the
third norm follows from mapping boundedness u (see Lemma 21 item (2)) and the estimate from
item (4) (see Lemma 21) . Therefore, ‖u‖2 ≤ C. A boundedness of vector field u (see Lemma 21
item (2)) gives a uniform estimate ‖u‖p ≤ C whenever p ≥ 2. Then, any mixed norm ‖u‖p, q is finite
whenever p, q from lemma condition.

Lemma 30. If u is a weak limit from (41), then a mixed norm ‖�u‖6/5, 4 < ∞.

Proof. Let initial data ϕ ∈ C∞
6/5, 3/2. Function f from Lemma 27 is represented by integral

f (t, x) =
1

π3/2

∫
e−|z|2 ϕ(x +

√
4νtz)dz.

For ϕ ∈ C∞
6/5, 3/2, there is true Lemma 34. Therefore, the mapping f and any of its derivatives have

a finite mixed norm ‖ · ‖p, q. By Lemma 25 and Lemma 29, the vector field u is a weak solution of
problems (1) and (2) with a finite mixed norm ‖u‖p, q whenever p, q ≥ 2. Then, from Lemma 27, we
conclude that u is a solution of integral Equation (44). From Lemma 28, we obtain a finiteness of
mixed norms for the second derivatives ‖Dαu‖p1, q1 , where p1 = p/3, q1 = q/3, |α| = 2, j = 0. Let
p = 18/5, q = 12. Then, we have the statement of the lemma.
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Lemma 31. (Energetic condition.) Let u and P be weak limits from (41). Then,

‖u‖2
2 + 2ν

∫ t

0
‖∇u(τ, x)‖2

2dτ = ‖ϕ‖2
2

for every t ∈ [0, T0) where T0 from Lemma 1.

Proof. Note that weak solutions satisfy conditions:

J1 =
∫

P, kukdx = 0, J2 =
∫

uiuk, iukdx = 0. (45)

From the first equality of Lemma 22, we have:

J1 =
1

4π

∫
R3

ui, j(t, y)uj, i(t, y)
∫

R3

uk(t, x)(xk − yk)

|x − y|3 dxdy. (46)

Integrals commutation is possible since the integral over R6 is a finite. It follows from
∫

R6
| · |dxdy ≤ 4π

∫
R3

|∇u(τ, y)|2 I1(|u|)dy,

Tonnelli’s theorem, boundedness and summability of u, ∇u with any exponent not less than two and
Lemma A1. Here, I1 is the Riesz potential. The interior integral in (46) is equal to zero since

∫
|x−y|<r

uk(t, x)(xk − yk)

|x − y|3 dx = −
∫
|x−y|=r

uk(t, x)(xk − yk)

r2 dS =

−1
r

∫
|x−y|<r

div udx = 0

for any radius r.
Let us prove the second equality from (45). The second equality of Lemma 22 implies:

J2 =
1

4π

∫
R3

�uk(t, y)
∫

R3

ui(t, x)uk(t, x)(xi − yi)

|x − y|3 dxdy. (47)

Integrals commutation we prove in the same way. There is inequality:
∫

R6
| · |dxdy ≤ 4π

∫
R3

|�u(τ, y)|2 I1(|u|2)dy.

The right-hand side is a finite because �u ∈ Lp, 2 ≤ p ≤ 6 (see Lemma 21 item (5), Lemma 26 item (1),
Lemma A5). In addition, I1(|u|2) ∈ Lp, p > 3/2 by Lemma A1. To interior integral in (47) we apply
the Stokes formula. Then, ∫

|x−y|<r

ui(t, x)uk(t, x)(xi − yi)

|x − y|3 dx =

∫
|x−y|<r

ui(t, x)uk, i(t, x)
|x − y| dx − 1

r

∫
|x−y|=r

uiuk
xi − yi

r
dS.

A product uiuk belongs to the space W1
p(R3) whenever p > 1. Then, the integral over surface tends to

zero as r → ∞ (to apply Lemma A4 with exponent α = 1 and a mean p, close to unit). Hence, and from
(47) we have:

J2 =
1

4π

∫
R3

�uk(t, y)
∫

R3

ui(t, x)uk, i(t, x)
|x − y| dxdy. (48)
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In the iterated integral ∫
|y|<r

�uk(t, y)
∫

R3

ui(t, x)uk, i(t, x)
|x − y| dxdy,

we change integration order because the double integral is finite (see above). Hence, we get:

∫
|y|<r

�uk(t, y)
∫

R3

ui(t, x)uk, i(t, x)
|x − y| dxdy = (49)

∫
R3

ui(t, x)uk, i(t, x)
∫
|y|<r

�uk(t, y)
|x − y| dydx.

The interior integral in the right-hand side of (49) is uniformly bounded with respect to r > 1. This
follows from a boundedness of the Riesz potential I2(|�u|). It is proved in the same way as Lemma 9
with applications Lemma 26 item (1) and Lemma 21 item (5). Furthermore, we use Lebesgue’s theorem.
Then, (48) and (49) give the equality of iterated integrals:

J2 =
∫

R3
ui(t, x)uk, i(t, x)I2(�uk)(x)dx. (50)

The mapping u ∈ J2
0 (R3) (norm defined by (15)). Lemma A1 shows that Poisson’s formula is true for

elements of the space J2
0 (R3). Then, I2(�u) = −u. Therefore, we have J2 = −J2 from (50). The second

equality from (45) is proved.
Let us show that vector field u satisfies the equality

∫
R3

uk�ukdx = −‖∇u‖2
2 (51)

a.e. on [0, T]. We have the equality of iterated integrals:

∫
R3

�uk(t, x)
∫
|y|<r

uk, j(t, x)(xj − yj)

|x − y|3 dydx = (52)

∫
|y|<r

uk, j(t, y)
∫

R3

�uk(t, x)(xj − yj)

|x − y|3 dydx.

A finiteness of double integral follows from a boundedness ∇u (see Lemma 26, item (2)) and properties
of the Riesz potential I1(|�u|). Let r → ∞. The interior integral on the left-hand side of (52) tends
to 4πuk(t, x) in the space L6(R3) for almost every t. (See Lemma A1 and equality (A2), which is true
for elements of the space J2

0 (R3) ). The norm ‖�u‖6/5 is finite a.e. by Lemma 30. In (52), we make
the passage to the limit. The interior integral on the right-hand side of (52) is replaced by application
of Lemma 22. Then, we get (51). To finish the proof, we are helped with the following steps. Every
equality from Lemma 25 we multiply by function uk. Thereupon, we add together them and integrate
over space R3. From (45) and (49), we have

(Dtu, u) + ν‖∇u‖2
2 = 0.

Hence, we get the required equality.

2.10. Proof of Theorem 1

Observe that all estimates in proved lemmas above depend on norms ‖∇ϕ‖2, ‖∇T1‖2

(see (22)), ‖�ϕ‖2 or ‖ϕ‖2 only and don’t depend on a diameter of Laplacian support �ϕ.
If ϕ ∈ C∞

6/5, 3/2, then, by Lemma A4 integrals,

1
r2

∫
|y−x|=r

|ϕ(y|dS,
1
r

∫
|y−x|=r

|∇ϕ(y|dS
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tend to zero as r → ∞. Therefore, equalities from Lemma A2 are true for mappings of the class C∞
6/5, 3/2.

In addition, we have summability ϕ with any exponent p > 6/5 and ∇ϕ with any exponent p > 3/2
(see Lemma 32).

1. Assume that initial data ϕ ∈ C∞
6/5, 3/2 and its Laplacian support is a compact set. Let T0 be a

constant from Lemma 1. Then, item (3) follows from Lemma 26, and items (1) and (4) we get from
Lemma 21.

Let us prove estimates of item (2). A uniform boundedness with respect to t of norms

‖u‖6, ‖∇u‖6, ‖Dtu‖6

we obtain from Lemma 21 (item (3)). An uniform boundedness of norms

‖∇u‖2, ‖∇Dtu‖2, ‖�u‖2, ‖∇P‖2

follows from Lemma 21 (see items (4), (5), (7)). The estimate of norm ‖u‖2 follows from Lemma 31.
A uniform boundedness of norms ‖u, ij‖6 we get by Lemma 26. A uniform boundedness for norm
‖Dtu‖2 is the corollary of Lemma 25 because Dtu is the finite linear combination of terms with uniform
bounded norms in the space L2(R3). Uniform estimates of norms in spaces Lp(R3), 2 < p < 6 we
take from Lemma A5. The occurrence of vector field u in spaces W1

2 (ST) and W1
6 (ST) we get from

the uniform estimates proved above. By Lemma 25 and Lemma 21 (see items (5) and (7)), we obtain
D2

ttu = ν�Dtu − uiDtu, i − (Dtui)u, i − Dt∇P. Hence, it follows a finiteness of norm ‖D2
ttu‖2 since u

and ∇u are bounded. Therefore, u ∈ W2
2 (ST) .

Let us prove item (5) using mixed norms (see [8,26,27]). Weak solutions u and P belong to class
C(ST) (see item 1) of this theorem). In Lemma 28, we put p = q assuming it is very large. Now, we fix an
order of derivatives: m > 1. Then, by Lemma 27 and Lemma 28, derivative norms ‖DαDj

tu‖, |α| ≤ m
are bounded in the space Lr(ST) where an exponent r ≥ 6 is an arbitrary but fixed. A boundedness
of weak solution u and its summability in L2(ST) imply the belonging u ∈ Lr(ST), r ≥ 2. Exponents
means r, p = q we choose by large numbers so that the next conditions are fulfilled:

(1) for any ball lying in ST , all conditions of Sobolev’s embedding theorem in a space of continuous
functions are certainly valid ([23], p. 64);

(2) at least, all derivatives of the order up to m − 1 satisfy also all conditions Sobolev’s theorem
from above.

Since an integer number m is an arbitrary, then a weak solution u belongs to the class
C∞((0, T0)× R3). A smoothness of function P we obtain from Lemma 25 and the smoothness of
vector field u. The continuity is proved in item 1.

2. Let initial data ϕ ∈ C∞
6/5, 3/2. We take a test-function η ∈ C∞(R3) such that η(x) = 1 if |x| ≤ 1

and η(x) = 0 if |x| ≥ 2. Consider a solenoidal vector field

Φr(x) = η(x/r)ϕ(x)−∇Q(x).

Then, �Q(x) = 1
r η, i(x/r)ϕi(x). A function Q is Poisson’s integral

Q(x) = −r−1 I2(η, i(·/r)ϕi)(x).

Hence, we have:

|∇Q(x)| ≤ r−1 I(|∇η(·/r)| · |ϕ|)(x) ≤ Mr−1 I1(|ϕ|)(x)

where I1 is the Riesz potential, M is the maximal mean of |∇η|. From Lemma A1, we obtain

‖∇Q‖2 ≤ AMr−1‖ϕ‖6/5 = O(r−1).
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Direct calculations yield:

‖Φr‖2
2 =

∫ (
r−2|∇η(x/r)|2 + η2(x/r)|∇ϕ(x)|2 + 2r−1ηη, k(x/r)ϕi(x)ϕi, k(x)

)
dx+

‖∇Q‖2
2 − 2r−1

∫ (
η, k(x/r)ϕj(x)Q, jk(x) + η(x/r)ϕj, k(x)Q, jk(x)

)
dx.

Without the second term in the first integral, the rest of the integrals of all terms in the right-hand
tend to zero as r → ∞. This is guaranteed by a test-function η and a boundedness of the second
derivatives Q, jk. The last follows from representation of function Q by Poisson’s integral and definition
of the class C∞

6/5, 3/2. In this case, we have two equalities:

Q, kj(x) =
1

4πr

∫
R3
(η, i(y/r)ϕi(y)), k

xj − yj

|x − y|3 dy, (53)

Q, kj(x) = ckjr−1η, i(x/r)ϕi(x) + r−1Tkj(η, i(·/r)ϕi)(x), (54)

where ckj are universal constants, and Tkj are singular integral operators. Therefore, as r → ∞, then

‖∇Φr‖2 → |∇ϕ‖2. (55)

A vector field Φr ∈ C∞
6/5, 3/2. A summability of the vector field and its derivatives follows from (53)

and (54), the equality
Q, j(x) = cijη(x/r)ϕi(x) + Tij(η(·/r)ϕi)(x)

and Lemma A1. In addition, Φr → ϕ in the space J2
0 (R3), DαΦr → Dα ϕ in the space L2(R3).

Laplacians supports �Φr are compact sets. Therefore, there exist solutions ur and Pr with an initial
data ur(0, x) = Φr(x) satisfying theorem with the number

T0(r) =
(9

4

)4 ν3

‖Φr‖4
2

.

From (55), we have T0(r) → T0 as r → ∞. Fix a number T < T0. From the remark at the beginning
of the proof, we conclude all estimates of the theorem for solutions ur, Pr. They are uniform with
respect to r for r > r0. Hence, sets of mappings (ur)r>r0 , (Pr)r>r0 are bounded in spaces W1

2 (ST) and
W1

6 (ST). Extract subsequences (urk )k=1,..., (Prk )k=1,..., which converge weakly. Let u and P be its weak
limits, respectively. These limits satisfy the next properties:

(1) Lemma 21 is true for them (this is verified in the same way as the proof of Lemma 21 for
subsequences);

(2) Lemma 25 is true for them;
(3) Lemma 26 is fulfilled for them. Thus, u and P are weak solutions of problems (1) and (2).

Lemma 27 and Lemma 29 are true for vector field u. Conditions of growth for a mapping
ϕ ∈ C∞

6/5, 3/2 show correctness of Lemma 28 for weak solutions from above.

Furthermore, we realize the proof from the first part (see item (1) above). Therefore, the theorem
is true also in this case. Theorem 1 is proved.

3. Homotopic Property of Cauchy Problem Solutions in Class C∞
6/5, 3/2

If initial data ϕ ∈ C∞
6/5, 3/2, then the Cauchy problem solutions from Theorem 1 have the next

homotopic property.
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Theorem 2. Let u and P be solutions of problems (1) and (2) from Theorem 1. Then, for every fixed mean
t ∈ (0, T0) (see (5)) mappings u, P, Dtu ∈ C∞

6/5, 3/2. Moreover, all norms

‖u‖6/5, ‖∇u‖3/2, ‖Dαu‖r, ‖DβP‖r, ‖DβDtu‖r

if r > 1, |α| ≥ 2, |β| ≥ 0, are uniformly bounded on every segment [0, T] where T < T0.

Proof of Theorem 2 (it is given below) is relied on for the next simple properties of mappings
v ∈ C∞

6/5, 3/2. For every vector field v and its derivatives of the first order, these are true for both (A1)
and representation (Riesz’s formula):

v(x) =
1

4π

∫
R3

v, j(y)(xj − yj)dy
|x − y|3 , v, j(x) =

1
4π

∫
R3

v, jk(y)(xj − yj)dy
|x − y|3 . (56)

The second equality we obtain by application of the Stokes theorem to the integral from (56)
calculating over a spherical layer ε ≤ |y − x| ≤ r. From Lemma A4,

∫
|y−x|=r

|v, (y)|dS
r2 → 0

as r → ∞ since ∇v ∈ W1
3/2(R3). Then, the passage to limit as r → ∞, ε → 0 implies the second equality

(56). The first equality is proved in the same way.
We have

|v, j(x)| ≤ π

2
I1(|∇v, j|)(x),

where I1 is the Riesz potential from (4). Hardy–Littlewood–Sobolev’s inequality (see Lemma A1)
implies

‖I1(∇v, j|)‖q ≤ A‖∇v, j‖p,

where 1
q = 1

p − 1
3 , 1 < p < q. Consider only p ∈ (1, 3). Two last estimates yield ∇v ∈ Lq(R3) for

every q > 3/2. Analogously with the above, we show for the mapping v and a number q ∈ [3/2, 3)
the belonging v ∈ Lr(R3) whenever r ≥ 3. The logarithmic convex of norm ‖v‖p and Lemma A5 yield
norm finiteness ‖v‖p for p ≥ 6/5. Thus, we proved the next statement.

Lemma 32. Let v ∈ C∞
6/5, 3/2. Then, v ∈ Lp(R3), ∇v ∈ Lq(R3) whenever p ≥ 6/5, q ≥ 3/2.

Remark 5. Write Poisson’s formula (the representation by Riesz’s integral I2) for mappings v, ∇v and Dαv.
Then, we have a boundedness of every vector field v ∈ C∞

6/5, 3/2 and its derivatives.

Let

P(x) =
1

4π

∫
R3

vi, j(y)vj, i(y)dy
|x − y| (57)

(the repeated index gives summation).

Lemma 33. Let v ∈ C∞
6/5, 3/2 and div v = 0. Then, the function P and all its derivatives belong to the space

Lr(R3) whenever r > 1.

Proof. The integral from (57) we integrate by parts twice over a spherical layer ε ≤ |y − x| ≤ r.
Lemma A4 and the passage to the limit as r → ∞, ε → 0 imply:

P(x) =
|v(x)|2

3
− Tij(vivj)(x), (58)
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where Tij is a singular integral operator with a kernel

kij =
∂2

∂yi∂yj

1
4π|x − y| .

Lemma A1 and well-known Calderon–Zygmund’s theorem give a summation of function P for any
finite exponent r > 1 . Since

P, k(x) = − 1
4π

∫
R3

vi, j(y)vj, i(y)(xk − yk)dy
|x − y|3 ,

then, analogously with the above, we get:

P, k(x) = −1
3

vj(x)vk, j(x) + Tik(vjvi, j)(x). (59)

Hence, we obtain a summability of ∇P whenever finite p > 1. A summability of the other derivatives
follows from equalities:

DβP,k(x) = −1
3

Dβ(vjvk, j)(x) + Tik(Dβ(vjvi, j))(x). (60)

Lemma 34. If v ∈ C∞
6/5, 3/2, then Poisson’s and Riesz’s formulae are true:

v(x) = − 1
4π

∫
R3

�v(y)dy
|x − y| , v(x) =

1
4π

∫
R3

v, j(y)(xj − yj)dy
|x − y|3 .

Lemma 35. Suppose a function P and all its derivatives are summaable in space R3 whenever r > 1 . Let
v, w ∈ C∞

6/5, 3/2. Then,

∫
R3

vk�wkdx = −
∫

R3
vk, jwk, jdx,

∫
R3

wkP, kdx = −
∫

R3
Pdiv wdx.

Proof. Apply the second representation from Lemma 34 and make the commutation of integrals.
Then, ∫

R3
vk�wkdy =

1
4π

∫
R3

vk, j(y)
∫

R3

�wk(y)(xj − yj)dx
|x − y|3 dy = −

∫
R3

vk, jwk, jdy

(see the first equality of Lemma A4). Changing of integration order is possible because the integral

J =
∫

R6

|∇v(y)||�w(x)|dxdy
|x − y|2

is a finite. Really, we have

J = γ(1)
∫

R3
|�w|I1(|∇v|)dx.

Then, a finiteness follows from a summability of the Riesz potential I1(|∇v|) with exponent 3 (see A1)
and the summability of �w with exponent 3/2. The first equality is proved. To prove the second
formula, we observe a finiteness of integrals

J1 =
∫

R6

|w(x)||�P(y)|dxdy
|x − y|2 ,
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J2 =
∫

R6

|div w(x)||�P(y)|dxdy
|x − y| = 4π

∫
R3

|divw|I2(|�P|)dx.

Thereupon, we have:

∫
R3

wkP, kdx =
1

4π

∫
R3

wk(x)
∫

R3

�P(y)(xk − yk)dy
|x − y|3 dx =

1
4π

∫
R3

�P(y)
∫

R3

�wk(xk − yk)dx
|x − y|3 dy =

1
4π

∫
R3

�P(y)
∫

R3

div w(x)dx
|x − y| .

Proof of Theorem 2. Items (1), (2) and (3) from Theorem 1, Lemma 27 and Lemma 28 yield a finiteness
of mixed norms ‖Dαu‖p1, q1 where p1 = p

|α|+1 , q1 = q
|α|+1 , whenever p, q ≥ 2, 3

p + 2
q ≤ 1. For

derivatives of the second order, in particular, we have a finiteness of norm ‖�u‖6/5, 4 (see 30). Integrate
(1) over segment [0, t] where t ≤ T < T0. The solution P is represented by (57). Then, from (59), we get

uk(t, x)− ϕk(t, x) = (61)

∫ t

0
(ν�uk(τ, x) + Tik(ujuj, i)(τ, x)− 2

3
uj(τ, x)uj, i(τ, x))dτ.

Estimate norms in L6/5 of every term in (61) in the usual way. We apply Hölder’s inequality to interior
and exterior integrals. Then,

∫
R3

∣∣∣∫ t

0
uiuk, idτ

∣∣∣6/5
dx ≤ t1/5

∫
St

uiuk, idτdx ≤ (62)

T1/5
(∫

St
|u|2dτdx

)3/5(∫
St
|∇uk|3dτdx

)2/5
,

∫
R3

∣∣∣∫ t

0
�ukdτ

∣∣∣6/5
dx ≤ t1/5

∫ t

0
‖�uk‖6/5

6/5dτ ≤ (63)

T9/10
(∫ T

0
‖�uk‖4

6/5dτ
)3/10

< ∞.

The singular integral operator Tik is bounded. Hence, from (61)–(63) and item (2) of Theorem 1, we
obtain a uniform estimate of norm ‖u‖6/5 with respect to t ∈ [0, T].

In the same way, we prove a summability of gradient ∇u with any exponent p ≥ 3/2. From
Lemma 27 and Lemma 28, whenever p, q ≥ 2, 3

p + 2
q ≤ 1, we get a finiteness of mixed norms

‖Dαu‖p1, q1 for derivatives of the third order where p1 = p
4 , q1 = q

4 since α = 3, j = 0. In particular,
we have a finiteness of norm ‖�∇u‖3/2, 3/2.

Let us differentiate (1) with respect to xm. Thereupon, we integrate its over [0, t] where t ≤ T < T0.
Formulae (57) and (60) yield

uk, m − ϕk, m =
∫ t

0
(ν�uk, m + Tik((ujuj, i), m)−

2
3
(ujuj, i), m)dτ. (64)

Hence, for exponent p = 3/2, we obtain estimates, which are similar estimates (62) and (63).
A boundedness u, uniform estimates of norm ‖∇u‖3 (see item (2) from Theorem 1) on segment
[0, T], a finiteness of mixed norm ‖�∇u‖3/2, 3/2 give a uniform boundedness of norms ‖∇u‖3/2.

Let derivative order |α| ≥ 2. Then, (62) takes the form:

Dαuk − Dα ϕk =
∫ t

0
(ν�Dαuk + Tik(Dα(uiuj, i))−

2
3

Dα(ujuj, i))dτ. (65)
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Fix an exponent r > 1. Choose numbers p, q = (|α|+ 3)r. Then, we have a finiteness of the mixed
norm ‖Dαu‖r, r. It follows

∣∣∣∫
R3

∫ t

0
�Dαudτdx

∣∣∣r ≤ tr−1
∫

St
|�Dαu|rdτ ≤ Tr−1

∫
ST

|Dα�u|rdτdx < ∞. (66)

Terms in derivative Dα(uiuk, i) without coefficients have a form: DβuiDγuk, i, where |β|+ |γ| = |α|.
Then, ∣∣∣∫

R3

∫ t

0
DβuiDγukdτdx

∣∣∣r ≤ Tr−1
∫

ST

|Dβu|r|Dγ∇u|rdτdx = Tr−1 J. (67)

To the right-hand side, we apply Hölder’s inequality with exponents |α|+3
|β|+1 and |α|+3

|γ|+2 . Therefore,

J ≤ ‖Dβu‖r/p1
p1, p2‖Dγ∇u‖r/p2

p1, p2 ,

where p1 = p
|β|+1 , p2 = p

|γ|+2 . All these mixed norms are bounded. This follows from Lemma 27 and
Lemma 28. Hence, formulae (65)–(67) and a boundedness of a singular integral operator give uniform
boundedness of all norms with respect to t ∈ [0, T].

The solution P is represented by (57) with replacing v by u. A summability follows from Lemma 33
whenever r > 1 . Equalities (58) and (59) and a uniform boundedness derivatives norms of vector
field u prove a uniform boundedness of norms ‖DβP‖r where r > 1. From (1) and proved uniform
estimates from above, we have necessary statement for derivative Dtu. Theorem 2 is proved.

4. Basic Parameters and Extension of the Cauchy Problem Solutions

Now, we define two from three basic parameters. They have a key part for an extension of the
Cauchy problem solutions as solutions with initial data from the class C∞

6/5, 3/2. A functional l(ϕ) and
the first parameter λ we define by

l(ϕ) = ‖ϕ‖2 · ‖∇ϕ‖2, λ =
(4 4

√
3

3a1

)2 ν2

l(ϕ)
=

81ν2

8l(ϕ)
, (68)

where the constant a1 from Corollary A4. By Theorem 2, the solution of the Cauchy problem with
condition ϕ ∈ C∞

6/5, 3/2 can be extended as the solution in any time t. Moreover, extended solutions
keep uniform estimates of all norms from Theorem 2 on extended segments [0, T] ⊂ [0, T∗). In other
words, the class C∞

6/5, 3/2 is kept. If [0, T∗) is the maximal interval of solution existence, then the second
parameter is defined by:

μ =
T∗
T0

, (69)

where T0 from (5).
The third parameter ε is defined below by (87).

4.1. Solutions Extension in Global with Condition l(ϕ) < 81ν2

8

Lemma 36. Let u be a solution of problems (1) and (2) from Theorem 2. Then, functions

η1(t) = ‖∇u‖2, η2(t) = ‖�u‖2, η3(t) =
∫

R3
uiuk, i�ukdx, η4(t) = ‖u‖2

are continuous functions on the interval [0, T∗).

Proof. Let s ∈ (0, T∗). Fix t ∈ (s, τ1(s) where the function τ1 from Lemma 45. Choose a segment
[T, T1] ⊂ (s, τ1(s)) assuming t, t + h ∈ [T, T1]. Denote z = z(t, h, x) = u(t + h, x) − u(t, x). Take
equalities (1) with time argument t + h. Thereupon, we multiply them by �z getting the scalar product

74



Axioms 2019, 8, 41

and integrate over R3. The derivative Dtu ∈ C∞
6/5, 3/2 for all t ∈ [0, T∗). It follows from Theorem 2.

Then, by Lemma 35 (the scalar product in L2 we write as ( f , g)), we have:

1
2

d
dh

‖∇z‖2
2 = −ν(�u(t + h, ·),�z) +

∫
R3

ui(t + h, x)uk, i(t + h, x)�zkdx.

Here, the right-hand side is bounded uniformly (see Theorem 2). Then, ‖∇z‖2
2 = O(h) as h → 0.

Triangle inequality implies the continuity of function η1.
We write equality (1) for time arguments t, t + h and subtract it. Thereupon, the difference we multiply
by �Dtu(t + h, x) getting the scalar product and integrating over the whole space. As a result, we
have

(Dtz,�Dtu(t + h, ·))− ν(�z,�Dhz)+∫
R3
(ziuk, i(t + h, x) + ui(t, x)zk, i)�Dtuk(t + h, x)dx = 0.

Uniform estimates from Theorem 2 and an integrability for any exponent a.e. imply the equality:

ν

2
d

dh
‖�z‖2 = O(1).

Then, we have the continuity of function η2.
Function continuity of η3 follows also from uniform estimates of Theorem 2. Difference η3(t)− η3(t0)

is considered as the sum of three integrals with combinations:

ui(t, x)− ui(t0, x), uk, i(t, x)− uk, i(t0, x), �uk(t, x)−�uk(t0, x).

Every integral we estimate by Hölder’s inequality so that there appear norms:

‖ui(t, ·)− ui(t0, ·)‖6, ‖uk, i(t, ·)− uk, i(t0, ·))‖2,

‖�uk(t, ·)−�uk(t0, ·))‖2.

The first of these norms is estimated through the second norm by the inequality from Lemma A1 with
application of the second representation in Lemma 34. Therefore, on every segment [0, T] with some
constants C1, C2, we have:

|η3(t)− η3(t0)| ≤ C1|η1(t)− η1(t0)|+ C2|η2(t)− η2(t0)|.

Hence, the first statement follows. Let us prove function continuity of η4. The estimate

‖u(t, ·)− u(t0, ·))‖6 ≤ A‖∇u(t, ·)−∇u(t0, ·))‖2

was called above. The logarithmic convex inequality ‖v‖2 ≤ ‖v‖1−θ
6/5 ‖v‖θ

6 where 1
2 = 5

6 (1 − θ) + θ
2 and

Theorem 2 (see item (2)) about uniform boundedness of norms) give the statement of the lemma. Here,
it is enough to take v = u(t, ·)− u(t0, ·).

Lemma 37. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) <

(
v
a1

)2
, where l(ϕ) is defined by (68), the number a1 from

Corollary A4. Then, solution u of problems (1) and (2) from Theorem 1 satisfies inequality: ‖∇u‖2 ≤ ‖∇ϕ‖2.

Proof. Equality (1) we multiply by �u getting the scalar product and integrating over the whole space.
Then, from Theorem 2 and Lemma 35, we have:

1
2

d
dt
‖∇u‖2

2 = η3(t)− νη2
2(t),
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where ηi, i = 2, 3, from Lemma 32. Now, we show that the function η(t) = η3(t)− νη2
2(t) is negative.

Note η(0) < 0. Suppose the opposite. Then,

ν‖�ϕ‖2
2 ≤

∫
ϕi ϕk, i�ϕkdx.

From Corollary A4 (it is extended on the class C∞
6/5, 3/2 by Lemma 34), we have estimate:

ν‖�ϕ‖2
2 ≤ a1‖∇ϕ‖3/2

2 ‖�ϕ‖3/2
2 .

Since
‖∇ϕ‖2 ≤ ‖ϕ‖1/2

2 ‖�ϕ‖1/2
2

(it follows from Lemma 35), then the last two inequalities imply ν2 ≤ a2
1l(ϕ). We have a contradiction.

Let [0, t0) be a maximal interval where function η < 0. Suppose t0 < T0. Continuity condition
(see Lemma 32 and Theorem 2) gives η(t0) = 0.
Repeating arguments from above, we obtain estimate:

ν2 ≤ a2
1l(u(t0, ·)). (70)

With the other hand, function η1 from Lemma 32 is a decreasing function on interval [0, t0). Therefore,
‖∇u(t0, ·)‖2 < ‖∇ϕ‖2. Since ‖u‖2 ≤ ‖ϕ‖2, then l(u(t0, ·)) < l(ϕ). Compare this inequality with (70).
Then, we have a contradiction.

Lemma 38. Let ϕ ∈ C∞
6/5, 3/2 and

qαm−1
( ν

a1

)2
≤ l(ϕ) < qαm

( ν

a1

)2
,

where l(ϕ) is defined by (68), numbers a1 from Corollary A4,

q =
4
3

4
√

3, α0 = 0, αm = 2 − 1
2m−1 , m = 1, 2, . . . .

Then, for solution u of problems (1) and (2) from Theorem 1, there exists a number t0 ∈ (0, T0) such that

l(u(t0, ·)) < qαm−1
( ν

a1

)2
.

Proof. Suppose the opposite. Then, on interval [0, T0), the inequality holds:

q2αm−1
( ν

a1

)4
≤ l2(u).

Integrate it over this interval. Since

2ν‖∇u‖2
2 = − d

dt
‖u‖2

2,

then

q2αm−1
( ν

a1

)4
T0 ≤ − 1

4ν
‖u‖4

2

∣∣∣T0

0
.

Take out a nonpositive term on the right-hand side and input the mean T0 from (5). Then,

qαm
( ν

a1

)2
≤ l(ϕ).
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We have a contradiction with the condition.

Theorem 3. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) <

(
ν
a1

)2
where l(ϕ) is defined by (68) and the number a1 from

Corollary A4. Then, problems (1) and (2) have unique solution u and solution P such that are defined on the set
[0, ∞)× R3. In addition, these solutions have properties (1)–(5) from Theorem 1 on every fixed segment [0, T]
and satisfy Theorem 2. Moreover, the norm ‖∇u‖2, as a function of argument t, is a decreasing function on the
set [0, ∞).

Proof. If T < T0, then the statement of theorem follows from Theorems 1, 2 and Lemma 37. A finiteness
of mixed norms ‖u‖p, q we get from a boundedness of the vector field u and estimates ‖u‖2 ≤ ‖ϕ‖2.
Solution uniqueness in the class Lp, q, 3

p + 2
q ≤ 1 is proved in [7,8,26] (see also [13]).

Norm monotonicity ‖∇u‖2 as a function on time argument t follows from condition η < 0 (see proof
of Lemma 37).
Let [0, T∗) be an interval of the maximal length such that there exist solutions with the estimates of
Theorem 2.
Suppose T∗ < ∞. Let t0 < T∗ and T∗ − t0 < 0, 5T∗ . By Theorem 2 mapping, u(t0,·) belongs to class
C∞

6/5, 3/2. Therefore, by Theorem 1 with this initial data, there is the unique solution w of the Cauchy
problem that can be built that can be considered as the extension of solution u (see Lemma 36 and
Theorem 1). Extension of u is the unique solution of problems (1) and (2) that satisfies the theorem, at
least, on the interval [0, t0 + T2), where

T2 =
(9

4

)4 ν3

‖∇u(t0, ·)‖4
2

.

We have T2 ≥ T0 from condition ‖∇u‖2 ≤ |∇ϕ‖2, w(t, x) = u(t0 + t, x) for means t < T∗ − t0. Hence,
the solution u is extended with the half-interval [0, T∗) on an interval of more length [0, T∗ + 0, 5T0).
We have a contradiction.

Theorem 4. Let ϕ ∈ C∞
6/5, 3/2 and

( ν

a1

)2
≤ l(ϕ) <

(4 4
√

3ν

3a1

)2
=

81ν2

8
,

where l(ϕ) is defined by (68), number a1 from Corollary A4. Then, problems (1) and (2) have a unique solution
u and a solution P that are defined on the set [0, ∞)× R3. In addition, these solutions have properties (1)–(5)
from Theorem 1 on every fix segment [0, T] and satisfy Theorem 2. The norm ‖∇u‖2, as a function of t, is not
decreasing function on the set [T0, ∞), where constant T0 from (5).

Proof. Let u and P be solutions of problems (1) and (2) from Theorem 2. The proof proceeds from
induction with respect to number m from Lemma 38. Let m = 1. By Lemma 38, there exists a number
t0 ∈ (0, T0) such that

l(u(t0, ·)) <
( ν

a1

)2
.

By Theorems 1–3, there exists a global solution w of problems (1) and (2) with changed initial
data w(0, x) = u(t0, x). This is the unique smooth extension of solution u that satisfies the proving
theorem. Assume the theorem is true for a some natural number m. That is, every solution u has a
global extension with properties of the theorem if, for this u, there exists a number t0 ∈ (0, T0) such that

l(u(t0, ·)) < qαm
( ν

a1

)2
.
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Now, we take initial data ϕ such that

qαm
( ν

a1

)2
≤ l(ϕ) < qαm+1

( ν

a1

)2
.

By Lemma 38, there exists t0 ∈ (0, T0) satisfying

l(u(t0, ·)) < qαm
( ν

a1

)2
.

By Theorem 2 and the induction hypothesis, there exists a global solution w of problems (1) and (2)
with a new initial data w(0, x) = u(t0, x). By a uniqueness theorem, it is the unique smooth extension
of solution u that satisfies the proving theorem. By the induction principle, the theorem is proved
because

qαm a−2
1 → 16

√
3

9
a−2

1

as m → ∞.

4.2. Critical λ Parameter Mean and the First Hypothetical Turbulent Solution

Furthermore, it is important in principle an invariant form of a priori estimate for the Cauchy
problem solution. An invariance follows from Lemmas 1, 6, 20 and 25, Remark 2, norm semicontinuity
of ‖∇u‖2 and Theorem 1.

Lemma 39. The solution u of problems (1) and (2) from Theorem 1 satisfies estimate:

‖∇u‖2
2 ≤ ‖∇ϕ‖2

2(1 − t/T0)
−1/2. (71)

Lemma 40. Let ϕ ∈ C∞
6/5, 3/2 and λ ≥ 1 i.e.,

l(ϕ) ≥
(4 4

√
3ν

3a1

)2
.

Let u be a solution of problems (1) and (2) from Theorem 1 If

l(u(t0, ·)) <
(4 4

√
3ν

3a1

)2

for a some number t0 ∈ [0, T0), then solution u can be extended by a global solution with properties (1)–(5) from
Theorem 1 and estimates from Theorem 2.

Proof. We construct the extension in the same way as in the proof of Theorem 4.

Lemma 41. Let ϕ ∈ C∞
6/5, 3/2 and parameter λ ≤ 1 (see (68)). If u is the solution of problems (1) and (2) from

Theorem 1, then on interval [0, T0), the inequality holds:

‖ϕ‖2
2

(
1 − λ2 + λ2

√
1 − t/T0

)
≤ ‖u‖2

2.

Proof. We integrate the inequality of Lemma 39 over the segment [0, t]. Since

1
2

d
dt
‖u‖2

2 + ν‖∇u‖2
2 = 0, (72)

then, applying Newton–Leibnitz’s formula, we obtain the statement.
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Lemma 42. Let ϕ ∈ C∞
6/5, 3/2 and parameter λ = 1 (see (68)). Let u be a solution of problems (1) and (2) from

Theorem 1. Suppose, on the interval [0, T0), there is fulfilled estimate:

l(u(t, ·)) ≥
(4 4

√
3ν

3a1

)2
.

Then,

‖u‖2
2 = ‖ϕ‖2

2

(
1 − t/T0

)1/2
, ‖∇u‖2

2 = ‖∇ϕ‖2
2

(
1 − t/T0

)−1/2
. (73)

If limt↑T0 ‖u‖2 > 0, then there exists a number t0 ∈ (0, T0) such that

l(u(t0, ·)) <
(4 4

√
3ν

3a1

)2
.

Proof. Both parts we raise to the second power and integrate over the interval [0, T0). From (72), we
get: (4 4

√
3ν

3a1

)4
T0 ≤

∫ T0

0
‖u‖2

2‖∇u‖2
2dt =

1
4ν

(
‖ϕ‖4

2 − lim
t→T0

‖u‖4
2

)
, (74)

where the number T0 from Theorem 1. Since λ = 1, then

(4 4
√

3ν

3a1

)4
T0 =

‖ϕ‖4
2

4ν
.

Therefore, the limit in (74) is equal to zero because, in (74), it must be equalities. This is possible only
if, on the interval [0, T0) (see Lemma 36), it is fulfilled:

l2(u(t, ·)) =
(4 4

√
3ν

3a1

)4
T0. (75)

Integrate (72) over the interval [0, T0). As the result, we have:

2ν
∫ T0

0
‖∇u‖2

2dt = ‖ϕ‖2
2

(we take into consideration in formula (74) the limit vanishes ). Apply the estimate of Lemma 39. Then,

4νT0‖∇ϕ‖2
2 ≥ ‖ϕ‖2

2.

Hence, we have the inequality λ ≥ 1. Since λ = 1, then the inequality from Lemma (71) must be as the
equality. The second formula of lemma is proved. The first follows from (75) and condition λ = 1. The
last statement of lemma we prove from the opposite in the same way.

Lemma 43. Let initial data ϕ ∈ C∞
6/5, 3/2, ϕ �= 0, and parameter λ = 1. There doesn’t exist solution u of

problems (1) and (2) satisfying (73). It is always true inequality limt↑T0 ‖u‖2 > 0.

Proof. If such solution exists, then, from (73), we obtain

1
2

d
dt
‖∇u‖2

2 =
( 8

81

)2 ‖∇u‖6
2

ν3 .

Here, the identical equality is impossible because, for any solution u, the inequality (see (7)) is fulfilled:

1
2

d
dt
‖∇u‖2

2 + ν‖�u‖2
2 ≤ a1‖∇u‖3/2

2 ‖�u‖3/2
2 .
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Apply estimates from the proof of Lemma 1. Then, we obtain:

1
2

d
dt
‖∇u‖2

2 ≤
( 8

81

)2 ‖∇u‖6
2

ν3 .

Compare this inequality with the identity above. Therefore, we must have the equalities for
intermediate estimates of Corollary A4 and Lemma 1. Since we used Cauchy–Bunyakovskii’s inequality
in the Hilbert space L2(R3), then there exists a constant c such that

ui, j = c
(

uk, iuk, j −
δij

3
|∇u|22

)

for any i, j = 1, 2, 3. Hence, we have ui, j = uj, i for each pair i, j and �u ≡ 0, respectively. From
Lemma A6, it follows u ≡ 0—a contradiction. The lemma is proved.

Lemma 44. Let initial data ϕ ∈ C∞
6/5, 3/2, ϕ �= 0, and parameter λ < 1. If u is the solution of problems (1)

and (2), then
lim

t→T0
‖u‖2

2 > ‖ϕ‖2
2(1 − λ2).

Proof. Suppose the opposite. Then, we have the equality in Lemma 41. It implies the second equality
from (73). Repeating the proof of Lemma 43, we obtain a contradiction.

Lemma 45. Let u be a solution of problems (1) and (2) with initial data ϕ ∈ C∞
6/5, 3/2, ϕ �= 0. Then, a function

τ1(t) = t +
(9

4

)4 ν3

‖∇u‖4
2

and a function

λ(t) =
(4 4

√
3ν

3a1

)2/
‖u‖2‖∇u‖2

with condition λ(0) = λ ≥ 1 are not decreasing functions on the interval [0, T∗) where constant a1 from
Corollary A4.

Proof. From Theorem 2, we have safety of class C∞
6/5, 3/2 for every t ∈ [0, T∗) if u satisfies lemma

conditions. The both functions are continuous (see Lemma 36 and Theorem 2). Inequality (84)
(see below) is true for any mean λ(0) = λ. Rewrite its in another form:

1
‖∇u‖4

2

d
dt
‖∇u‖2

2 ≤ 27a4
1

128ν3 ‖∇u‖2
2 (76)

and integrate its over the segment [t, s]. Simple transformations give:

‖u(t, ·)‖2
2(λ

2(t)− 1) ≤ ‖u(s, ·)‖2
2(λ

2(s)− 1). (77)

Hence, and from lemma condition, it follows λ(s) ≥ 1 for all s ∈ [0, T∗). Furthermore, we use inequality
‖u(s, ·)‖2 ≤ ‖u(t, ·)‖2 and get the monotonicity of the second function. For the monotonicity, the first
function follows from inequality (84) because, in this case, τ

′
1 ≥ 0.
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4.3. Solutions Extension in Global with Condition l(ϕ) ≥ 81ν2

8 : Necessary Conditions For Hypothetical
Turbulence Solutions

Lemma 46. Let ϕ ∈ C∞
6/5, 3/2. Suppose that l(ϕ) ≥ 81ν2

8 and parameter λ from (68). If λ = 1 or λ < 1 and
the solution u of problems (1) and (2) from Theorem 2 satisfies

lim
t→T0

‖u‖2
2 ≥ ‖ϕ‖2

2

√
1 − λ4.

Then, there exists a number t0 ∈ (0, T0) such that inequality is fulfilled:

l(u(t0, ·)) <
(4 4

√
3ν

3a1

)2
,

where constant a1 from Corollary A4.

Proof. Assume λ = 1. Then, the statement follows from Lemmas 42 and 43. Let λ < 1. Suppose the
opposite. Then, we have: (4 4

√
3ν

3a1

)2
≤ l(u(t, ·)).

Hence, and from (72), we get

(4 4
√

3ν

3a1

)4
≤ ‖u‖2

2‖∇u‖2
2 = − 1

4ν

d
dt
‖u‖4

2. (78)

Let

α =
(4 4

√
3

3a1

)4 ν5

‖ϕ‖4
2

. (79)

Integrate (78) over segment [0, t]. Then, we obtain:

‖u‖2
4
√

1 − 4αt
≤ ‖ϕ‖2. (80)

Make the passage to the limit in (80) as t ↑ T0 and compare the new estimate with the inequality
from lemma condition. Taking (5), (68) and (80), we conclude limt→T0 ‖u‖2

2 = ‖ϕ‖2
2

√
1 − λ4. Consider

a function β(t) = ‖u‖2
2 −

√
1 − 4αt‖ϕ‖2

2. It vanishes at boundary points of [0, T0]; moreover, β ≤ 0
(see (80)). Let I ⊂ (0, T0) be an interval, where the function β vanishes at boundary points and β < 0
on its interior. Then, there exists a point t0 ∈ I, where β′(t0) = 0. Hence, from (72), we get:

ν‖∇u(t0, ·)‖2
2 =

α‖ϕ‖2
2√

1 − 4αt0
.

From (80), we have:

ν‖u(t0, ·)‖2
2‖∇u(t0,·‖2

2 =
α‖ϕ‖2

2‖u(t0, ·)‖2
2‖√

1 − 4αt0
≤ α‖ϕ‖4

2. (81)

Compare the left and right sides of this formula and, after we apply (79). Then,

l(u(t0, ·)) ≤
(4 4

√
3ν

3a1

)2
.
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The hypothesis from proof beginning gives the equality:

l(u(t0, ·)) =
(4 4

√
3ν

3a1

)2
.

Therefore, in (81), the inequality must be by the equality. Hence, we get β(t0) = 0. This goes to
a contradiction with the choice of the interval I. It implies β = 0. Hence, ‖u‖2

2 = ‖ϕ‖2
2
√

1 − 4αt.
Respectively, from (72), we have

ν‖∇u(t, ·)‖2
2 =

α‖ϕ‖2
2√

1 − 4αt
.

Multiply these equalities. From (78), we obtain:

l(u(t, ·)) =
(4 4

√
3ν

3a1

)2
.

In particular, by Lemma 36, l(ϕ) ≥ 81ν2

8 . This is impossible with the considering lemma condition.
This contradiction proves the lemma.

Now, we shall study properties of unextended solutions of problems (1) and (2) if such solutions
exist. Let [0, T∗) be an interval of the maximal length, where solutions u and P of problems (1) and (2)
have properties from Theorem 2. Then, T∗ ≥ T0 and T∗ = μT0 (see (69)). Hence, μ ≥ 1. Therefore,
J. Leray’s estimate from [3] can be given in invariant form in the following statement.

Lemma 47. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) > 81ν2

8 . Suppose that [0, T∗) is the maximal interval where solutions
u and P of problems (1) and (2) have solution properties from Theorem 2. If this interval is a finite, then the
following estimate holds:

‖∇u‖2
2 ≥

√
1
μ
‖∇ϕ‖2

2

(
1 − t/T∗

)−1/2
. (82)

Proof. A function η1(t) = ‖∇u‖2 is unbounded in some left neighborhood of the point T∗. Suppose
the opposite. Then, for every point t0, there exists solution v of problems (1) and (2) with initial data
v(0, x) = u(t0, x) which satisfy Theorems 1 and 2.

This solution gives the unique extension u on the interval [t0, t0 + l), where l ≥ 94ν3/(4M
)4

and
M is the supremum of η1. A point t0 is an arbitrary, therefore, solutions u and P can be extended on
the interval [0, T∗ + l). In addition, they have solutions’ properties from Theorem 2 on this interval.
This contradicts the choice of interval with the maximal length.

Now, we prove estimate (82). For solution u, we have:

1
2

d
dt
‖∇u‖2

2 + ν‖�u‖2
2 =

∫
uiuk, i�ukdx, (83)

which follows from (1). It is true for every mean t ∈ [0, T∗) by Theorem 2 and Lemma 35 because the
solution u ∈ C∞

6/5, 3/2. The integral representation from Lemma 34 permits to apply Corollary A4 and
estimate of the right-hand side in the last equality. Repeating the proof of Lemma 1, we obtain

1
‖∇u‖6

2

d
dt
‖∇u‖2

2 ≤ 27a4
1

128ν3 . (84)

Integrate (84) over segment [t, s]. Then,

1
‖∇u(t, ·)‖4

2
− 1

‖∇u(s, ·)‖4
2
≤ 27a4

1
128ν3 (s − t). (85)
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Replace in (84) s on sm, where sm ↑ T∗ and η1(sm) → ∞ as m → ∞. The passage to the limit in (85)
gives estimate (82).

Lemma 48. Let ϕ ∈ C∞
6/5, 3/2 and l(ϕ) > 81ν2

8 . For finite interval [0, T∗) of the maximal length, the parameter
μ is not greater than the number λ−4, where λ is defined by (68).

Proof. In the inequality

2ν
∫ T∗

0
‖∇u‖2

2dt ≤ ‖∇ϕ, ‖2
2

we apply Lemma (79). From (5) and (68), we get the statement.

Lemma 49. Let ϕ ∈ C∞
6/5, 3/2, l(ϕ) >

(
4 4√3ν

3a1

)2
= 81ν2

8 and λ be a parameter from (68). If the interval

[0, T∗) has the maximal finite length and solutions u, P of problems (1) and (2) have properties from Theorem 2
on this interval, then unextended solutions satisfy conditions:

‖ϕ‖2
2λ2

√
μ − t/T0 + ‖u(T∗, ·)‖2

2 ≤ ‖u‖2
2 ≤ (86)

‖ϕ‖2
2

(
1 −√

μλ2 + λ2
√

μ − t/T0

)
.

Proof. Consider a function
ω(t) = ‖u‖2

2 − ‖ϕ‖2
2λ2

√
μ − t/T0.

From (5) and (68), (72), we have:

ω′(t) = 2ν
(
−‖∇u‖2

2 + ‖∇ϕ‖2
2

(
μ − t/T0

)−1/2)
, ω′(t) ≤ 0.

Therefore, ω(0) ≥ ω(t) ≥ ω(T∗ − 0). Hence, it follows the first inequality from (86).
Integrate over [0, t] the inequality of Lemma (79). From (72), we obtain:

‖ϕ‖2
2 − ‖u‖2

2 ≥ 4T∗ν
‖∇ϕ‖2

2√
μ

(
1 −

√
1 − t/T∗

)
.

Applying (5), (68) and (69), we get:

1 − ‖u‖2
2

‖ϕ‖2
2
≥ √

μλ2
(

1 −
√

1 − t/T∗
)

.

Therefore, we have the second inequality in (86).

Theorem 5. Set ϕ ∈ C∞
6/5, 3/2 and l(ϕ) >

(
4 4√3ν

3a1

)2
with a constant a1 from A4. Let u be a solution of

problems (1) and (2) from Theorem 2. If u satisfies condition

lim
t→T0

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

√
1 − λ4,

then problems (1) and (2) have global solutions u and P. Moreover, they have properties (1)–(5) from Theorem 1
on every segment [0, T], T > 0 and satisfy conditions of Theorem 2 there. As a function of argument t, the
product ‖u‖2‖∇u‖2 is a decreasing function on the set [T0, ∞), where constant T0 from (5).

Proof. Let t0 a number from Lemma 46. Without norm monotonicity, the statement of theorem follows
from Theorem 2 and Lemma 40. The product ‖u‖2‖∇u‖2 is a decreasing function on the set [t0, ∞).
It follows from Theorem 4. Therefore, the theorem is proved.
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Now, we give one result that is connected with a local solutions’ extension. If λ < 1, then we
introduce the third parameter ε, which gives a dissipation quantity of a kinetic energy. It is defined
by formula:

lim
t→T0

‖u(t, ·)‖2
2 = ‖ϕ‖2

2(1 − ελ2). (87)

We observe from Lemmas 43 and 44 that the parameter ε satisfies strong inequalities: 0 < ε < 1. This is
very important for the furthest. The usefulness of this parameter is explained by the following result.

Theorem 6. Suppose initial data ϕ ∈ C∞
6/5, 3/2 and

l(ϕ) >
(4 4

√
3ν

3a1

)2
=

81ν2

8
,

where l(ϕ) is defined by (68). If solution u of problems (1) and (2) from Theorem 2 satisfies (87), then this
solution has an extension on the set ST3 where

T3 =
T0

4

(
ε +

1
ε

)2
.

This extension has properties (1)–(5) from Theorem 1 on every segment [0, T] ⊂ [0, T3).

Proof. Now, we consider only that solutions which don’t have any global and smooth extension.
Take t = T0. From theorem condition and the second inequality of Lemma 49, we obtain: −ε ≤
−√

μ +
√

μ − 1. Hence, we get: μ ≥ 1
4

(
ε + 1

ε

)2
. Then, the statement of the theorem follows from the

definition of parameter μ. The theorem is proved.

Lemma 50. Suppose λ < 1. A finite mean of parameter μ satisfies inequalities:

1
4

(
ε +

1
ε

)2
< μ ≤ λ−4.

Proof. In the first inequality of Lemma 49, we take t = T∗. Then, we get the necessary upper estimate.
The strong lower estimate doesn’t follow from (71) yet. Let

τ(ε) =
1
2

(
ε +

1
ε

)
.

Consider a function

�(t) = ‖u‖2
2 − ‖ϕ‖2

2

(
1 − τ(ε)λ2 + λ2

√
τ2(ε)− t/T0

)
.

We observe �(0) = �(T0) = 0 (see formula (87)). Hence, there exists a number ξ ∈ (0, T0) such that
�′(ξ) = 0. Then,

‖∇u(ξ, ·)‖2
2 =

‖∇ϕ‖2
2√

τ2(ε)− ξ
T0

or

T0τ2(ε) = ξ +
(9

4

)4 ν3

‖∇u(ξ, ·)‖4
2
= τ1(ξ),

where function τ1 from Lemma 45. Since this function does not decrease then for every t, ξ < t <
T0τ2(ε), we have T0τ2(ε) ≤ τ1(t). Therefore,

‖∇u‖2
2 ≤ ‖∇ϕ‖2

2

(
τ2(ε)− t/T0

)−1/2
,
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which holds for every t, ξ < t < T0τ2(ε). Integrating this inequality over interval [T0, τ2(ε)T0) from
formula (87), we gather:

‖u(T0τ2(ε)), ·)‖2
2 ≥ ‖ϕ‖2

2(1 − τ(ε)λ2). (88)

If μ = τ2(ε), then, in formula (86), we must have identical equalities (see (88)). It implies the identity

‖∇u‖2
2 =

√
1
μ
‖∇ϕ‖2

2

(
1 − t/T∗

)−1/2
.

Take t = 0. Hence, we get μ = 1. This contradicts Theorem 6, from which we obtain μ ≥ τ2(ε) > 1
because 0 < ε < 1. The last proves the strong lower estimate for μ.

5. Main Results, Existence of Global Regular Solutions, and Sufficient Conditions

Now, we prove the basic result which is described by Theorem 7.

Theorem 7. Let ϕ ∈ C∞
6/5, 3/2 be initial data, the parameter λ from (68) and the number T0 from (5), the vector

field u from Theorem 1. If parameter λ ≥ 1 or in opposite case

lim
t↑T0

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

√
1 − λ4, (89)

then the Cauchy problems (1) and (2) have global solutions u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and P =

P(t, x) with the following properties:

(1) mappings u and P are uniformly continuous and bounded on a set ST for every number T, T > 0;
(2) for every numbers T > 0, p ≥ 6/5, q ≥ 3/2, r > 1 and multi-indices |α| ≥ 2, |β| ≥ 0 all norms

‖u‖p, ‖∇u‖q, ‖Dαu‖p, ‖DβP‖2, ‖DβDtu‖r

are uniformly bounded on the segment [0, T], moreover ‖u‖2 ≤ ‖ϕ‖2;
(3) gradients ∇ui, i = 1, 2, 3, ∇P are bounded on the set ST for every T > 0;
(4) solution u has a finite mixed norm ‖u‖p, q on the set ST for every T > 0 and every pair of exponents

p, q ≥ 2;
(5) solutions u, P belong to class C∞((0, T)× R3)

⋂
C(ST) i.e., these solutions are classical.

If parameter λ ≥ 1, then the function l(t) = ‖u‖2‖∇u‖2 is a decreasing function on the interval [0, ∞) . If
λ < 1 and condition (89) is fulfilled then the function l = l(t) is a decreasing function on the interval [T0, ∞).

Proof. Let λ > 1. Then, the statement follows from Theorem 4.
Let λ = 1. In this case, the theorem arises from Lemmas 42, Lemma 43 and Theorem 4. The
monotonicity of the function l follows from Lemma 45.
Let λ < 1 and condition (89) is fulfilled. Then, the statement of the theorem arises from Lemmas 45
and 46, Theorem 5. The theorem is proved.

Theorem 8. Let ϕ ∈ C∞
6/5, 3/2 be initial data, the parameter λ < 1 (see (68)) a vector field u is a weak solution

from the Cauchy problems (1) and (2). If on an interval [0, T) an inequality

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

(
1 − λ2

√
t

T0

)
(90)

is fulfilled, then the weak solutions u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and P = P(t, x) are regular on
interval [0, T) and satisfy Theorem 5.
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Proof. Let be [0, T∗) ⊆ [0, T) a maximal interval where the weak solution u is regular. Suppose T∗ < T.
Then, from (86) and (90), we have

‖u(t, ·)‖2
2 = ‖ϕ‖2

2

(
1 −√

μλ2 + λ2
√

μ − t
T0

)
.

Since solution u is regular on the interval [0, T0), then, by differentiation of the previous identity at
point t = 0, we obtain μ = 1. From Lemma 50, we have a contradiction. Therefore, T∗ = T.

Does there exist weak solution u satisfying opposite inequality (90) if t > T0? It is unknown.

6. The Cauchy Problem with Less Smoothness of Initial Data

In addition, the invariant class C∞
6/5, 3/2 Sobolev space

◦
W3

2 (R3) as the closure of infinitely smooth
vector fields is another important invariant class, which satisfy existence condition of global solutions.

Different exceptions for solenoidal vector fields from Sobolev classes
◦

W3
2 (R3) and W3

2 (R3) were shown
in [31]. Therefore, we consider the first space from them.

Let ϕ ∈
◦

W3
2 (R3) be a solenoidal vector field. Set (ϕm)m=1,... a sequence of of finite, solenoidal

and infinitely smooth vector fields, which converges to the field ϕ in the space
◦

W3
2 (R3). We observe

that ϕm ∈ C∞
6/5, 3/2. Let (um)m=1,..., (Pm)m=1,... be sequences of solutions in the Cauchy problem for

Navier–Stokes equations with the initial dates ϕm. Then, all pairs um, Pm satisfy all uniform estimates
of Lemma 21 on any compact set of the interval [0, Tm

0 ) where Tm
0 = 94ν3/44‖∇ϕm‖4

2 since upper
bounds in these inequalities depend on a set and ν, ‖∇ϕm‖2, ‖ϕm‖2. Therefore, on every fixed
segment [0, T] ⊂ [0, T0], we can take these constants as common for all um, Pm because ϕm → ϕ in the

space
◦

W3
2 (R3). Then, without loss of generality, we assume that the sequence (um)m=1,... converges

weakly in the space W1
6 (ST) to a field u0. In addition, we suppose that (�um)m=1,..., (∇Dtum)m=1,...

and (∇Pm)m=1,... converge weakly in L1
2(ST) to �u0, ∇Dtu0 and ∇P0. More generally, weak limits

u0, P0 satisfy all conclusions of Lemma 21 and they are weak solutions of problems (1) and (2).
From the equality (1) for couple u0, P0 and items (2), (4), (5), (8) differentiating (1), we obtain that
distributions �u0

, j, j = 1, 2, 3, belong to the space L2(R3) for almost everywhere t. Thus, the class
◦

W3
2 (R3) is invariant similar to the class C∞

6/5, 3/2. For this case, in the same way, we can define the basic
parameters λ, μ, ε. After that, one should note that the statement of Lemma 36 will be true when

initial data ϕ ∈
◦

W3
2 (R3). Repeating the proof of Theorem 7, we obtain the following result.

Theorem 9. Let ϕ ∈
◦

W3
2 (R3) be initial data, the parameter λ from (68) and the number T0 from (5). Let be a

vector field u is a weak solution of the Cauchy problems (1) and (2). If parameter λ ≥ 1 or in opposite case

lim
t↑T0

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

√
1 − λ4,

then the Cauchy problems (1) and (2) have global solutions u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and P =

P(t, x) with the following properties:

(1) mappings u and P are uniformly continuous and bounded on a set ST for every number T, T > 0;
(2) for every numbers T > 0, p ≥ 2, q ≥ 2, all norms

‖u‖2, ‖∇u‖2, ‖�u‖2, ‖∇Dtu‖2, ‖∇P‖2

are uniformly bounded and mixed norms ‖u‖p, q, ‖Dt�u‖2, 2 are finite on segment [0, T];
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(3) solutions u, P belong to class C∞((0, T)× R3)
⋂

C(ST) i.e., these solutions are classical.
If parameter λ ≥ 1, then the function l(t) = ‖u‖2‖∇u‖2 is a decreasing function on the interval [0, ∞) .
If λ < 1 and

lim
t↑T0

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

√
1 − λ4,

then the function l = l(t) is a decreasing function on the interval [T0, ∞).

Theorem 10. Let ϕ ∈ W3
2 (R3) be initial data in problems (1) and (2). If parameter λ > 1, then the solution u

from Theorem 9 satisfies:

(1) a power of norm ‖u‖4
2 is a convex function;

(2) there is fulfilled:

‖∇u‖2
2 ≤ ‖∇ϕ‖2

2
λ2

λ2 − 1
.

Proof. It follows from Lemma 45 because this lemma is true for solution u from Theorem 9.

7. Integral Identities for Solenoidal Vector Fields: Dimensions Comparison

Some review and results about integral identities for solenoidal vector fields are given by authors
in [32,33]. Here, we reduce one from these identities, which shows the essential distinction for the
Navier–Stokes equations between space and plane.

Let u, v, w : Rn → Rn be any triple of solenoidal vector fields from the class C2
0(Rn). Denote

cki(u) = uk, i − uk, i, k, i = 1, 2, . . . , n.

Lemma 51. (see [32]) For every triple u, v, w : Rn → Rn of solenoidal vector fields from the class C2
0(Rn),

the identity holds:
∫
(wi, j + wj, i)cki(v)ckj(u)dx = −

∫
wi(cki(u)�vk + cki(v)�uk)dx.

Hence, it follows (one should take u = v = w):
∫

ui, jcki(u)ckj(u)dx = −
∫

uicki(u)�ukdx.

Corollary 1. (see [33].) If dimension n = 2, then every solenoidal vector u ∈ C2
0(R2) satisfies the

integral identity: ∫
uiuk, i�ukdx = 0. (91)

Obviously, it implies some interesting applications to the 2D Navier–Stokes and Euler equations
(see [32]).

(1) We deduce a priori estimate for a solution u, which is not independent of a viscosity:

‖∇u‖2 ≤ ‖∇ϕ‖2 +
∫ t

0
‖∇ f ‖2dt, (92)

where f is an outer force. This improves essentially Ladyzhenskaya’s estimate (see [34]).
(2) In the case f = 0, we have formula (83) and, therefore, the norm ‖∇u‖2 is a decreasing function.
(3) We give the new proof of the existence of a global weak solution for the Euler equations in plane

in the case when an outer force f = 0. In addition, the estimate ‖∇u‖2 ≤ ‖∇ϕ‖2 is exact and it
does not follows from Judovich’s results [35]. This explains "the simplicity" of a motion of an
ideal fluid on plane.
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Remark 6. Let n = 2, f = 0. Then, the product ‖∇u‖2‖u‖2 is a decreasing function in any case.

Remark 7. If dimension n = 3, then integral from (91) may be not equal to null.

For a simple example, there is the vector field with the following coordinates:

ui(x) = λ2
i (li, x)e

− 1
2

(
x2

1
λ2

1
+

x2
2

λ2
2
+

x2
3

λ2
3

)
, i = 1, 2, 3,

where li is the i –th vector row of the skew-symmetric matrix. Since

∫
Rn

n

∑
i, k=1

uiuk, i�ukdx = −
∫

Rn

n

∑
i, k, j=1

ui, juk, iuk, jdx,

then simple calculations show

∫
R3

3

∑
i, j=1

uiuj, i�ujdx = c ∑
i �=k

λ2
i λ4

k

3

∑
j

lkilijlkj

with a constant c �= 0. A coefficient ∑j lkilijlkj may be not equal to zero for fixed different means k and i
because there is the linear independence of polynomials λ2

i λ4
k − λ2

kλ4
i , i < k, i, k = 1, 2, 3. It gives a

distinct from zero of the integral when we choose a suitable skew-symmetric matrix. Respectively,
the right side (see (83)) for dimensions n ≥ 3 can be taken with a large value implying a positive mean
of the difference ∫

Rn

n

∑
i, j=1

uiuj, i�ujdx − ν‖�u‖2
2

for t � 0. It is possible because we can take a factor for initial data αϕ or diminish viscosity coefficient
ν. This implies a growth of the norm ‖∇u‖2 for space. Obviously, on the plane, this phenomena does
not appear.

8. Conclusions

Briefly, the main achievements (see Theorems 7–10) have an obvious physical interpretation and,
therefore, it may be interesting for applications. Nevertheless, they are connected with monitoring of
blow up.

First of all, no phenomena blow up if parameter λ ≥ 1 or kinetic energy satisfies inequality:

lim
t↑T0

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

√
1 − λ4

for λ < 1.
No phenomena blow up on the time interval [0, T) if kinetic energy satisfies inequality:

‖u(t, ·)‖2
2 ≥ ‖ϕ‖2

2

(
1 − λ2

√
t

T0

)

with condition λ < 1.
Finally, we have the importance of the exact lower estimates for kinetic energy of a fluid flow. It is

possible that this is one of the new ways where the interesting problem will be studied.
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Appendix A

Appendix A.1. About the Riesz Potentials and Integral Representations

Some technical results are given.

Lemma A1. (Hardy–Littlewood–Sobolev’s inequality ([24], p. 141). Let Iα( f ) be Riesz’s potential defined
by (4). Set 0 < α < n. Then, there exists a constant A = A(p, q) where 1

q = 1
p − α

n , 1 < p < q, such that the
following inequality holds:

‖Iα( f )‖q ≤ A‖ f ‖p.

In a special case, we give an estimate for operator norm.

Corollary A1. The inequality A(6, 2) ≤ 3
√

4
π is true, i.e., ‖u‖6 ≤ 3

√
4
π ‖∇u‖2.

Proof. It is sufficient to verify this inequality for smooth and finite mappings. From Riesz’s formula,
we have:

|u(x)|4 =
1
π

∫
R3

|u(y)|2ui(y)ui, j(y)(xj − yj)dy
|x − y|3 .

Multiply it by |u(x)|2. Then, we make a simple estimate and integrate over space. Hence,

‖u‖6
6 ≤ 1

π

∫
|u(y)|3|∇u(y)|

∫ |u(x)|2
|x − y|2 dxdy.

The interior integral we estimate applying Leray’s inequality

∫ |u(x)|2
|x − y|2 dx ≤ 4‖∇u‖2

2

(see [4], also [7], p. 24), thereupon we use Hölder’s inequality. Then,

‖u‖6
6 ≤ 4

π
‖u‖3

6‖∇u‖3
2.

It gives the required estimate.

Let us make more precise well-known integral representations as Poisson’s formula and Riesz’s
formula for smooth functions with compact support.

Lemma A2. Let w ∈ C2(R3)
⋂

Lp(R3), p ≥ 1, be a mapping and its Laplacian �w has a compact support.
Then, the equalities hold:

w(x) = − 1
4π

∫
R3

�w(y)dy
|x − y| , w, j(x) =

1
4π

∫
R3

�w(y)(xj − yj)dy
|x − y|3 , (A1)

w(x) =
1

4π

∫
R3

w, j(y)(xj − yj)dy
|x − y|3 , (A2)

(In (A2), repeated indices give summation.)

Proof. To integral ∫
ε≤|x−y|≤r

�w(y)dy
|x − y| ,
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we apply twice the Stokes formula removing integrals over spherical layer and derivatives of the
mapping w. As the result, we have two integrals over sphere | x − y |= ε and two integrals over sphere
| x − y |= r. They are: ∫

|x−y|=ε

w(y)dS
ε2 ,

∫
|x−y|=r

w(y)dS
r2 , (A3)

∫
|x−y|=ε

w, j(y)(xj − yj)dS
ε2 ,

∫
|x−y|=r

w, j(y)(xj − yj)dS
r2 .

The third and the fourth integrals we transform again applying the Stokes formula and getting integrals
over balls | x − y |≤ ε, and | x − y |≤ r, respectively. Every integral must contain Laplacian. Since
support of �w is a compact set, then these integrals tend to zero as ε → 0, r → ∞.

The second integral in (A3) we denote by a symbol I. Then,

I = r−3
∫
|x−y|=r

w(y)(xj − yj)
(xj − yj)

r
dS.

The Stokes formula application gives the equality:

I = r−3
∫
|x−y|≤r

(3w(y) + w, j(y)(xj − yj))dy. (A4)

The second term in (A4) we integrate by parts. Therefore,

∫
|x−y|≤r

(w, j(y)(xj − yj))dy =
1
2

∫
|x−y|≤r

(�w(y)(|x − y|2 − r2)dy.

The integral from the first term in (A4) we estimate applying the Hölder’s inequality. Then,

|I| ≤ 3r−3‖w‖p(σ3r3)1−1/p +
1
2r

∫
|x−y|≤r

|�w(y)|dy,

where σ3—is the volume of a unit ball. From compactness of Laplacian support and lemma condition,
we obtain that integral I → 0 as r → ∞. The first integral in (A3) tends to the mean 4πw(x) as ε → 0.
formula (A2) we prove by the same way.

Corollary A2. A mapping w from Lemma A2 satisfies inequalities: |∇w(x)| ≤ C1x−2, |w(x)| ≤ C2x−1 with
some constants C1 and C2 .

Proof. The first inequality follows from the second representation of Lemma A2 and compactness of
Laplacian support. The second estimate follows from the third representation of Lemma A2 because
the first estimate from the corollary gives:

|w(x)| ≤ C1

4π

∫
R3

dy
|y|2|x − y|2 .

A change of variables y = |x|z proves the second estimate.

Corollary A3. Let v,w : R3 → R3 be mappings which satisfy conditions from Lemma A2. Then,
∫

R3
vk�wkdy = −

∫
vk, jwk, jdy.

Proof. We apply the Stokes formula to the integral from the left side of this equality. From Corollary A2
on a sphere |y| = r, we get the following formula: vkwk, j = O(r−3). A passage to the limit as r → ∞
gives the required equality.
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Lemma A3. Let P : R3 → R be a function and P ∈ Lr(R3) with some exponent r > 1 and distributions
P, ij ∈ L1((R3)

⋂
Ls(R3) for some exponent s ∈ (1, 3/2). Then, for function P, Poisson’s formula (the first

equality from (A2)) is true.

Proof. For any smooth function P, we verify the integral identity the same way as in Lemma A2
with application of Lemma A4 (see below). A density of smooth functions and Lemma A1 prove the
statement in a general case because there is continuity of the Riesz potentials in spaces Lq.

Lemma A4. Suppose that a continuous mapping w : Rn → Rn belongs to the class W1
p(Rn), p > 1. Then, for

any point x, an exponent α, where α > (n − 1)(1 − 1/p),

r−α
∫
|x−y|=r

w(y)dS → 0

as r → ∞.

Proof. Hölder’s inequality implies an estimate:

|
∫
|x−y|=r

w(y)dS| ≤ (ωn−1rn−1)1/q
(∫

|x−y|=r
|w(y)|pdS

)1/p
. (A5)

Here, ωn−1 – is the surface measure of an unit sphere, q = p
p−1 . Let

J =
∫
|x−y|=r |w(y)|pdS. Then,

J =
∫
|x−y|=r

|w(y)|p
yj − xj

r
yj − xj

r
dS =

=
n
r

∫
|x−y|≤r

|w(y)|pdy + p
∫
|x−y|≤r

|w(y)|p−2wk(y)wk, j(y)
yj − xj

r
dy.

The second integral on the right-hand side is estimated by application of Hölder’s inequality.
Furthermore, we replace the integration over a ball by the integration over the whole space. Hence,

J ≤ n
r
‖w(y)‖p

p + p‖w(y)‖p−1
p ‖∇w‖p

and J = O(1) as r → ∞. Therefore, from (A5), we have the statement.

Appendix A.2. Logarithmic Convexity Inequalities and Its Corollaries

Lemma A5. ([36], p. 21). A function β(p) = ‖w‖p is a logarithmic convex function. That is, for exponents
r ≥ 1, s ≥ 1 with condition 1

p = 1−t
r + t

s , where t ∈ [0, 1] , the inequality ‖w‖p ≤ ‖w‖1−t
r ‖w‖t

s is fulfilled.

Corollary A4. Let u, v, w : R3 → R3 be a triple of mappings satisfying conditions of Lemma A2. Then, the
inequality holds:

|
∫

R3
uivk, i�wkdy| ≤ a‖∇u‖2‖∇v‖1/2

2 ‖�v‖1/2
2 ‖�w‖2

with a constant a =
√

4
π . In addition, for a solenoidal vector field u, there is a more exact estimate:

|
∫

R3
uiuk, i�ukdy| ≤ a1‖∇u‖3/2

2 ‖�u‖3/2
2 , k, i = 1, 2, 3,

where a1 = 8 4√12
27 .
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Proof. We have estimates:

|uivk, i�wk| ≤ |u| · |∇vk| · |�wk| ≤ |u| · |∇v| · |�w|,

which follow from the Cauchy–Bunyakovskii’s inequality. Apply Hölder’s inequality for three factors.
Then,

|
∫

R3
uivk, i�wkdy| ≤ ‖∇u‖6‖∇v‖3‖�w‖2. (A6)

For each coordinate ui ∈ C∞
0 , we have ‖ui‖6 ≤ A‖∇ui‖2 where A = 3

√
4
π (see Corollary A1).

A density of smooth functions and Lemma A1 give the required estimate in a general case.
Since ‖u‖2

6 ≤ ∑i ‖ui‖2
6 (we apply the Minkovskii’s inequality with exponent 3), then ‖u‖6 ≤

A‖∇u‖2. Respectively, we have ‖∇v‖2
6 ≤ ∑i ‖v, i‖2

6 and ‖v, i‖2
6 ≤ ‖∇v, i‖2

2, ∑i ‖∇v, i‖2
2 = ∑i ‖�v‖2

2.
From Lemma A5 with exponents p = 3, r = 2, s = 6 and number t = 0, 5, we obtain: ‖∇v‖3 ≤

‖∇v‖1/2
2 |∇v‖1/2

6 . Then, from inequalities above and formula (A6), we prove the estimate with a
constant a = A3/2.

Now, we verify the other inequality. For solenoidal vector fields, we get (see Corollary A2):

∫
R3

uiuk, i�ukdy = −
∫

R3
ui, juk, iuk, jdy = −

∫
R3

ui, j

(
uk, iuk, j −

1
3

δij|∇u|22
)

dy,

where δij is Kronecker’s delta. Applying Hölder’s inequality to a pair

ui, j, uk, iuk, j −
1
3

δij|∇u|22,

we obtain:

|
∫

R3
uiuk, i�ukdy| ≤

√
2
3
‖∇u‖2‖∇u‖2

4.

Since (∫
R3

(
∑

i
|u, i|2

)2
dy

)1/2
≤ ∑

i

(∫
R3

|u, i|4dy
)1/2

,

then, from the inequality

‖ f ‖2
4 ≤

( 4
3
√

3

)3/2
‖ f ‖1/2

2 ‖∇ f ‖3/2
2

for vector fields (see [23], Chapter 2 and [27]), we get the second part of the lemma comparing all
estimates from above.

Appendix A.3. Vanishing of Harmonic and Biharmonic Functions

Lemma A6. If a harmonic function h : R3 → R is represented by sum h = hs + h3 + h6 where functions
hp ∈ Lp(R3), p = s, 3, 6, 1 < s ≤ 2, then h ≡ 0.

Proof. Without loss of generality, we assume that functions hp are smooth. Otherwise, we take its
average defined by a formula

hτ(x) =
∫

h(x + τy)ω(y)dy

with a kernel ω ∈ C∞
0 (R3). In the equality,

0 =
∫
|y−x|≤r

�h(y)|x − y|βdy = I,
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−1 < β < −0, 5, we transform the integral applying the Stokes theorem. Let x = 0. Then,

I = −β
∫
|y|≤r

h, j(y)yj|y|β−2dy +
∫
|y|=r

h, j(y)|y|β
yj

r
dS = βJ1 + J2.

The integral over surface J2 = 0 since J2 = rβ
∫
|y|≤r �h(y)dy = 0. Hence, J1 = 0. This integral is

transformed in the same way as the integral I. From the equality,

J1 =
∫
|y|≤r

h(y)
∂

∂yj

(
yj|y|β−2

)
dy − rβ−1

∫
|y|=r

h(y)dS,

by application of the theorem on the mean value of a harmonic function, we conclude the formula:

h(0) =
β + 1

4πrβ+1

(∫
|y|≤r

hs(y)
|y|2−β

dy +
∫
|y|≤r

h3(y)
|y|2−β

dy +
∫
|y|≤r

h6(y)
|y|2−β

dy
)

. (A7)

For chosen means β, each potential Iβ+1(hq)(0), q = s, 3, 6 is finite (see Lemma A1). The passage to the
limit in (A7) as r → ∞ yields the equality: h(0) = 0.

Lemma A7. If a biharmonic function h : R3 → R has a decomposition h = hs + h3 + h6 where functions
hp ∈ Lp(R3), p = s, 3, 6, 1 < s ≤ 2, then h ≡ 0.

Proof. Without loss of the generality, we can replace functions hp by its averages (see above). Then,
every average hτ

p ∈ W1
p(R3). Now, we fix the averaging parameter τ. Let x = 0 and 1 < β < 1, 5. Let

us show that function h is a harmonic function. It is sufficient to apply the theorem about the mean
value of a harmonic function to �h and use the spherical coordinates. Then, for the average, we have:

�hτ(0) =
β + 1

4πrβ+1

∫
|y|≤r

�hτ(y)|y|β−2dy =
β + 1

4πrβ+1 J3. (A8)

The integral J3 is transformed by applying three times of the Stokes theorem: twice to the integrals
over volume and once to the integral over surface. As a result, we obtain:

J3 = (β2 − 3β + 2)
∫
|y|≤r

hτ(y)|y|β−4dy − (β − 2)rβ−3
∫
|y|=r

hτ(y)dS + rβ−2
∫
|y|≤r

�hτ(y)dy.

Furthermore, we apply again the theorem about a mean value for a harmonic function to the third
integral. After that, we input the mean of integral J3 in (A8). Then, we conclude:

�hτ(0)
3

=
1 − β2

4πrβ+1

∫
|y|≤r

hτ(y)|y|β−4dy +
β + 1
4πr4

∫
|y|=r

hτ(y)dS.

Here, the integral over the volume set tends to a finite mean as r → ∞. The finiteness of this mean is
proved in the same way as in Lemma A6. This implies

�h(0)
3

= lim
r→∞

β + 1
4πrβ+1

∫
|y|=r

h(y)dS.

An exponent mean β belongs to the interval (1, 3/2). Hence, and from Lemma A4, we obtain �hτ(0) =
0. Taking assumption about a ball center, we obtain that the function hτ is a harmonic function. Then,
from Lemma A6, hτ ≡ 0. Let τ → 0. Then, h ≡ 0.
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Abstract: Different results regarding different integro-differentials are usually not properly generalized,
as they often do not satisfy some of the constraints. The field of fuzzy integro-differentials is very
rich these days because of their different applications and functions in different physical phenomena.
Solutions of linear fuzzy Volterra integro-differential equations (FVIDEs) are more generalized and
have better applications. In this report, the Sumudu decomposition method (SDM) was used to
find the solution to some linear and nonlinear fuzzy integro-differential equations (FIDEs). Some
examples are given to show the validity of the presented method.

Keywords: integro-differentials; Sumudu decomposition method; dynamical system

1. Introduction

Linear and nonlinear phenomena are a fundamental part of science and construction. Nonlinear
equations are seen in an alternative way when dealing with physical problems such as liquid elements,
plasma material science, strong mechanics, quantum field hypotheses, the proliferation of shallow
water waves, and numerous other models, all of which are to found within the field of incomplete
differential equations. The wide use of these equations is the key to why they have drawn the
attention of mathematicians. Regardless of this, they are difficult to solve, either numerically or
theoretically. Previously, dynamic examinations were much examined for the potential of finding exact
or approximate solutions to these sorts of equations [1,2].

In the recent years, the area of FIDEs has developed a lot and plays a key role in the field of
engineering. The elementary impression and arithmetic of fuzzy sets were first introduced by Zadeh.
Later, the area of fuzzy derivative and fuzzy integration was studied, and some general results were
developed. Fuzzy differential equations (FDEs) and FIDEs are very important in the study of fuzzy
theory and have many beneficial consequences related to different problems. Modeling of different
physical systems in the differential way gives us different FIDEs [2,3]. Furthermore, FIDEs in a fuzzy
setting are a natural way to model the ambiguity of dynamic systems. Consequently, different scientific
fields, such as physics, geography, medicine, and biology, pay much importance to the solution of
different FIDEs. Solutions to these equations can be utilized in different engineering problems. Seikkala
first defined fuzzy derivatives, while the concept of integration of fuzzy functions was first introduced
by Dubois and Prade. However, analytic solutions to nonlinear FIDE types are often difficult to find.
Therefore, most of the time, an approximate solution is required. There are also useful numerical
schemes that can produce a numerical approximation to solutions for some problems [4,5].
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Axioms 2019, 8, 74

The literature on numerical solutions of integro-differential equations (IDEs) is vast. We used the
Sumudu decomposition method [6–8] to solve linear and nonlinear fuzzy integral equations (FIEs). The
method gives more realistic series solutions that converge very rapidly in physical problems. Sumudu
transforms are also used for solving IDEs, which can be seen in [4,5]. IDEs are transforms to FIDEs
that are more general and give better results. After applying a Sumudu transform, a decomposition
method is used for the approximate solution [8,9].

2. Preliminaries

Integral Equation (IE)

The obscure function Υ(ξ) that shows up under an integral symbol is known as an integral
equation. Usually, we write an integral equation as follow:

Υ(ξ) = f (ξ) +

h(ξ)∫
g(ξ)

K(ξ, t)Υ(t)dt, (1)

where k(ξ, t) and λ are the kernel and constant parameter, respectively. The kernel is identified as
the function of dual variables ξ and t, whereas g(ξ) and h(ξ) are recognized as the limitations for
integration. The function Υ(ξ) to be resolved shows up under the integral symbol; it has the property
of appearing in both the outside as well as inside of the integral symbol. The functions that will be
specified in progressive are f (ξ) and k(ξ, t). Limitations of integration can adopt both forms, either as
the variable, constant, or blended [10].

Types of Integral Equation

IEs show up in numerous forms. Different sorts are generally contingent on the limitations of
antiderivatives as well as the kernel of equality. In this content, we focus on the following sorts of
IE [11]:

i. Fredholm IE;
ii. Volterra IE;
iii. Volterra-Fredholm IE;
iv. Singular.

Volterra Integral Equations (VIEs)

There is a restriction for the VIE, which is that at least one limit should be a variable. Likewise, in
FIEs, there are two varieties of VIEs, which are more easily described through the following:

f (ξ) =

ξ∫
0

K(ξ, t)Υ(t)dt. (2)

Equation (2) is a VIE of the first kind.
That is:

ξe−ξ =
ξ∫

0

et−ξΥ(t)dt

Υ(ξ) = f (ξ) + λ

ξ∫
0

K(ξ, t)Υ(t)dt (3)

Equality (3) is a VIE of 2nd type.
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For illustration,

Υ(ξ) = 1−
ξ∫

0

Υ(t)dt

Classification of Integro-Differential Equations

Different types of dynamical physical problems possess integro-differential equations, specifically
during the conversion of initial value problems (IVPs) and boundary value problems (BVPs). Differential
operators as well as integral operators are involved in an integro-differential equation. There could be
any order for the presence of derivatives of the unknown function. In characterizing integro-differential
equations, we pursued a similar class as used previously. The following are well-known types of
integro-differential equations:

i. Fredholm integro-differential equations;
ii. Volterra integro-differential equations;
iii. Volterra–Fredholm integro-differential equations.

Volterra Integro-Differential Equation

The Volterra integro-differential equation appears during the conversion of IVPs into the
integral equation. In the Volterra integro-differential equation, the unidentified function and its
derivatives appear inside as well as outside of the integral operator. For VIE, at least one limit of
integration is variable. In order to obtain the exact solution, we need initial conditions in the Volterra
integro-differential equation (VIDE). Consider the following VIDE:

Υn(ξ) = f (ξ) + λ

ξ∫
0

K(ξ, t)Υ(t)dt (4)

where Υn denotes the derivative of order n of Υ(ξ). The VIDE given in Equation (4) can be written as:

Υ′(ξ) = 3 +
1
4
ξ2 − ξeξ −

ξ∫
0

tΥ(t)dt, Υ(0) = 0, (5)

3. Theorems and Definitions Interrelated to Fuzzy Perceptions

Fuzzy Number

A fuzzy number is a generalization of a regular, real number in the sense that it does not refer to
one single value but rather to a connected set of possible values, where each possible value has its own
weight between 0 and 1. This weight is called the membership function.

Let E be the set of all fuzzy numbers which upper semicontinuous and compact. The α level set
[Υ]ρ where Υ is the collection of fuzzy numbers, 0 < ρ ≤ 1, is defined as:

[Υ]ρ =
{
t ∈ R, Υ(t) ≥ ρ}

The set E is convex if Υ(t) ≥ Υ(s) ∧ Υ(r) = min(Υ(s), Υ(r)), where s < t < r.
If ∃ to ∈ R such that Υ(to) = 1, then E becomes normal. E is said to be upper semicontinuous if for

every ε > 0, such that Υ−1([0, a + ε)), ∀ a ∈ [0, 1] is open in the typical topology of R [12,13].
Absolute value |Υ| of Υ ∈ E is defined as:

|Υ|(t) = max
{
Υ(t), Υ(−t)

}
, i f t ≥ 0

= 0, i f t < 0
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Consider the mapping d : L(R) × L(R)→ R defined as:

d(Υ, V) = sup
0≤ρ≤1

max
{∣∣∣Υ(ρ) −V(ρ)

∣∣∣, ∣∣∣Υ(ρ) −V(ρ)
∣∣∣}

where:
Υ =

[
Υ(ρ), Υ(ρ)

]
and V =

[
V(ρ), V(ρ)

]
.

Then,d is a metric on L(R) satisfying the properties:

1. d(Υ + w, V + w) = d(Υ, V) f or all Υ, V, w ∈ L(R);
2. d(kΥ, kV) = |k|d(Υ, V) for all Υ, V,∈ L(R);
3. d(Υ + w, w + e) ≤ d(Υ, w) + d(V, e) f or all Υ, V, w, e ∈ L(R);
4. (d, L(R)) is a complete metric space.

Definition 1. Let f : R→ L(R) be a fuzzy valued function, then f is continuous if for to ∈ R and for each
ε > 0, there exists δ > 0 such that:

d(( f (t), f (t0)) < ε whenever |t− to| < δ

Definition 2. Let f : R→ L(R) be a fuzzy valued function and ξo ∈ R, then f is differentiable at ξo. If ∃
f ′(ξo) ∈ L(R) such that:

(a) lim
h→0+

f (ξo+h)− f (ξo)
h = lim

h→0+

f (ξo)− f (ξo−h)
h = f (1)(ξo)

(b) lim
h→0−

f (ξo+h)− f (ξo)
h = lim

h→0−
f (ξo)− f (ξo−h)

h = f (1)(ξo)

Theorem 1. Consider f : R→ L(R) as a fuzzy valued function defined as f (t) =
[

f (t,ρ), f (t,ρ)
]

for each

0 ≤ α ≤ 1, and - f is differentiable, then f (t,ρ) and f (t,ρ) are differentiable and f (1)(t) =
[

f (1)(t,ρ), f
(1)

(t,ρ)
]
.

Theorem 2. Let f : R→ L(R) be the fuzzy valued function defined as f (t) =
[

f (t,ρ), f (t,ρ)
]

for each

0 ≤ ρ ≤ 1. If f and f (1) have the property of differentiability, then f
(1)

(t,ρ) and f (1)(t,ρ) are differentiable
and:

f (2)(t) =
[

f (2)(t,ρ), f
(2)

(t,ρ)
]

Theorem 3. Consider a real valued function f (ξ) defined on [0,∞] such that f (ξ,ρ), f (ξ,ρ) are

Riemann-integrable on [a, b], for each b ≥ a and there exist positive constants M(ρ), M(ρ) such that:

b∫
a

∣∣∣∣ f (ξ,ρ)∣∣∣∣dξ ≤M(ρ) and

b∫
a

∣∣∣∣ f (ξ,ρ)∣∣∣∣dξ ≤M(ρ)

for every b ≥ a. Then, f (ξ) is an improper fuzzy Riemann integrable on [0,∞], and f (ξ) is a fuzzy number.
Additionally, we we have:

∞∫
a

f (ξ)dξ =

b∫
a

f (ξ,ρ)dξ,

b∫
a

f (ξ,ρ)dξ

Theorem 4. The sum of two fuzzy Riemann integrable functions is a Riemann integrable.
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Definition 3. The fuzzy Laplace transform (FLT) of a fuzzy function f is defined as:

f (s) = L
{
f (t)

}
=

∞∫
0

e−st f (t)dt = lim
T→∞

T∫
0

e−st f (t)dt,

where L denotes FLT. In addition, the fuzzy Laplace transform for f (t) can be as follows:

f (s,ρ) = L{ f (t,ρ)} = [l{ f (t,ρ}, l{ f {t,ρ}]
l{ f (t,ρ} =

∞∫
0

e−st f (t)dt = lim
T→∞

T∫
0

e−st f (t)dt

0 ≤ ρ ≤ 1

l{ f {t,ρ} =
∞∫
0

e−st f (t)dt = lim
T→∞

T∫
0

e−st f (t)dt

0 ≤ ρ ≤ 1

Theorem 5 (Fuzzy Convolution Theorem).

Let f and g be two fuzzy real valued functions. Then, the convolution of f and g is defined as:

( f ∗ g)(t) =

T∫
0

f (T)g(t− T)dT.

Theorem 6. Consider f and g defined on R are two continuous (piecewise) functions defined on [0,∞] having
exponential order p, then:

L
{
( f ∗ g)(t)

}
= L

{
f (t)

}
L
{
g(t)

}
= F(s).G(s)

Definition 4. (Sumudu transform) [14–16]

The Sumudu transform of the function f (t) is defined as:

F(u) = S[ f (t)] =
∞∫
0

1
u e(− t

u ) f (t)dt,

F(u) = S[ f (t)] =
∞∫
0

f (ut)e−tdt,

for any function f (t) and −τ1 < u < τ2.

Theorem 7. If c1 ≥ 0, c2 ≥ 0 and c ≥ 0 are any constant and f1(t), f2(t), and f (t) any functions having the
Sumudu transform G1(u), G2(u), and G(u), respectively, then:

i. S[c1 f1(t) + c2 f2(t)] = c1S[ f1(t)] + c2S[ f2(t)] = c1G1(u) + c2G2(u);
ii. S[ f (ct)] = G(cu);
iii. lim

t→∞ f (t) = f (0) = lim
u→0

G(u).

For more details, we refer the readers to [17,18].

Fuzzy Sumudu Transfom

Let f : R→ f (R) be a continuous fuzzy function, then the fuzzy Sumudu transform (FST) can be
defined as:
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F(u) = S[ f (ξ)] =
∞∫
0

f (uξ) � e−ξdξ, u ∈ [τ1, τ2]

= S[ f (ξ)] =
[
S
[

f
α
(ξ)

]
,S

[
fα(ξ)

]]
Theorem 7. Let f : R→ f (R) be a continuous fuzzy valued function. If F(u) = S[ f (ξ)], then:

S
[

f (1)(ξ)
]
=

⎧⎪⎪⎨⎪⎪⎩ F(u)
u − f (0)

u i f f is (i)di f f erentiable and u > 0

− f (0)
u − (−F(u))

u i f f is (ii)di f f erentiable and u > 0

Proof. Case (i) Let f be differentiable, then:

F(u)
u − f (0)

u =

⎡⎢⎢⎢⎢⎢⎣S
[

f
ρ
(ξ)

]
− f
ρ
(0)

u ,
S
[

f ρ(x)
]
− f ρ(0)

u

⎤⎥⎥⎥⎥⎥⎦
= S

[[
f
ρ
(ξ)

]
S
[

f ρ(ξ)
]]
= S

[
f (1)(ξ)

]
Case (ii) Let f be differentiable, then:

− f (0)
u − (−F(u))

u =

⎡⎢⎢⎢⎢⎢⎣− f
ρ
(0)+S

[
f
ρ
(ξ)

]
u ,− f ρ(0)+S

[
f ρ(ξ)

]
u

⎤⎥⎥⎥⎥⎥⎦
= S

[[
f
ρ
(ξ)

]
S
[

f ρ(ξ)
]]

= S
[

f (1)(ξ)
]

�

Theorem 8. Let f : R→ f (R) be a continuous fuzzy valued function, and if F(u) = S[ f (x)], then:

S
(
e−aξ � f (t)

)
=

1
1 + au

F
( u

1 + au

)
, au � −1 and

1
1 + au

> 0

Proof.

S
(
e−aξ � f (t)

)
=

⎡⎢⎢⎢⎢⎣∞∫
0

f
ρ
(uξ)e−a(ξu)e−ξdξ,

∞∫
0

fρ(uξ)e−a(ξu)e−ξdξ
⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣∞∫
0

f
ρ
(uξ)e−a(1+u)ξdξ,

∞∫
0

fρ(ξ)e−a(1+u)ξdξ

⎤⎥⎥⎥⎥⎦
Now, let v = (1 + au)ξ and dξ = v

1+au .
Thus, we have:

S
(
e−aξ � f (t)

)
=

⎡⎢⎢⎢⎢⎣ 1
1+au

∞∫
0

f
ρ

(
uv

1+au

)
e−vdv, 1

1+au

∞∫
0

fρ
(

uv
1+au

)
e−vdv,

⎤⎥⎥⎥⎥⎦
= 1

1+au

∞∫
0

fα
(

uv
1+au

)
e−vdv.

Hence:
S
(
e−aξ � f (t)

)
=

1
1 + au

F
( u

1− au

)
.
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In the same way, we can prove that:(
eaξ � f (t)

)
=

1
1− au

F
( u

1− au

)
.

�

Theorem 9. Let f : R→ f (R) be a continuous fuzzy valued function, and if F(u) = S[ f (ξ)], then:

S
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ξ∫

0

f (ξ)dξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = uF(u)

Proof. Assume function h is differentiable, and:

hρ(ξ) =

ξ∫
0

f
ρ
(ξ)dξ, hρ(ξ) =

ξ∫
0

f ρ(ξ)dξ hρ(0) = 0 = hρ(0), h(1)(ξ) = f (ξ).

Then:

S
(
h(1)(ξ)

)
=

H(u)
u − h(o)

u =

[S[hρ(ξ)]
u − hρ(0)

u ,
S[hρ(ξ)]

u − hρ(0)
u

]
=

[S[hρ(ξ)]
u ,

S[hρ(ξ)]
u

]
=

⎡⎢⎢⎢⎢⎣ 1
u S

ξ∫
0

f
ρ
(ξ)dξ, 1

uS
ξ∫

0
f ρ(ξ)dξ

⎤⎥⎥⎥⎥⎦
Thus, we have:

S
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ξ∫

0

f (ξ)dξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = uF(u)

�

4. Sumudu Decomposition Method for Fuzzy Integro-Differential Equation (Analysis of Method)

Consider a Volterra integro-differential equation:

Υn(ξ,ρ) = f (ξ,ρ) +

ξ∫
0

k(ξ− t)Υ(t,ρ)dt (6)

Υk(0) = p = (p
k
, pk); 0≤k≤n−1

By taking sumudu transform on Equation (6), we have:

S[Υn(ξ,ρ)] = S[ f (ξ,ρ)] +S
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ξ∫

0

k(ξ− t)Υ(t,ρ)dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

This will give us:

1
unS[Υ(ξ,ρ)] − 1

un Υ(0,ρ) − 1
un−1 Υ(1)(0,ρ) − · · · − Υ(n−1)(0,ρ)

u

= S[ f (ξ,ρ)] +S
⎡⎢⎢⎢⎢⎣ ξ∫

0
k(ξ− t)Υ(t,ρ)dt

⎤⎥⎥⎥⎥⎦ (8)
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1
unS[Υ(ξ,ρ)] −

1
un Υ(0,ρ) − 1

un−1
Υ′ (0,ρ) − · · · − Υn−1(0,ρ)

u
= S

[
f (ξ,ρ)

]
+ uS[k(ξ− t)]S[Υ(ξ, t)] (9)

1
unS

[
Υ(ξ,ρ)

]
− 1

un Υ(0,ρ) − 1
un−1

Υ
(1)

(0,ρ) − · · · − Υ
(n−1)

(0,ρ)
u

= S
[

f (ξ,ρ)
]
+ uS[k(ξ− t)]S[Υ(ξ, t)] (10)

Note that:
Υ(0,ρ) = p

0
, Υ(1)(0,ρ) = p

1
. . . . . . . . . Υn−1(0,ρ) = p

n−1

Υ(0,ρ) = p0, Υ(1)(0,ρ) = p1 . . . . . . . . . Υ
n−1

(0,ρ) = pn−1

Thus, we have:

1
unS[Υ(ξ,ρ)] −

1
un p

0
− 1

un−1
p

1
− · · · −

p
n−1

u
= S

[
f (ξ,ρ)

]
+ uS[k(ξ− t)]S[Υ(ξ,ρ)] (11)

1
unS

[
Υ(ξ,ρ)

]
− 1

un p0 −
1

un−1
p1 − · · · −

pn−1

u
= S

[
f (ξ,ρ)

]
+ uS

[
k(ξ− t)]S[Υ(ξ,ρ)

]
(12)

The following cases can be discussed:

(i) if Υ(ξ;ρ) and k(ξ;ρ) both are positive:

S[k(ξ,ρ)]S[Υ(ξ,ρ)]= S[k(ξ,ρ)]S[Υ(ξ,ρ)]

S
[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
= S

[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
(ii) if Υ(ξ;ρ) is negative and k(ξ;ρ) is positive:

S[k(ξ,ρ)]S[Υ(ξ,ρ)] = S
[
k(ξ,ρ)

]
S[Υ(ξ,ρ)]

S
[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
= S[k(ξ,ρ)]S

[
Υ(ξ,ρ)

]
(iii) if Υ(ξ;ρ) is positive and k(ξ;ρ) is negative:

S[k(ξ,ρ)]S[Υ(ξ,ρ)]= S[k(ξ,ρ)]S
[
Υ(ξ,ρ)

]
S
[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
= S

[
k(ξ,ρ)

]
S[Υ(ξ,ρ)]

(iv) if Υ(ξ;ρ) and k(ξ;ρ) both are negative:

S[k(ξ,ρ)]S[Υ(ξ,ρ)] = S
[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
S
[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
= S[k(ξ,ρ)]S[Υ(ξ,ρ)]

Exploring Case (i), we can see that is remains are same.
After simplification, (11) and (12) become:

S[Υ(ξ,ρ)] − p
0
− up

1
− · · · − un−1p

n−1
= unS

[
f (ξ,ρ)

]
+ un+1 S[k(ξ,ρ)]S[Υ(ξ,ρ)] (13)

S
[
Υ(ξ,ρ)

]
− p0 − up1 − · · · − un−1pn−1 = unS

[
f (ξ,ρ)

]
+ un+1S

[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
(14)

After simplification:

S[Υ(ξ,ρ)] − un+1 S[k(ξ,ρ)]S[Υ(ξ,ρ)] = unS
[

f (ξ,ρ)
]
+ p

0
+ up

1
+ · · ·+ un−1p

n−1
(15)

S[Υ(ξ,ρ)] − un+1S
[
k(ξ,ρ)

]
S
[
Υ(ξ,ρ)

]
= unS

[
f (ξ,ρ)

]
+ up1 + · · ·+ un−1pn−1 (16)
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Equations (15) and (16) give us:

S[Υ(ξ,ρ)] =
unS

[
f (ξ,ρ)

]
+ p

0
+ up

1
+ · · ·+ un−1p

n−1

(1− un+1S[k(ξ− t)])
(17)

S
[
Υ(ξ,ρ)

]
=

unS
[

f (ξ,ρ)
]
+ up1 + · · ·+ un−1pn−1

(1− un+1S
[(

k(ξ− t)
]) (18)

By taking the inverse Sumudu transforms, we can get the value of Υ(ξ,ρ) and Υ(ξ,ρ).
Now, using the decomposition method:

∞∑
i=0

Υi(ξ,ρ) = Υ0(ξ,ρ) + Υ1(ξ,ρ) + Υ2(ξ,ρ) + · · ·Υn(ξ,ρ)

and: ∞∑
i=0

Υi(ξ,ρ) = Υ0(ξ,ρ) + Υ1(ξ,ρ) + Υ2(ξ,ρ) + · · ·Υn(ξ,ρ),

we can write as:
S
[
Υ0(ξ,ρ)

]
= unS

[
f (ξ,ρ)

]
+ p

0
+ up

1
+ · · ·+ un−1p

n−1

S
[
Υ1(ξ,ρ)

]
= un+1S[k(ξ− t)]S[Υ0(ξ,ρ)]

S
[
Υ1(ξ,ρ)

]
= un+1S[k(ξ− t)]S[Υ1(ξ,ρ)]

...

S
[
Υn(ξ,ρ)

]
= un+1S[k(ξ− t)]S[Υn−1(ξ,ρ)]

(A)

Similarly:
S
[
Υ0(ξ,ρ)

]
= unS

[
f (ξ,ρ)

]
+ p

0
+ up

1
+ · · ·+ un−1p

n−1

S
[
Υ1(ξ,ρ)

]
= un+1S[k(ξ− t)]S[Υ0(ξ,ρ)]

S
[
Υ2(ξ,ρ)

]
= un+1S[k(ξ− t)]S[Υ1(ξ,ρ)]

...

S
[
Υn(ξ,ρ)

]
= un+1S[k(ξ− t)]S[Υn−1(ξ,ρ)]

(B)

For nonlinear equations, we use the adomian polynomials:

A0 = ΥO
2, A1 = 2ΥO Υ1

A2 = 2ΥO Υ2 + Υ1
2, A3 = 2ΥO Υ1 + 2Υ1Υ2

Then, Equation (B) becomes:

S
⎡⎢⎢⎢⎢⎢⎣ ∞∑

i=0

Υi(ξ,ρ)

⎤⎥⎥⎥⎥⎥⎦− p
0
− up

1
− · · · − un−1p

n−1
= unS

[
f (ξ,ρ)

]
+ un+1S

⎡⎢⎢⎢⎢⎢⎢⎣k(x− t)]S[
∞∑

j=1

Aj

⎤⎥⎥⎥⎥⎥⎥⎦ (19)

S
⎡⎢⎢⎢⎢⎢⎣ ∞∑

i=0

Υi(ξ,ρ)

⎤⎥⎥⎥⎥⎥⎦− p0 − up1 − · · · − un−1pn−1 = unS
[

f (ξ,ρ)
]
+ un+1S

⎡⎢⎢⎢⎢⎢⎢⎣k(ξ− t)]S[
∞∑

i= j

Aj

⎤⎥⎥⎥⎥⎥⎥⎦
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5. Numerical Examples

Example 1. A linear fuzzy integro-differential equation is:

Υ(1)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0

Υ(t,ρ)dt,

with conditions, Υ(0,ρ) = (0, 0), where:

λ = 1, 0 ≤ t ≤ ξ, 0 ≤ ρ ≤ 1, K(ξ, t) = 1,

i.e.,
f (ξ,ρ) =

((
ρ2 + ρ

)
, (5− ρ)

)
To solve this fuzzy integro-differential, we proceed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Υ(1)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0
Υ(t,ρ)dt

Υ(1)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0
Υ(t,ρ)dt

(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Υ(1)(ξ,ρ) =

(
ρ2 + ρ

)
−
ξ∫

0
Υ(t,ρ)dt

Υ(1)(ξ,ρ) = (5− ρ) −
ξ∫

0
Υ(t,ρ)dt

(21)

Applying Sumudu transform on (21) and using Equations (A) and (B), we have:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
S
[
Υ(1)(ξ,ρ)

]
= S(

(
ρ2 + ρ

)
−S

ξ∫
0

Υ(t,ρ)dt

S[Υ(1)(ξ,ρ)] = S((5− ρ) −S
ξ∫

0
Υ(t,ρ)dt

(22)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Υ(ξ,ρ) = S−1
(
u
(
ρ2 + ρ

))
−S−1(u2S(Υ(ξ,ρ))

Υ(ξ,ρ) = S−1 (u(5− ρ)) −S−1(u2S
(
Υ(ξ,ρ)

) (23)

For Υ(ξ,ρ):
Υ0 = ξ

(
α2 + α

)
Υ1 = S−1(u2S

(
ξ
(
ρ2 + ρ

))
, Υ1 = −ξ3

3!

(
ρ2 + ρ

)
Υ2 = S−1(u2S

(
ξ3

3!

(
ρ2 + ρ

))
, Υ2 = ξ5

5!

(
ρ2 + ρ

)
Υ3 = S−1(u2S

(
ξ5

5!

(
ρ2 + ρ

))
, Υ3 = −ξ7

7!

(
ρ2 + ρ

)
Similarly, for Υ(ξ,ρ):

Υ0 = ξ(5− ρ)
Υ1 = S−1(u2S(ξ(5− ρ)), Υ1 = −ξ3

3! (5− ρ),
Υ2 = S−1(u2S

(
−ξ3

3! (5− ρ)
)
, Υ2 = ξ5

5! (5− ρ),
Υ3 = S−1(u2S

(
ξ5

5! (5− ρ)
)
, Υ3 = −ξ7

7! (5− ρ)
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Thus, using above iterative results, the series form solution is given as:⎧⎪⎪⎪⎨⎪⎪⎪⎩ Υ(ξ,ρ) = ξ(5− ρ) − ξ3

3! (5− ρ) + ξ5

5! (5− ρ) − ξ
7

7! (5− ρ) + . . . .
Υ(ξ,ρ) = ξ(5− ρ) − ξ3

3! (5− ρ) + ξ5

5! (5− ρ) − ξ
7

7! (5− ρ) + . . . . .
(24)

Using (17), we get the exact solution:⎧⎪⎪⎨⎪⎪⎩ Υ(ξ,ρ) = sinξ
(
ρ2 + ρ

)
Υ(ξ,ρ) = sinξ(5− ρ)

(25)

A graphical representation of the solution is given in Figure 1.

Figure 1. Graphical interpolation of Example 1.

Example 2. Consider the following fuzzy Volterra integro-differential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Υ(1)(ξ,ρ) = (ρ− 1) +

ξ∫
0

Υ(t,ρ)dt

Υ
(1)

(ξ,ρ) = (1− ρ) +
ξ∫

0
Υ(t,ρ)dt

Υ(1)(0) = 0 = Υ
(1)

(0); 0 ≤ ρ ≤ 1, 0 ≤ t ≤ ξ, ξ ∈ [0, 1]

(26)

Using (A) and (B) on both sides and taking the inverse:⎧⎪⎪⎨⎪⎪⎩ Υ(ξ,ρ)) = S−1(u(ρ− 1)) +S−1
(
u2S[Υ(ξ,ρ)]

)
Υ(ξ,ρ)) = S−1(u(1− ρ)) +S−1

(
u2S

[
Υ(ξ,ρ)

]) (27)
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⎧⎪⎪⎨⎪⎪⎩ Υ(ξ,ρ)) = ξ(ρ− 1)) +S−1
(
u2S[Υ(ξ,ρ)]

)
Υ(ξ,ρ)) = ξ(1− ρ)) +S−1

(
u2S

[
Υ(ξ,ρ)

])
Then, the solution in the series form will be:

∞∑
i=0

Υi(ξ,ρ) = Υ0(ξ,ρ) + Υ1(ξ,ρ) + Υ2(ξ,ρ) + Υ3(ξ,ρ) + · · ·

= ξ(ρ− 1) +
ξ3

3!
(ρ− 1) +

ξ5

3!
(ρ− 1) +

ξ7

3!
(ρ− 1) + · · ·

Similarly, for Υ(ξ,ρ):

= ξ(1− ρ) + ξ
3

3!
(1− ρ) + ξ

5

5!
(1− ρ) + ξ

7

5!
(1− ρ) + · · ·

and the exact solution is given using (17).

Υ(ξ,ρ) = (ρ− 1)sinht and Υ(ξ,ρ) = (1− ρ)sinht

The graphical representation of the solution is given in Figure 2.

Figure 2. Graphical interpolation of Example 2.

Example 3. Consider the following fuzzy Volterra integro-differential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Υ(1)(ξ,ρ) = (ρ+ 1)(1 + ξ) +

ξ∫
0

Υ(t,ρ)dt

Υ
(1)

(ξ,ρ) = (ρ− 2)(1 + ξ) +
ξ∫

0
Υ(t,ρ)dt

Υ(1)(0) = 0 = Υ
(1)

(0); 0 ≤ ρ ≤ 1, 0 ≤ t ≤ ξ, ξ ∈ [0, 1]

(28)
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Using (A) and (B) on (28), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
S(Υ(1)(ξ,ρ)) = S((ρ+ 1)(1 + ξ)) +S[

ξ∫
0

Υ(t,ρ)]dt

S(Υ(1)
(ξ,ρ)) = S((ρ− 2)(1 + ξ)) +S[

ξ∫
0

Υ(t,ρ)]dt⎧⎪⎪⎪⎨⎪⎪⎪⎩ Υ(ξ,ρ)) = S−1(u(ρ+ 1)) +S−1(u2(ρ+ 1) +S−1
(
u2S[Υ(ξ,ρ)]

)
Υ(ξ,ρ)) = S−1(u(ρ− 2)) +S−1(u2(ρ− 2) +S−1

(
u2S

[
Υ(ξ,ρ)

])
(29)

Then, the solution in the series form will be:

∞∑
i=0

Υi(ξ,ρ) = Υ0(ξ,ρ) + Υ1(ξ,ρ) + Υ2(ξ,ρ) + Υ3(ξ,ρ) + · · ·

= ξ(ρ+ 1) + ξ2

2! (ρ+ 1) + ξ3

3! (ρ+ 1) + ξ4

4! (ρ+ 1) + ξ5

5! (ρ+ 1)

+ ξ
6

6! (ρ+ 1) ξ
7

7! (ρ+ 1) + ξ8

8! (ρ+ 1) + · · ·
(30)

Similarly, for Υ(ξ,ρ):

= ξ(ρ− 2) + ξ2

2! (ρ− 2) + ξ3

3! (ρ− 2) + ξ4

4! (ρ− 2) + ξ5

5! (ρ− 2)

+ ξ
6

6! (ρ− 2) ξ
7

7! (ρ− 2) + ξ8

8! (ρ− 2) + · · ·
(31)

Using (17), we get the exact solution.

Υ(ξ,ρ) = (ρ+ 1)(ex − 1) and Υ(ξ,ρ) = (ρ− 2)(ex − 1)

The graphical representation of the solution is given in Figure 3.

Figure 3. Graphical interpretation of Example 3.
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Example 4. Consider a Volterra integro-differential equation:

Υ(2)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0

(ξ− t)Υ(t,ρ)dt (32)

with conditions:
u(0,ρ) = (ρ+ 1, 3− ρ); u(1)(0,ρ) = (ρ, 2− ρ)
λ = 1, 0 ≤ t ≤ ξ, 0 ≤ ρ ≤ 1, K(ξ, t) = (ξ− t),

To solve Equation (32), we proceed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
u(2)(ξ,ρ) = f (ξ,ρ) −

ξ∫
0
(ξ− t)Υ(t,ρ)dt

u(2)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0
(ξ− t)Υ(t,ρ)dt

(33)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
u(2)(ξ,ρ) = (ρ+ 2)ξ−

ξ∫
0
(ξ− t)Υ(t,ρ)dt

u(2)(ξ,α) = (4− ρ)ξ−
ξ∫

0
(ξ− t)Υ(t,ρ)dt

(34)

Using (A) and (B), we get:⎧⎪⎪⎪⎨⎪⎪⎪⎩ Υ(ξ,ρ) = S−1(u3(ρ+ 2) +S−1(uρ) +S−1(ρ+ 1) −S−1(u4S
(
Υ(ξ,ρ)

)
Υ(ξ,ρ) = S−1(u3(4− ρ) +S−1(2− ρ) +S−1(3− ρ) −S−1(u4S

(
Υ(ξ,ρ)

) (35)

Now, applying the decomposition method for Υ(ξ,ρ):

Υ0 = ξ3

3! (ρ+ 2) + ξρ+ (ρ+ 1)

Υ1 = S−1
(
u4S

(
ξ3

3! (ρ+ 2) + ξρ+ (ρ+ 1)
))

, Υ1 = ξ7

7! (ρ+ 2) + ξ5

5! ρ+
ξ4

4! (ρ+ 1)

Υ2 = S−1
(
u4S( ξ7

7! (ρ+ 2) + ξ5

5! ρ+
ξ4

4! (ρ+ 1)
)

Υ2 = ξ11

11! (ρ+ 2) + ξ9

9! ρ+
ξ8

8! (ρ+ 1)

Similarly, we can find Υ3(ξ,ρ), Υ4(ξ,ρ), . . . .:

∞∑
i=0

Υi(ξ,ρ) = Υ0(ξ,ρ) + Υ1(ξ,ρ) + Υ2(ξ,ρ) + . . . .

=
(
ξ+ ξ5

5! +
ξ9

9! + . . . . .
)
ρ+

(
1 + ξ4

4! +
ξ8

8! + . . . . .
)
(ρ+ 1)

+
(
ξ3

3! +
ξ7

7! +
ξ11

11! . . . . .
)
(ρ+ 2) + · · ·

(36)
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Now, for Υ(ξ,ρ):

Υ0 = ξ3

3! (4− ρ) + ξ(2− ρ) + (3− ρ)
Υ1 = S−1(u4S

(
ξ
3! (4− ρ) + ξ(2− ρ) + (3− ρ)

)
,

Υ1 = ξ7

7! (4− ρ) + ξ5

5! (2− ρ) + ξ4

4! (3− ρ)
Υ2 = S−1(u4S

(
ξ7

7! (4− ρ) + ξ5

5! (2− ρ) + ξ4

4! (3− ρ)
)
,

Υ2 = ξ11

11! (4− ρ) + ξ9

9! (2− ρ) + ξ8

8! (3− ρ)

Similarly, for Υi(ξ,ρ):

=
(
ξ+ ξ5

5! +
ξ9

9! + . . . . .
)
(2− ρ) +

(
1 + ξ4

4! +
ξ8

8! + . . . . .
)
(3− ρ)

+
(
ξ3

3! +
ξ7

7! +
ξ11

11! . . . . .
)
(4− ρ) + · · ·

and the exact solution is given as:

Υ(ξ;ρ) = (ρ+ 2). 1
2 (sinhξ− sinξ) + (ρ+ 1). 1

2 (cosξ+ coshξ) + (ρ)(sinξ+ sinhξ)

Υ(t;ρ) = (4− ρ). 1
2 (sinhξ− sinξ) + (3− ρ). 1

2 (cosξ+ coshξ)

+ (2− ρ)(sinξ+ sinhξ) 0 ≤ ρ ≤ 1

The graphical representation of the solution is given in Figure 4.

Figure 4. Graphical interpretation of Example 4.
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Example 5. Consider a nonlinear fuzzy Volterra integro-differential equation:

Υ(1)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0

Υ2(t,ρ)dt (37)

with conditions Υ(0,ρ) = (0, 0), where:

λ = 1, 0 ≤ t ≤ ξ, 0 ≤ ρ ≤ 1, K(ξ, t) = 1, i.e.,

f (ξ,ρ) = (ρ, 7− ρ)
To solve Equation (37), we proceed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ(1)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0
Υ2(t,ρ)dt

Υ(1)(ξ,ρ) = f (ξ,ρ) −
ξ∫

0
Υ2(t,ρ)dt

(38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Υ(1)(ξ,ρ) = ρ−

ξ∫
0

Υ2(t,ρ)dt

Υ(1)(ξ,ρ) = 7− ρ−
ξ∫

0
Υ2(t,ρ)dt

(39)

Applying the Sumudu transform on both sides of the equation, we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
S(Υ(1)(ξ,ρ) = S(ρ) −S

ξ∫
0

Υ2(t,ρ)dt

S(Υ(1)(ξ,ρ) = S(7− ρ) −S
ξ∫

0
Υ2(t,ρ)dt

(40)

Applying the inverse Sumudu transform and using (19), we get:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Υ(ξ,ρ) = S−1(uρ) −S−1(u2S

(
Υ2(ξ,ρ)

)
Υ(ξ,ρ) = S−1 (u(7− ρ)) −S−1(u2S

(
Υ2(ξ,ρ)

)
∞∑

i=0
Υi(ξ,ρ) = Υ1(ξ,ρ) + Υ2(ξ,ρ) + Υ3(ξ,ρ) + . . . .

= ξ(7− ρ) + ξ4

12 (7− ρ)2 + ξ7

252 (7− ρ)3 + . . .

The graphical representation of the solution is given in Figure 5.
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Figure 5. Graphical interpretation of Example 5.

6. Conclusions

Usually, it is difficult to solve fuzzy integro-differential equations analytically. Most probably,
it is required to obtain the approximate solutions. In this paper, we developed a numerical
technique (Sumudu decomposition method) to find the solution to linear and nonlinear fuzzy
Volterra integro-differential equations. A general method for solving VIDE was developed. This
technique proved reliable and effective based on the achieved results. It gives fast convergence because
by utilizing a lower number of iterations, we get approximate as well as exact solutions.

Author Contributions: The problem was proposed by S.M.K. The results were proven and the paper was drafted
by Z.I. M.H. supervised this work, and W.N. verified and analyzed the results.

Funding: Funding is not available for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ullah, S.; Farooq, M.; Ahmad, L.; Abdullah, S. Application of fuzzy Laplace transforms for solving fuzzy
partial Volterra integro-differential equations. arXiv 2014, arXiv:1405.1895.

2. Mikaeilv, N.; Khakrangin, S.; Allahviranloo, T. Solving fuzzy Volterra integro-differential equation by fuzzy
differential transform method. In Proceedings of the 7th Conference of the European Society for Fuzzy Logic
and Technology, Aix-Les-Bains, France, 18–22 July 2011.

3. Ahmad, J.; Nosher, H. Solution of Different Types of Fuzzy Integro-Differential Equations Via Laplace
Homotopy Perturbation Method. J. Sci. Arts 2017, 17, 5.

4. Mohmmed, S.E.A.A. Solution of Linear and Nonlinear Partial Differential Equations by Mixing Adomian
Decomposition Method and Sumudu Transform. Ph.D. Thesis, Sudan University of Science and Technology,
Kashmu, Sudan, 2016.

5. Eltayeb, H.; Kılıçman, A. Application of Sumudu decomposition method to solve nonlinear system of partial
differential equations. In Abstract and Applied Analysis; Eltayeb, H., Kılıçman, A., Eds.; Hindawi: London,
UK, 2012.

112



Axioms 2019, 8, 74

6. Gomes, L.T.; de Barros, L.C.; Bede, B. Fuzzy Differential Equations in Various Approaches; Springer: Berlin,
Germany, 2015.

7. Das, M.; Talukdar, D. Method for solving fuzzy integro-differential equations by using fuzzy Laplace
transformation. Int. J. Sci. Tech. 2014, 3, 291–295.

8. Kumar, D.; Singh, J.; Rathore, S. Sumudu decomposition method for nonlinear equations. Int. Math. Forum
2012, 7, 515–521.

9. Bildik, N.; Deniz, S. The use of Sumudu decomposition method for solving predator-prey systems. Math. Sci.
Lett. 2016, 5, 285–289. [CrossRef]

10. Burton, A.J.; Miller, G.F. The application of integral equation methods to the numerical solution of some
exterior boundary-value problems. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971, 323, 201–210. [CrossRef]

11. Wazwaz, A.M. A First Course in Integral Equations; World Scientific Publishing Company: Singapore, 2015.
12. Zeinali, M.; Shahmorad, S.; Mirnia, K. Fuzzy integro-differential equations: Discrete solution and error

estimation. Iran. J. Fuzzy Syst. 2013, 10, 107–122.
13. Rajkumar, A.; Mohammed Shapique, A.; Jesuraj, C. Solving Fuzzy Linear Volterra Intergro-Differential

Equation Using Fuzzy Sumudu Transform. Int. J. Pure Appl. Math. 2018, 119, 3173–3184.
14. Prakash, A.; Kumar, M.; Baleanu, D. A new iterative technique for a fractional model of nonlinear

Zakharov–Kuznetsov equations via Sumudu transform. Appl. Math. Comput. 2018, 334, 30–40. [CrossRef]
15. Singh, J.; Kumar, D.; Baleanu, D.; Rathore, S. An efficient numerical algorithm for the fractional

Drinfeld–Sokolov–Wilson equation. Appl. Math. Comput. 2018, 335, 12–24. [CrossRef]
16. Ziane, D.; Baleanu, D.; Belghaba, K.; Cherif, M.H. Local fractional Sumudu decomposition method for

linear partial differential equations with local fractional derivative. J. King Saud Univ. Sci. 2017, 31, 83–88.
[CrossRef]

17. Rathore, S.; Kumar, D.; Singh, J.; Gupta, S. Homotopy analysis Sumudu transform method for nonlinear
equations. Int. J. Ind. Math. 2012, 4, 301–314.

18. Li, K.; Xie, Y. A brief introduction of Sumudu transform and comparison with other integral transforms.
In Proceedings of the 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), Shanghai,
China, 6–9 November 2012; pp. 285–287.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

113



Article

On the Polynomial Solution of Divided-Difference
Equations of the Hypergeometric Type on
Nonuniform Lattices

Mama Foupouagnigni 1,2,*,† and Salifou Mboutngam 3,†

1 Department of Mathematics, Higher Teachers’ Training College, University of Yaounde 1,
Yaounde, Cameroon

2 The African Institute for Mathematical Sciences, Limbe, Cameroon
3 Department of Mathematics, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon;

mbsalif@gmail.com
* Correspondence: foupouagnigni@gmail.com
† These authors contributed equally to this work.

Received: 31 January 2019; Accepted: 10 April 2019; Published: 21 April 2019

Abstract: In this paper, we provide a formal proof of the existence of a polynomial solution
of fixed degree for a second-order divided-difference equation of the hypergeometric type on
non-uniform lattices, generalizing therefore previous work proving existence of the polynomial
solution for second-order differential, difference or q-difference equation of hypergeometric type.
This is achieved by studying the properties of the mean operator and the divided-difference
operator as well as by defining explicitly, the right and the “left” inverse for the second operator.
The method constructed to provide this formal proof is likely to play an important role in the
characterization of orthogonal polynomials on non-uniform lattices and might also be used to
provide hypergeometric representation (when it does exist) of the second solution—non polynomial
solution—of a second-order divided-difference equation of hypergeometric type.

Keywords: second-order differential/difference/q-difference equation of hypergeometric type;
non-uniform lattices; divided-difference equations; polynomial solution

1. Introduction

Classical orthogonal polynomials of a continuous variable (Pn) are known to satisfy a second-order
differential equation of hypergeometric type

σ(x) y′′(x) + τ(x) y′(x) + λ y(x) = 0, (1)

where σ is a polynomial of degree at most 2, τ is a first degree polynomial and λ is a constant with
respect to x.

In [1,2], it is shown that Equation (1) has a polynomial solution of exactly n degree for a specific
given constant λ = λn. This is achieved mainly by showing that :

- the nth derivative y(n) of any solution y of (1) satisfies an equation of the same type
(hypergeometric aspect), that is, an equation of the form

σ(x) y′′(x) + τn(x) y′(x) + λn y(x) = 0, (2)

where τn is a first degree polynomial and λn is a constant given by

τn(x) = τ + n σ′(x), λn = λ + n τ′ +
n(n − 1)

2
σ′′. (3)

Axioms 2019, 8, 47; doi:10.3390/axioms8020047 www.mdpi.com/journal/axioms114
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- Any solution of (2) can be written as the nth derivative of a solution of (1), provided that
λj �= 0, j = 1...n − 1.

The fact that the constant solution of (2) when λn = 0 is the nth derivative of a solution of (1)
leads to the existence of a polynomial solution of (1), of exactly n degree, when

λ = λn = −n τ′ − n(n − 1)
2

σ′′.

This result proves not only the existence of a polynomial solution for Equation (1) but also
allows for establishing the Rodrigues formula expressing the polynomial solution in the term of the
nth derivative:

Pn(x) =
Bn

ρ(x)
[σn(x) ρ(x)](n) ,

where Bn is a constant and ρ is the weight function satisfying the Pearson equation

(σ(x) ρ(x))′ = τ(x) ρ(x).

It is worth mentioning that Hermite, Laguerre, Jacobi and Bessel polynomials are the polynomial
eigenfunctions of the second-order linear differential operation given in (1).

Using the same approach, similar results have been established in [3] (See also [4]) for the classical
orthogonal polynomials of a discrete variable satisfying instead a second-order difference equation of
hypergeometric type

σ(x)Δ∇y(x) + τ(x)Δy(x) + λn y(x) = 0, (4)

where Δ and ∇ are the forward and the backward operators defined by

Δ f (s) = f (s + 1)− f (s), ∇ f (s) = f (s)− f (s − 1).

Furthermore, it should be noticed that Charlier, Krawtchuk, Meixner and Hahn polynomials are
the polynomial eigenfunctions of the second-order linear difference operation given in (4).

The same result can be established in the same way to for the classical orthogonal polynomials
of a q-discrete variable satisfying a second-order q-difference equation of hypergeometric type [5]
(See also [6,7])

σ(x) D2
qy(x) + τ(x) Dqy(x) + λn y(x) = 0, (5)

where Dq is the Hahn operator [8] defined by

Dq( f (x)) =
f (qx)− f (x)
(q − 1) x

, x �= 0, Dq f (0) := f ′(0),

provided that f ′(0) exists. Orthogonal polynomials which are eigenfunctions of the second-order
q-difference operator given defined by (5) are [5]: Big q-Jacobi, Big q-Laguerre, Little q-Jacobi,
Little q-Laguerre (Wall), q-Laguerre, Alternative q-Charlier, Al-Salam–Carlitz I, Al-Salam–Carlitz II,
Stieltjes–Wigert, Discrete q–Hermite I, Discrete q–Hermite II, q-Hahn, q-Meixner, Quantum
q-Krawtchouk, q-Krawtchouk, Affine q-Krawtchouk, the q-Charlier and the q-Charlier II polynomials.

Classical orthogonal polynomials on non-uniform lattices (including but not limited to
Askey–Wilson polynomials, Racah and q-Racah polynomials), are known to satisfy a second-order
divided-difference equation of the form [9,10] (see also [11])

φ(x(s))
Δ

Δx(s − 1
2 )

[∇y(x(s))
∇x(s)

]
+

ψ(x(s))
2

[
Δy(x(s))

Δx(s)
+

∇y(x(s))
∇x(s)

]
+ λn y(x(s)) = 0, (6)
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where ψ and φ are polynomials of degree 1 and at most 2, respectively; λn is a constant depending on
n and on the leading coefficients of φ and ψ. The lattice x(s) is defined by [9,10]

x(s) =

{
c1 q−s + c2 qs + c3 if q �= 1,
c4 s2 + c5 s + c6 if q = 1,

(7)

is known as non-uniform lattice and fulfills various important properties.
Equation (6) can be transformed into equation [12]

φ(x(s))D2
xy(x(s)) + ψ(x(s))SxDxy(x(s)) + λny(x(s)) = 0, (8)

called divided-difference equation of the hypergeometric type by means of the two companion
operators Dx (called divided-difference operator) and Sx (called mean operator) defined as [9,10,12,13]

Dx f (x(s)) =
f (x(s + 1

2 ))− f (x(s − 1
2 ))

x(s + 1
2 )− x(s − 1

2 )
, Sx f (x(s)) =

f (x(s + 1
2 )) + f (x(s − 1

2 ))

2
. (9)

Using appropriate bases, computer algebra software has been used to solve divided-difference
Equation (8) for specific families of classical orthogonal polynomials on a non-uniform lattice. For some
special values of the parameter for the specific case of Askey–Wilson polynomials, non-polynomial
solution has been recovered together with the polynomial one [14] (see page 15, Equations (62) and (63)).
In addition, the operators Dx and Sx have played a decisive role not only for establishing the functional
approach of the characterization theorem of classical orthogonal polynomials on non-uniform lattices,
but also for providing algorithmic solution to linear homogeneous divided-difference equations with
polynomial coefficients, allowing to solve explicitly [13] the first-order divided-difference equations
satisfied by the basic exponential function

Dxy(x(s)) =
2wq

1
4

1 − q
y(x(s)),

and the second-order divided-difference equation satisfied by the basic trigonometric functions

D
2
xy(x(s)) = −

(
2wq

1
4

1 − q

)2

y(x(s)),

where w is a given constant.
The aim of this work is:

1. redto define the right and the “left” inverses of the operator Dx;
2. to provide a formal proof of the existence of a polynomial solution of a preassigned degree of the

divided-difference equation of hypergeometric type (8), extending and generalising therefore—by
means of specialisation and limiting situations on the lattice x(s)—similar results obtained for
second-order differential, difference or q-difference equation of hypergeometric type.

2. Preliminary Results: Known and New Properties

Since the main result of this paper is based on the operators Dx and Sx which are defined by using
the lattice x(s), we will provide in this section some known and basic properties of x(s), Dx and Sx. We
will also derive new properties such as the right and the “left” inverses of the operator Dx, required in
the next section.
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2.1. Known Properties of the Lattice x(s)

Taking into account the notation

xμ(s) = x(s +
μ

2
),

the non-uniform lattice x(s) defined by Equation (7) satisfies

x(s + k)− x(s) = γk ∇ xk+1(s), (10)
x(s + k) + x(s)

2
= αk xk(s) + βk, (11)

for k = 0, 1, . . . , with
α0 = 1, α1 = α, β0 = 0, β1 = β, γ0 = 0, γ1 = 1, (12)

where the sequences (αk), (βk), (γk) satisfy the following relations:

αk+1 − 2 α αk + αk−1 = 0,

βk+1 − 2 βk + βk−1 = 2 β αk, (13)

γk+1 − γk−1 = 2 αk,

and are given explicitly by [9,10]

αn = 1, βn = β n2, γn = n, for α = 1, (14)

and

αn =
q

n
2 + q−

n
2

2
, βn =

β(1 − αn)

1 − α
, γn =

q
n
2 − q−

n
2

q
1
2 − q−

1
2

, for α =
q

1
2 + q−

1
2

2
. (15)

2.2. Known Properties of the Operators Dx and Sx

The operators Sx and Dx fulfil the so-called Product rules I [13,14]:

Dx ( f (x(s))g(x(s))) = Sx f (x(s))Dxg(x(s)) +Dx f (x(s)) Sxg(x(s)), (16)

Sx ( f (x(s))g(x(s))) = U2(x(s))Dx f (x(s))Dxg(x(s)) + Sx f (x(s)) Sxg(x(s)), (17)

where U2 is a polynomial of degree 2

U2(x(s)) = (α2 − 1) x2(s) + 2 β (α + 1) x(s) + ηx, (18)

and ηx is a constant given by [14]

ηx =
x2(0) + x2(1)

4α2 − (2α2 − 1)
2α2 x(0) x(1)− β (α + 1)

α2 (x(0) + x(1)) +
β2 (α + 1)2

α2 . (19)

The operators Dx and Sx also satisfy the so-called Product Rules II [13,14]:

Dx Sx = α Sx Dx + U1(x(s))D2
x; S

2
x = U1(x(s)) Sx Dx + α U2(x(s))D2

x + I, (20)

where I is the identity operator I f (x) = f (x), and

U1(x(s)) = (α2 − 1) x(s) + β (α + 1).
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2.3. An Appropriate Basis for the Operators Dx and Sx

Searching for a polynomial basis on which the action of the companion operators will give a
linear combination of at most two elements of the basis, Foupouagnigni et al. proved in [14] that the
polynomial Fn defined by

Fn(x(s)) = Fn(x(s), x(ε)), with Fn(x(s), x(ε)) =
n

∏
j=1

[
x(s)− xj(ε)

]
, (21)

where ε is the unique solution (provided that the lattice x(s) is quadratic or q-quadratic: i.e.,
the constants cj in (7) satisfy c1 c2 �= 0 or c4 �= 0) in the variable t of the equation x1(t) = x(t),
is the right basis for the operators Sx and Dx because it satisfies the following properties

DxFn(x(s)) = γn Fn−1(x(s)), (22)

SxFn(x(s)) = αn Fn(x(s)) +
γn

2
∇xn+1(zx)Fn−1(x(s)), (23)

where the constants αn and γn are given in (14) and (15).
After reviewing some properties of the operators Dx and Sx, we now state and prove the following

proposition providing the left and right inverse of the operator Dx, to be used in the next section to
complete the proof of the main theorem of this paper.

Proposition 1.

Let Fx be a linear operator defined on the basis (Fn)n by

Fx Fn =
Fn+1

γn+1
, n ≥ 0, Fx0 := 0. (24)

Then, Fx satisfies the following relations:

Dx Fx = I, Fx Dx = I− δx(ε), (25)

where I is the identity operator and δx(ε) is the Dirac delta distribution defined by

〈δx(ε), P〉 = P(x(ε)), ∀P,

with ε is defined in (21).

Proof. For all positive integer n, Fn defined by (21) is a polynomial of degree exactly n. (Fn) is therefore
a basis of C[x]. Letting f ∈ Cn[x], there exist f0, . . . , fn ∈ C[x] such that

f (x(s)) =
n

∑
j=0

f jFj(x(s)).

We have

〈δx(ε), f 〉 = f (x(ε)) =
n

∑
j=1

f jFj(x(ε)) + f0 = f0. (26)
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DxFx f (x(s)) =
n

∑
j=0

f jDxFxFj(x(s))

=
n

∑
j=0

f jDxFj+1(x(s))
γj+1

=
n

∑
j=0

f jFj(x(s)) = f (x(s)).

Hence, the first part of Relation (24) holds. Using (26), we have

FxDx f (x(s)) + 〈δε, f 〉 = FxDx f (x(s)) + f0

=
n

∑
j=0

f jFxDxFj(x(s)) + f0

=
n

∑
j=1

f jγjFxFj−1(x(s)) + f0

=
n

∑
j=1

f jFj(x(s)) + f0

= f (x(s)).

The second part of (25) is therefore satisfied.

3. Existence of the Polynomial Solution of the Divided-Difference Equation of the
Hypergeometric Type

Having stated and proved required properties of the operators Dx and Sx, we will now state and
prove the main theorem of this paper.

Theorem 1. Let n be a nonnegative integer, ψ and φ be two polynomials of degree 1 and at most 2, respectively,
such that

∀ k ∈ N, ηk := φ2 γk + ψ1 αk �= 0. (27)

Then, the divided-difference equation

φ(x(s))D2
xy(x(s)) + ψ(x(s)) SxDxy(x(s)) + λn,0 y(x(s)) = 0, (28)

with
λn,0 = −γn (φ2 γn−1 + ψ1 αn−1) = −γnηn−1, (29)

where ψ1 and φ2 are leading coefficients of polynomials ψ and φ respectively, has a polynomial solution of exactly
n degree.

The proof of Theorem 1 will be organized as follows: we split the proof in five lemmas which we
first state, prove, and then put these lemmas together in combination with Proposition 1 to deduce the
proof of this theorem.

Lemma 1.

If the function y0 is a solution of (28), then the function y1 = Dx y0 satisfies

φ[1](x(s))D2
xy(x(s)) + ψ[1](x(s)) SxDxy(x(s)) + λn,1 y(x(s)) = 0, (30)
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where ⎧⎪⎨
⎪⎩

φ[1](x(s)) = Sxφ(x(s)) + α U2(x(s))Dxψ + U1(x(s)) Sxψ(x(s)),
ψ[1](x(s)) = Dxφ(x(s)) + U1(x(s))Dxψ + α Sxψ(x(s)),
λn,1 = λn,0 +Dxψ.

(31)

Proof. Assume that y0 satisfies (28). Applying the operator Dx to (28) in which y is replaced by y0 and
using the product rule I in (16) and (17), we obtain

Dxφ(x(s)) SxD
2
xy0(x(s)) + Sxφ(x(s))D3

xy0(x(s)) +Dxψ(x(s)) S2
xDxy0(x(s))

+Sxψ(x(s))DxSxDxy0(x(s)) + λn,0 Dxy0(x(s)) = 0.

Using the product rules II in (20) to replace S2
x and DxSx in the previous equation, we have

φ[1](x(s))D3
xy0(x(s)) + ψ[1](x(s)) SxD

2
xy0(x(s)) + λn,1 Dxy0(x(s)) = 0,

where φ[1](x(s)), ψ[1](x(s)) and λn,1 are defined by (31). Therefore, y1 = Dx y0 is a solution of
Equation (30).

Lemma 2.

If the function y0 is a solution of (28), then the function yk = Dk
x y0 is a solution of the equation

φ[k](x(s))D2
xy(x(s)) + ψ[k](x(s)) SxDxy(x(s)) + λn,k y(x(s)) = 0, (32)

where the polynomials φ[k], ψ[k] and the constant λn,k satisfy
⎧⎪⎨
⎪⎩

φ[k+1](x(s)) = Sxφ[k](x(s)) + α U2(x(s))Dxψ[k] + U1(x(s)) Sxψ[k](x(s)),
ψ[k+1](x(s)) = Dxφ[k](x(s)) + U1(x(s))Dxψ[k] + α Sxψ[k](x(s)),
λn,k+1 = λn,k +Dxψ[k],

(33)

with the following initial values: φ[0] := φ, ψ[0] := ψ.

Proof. Lemma 1 assures the validity of the result for k = 1.
Let k be a positive integer. Assume that yk is solution of Equation (32). Applying the operator Dx

to (32) in which y is replaced by yk and using the Product Rules I, we obtain

Dxφ[k](x(s)) SxD
2
xyk(x(s)) + Sxφ[k](x(s))D3

xyk(x(s)) +Dxψ[k](x(s)) S2
xDxyk(x(s))

+Sxψ[k](x(s))DxSxDxyk(x(s)) + λn,k Dxyk(x(s)) = 0.

Using the products rule II to replace S2
x and DxSx in the previous equation, we have

φ[k+1](x(s))D3
xyk(x(s)) + ψ[k+1](x(s)) SxD

2
xyk(x(s)) + λn,k+1 Dxyk(x(s)) = 0,

where φ[k+1](x(s)), ψ[k+1](x(s)) and λn,k+1 are defined by (33). Thus, yk+1 = Dx yk satisfies

φ[k+1](x(s))D2
xyk+1(x(s)) + ψ[k+1](x(s)) SxDxyk+1(x(s)) + λn,k+1 yk+1(x(s)) = 0.

Lemma 3.

If a given function y1 satisfies (30) with λn,0 �= 0, then there exists a function y0 satisfying (28) such that

y1 = Dxy0. (34)
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Proof. Let y1 be a solution of (30) with λn,0 �= 0. If there would exist a solution v0 of (28) such that
y1 = Dx v0, then from (28) we can express v0 as:

v0(x(s)) = − 1
λn,0

[φ(x(s))Dxy1(x(s)) + ψ(x(s)) Sxy1(x(s))] . (35)

Now, it remains to verify that the function v0 defined in terms of y1 by (35) satisfies Equation (28) with

Dxv0 = y1. (36)

By applying Dx to (35) and using product rules I, II and the fact that y1 is solution of (30), we get

−λn,0 Dxv0(x(s)) = Dx [φ(x(s))Dxy1(x(s)) + ψ(x(s)) Sxy1(x(s))]

= φ[1](x(s))D2
xy1(x(s)) + ψ[1](x(s)) SxDxy1(x(s)) + (λn,1 − λn,0) y1(x(s))

= −λn,0 y1(x(s)).

Therefore, Dxv0 = y1 since λn,0 �= 0.
We prove that v0 is solution of (28) by replacing y1 in the Equation (35) by Dxv0.

Lemma 4.

For any positive integer n, the coefficients λn,k defined by relation (33) satisfy

λn,k = λn,0 − λk,0, 0 ≤ k ≤ n, (37)

λn,k �= 0, for 0 ≤ k ≤ n − 1, and (n, k) �= (0, 0), (38)

where
λn,0 = −γn(φ2γn−1 + ψ1αn−1).

Proof. If we denote by φ[k](x(s)) = φ
[k]
2 F2(x(s)) + φ

[k]
1 F1(x(s)) + φ

[k]
0 and ψ[k](x(s)) = ψ

[k]
1 F1(x(s)) +

ψ
[k]
0 , then from (33), we have the following system of recurrence equation

⎧⎪⎨
⎪⎩

φ
[k+1]
2 = α2 φ

[k]
2 + α γ1(α

2 − 1)ψ
[k]
1 + α1 (α

2 − 1)ψ
[k]
1 ,

ψ
[k+1]
1 = γ2 φ

[k]
2 + (α2 − 1) γ1 ψ

[k]
1 + α α1 ψ

[k]
1 ,

λn,k+1 = λn,k + ψ
[k]
1 .

Using relations
α2 = 2 α2 − 1, γ2 = 2 α,

derived from Equations (12) and (13), the previous system of equations becomes

⎧⎪⎨
⎪⎩

φ
[k+1]
2 = (2 α2 − 1) φ

[k]
2 + 2 α (α2 − 1)ψ

[k]
1 ,

ψ
[k+1]
1 = 2 α φ

[k]
2 + (2 α2 − 1)ψ

[k]
1 ,

λn,k+1 = λn,k + ψ
[k]
1 .

Solving this system of recurrence equations with the initial values φ
[0]
2 = φ2, ψ

[0]
1 = ψ1, we obtain for

the q-quadratic lattice

λn,k =
(qk − qn)

(q − 1)2qkqn

[√
q(qkqn − q)φ2 +

1
2
(q − 1)(q + qkqn)ψ1

]
. (39)

Using the definition of λn,0 which of course coincides with the one of λn,k for k = 0, we derive (37)
from (39).
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Solving the following the equation
λn,k = 0,

in terms of the unknown k keeping in mind (27), gives a unique solution k = n. Thus, relation
(38) is satisfied. It can easily be proved in the same way that relation (38) is satisfied for the
quadratic lattice.

Lemma 5.

Let n be a fixed positive integer and let k be an integer such that 0 ≤ k ≤ n. Then, if yk is a solution of
Equation (32), then there exists y0 solution of Equation (28) such that

yk = D
k
x y0.

Proof. Let k be a nonnegative integer with k ≤ n. Assume that yk satisfies (32). Then, we obtain that
there exists a function yk−1 solution of the equation obtained by replacing k in (32) by k − 1, namely,

φ[k−1](x(s))D2
xy(x(s)) + ψ[k−1](x(s)) SxDxy(x(s)) + λn,k−1 y(x(s)) = 0, (40)

such that
yk = Dx yk−1.

This is achieved using the fact that λn,k−1 �= 0 thanks to Lemma 4, and also using Lemma 3 but with
the functions y0 and y1 replaced, respectively, by the functions yk−1 and yk while Equation (28) is
replaced by Equation (40). In addition, Equation (30) is replaced by the Equation (32).

The proof is completed by repeating the same process for yk−1, yk−2, . . . , y1 and using
Lemmas 3 and 4.

Proof of Theorem 1. Since, for k = n, λn,k = λn,n = 0 thanks to (37), Equation (32) admits a constant
solution, namely F0(x(s)) = 1. We therefore deduce from Lemma 5 that there exists a function v0

solution of (28) such that
F0(x(s)) = D

n
x v0(x(s)). (41)

Next, we apply the operator Fx on both members of the previous equation and deduce by applying
the second relation of Equation (25) of Proposition 1 that

Fx F0(x(s)) = FxDx D
n−1
x v0(x(s)) = D

n−1
x v0(x(s))−D

n−1
x v0(x(s)) |s=ε .

Hence,
D

n−1
x v0(x(s)) = Fx F0(x(s)) + Cn−1 F0(x(s)),

where Cn−1 = Dn−1
x v0(x(s)) |s=ε .

By applying again the operator Fx on both members of the previous equation and using the
second relation of Equation (25), we get

D
n−2
x v0(x(s)) = F

2
x F0(x(s)) + Cn−1 Fx F0(x(s)) + Cn−2 F0(x(s)),

where Cn−2 = Dn−2
x v0(x(s)) |s=ε . Repeating the same process, we express v0 as

v0(x(s)) = F
n
x F0(x(s)) +

n−1

∑
j=0

Cj F
j
x F0(x(s)) =

Fn(x(s))
n
∏
l=1

γl

+
n−1

∑
j=0

Cj F
j
x F0(x(s)),

where Cj = D
j
xv0(x(s)) |s=ε . Therefore, v0(x(s)) is a polynomial of degree exactly n in x(s).
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4. Conclusions and Perspectives

In this work, we have derived the right and the “left” inverse of the operator Dx and used the
properties of the inverse operators, as well as those of the operators Dx and Sx, to provide a formal
proof that the divided-difference equation of hypergeometric type (28) has a polynomial solution of
degree exactly n.

The novelty of our work is the formal proof of the existence of this polynomial solution, confirming
therefore the fact that, in [14], by solving divided-difference (8) on a case by case basis and using most
appropriate polynomial basis for each case, we have obtained for each family of classical orthogonal
polynomials on non-uniform lattice, a hypergeometric or q-hypergeometric solution which happens to
be a polynomial because of the form of one of the upper parameters obtained in the hypergeometric
(or q-hypergeometric) representation of the obtained solution.

Finding hypergeometric representation of the non polynomial solution of (8) is not obvious
and this was obtained unexpectedly for the Askey–Wilson polynomials when the parameters fulfill
b = a q

1
2 , d = a q

1
2 [14] (see page 15, Equations (62) and (63)). The method developed here might help to

understand when and why such a hypergeometric representation exists for non-polynomial solutions.
As an additional potential application of our paper, the right and the “left” inverse of the operator

Dx are likely to play important role in the study of the properties of orthogonal polynomials on the
non-uniform latices, and on the search of the solutions of divided-difference equations on non-uniform
lattices, as well as on the hypergeometric representation (when they exist) of the second-solution—non
polynomial solution—of Equation (28).
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Abstract: The paper is devoted to the discrete Lyapunov equation X − A∗XA = C, where A and C are
given operators in a Hilbert space H and X should be found. We derive norm estimates for solutions
of that equation in the case of unstable operator A, as well as refine the previously-published estimates
for the equation with a stable operator. By the point estimates, we establish explicit conditions, under
which a linear nonautonomous difference equation in H is dichotomic. In addition, we suggest a
stability test for a class of nonlinear nonautonomous difference equations in H. Our results are based
on the norm estimates for powers and resolvents of non-self-adjoint operators.
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1. Introduction and Notations

Let H be a complex separable Hilbert space with a scalar product (., .), the norm ‖.‖ =
√
(., .),

and unit operator I = IH. By B(H), we denote the set of all bounded linear operators in H. In addition,
Ω denotes the unit circle: Ω = {z ∈ C : |z| = 1}. An operator A is said to be Schur–Kohn stable,
or simply stable, if its spectrum σ(A) lies inside Ω. Otherwise, A will be called an unstable operator.

Consider the discrete Lyapunov equation:

X − A∗XA = C, (1)

where A, C ∈ B(H) are given operators and X should be found. That equation arises in various
applications, cf. [1]. Sharp norm estimates for solutions of (1) with Schur–Kohn stable finite
dimensional and some classes of infinite dimensional operators have been derived in [2,3]. At the
same time, to the best of our knowledge, norm estimates for solutions of (1) with unstable A have not
been obtained in the available literature.

Our aim in the present paper is to establish sharp norm estimates for solutions of Equation (1)
with an unstable operator A. In addition, we refine and complement estimates for (1) with stable
operator coefficients from [2,3].

The point estimates enable us to suggest new dichotomy conditions for nonautonomous linear
difference equations and explicit stability conditions for the nonautonomous nonlinear difference
equations in a Hilbert space.

The dichotomy of various abstract difference equations has been investigated by many
mathematicians, cf. [4] and [5–11] and the references therein. In particular, the main result of the
paper [8] gives a decomposition of the dichotomy spectrum considering the upper dichotomy spectrum,
lower dichotomy spectrum, and essential dichotomy spectrum. In addition, in [8], it is proven that
the dichotomy spectrum is a disjoint union of closed intervals. In [9,11], an approach concerning

Axioms 2019, 8, 20; doi:10.3390/axioms8010020 www.mdpi.com/journal/axioms125
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the characterization of the exponential dichotomy of difference equations by means of an admissible
pair of sequence Banach spaces has been developed. The paper [12] considers two general concepts
of dichotomy for noninvertible and nonautonomous linear discrete-time systems in Banach spaces.
These concepts use two types of dichotomy projection sequences and generalize some well-known
dichotomy concepts.

Certainly, we could not survey here all the papers in which in the general situation the dichotomy
conditions are formulated in terms of the original norm. We formulate the dichotomy conditions in
terms of solutions of Lyapunov’s equation. In appropriate situations, that fact enables us to derive
upper and lower solution estimates. In addition, traditionally, the existence of dichotomy projections
is assumed. We obtain the existence of these projections via perturbations of operators.

The stability theory for abstract nonautonomous difference equations has a long history, but
mainly linear equations have been investigated, cf. [13–15] and the references therein. Regarding the
stability of nonlinear autonomous difference equations in a Banach space, see [16]. The stability theory
for nonlinear nonautonomous difference equations in a Banach space is developed considerably less
than the one for linear and autonomous nonlinear equations. Here, we should point out the paper [17],
in which the author studied the local exponential stability of difference equations in a Banach space
with slowly-varying coefficients and nonlinear perturbations. Besides, he established the robustness
of the exponential stability. Regarding other results of the stability of nonlinear nonautonomous
difference equations in an infinite dimensional space, see for instance [2], Chapter 12.

In this paper, we investigate semilinear nonautonomous difference equations in a Hilbert space
and do not require that the coefficients are slowly varying.

Introduce the notations. For an A ∈ B(H), σ(A) is the spectrum; rs(A) is the (upper) spectral
radius; rl(A) = inf {|s| : s ∈ σ(A)} is the lower spectral radius; A∗ is adjoint to A; Rλ(A) = (A −
λI)−1 (λ �∈ σ(A)) is the resolvent; ‖A‖B(H) = ‖A‖ := suph∈H ‖Ah‖/‖h‖; AI = �A = (A − A∗)/2i;

1.7em(A, λ) := inf
s∈σ(A)

|λ − s| (λ ∈ C).

The Schatten–von Neumann ideal of compact operators A in H with the finite Schatten–von
Neumann norm Np(A) := (trace (A∗A)p/2)1/p (1 ≤ p < ∞) is denoted by SNp. In particular, SN2 is
the Hilbert–Schmidt ideal and N2(.) is the Hilbert–Schmidt norm.

2. Auxiliary Results

In the present section, we have collected norm estimates for powers and resolvents of some classes
of operators and estimates for the powers of their inverses. They give us bounds for the solution of
Equation (1).

2.1. Operators in Finite Dimensional Spaces

Let H = Cn (n < ∞) be the complex n-dimensional Euclidean space and Cn×n be the set of
complex n × n matrices. In this subsection, A ∈ Cn×n; λk(A), k = 1, ..., n, are the eigenvalues of A,
counted with their multiplicities. Introduce the quantity (the departure from normality of A):

g(A) = [N2
2 (A)−

n

∑
k=1

|λk(A)|2 ]1/2.

The following relations are checked in [3], Section 3.1:

g2(A) ≤ N2
2 (A)(A)− |trace A2| and g2(A) ≤ N2(A − A∗)

2
= 2N2

2 (AI).

If A is a normal matrix: AA∗ = A∗A, then g(A) = 0.
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Due to Example 3.3 from [3]:

‖Am‖ ≤
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m − k)!(k!)3/2 (m = 1, 2, ...). (2)

Recall that 1
(m−k)! = 0 if k > m. Inequality (2) is sharp. It is attained for a normal operator A, since

g(A) = 0, 00 = 1, and ‖Am‖ = rm
s (A) in this case.

By Theorem 3.2 from [3]:

‖(A − λI)−1‖ ≤
n−1

∑
k=0

gk(A)

(1.7em(A, λ))k+1
√

k!
(λ �∈ σ(A)). (3)

This inequality is also attained for a normal operator.
Now, let rl > 0. Then, by Corollary 3.6 from [3],

‖A−m‖ ≤
n−1

∑
k=0

gk(Am)

rmk
l (A)(k!)1/2

(A ∈ C
n×n; m = 1, 2, ...). (4)

Inequality (4) is equality if A is a normal operator. In addition, by Theorem 3.3 of [3] for any
invertible A ∈ Cn×n and 1 ≤ p < ∞, one has:

‖A−1 det A‖ ≤
Nn−1

p (A)

(n − 1)(n−1)/p

and:
‖A−1 det A‖ ≤ ‖A‖n−1.

Hence,

‖A−m‖ ≤
Nn−1

p (Am)

(n − 1)(n−1)/p|det A|m
(5)

and:

‖A−m‖ ≤ ‖Am‖n−1

|det A|m .

Now, (2) and (5) imply:

‖A−m‖ ≤ 1
|det A|m

(
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m − k)!(k!)3/2

)n−1

(m = 1, 2, ...). (6)

2.2. Hilbert–Schmidt Operators

In the sequel, H is infinite dimensional. In this subsection, A is in SN2 and:

g(A) = [N2
2 (A)−

∞

∑
k=1

|λk(A)|2 ]1/2,

where λk(A) (k = 1, 2, ...) are the eigenvalues of A ∈ B(H), counted with their multiplicities and
enumerated in the nonincreasing order of their absolute values.

Since:
∞

∑
k=1

|λk(A)|2 ≥ |
∞

∑
k=1

λ2
k(A)| = |trace A2|,

one can write:
g2(A) ≤ N2

2 (A)− |trace A2|.
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If A is a normal Hilbert–Schmidt operator, then g(A) = 0, since:

N2
2 (A) =

∞

∑
k=1

|λk(A)|2

in this case. Moreover,

g2(A) ≤ N2
2 (A − A∗)

2
= 2N2

2 (AI), (7)

cf. [3], Section 7.1. Due to Corollary 7.4 from [3], for any A ∈ SN2, we have:

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk(A)

(m − k)!(k!)3/2 (m = 1, 2, ...). (8)

This inequality and Inequality (9) below are attained for a normal operator.
Furthermore, by Theorem 7.1 from [3], for any A ∈ SN2, we have:

‖Rλ(A)‖ ≤
∞

∑
k=0

gk(A)

(1.7em(A, λ))k+1
√

k!
(λ �∈ σ(A)). (9)

By the Schwarz inequality:

(
∞

∑
j=0

(cg(A))j

cj
√

j!xj

)2

≤
∞

∑
k=0

c2k
∞

∑
j=0

g2j(A)

c2j j!x2j

=
1

1 − c2 exp [
g2(A)

c2x2 ] (x > 0, c ∈ (0, 1)).

Taking c2 = 1/2, from (9), we arrive at the inequality:

‖Rλ(A)‖ ≤
√

2
1.7em(A, λ)

exp
[

g2(A)

(1.7em(A, λ))2

]
(λ �∈ σ(A)). (10)

2.3. Schatten–von Neumann Operators

In this subsection, A ∈ SN2p for an integer p ≥ 1. Making use of Theorems 7.2 and 7.3 from [3],
we have:

‖Rλ(A)‖ ≤
p−1

∑
m=0

∞

∑
k=0

(2N2p(A))pk+m

(1.7em(A, λ))pk+m+1
√

k!
(λ �∈ σ(A)) (11)

and:

‖Rλ(A)‖ ≤
√

e
p−1

∑
m=0

(2N2p(A))m

(1.7em(A, λ))m+1 exp

[
(2N2p(A))2p

2(1.7em(A, λ))2p

]
(λ �∈ σ(A)). (12)

Since, the condition A ∈ SN2p implies A − A∗ ∈ SN2p, and one can use estimates for the resolvent
presented in the next two subsections.

Furthermore, if A ∈ SN2p, then Ap ∈ SN2. For any m = pν + i (i = 1, ..., p − 1; ν = 1, 2, ...),
we have:

‖Am‖ ≤ ‖Ai‖‖(Ap)ν‖.

Now, (8) implies:

‖Apν+i‖ ≤ ‖Ai‖
ν

∑
k=0

ν!rp(ν−k)
s (A)gk(Ap)

(ν − k)!(k!)3/2 (ν = 1, 2, ...; i = 1, ..., p − 1). (13)
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2.4. Noncompact Operators with Hilbert–Schmidt Hermitian Components

In this subsection, we suppose that:

AI = (A − A∗)/(2i) ∈ SN2. (14)

To this end, introduce the quantity:

gI(A) :=
√

2

[
N2

2 (AI)−
∞

∑
k=1

(� λk(A))2

]1/2

.

Obviously, gI(A) ≤
√

2N2(AI). If A is normal, then gI(A) = 0 by Lemma 9.3 of [3]. Due to
Example 10.2 [3],

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk

I (A)

(m − k)!(k!)3/2 (m = 1, 2, ...). (15)

Furthermore, by Theorem 9.1 from [3], under Condition (14), we have,

‖Rλ(A)‖ ≤
∞

∑
k=0

gk
I (A)

(1.7em(A, λ))k+1
√

k!
(16)

and:

‖Rλ(A)‖ ≤
√

e
1.7em(A, λ)

exp [
g2

I (A)

2(1.7em(A, λ))2 ] (λ �∈ σ(A)). (17)

Now, let rl > 0. Then, by (16):

‖A−1‖ ≤
∞

∑
k=0

gk
I (A)

rk+1
l (A)(k!)1/2

. (18)

Similarly, by (17):

‖A−1‖ ≤
√

e
rl(A)

exp [
g2

I (A)

2r2
l (A)

]. (19)

Let us point out an additional estimate for ‖A−m‖.

Lemma 1. Let Condition (14) hold and A be invertible. Then:

‖A−m‖ ≤
m

∑
k=0

m!(‖A−1‖2N2(A − A∗))k

2k/2rm−k
l (A)(m − k)!(k!)3/2

(m = 1, 2, ...). (20)

Proof. Put B = A−1. By (15):

‖Bm‖ ≤
m

∑
k=0

m!rm−k
s (B)gk

I (B)
(m − k)!(k!)3/2 (m = 1, 2, ...).

However,

N2(B − B∗) = N2(A−1 − (A−1)∗) = N2(A−1(A − (A)∗)(A−1)∗) ≤ ‖A−1‖2N2(A − (A−1)∗).

Thus,

gI(A−1) ≤ 1√
2

N2(A−1 − (A−1)∗) ≤ 1√
2
‖A−1‖2N2(A − (A−1)∗).

This proves the lemma.
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Note that ‖A−1‖ can be estimated by (18) and (19).

2.5. Noncompact Operators with Schatten–von Neumann Hermitian Components

In this subsection, it is assumed that:

AI = (A − A∗)/2i ∈ SN2p for an integer p ≥ 2. (21)

By Theorem 9.5 of [3], for any quasinilpotent operator V ∈ SNp, there is a constant bp dependent
on p only, such that Np(V + V∗) ≤ bpNp(V − V∗). According to Lemma 9.5 from [3], bp ≤ p

2 e1/3. Put:

τp(A) = (1 + b2p)(N2p(AI) + N2p(DI)).

Therefore,

τp(A) ≤ (1 + pe1/3)(N2p(AI) + N2p(DI)) ≤ (1 + 2p)(N2p(AI) + N2p(DI)).

From the Weyl inequalities ([3], Lemma 8.7), we have N2p(DI) ≤ N2p(AI). Thus:

τp(A) ≤ 2(1 + 2p)N2p(AI). (22)

If A has a real spectrum, then:

τp(A) ≤ (1 + 2p)N2p(AI). (23)

We need the following result ([3], Theorem 9.5).

Theorem 1. Let Condition (21) hold. Then:

‖Rλ(A)‖ ≤
p−1

∑
m=0

∞

∑
k=0

τ
pk+m
p (A)

(1.7em(A, λ))pk+m+1
√

k!
(24)

and:

‖Rλ(A)‖ ≤
√

e
p−1

∑
m=0

τm
p (A)

(1.7em(A, λ))m+1 exp

[
τ

2p
p (A)

2(1.7em(A, λ))2p

]
(λ �∈ σ(A)). (25)

If A is self-adjoint, then Inequality (24) takes the form ‖Rλ(A)‖= 1
1.7em(A,λ) .

2.6. Applications of the Integral Representation for Powers

For an arbitrary A ∈ B(H) and an r0 > rs(A), we have:

Am = − 1
2πi

∫
|λ|=r0

λmRλ(A)dλ (m = 1, 2, ...). (26)

Let there be a monotonically-increasing nonnegative continuous function F(x) (x ≥ 0), such that
F(0) = 0, F(∞) = ∞, and:

‖(λI − A)−1‖ ≤ F(1/1.7em(A, λ)) (λ �∈ σ(A)). (27)

Obviously, 1.7em(A, z) ≥ ε = r0 − rs(A) (|z| = r0) by (26):

‖Am‖ ≤ rm+1
0 F(1/ε) (r0 = rs(A) + ε; m = 1, 2, ...).
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All the above estimates for the resolvent satisfy Condition (27). For example, under Condition (14),
due to (17), we have (27) with:

F(x) = F2(x) := x
√

e exp [
x2g2

I (A)

2
]. (28)

Under Condition (21), due to (25), we have (27) with:

F(x) = F̂p(x) :=
√

e
p−1

∑
m=0

xm+1τm
p (A) exp

[
1
2

x2pτ2p(A)

]
. (29)

Similarly, (24) can be taken.
Furthermore, let A be invertible. With a constant sl > 1/rl(A) = rs(A−1), we can write:

A−m = − 1
2πi

∫
|λ|=sl

λmRλ(A−1)dλ.

Hence:

A−m−1 = − 1
2πi

∫
|λ|=sl

λm A−1Rλ(A−1)dλ =
1

2πi

∫
|λ|=sl

λm(Aλ − I)−1dλ.

Under Condition (27), we get ‖I − λA‖ ≤ F(1/1.7em(λA, 1)), and therefore,

‖(I − λA)−1‖ ≤ F(1/1.7em(λA, 1)) (
1
λ
�∈ σ(A)). (30)

With sl = ε + 1/rl(A), we have 1.7em(λA, 1) ≥ rl(A)ε (|λ| = sl). Therefore, the inequalities:

‖A−m‖ ≤ sm−1
l

1
2π

∫
|λ|=sl

‖(I − λA)−1‖|dλ| ≤ sm
l sup

|λ|=sl

‖(I − λA)−1‖

hold and (30) implies:

‖A−m‖ ≤ (ε +
1

rl(A)
)mF(1/(rl(A)ε) (ε > 0; m = 1, 2, ...). (31)

Note that the analogous results can be found in the book [18] (see the Exercises at the end of
Chapter 1).

3. The Discrete Lyapunov Equation with a Stable Operator Coefficient

Theorem 2. Let A ∈ B(H) and rs(A) < 1. Then, for any C ∈ B(H), there exists a linear operator
X = X(A, C), such that:

X − A∗XA = C. (32)

Moreover,

X(A, C) =
∞

∑
k=0

(A∗)kCAk. (33)

and:

X(A, C) =
1

2π

∫ 2π

0
(Ie−iω − A∗)−1C(Ieiω − A)−1dω. (34)

Thus, if C is strongly positive definite, then X(A, C) is strongly positive definite.

For the proof of this theorem and the next lemma, for instance see [1] ([2], Section 7.1).

131



Axioms 2019, 8, 20

Lemma 2. If Equation (32) with C = C∗ > 0 has a solution X(A, C) > 0, then the spectrum of A is located
inside the unit disk.

Due to Representations (33) and (34), we have:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
k=0

‖Ak‖2 (35)

and:

‖X(A, C)‖ ≤ ‖C‖
2π

∫ 2π

0
‖(eit I − A)−1‖2dt,

respectively. From the latter inequality, it follows

‖X(A, C)‖ ≤ ‖C‖ sup
|z|=1

‖(zI − A)−1‖2 (36)

Similar results can be found in the Exercises of Chapter 1 from [18].
Again, assume that Condition (27) holds. Then, for |z| = 1, 1.7em(A, z) ≥ 1 − rs(A); therefore,

‖(Iz − A)−1‖ ≤ F(1/(1 − rs(A))). Now, (36) implies:

‖X(A, C)‖ ≤ ‖C‖F2
(

1
1 − rs(A)

)
. (37)

If A is normal, then ‖Ak‖ = rk
s (A), and (35) yields:

‖X(A, C)‖ ≤ ‖C‖ 1
1 − r2

s (A)
. (38)

Example 1. Let A ∈ Cn×n. Then, (2) and (35) yield:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
m=0

(
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m − k)!(k!)3/2

)2

.

Note that if A is normal, then g(A) = 0, and Example 3.3 gives us Inequality (38). Let us point to
the more compact, but less sharper estimate for X(A, C). Making use of (3) and (37), we can assert that:

‖X(A, C)‖ ≤ ‖C‖
(

n−1

∑
k=0

gk(A)√
k!(1 − rs(A))k+1

)2

(A ∈ C
n×n). (39)

Example 2. Let A ∈ SN2. Then, (8) and (35) yield:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
m=0

(
m

∑
k=0

m!rm−k
s (A)gk(A)

(m − k)!(k!)3/2

)2

.

If A is normal, then this example gives us Inequality (38). Furthermore, (37) and (10) imply:

‖X(A, C)‖ ≤ 2‖C‖
(1 − rs(A))2 exp [

2g2(A)

(1 − rs(A))2 ] (A ∈ SN2).

Example 3. Assume that AI ∈ SN2. Then, (4) and (35) yield:
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‖X(A, C)‖ ≤ ‖C‖
∞

∑
m=0

(
m

∑
k=0

m!rm−k
s (A)gk

I (A)

(m − k)!(k!)3/2

)2

.

If A is normal, hence we get (38). Inequality (37) along with (16) and (17) give us the inequalities:

‖X(A, C)‖ ≤ ‖C‖
(

∞

∑
j=0

gj
I(A)√

j!(1 − rs(A))j+1

)2

and:

‖X(A, C)‖ ≤ ‖C‖ e
(1 − rs(A))2 exp [

g2
I (A)

(1 − rs(A))2 ] (AI ∈ SN2),

respectively. For a self-adjoint operator S, we write S ≥ 0 (S > 0) if it is positive definite (strongly
positive definite). The inequalities S ≤ 0 and S < 0 have a similar sense.

Note that (33) gives a lower bound for X(A, C) with C = C∗ ≥ 0. Indeed,

(X(A, C)x, x) ≥
∞

∑
k=0

(CAkx, Akx) ≥ rl(C)
∞

∑
k=0

(Akx, Akx)

≥ rl(C)
∞

∑
k=0

rl((A∗)k Ak)(x, x) (x ∈ H). (40)

If C is noninvertible, then rl(C) = 0, and:

rl(C) =
1

‖C−1‖ and rl((Ak)∗Ak) =
1

‖A−k‖2 ,

if the corresponding operator is invertible. Therefore, we arrive at

Lemma 3. Let X(A, I) = X(A) be a solution of (32) with C = I and rs(A) < 1. Then:

‖X−1(A)‖ ≤ (
∞

∑
k=0

1
‖A−k‖2 )

−1 if A is invertible .

Therefore, ‖X−1(A)‖ ≤ 1 in the general case.

4. Discrete Lyapunov’s Equation with rl(A) > 1

Theorem 3. If:
rl(A) > 1, (41)

then for any C ∈ B(H), there exists a linear operator X = X(A, C), satisfying (32). Moreover,

X(A, C) = −
∞

∑
k=0

(A∗)−k−1CA−k−1 (42)

and:

X(A, C) = − 1
2π

∫ 2π

0
(Ie−iω − A∗)−1C(Ieiω − A)−1dω. (43)

Proof. Rewrite (32) as the equation:

X − (A−1)∗XA−1 = −(A−1)∗CA−1. (44)
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Due to (41), rs(A−1) < 1; from (33), we obtain (42), and from (34), it follows:

X(A, C) = − 1
2π

∫ 2π

0
(Ie−iω − (A∗)−1)−1(A∗)−1CA−1(Ieiω − A−1)−1dω

= − 1
2π

∫ 2π

0
(e−iω A∗ − I)−1C(eiω A − I)−1dω

= − 1
2π

∫ 2π

0
(A∗ − e−iω I)−1C(A − eiω I)−1dω,

as claimed.

Lemma 4. If Equation (32) with C = C∗ > 0 has a solution X < 0, then the spectrum of A is located outside
the unit disk.

Proof. According to Lemma 3.2 and (43), one has rs(A−1) < 1, since −X > 0 and (A−1)∗CA−1 > 0.
Now, the required result follows from the equality rl(A) = 1/rs(A−1).

Due Representations (41) and (42), we have:

‖X(A, C)‖ ≤ ‖C‖
∞

∑
k=0

‖A−k−1‖2 (45)

and:

‖X(A, C)‖ ≤ ‖C‖
2π

∫ 2π

0
‖(eit I − A)−1‖2dt, (46)

respectively. From the latter inequality, it follows:

‖X(A, C)‖ ≤ ‖C‖ sup
|z|=1

‖(zI − A)−1‖2. (47)

Let Condition (27) hold. If |z| = 1, then 1.7em(A, z) ≥ rl(A)− 1, and therefore, ‖(Iz − A)−1‖ ≤
F(1/(rl(A)− 1)). Hence, (43) implies:

‖X(A, C)‖ ≤ ‖C‖F2
(

1
rl(A)− 1

)
. (48)

Now, we can apply estimates for resolvents from Section 2. Moreover, from (42) with positive
definite C and Y = −X(A, C), we get:

(Yx, x) ≥ rl(C)
∞

∑
k=0

rl((A∗)−k−1 A−k−1)(x, x) (x ∈ H).

Hence:

(Yx, x) = −(X(A, C)x, x) ≥ rl(C)
∞

∑
k=1

1
‖Ak‖2 (x, x) (x ∈ H). (49)

Now, we can apply estimates for powers of operators from Section 2. From (49), it follows:

Lemma 5. Let X(A, I) = X(A) be a solution of (32) with C = I and rl(A) > 1. Then:

‖X−1(A)‖ ≤ (
∞

∑
k=1

1
‖Ak‖2 )

−1.
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5. Operators with Dichotomic Spectra

In this section, it is assumed that σ(A) is dichotomic. Namely,

σ(A) = σins ∪ σout, (50)

where σins and σout are nonempty nonintersecting sets lying inside and outside Ω, respectively:
sup |σins| < 1 and inf |σout| > 1. Put:

P =
1

2πi

∫
Ω
(zI − A)−1dz. (51)

Therefore, P is the Riesz projection of A, such that σ(AP) = σins and σ(A(I − P)) = σout. We have
A = Ains + Aout, where Ains = AP = PA, Aout = (I − P)A = A(I − P).

In the sequel, (λP − Ains)
−1 means that:

(λP − Ains)(λP − Ains)
−1 = (λP − Ains)

−1(λP − Ains) = P.

The same sense has (λ(I − P)− Aout)−1. Obviously,

(P − zAins)(A − z)−1P = (A − z)−1P(P − zAins) = P (z �∈ σ(A)).

Therefore,
(zP − Ains)

−1 = P(Iz − A)−1.

Similarly, (z(I − P)− Aout)−1 = (I − P)(Iz − A)−1 (z �∈ σ(A)).

Lemma 6. Let Conditions (50) and (27) hold. Then:

sup
|z|=1

‖(zP − Ains)
−1‖ ≤ F2(1/d(A)) (52)

and:
sup
|z|=1

‖(z(I − P)− Aout)
−1‖ ≤ (1 + F(1/d(A))F(1/d(A)), (53)

where:
d(A) := min{1 − rs(Ains), rl(Aout)− 1}.

Proof. We have 1.7em(A, z) ≥ d(A) (|z| = 1). Since (27) holds,

‖P‖ ≤ sup
|z|=1

‖(zI − A)−1‖ ≤ F(1/d(A)). (54)

Hence, ‖I − P‖ ≤ 1 + ‖P‖ ≤ 1 + F(1/d(A)), and

sup
|z|=1

‖(zP − Ains)
−1‖ = sup

|z|=1
‖(zI − A)−1P‖ ≤ F2(1/d(A)).

Therefore, (52) is valid. Similarly,

sup
|z|=1

‖(z(I − P)− Aout)
−1‖ ≤ ‖I − P‖ sup

|z|=1
‖(zI − A)−1‖ ≤ (1 + F(1/d(A)))F(1/d(A)).

This finishes the proof. �

The analogous results can be found in ([18], Exercises of Chapter 1).
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6. The Lyapunov Equation with a Dichotomic Spectrum

Assume that Condition (50) holds and P is defined by (51). Multiplying Equation (32) from the
left by P∗ and from the right by P, we have:

P∗CP = P∗XP − P∗A∗P∗XPAP = P∗XP − A∗
insP∗XPAins.

Similarly,

(I − P∗)C(I − P) = (I − P∗)X(I − P)− A∗
out(I − P∗)X(I − P)Aout.

Therefore, with the notations Xins = P∗XP, Xout = (I − P∗)X(I − P), we obtain the equations:

Xins − A∗
insXins Ains = P∗CP (55)

and:
Xout − A∗

outXout Aout = (I − P∗)C(I − P). (56)

Lemma 7. Let Conditions (50) and (27) be fulfilled. Then:

‖Xins‖ ≤ ‖C‖F4(1/d(A)). (57)

and:
‖Xout‖ ≤ ‖C‖F2(1/d(A))(1 + F(1/d(A)))2. (58)

Proof. According to (34) and (55):

Xins =
1

2π

∫ 2π

0
(Pe−iω − A∗

ins)
−1PCP(Peiω − Ains)

−1dω

=
1

2π

∫ 2π

0
(Pe−iω − A∗

ins)
−1C(Peiω − Ains)

−1dω. (59)

and:

Xout =
1

2π

∫ 2π

0
((I − P)e−iω − A∗

out)
−1C((I − P)(eiω − Aout)

−1dω. (60)

Now, (59) and (52) imply:

‖Xins‖ ≤ ‖C‖ sup
|z|=1

‖(zP − Ains)
−1‖2 ≤ F4(1/d(A)).

Therefore, (57) is proven. From (60) and (53), it follows:

‖Xout‖ ≤ ‖C‖ sup
|z|=1

‖(z(I − P)− Ains)
−1‖2 ≤ ‖C‖F2(1/d(A))(1 + F(1/d(A)))2.

Therefore, (58) is also valid.

7. Linear Autonomous Difference Equation

In this section, we illustrate the importance of solution estimates for (32) in the simple case. To this
end, consider the equation:

uk+1 = Auk (k = 0, 1, 2, ...); u0 ∈ H is given . (61)
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Let X = X(A) be a solution of the equation:

X − A∗XA = I (62)

First consider the case rs(A) < 1. For any x ∈ H, we have:

(XAx, Ax) = (Xx, x)− (x, x) ≤ (Xx, x)− 1
‖X‖ (Xx, x).

Hence,

(XAkx, Akx) ≤ (1 − 1
‖X‖ )

k(Xx, x)

and consequently,

(Xuk, uk) ≤ (1 − 1
‖X‖ )

k(Xu0, u0) (rs(A) < 1). (63)

Now, let rl(A) > 1 and Y = −X. Then, A∗YA = Y + I,

(YAx, Ax) = ((Y + I)x, x) ≥ (1 +
1

‖X‖ )(Yx, x).

Therefore,

(YAkx, Ax) ≥ (1 +
1

‖X‖ )
k(Yx, x).

Consequently,

(Yuk, uk) ≥ (1 +
1

‖X‖ )
k(Yu0, u0) (Y = −X, rl(A) > 1). (64)

Now, assume that A has a dichotomic spectrum, i.e., (50) holds. Then, uk = wk + vk where wk
and vk are solutions of the equations:

wk+1 = Ainswk (w0 ∈ PH)

and:
vk+1 = Aoutvk (k = 0, 1, 2, ...; v0 ∈ (I − P)H).

Making use of (63) and (64), we have:

(Xinswk, wk) ≤ (1 − 1
‖Xins‖

)k(Xinsw0, w0). (65)

and:
(Youtvk, vk) ≥ (1 +

1
‖Xout‖

)k(Youtv0, v0), (66)

where Yout = −Xout. However, as is shown in Section 6, Yout and Xins are upper and lower bounded.
Now, (65) and (66) imply:

‖wk‖2 ≤ const (1 − 1
‖Xins‖

)k‖w0‖2

and:
‖vk‖2 ≥ const (1 +

1
‖Xout‖

)k‖v0‖2.

Definition 1. We will say the equation:

uk+1 = Akuk (Ak ∈ B(H); k = 0, 1, 2, ...)
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is dichotomic, if there exist a projection P �= 0, P �= I and constants ν ∈ (0, 1), μ > 1 and a, b > 0 such that
‖uk‖ ≤ aνk‖u0‖ if u0 ∈ PH and ‖uk‖ ≥ mμk‖u0‖ if u0 ∈ (I − P)H.

Therefore, Equation (61) is dichotomic, if σ(A) is dichotomic.

8. Perturbations of Operators

To investigate nonautonomous equations, in this section, we consider some perturbations
of operators.

8.1. Stable Operators

Lemma 8. Let A, Ã ∈ B(H), rs(A) < 1, and X = X(A) be a solution of (62). If:

‖X‖(2‖A − Ã‖‖A‖+ ‖A − Ã‖2) < 1, (67)

then:
(XÃx, Ãx) ≤ (1 − c0

‖X‖ )(Xx, x) (x ∈ H),

where:
c0 := 1 − ‖X‖(2‖A − Ã‖‖A‖+ ‖A − Ã‖2).

Proof. Put Z = Ã − A. Then:

X − Ã∗XÃ = X − (Z + A)∗X(Z + A) = X − A∗XA − Z∗XA − A∗XZ − Z∗XZ

= I − Z∗XA − A∗XZ − Z∗XZ.

By (67):

‖I − Z∗XA − A∗XZ − ZXZ‖ ≥ 1 − ‖Z∗XA + A∗XZ + Z∗XZ‖ ≥ c0.

Therefore, X − Ã∗XÃ ≥ c0 I and:

(Xx, x)− (XÃx, Ãx) ≥ c0(x, x) ≥ c0(
X

‖X‖ x, x) =
c0

‖X‖ (Xx, x),

as claimed. �

8.2. The Case rl(A) > 1

Lemma 9. Let A, Ã ∈ B(H), rl(A) > 1, and X = X(A) be the solution of (62). If, in addition,

2‖X‖‖A − Ã‖‖A‖ < 1, (68)

then with Y = −X(A), one has:

(YÃx, Ãx) ≥ (1 +
m̃

‖X‖ )(Yx, x) (x ∈ H),

where m̃ = 1 − 2‖X‖‖A − Ã‖‖A‖.

Proof. With Z = Ã − A, one has:

Ã∗YÃ = (Z + A)∗Y(Z + A) = A∗YA + Z∗YA + A∗YZ + Z∗YZ
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= Y + I + Z∗Y + A∗YZ + Z∗YZ.

Since Y is positive definite, hence, by (68),

(YÃx, Ãx) ≥ (Yx, x) + (x, x) + (Z∗YZx, x) + (YZx, Ax)

≥ (Yx, x) + (x, x)(1 − 2‖Y‖‖Z‖) = (Yx, x) + (x, x)m̃ ≥ (Yx, x)(1 +
m̃
‖Y‖ ),

as claimed. �

8.3. Perturbation of Operators with Dichotomic Spectra

Let Condition (50) hold, and:

‖A − Ã‖ sup
|z|=1

‖Rz(A)‖ < 1,

then by the Hilbert identity Rz(Ã)− Rz(A) = Rz(Ã)(A − Ã)Rz(Ã), the inequality:

‖Rz(Ã)‖ ≤ ψ(A) := sup
|z|=1

‖Rz(A)‖(1 − ‖A − Ã‖‖Rz(A)‖)−1 (|z| = 1)

is fulfilled and:
‖Rz(Ã)− Rz(A)‖ ≤ qψ(A) sup

|z|=1
‖Rz(A)‖ (|z| = 1). (69)

Therefore, Ω ∩ σ(Ã) = ∅. Moreover, Ã has a dichotomic spectrum:

σ(Ã) = σ̃ins ∪ σ̃out (70)

where σ̃ins and σ̃out are nonempty nonintersecting sets lying inside and outside Ω, respectively. Indeed,
let At = A + t(Ã − A) (0 ≤ t ≤ 1). For each t, Ω ∩ σ(At) = ∅, since ‖A − At‖ sup|z|=1 ‖Rz(A)‖ < 1.
Hence, (70) follows from (50) and the semi-continuity of the spectrum. Put:

P̃ =
1

2πi

∫
Ω
(zI − Ã)−1dz,

Ãins = P̃Ã and Ãout = (I − P̃)Ã. With the notations of Section 5,
Ains − Ãins

=
1

2πi

∫
Ω

z[(zI − A)−1 − (zI − Ã)−1]dz = − 1
2πi

∫
Ω

z[(zI − A)−1(A − Ã)(zI − Ã)−1]dz.

According to (69) with q = ‖A − Ã‖, we obtain:

qins := ‖Ains − Ãins‖ ≤ qψ(A) sup
|z|=1

‖Rz(A)‖.

Since Aout − Ãout = A − Ã − (Ains − Ãins), one has:

qout := ‖Aout − Ãout‖ ≤ q + qins.

In this section, Xins and Xout are solutions of the equations of (55), (56), respectively, with C = I; i.e.,

Xins − A∗
insXinsPAins = P∗P (71)
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and:
Xout − A∗

outXoutPAout = (I − P∗)(I − P).

Lemma 8.1 yields:

Corollary 1. If
‖Xins‖(2qins‖Ains‖+ q2

ins) < 1,

then:
(Xins Ãinsx, Ãinsx) ≤ (1 − cins

‖Xins‖
)(Xinsx, x) (x ∈ H),

where:
cins := 1 − ‖Xins‖(2qins‖Ains‖+ q2

ins).

Making use of Lemma 8.2, we get:

Corollary 2. If
2‖Xout‖qout‖Aout‖ < 1,

then with Yout = −Xout, one has:

(Yout Ãout, Ãoutx, x) ≥ (1 +
mout

‖Xout‖
)(Youtx, x) (x ∈ H),

where mout = 1 − 2‖Xout‖qout‖Aout‖.

9. Nonautonomous Linear Difference Equations

9.1. Stability

Consider the equation:

uk+1 = Akuk (Ak ∈ B(H); k = 0, 1, 2, ...) (72)

with given u0 ∈ H. For some A ∈ B(H), define the norms:

‖x‖X =
√
(Xx, x) (x ∈ H) and ‖A‖X = sup

x∈H

‖Ax‖X
‖x‖X

.

where X = X(A) is the solution of (62).
Throughout this section and the next one, it is assumed that supk ‖Ak‖ < ∞ and denoted

q0 := supk ‖A − Ak‖.

Theorem 4. Let there be an A ∈ B(H) with rs(A) < 1, such that:

sup
k=0,1,2,...

‖X(A)‖(2q0‖A‖+ q2
0) < 1. (73)

Then, for any solution of uk of (72), one has:

‖uk‖X ≤ (1 − a0

‖X‖ )
k/2‖u0‖X (k = 1, 2, ...) (74)

where a0 := 1 − (2q0‖X‖+ q2
0).
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Proof. Due to Lemma 8.1 and (73), we have:

‖Ak‖X ≤
√

1 − a0

‖X‖ (k = 0, 1, 2, ...). (75)

Since:
uk+1 = Ak Ak−1 · · · A1 A0u0, (76)

we arrive at the required result.

Certainly, we can take A = Ak for some index k.
Equation (72) is said to be exponentially stable, if there are constants m1 ≥ 1, m2 ∈ [0, 1), such

that ‖uk‖ ≤ m1mk
2‖u0‖ (k = 1, 2, ...).

Note that X = I + A∗XA ≥ I. Since a0 < 1, one has a0
‖X‖ < 1. In addition, the upper and lower

bounds for X presented in Section 3 show that the norms ‖ · ‖ and ‖ · ‖X are equivalent. Consequently,
under the hypothesis of Theorem 9.1, Equation (72) is exponentially stable.

Now, we can apply the results of Section 3 to concrete operators.

9.2. Lower Bounds for Solutions

Lemma 10. For some A ∈ B(H), let the condition rl(A) > 1 hold and X = X(A) be a solution of (62). If,
in addition,

2q0‖X‖‖A‖ < 1, (77)

then solution uk of (72) is subject to the inequality:

(Yuk, uk) ≥ (1 +
m0

‖X‖ )
k(Yu0, u0) (k = 1, 2, ...), (78)

where Y = −X and m0 = 1 − 2‖X‖‖A‖q0.

Proof. Due to Lemma 8.2, we have:

(YAkx, Akx) ≥ (1 +
m0

‖X‖ )(Yx, x).

Hence,

(Yuk+1, uk+1) ≥ (1 +
d̂0

‖X‖ )(uk, uk) ≥ (1 +
d̂0

‖X‖ )
2(uk−1, uk−1). (79)

Continuing this process, we get the required result.

9.3. Dichotomic Equations

For an A ∈ B(H), let Condition (50) hold, and the inequality:

q0 sup
|z|=1

‖Rz(A)‖ < 1 (80)

is fulfilled. Then, Ω ∩ σ(Ak) = ∅ for all k ≥ 0, and by the Hilbert identity:

sup
k=0,1,...;|z|=1

‖Rz(Ak)‖ ≤ ψ0 := sup
|z|=1

‖Rz(A)‖(1 − q0‖Rz(A)‖)−1 (81)

and:
sup

k=0,1,...;|z|=1
‖Rz(Ak)− Rz(A)‖ ≤ q0ψ0 sup

|z|=1
‖Rz(A)‖. (82)
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Hence, each Ak has a dichotomic spectrum:

σ(Ak) = σins(Ak) ∪ σout(Ak),

where σins(Ak) and σout(Ak) are nonempty nonintersecting sets lying inside and outside Ω,
respectively. Put:

Pk =
1

2πi

∫
Ω
(zI − Ak)

−1dz,

Ak,ins = Pk Ak and Ak,out = (I − Pk)Ak. With Ains defined as Section 5,

Ains − Ak,ins =
1

2πi

∫
Ω

z[(zI − A)−1 − (zI − Ak)
−1]dz.

According to (82):

q0,ins := sup
k

‖Ains − Ak,ins‖ ≤ q0ψ0 sup
|z|=1

‖Rz(A)‖. (83)

Since Aout − Ak,out = A − Ak − (Ains − Ak,ins), one has:

q0,out := sup
k

‖Aout − Ak,out‖ ≤ q0 + q0,ins ≤ q0(1 + ψ0 sup
|z|=1

‖Rz(A)‖). (84)

In this section, Xins and Xout are solutions of Equation (71) and the equation Xout −
A∗

outXoutPAout = (I − P∗)(I − P), respectively. If:

‖Xins‖(2q0,ins‖Ains‖+ q2
0,ins) < 1, (85)

then Corollary 8.3 implies:

(Xins Ak,insx, Ak,insx) ≤ (1 − c0,ins

‖Xins‖
)(Xinsx, x) (x ∈ H), (86)

where:
c0,ins := 1 − ‖Xins‖(2q0,ins‖Ains‖+ q2

0,ins).

Furthermore, if:
2‖Xout‖q0,out‖Aout‖ < 1, (87)

then with Yout = −Xout, Corollary 8.4 implies:

(Yout Ak,out, Ak,outx, x) ≥ (1 +
m0,out

‖Xout‖
)(Youtx, x) (x ∈ H), (88)

where m0,out = 1 − 2‖Xout‖q0,out‖Aout‖.
Put wk = PkAk, wk = (I − Pk)Ak. Then, uk = wk + vk, where wk and vk are solutions of the equations:

wk+1 = Ak,inswk (w0 ∈ P0H) (89)

and:
vk+1 = Ak,outvk (k = 0, 1, 2, ...; v0 ∈ (I − P0)H). (90)

Making use of (86), under Condition (85), we have:

(Xinswk+1, wk+1) = (Xins Ak,inswk, Ak,inswk)(1 −
c0,ins

‖Xins‖
)(Xinswk, wk) ≤ ...
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≤ (1 − c0,ins

‖Xins‖
)k(Xinsw0, w0). (91)

Furthermore, if (87) holds, then by: (88)

(Youtvk+1, vk+1) = (Yout Ak,outvk, Ak,out) ≥ (1 +
d0,out

‖Xout‖
)(Youtvk, vk) ≥

... ≥ (1 +
d0,out

‖Xout‖
)k(Youtv0, v0). (92)

We thus have proven:

Lemma 11. For some A ∈ B(H), let Conditions (50), (85), and (87) hold. Then, (72) is a dichotomic equation.
Moreover, its solution satisfies Inequalities (91) and (92).

Let Condition (27) hold and d(A) be defined as in Section 5. For brevity, put d(A) = d. Then, as is
shown in Section 5, sup|z|=1 ‖Rz(A)‖ ≤ F(1/d), ‖P‖ ≤ F(1/d), ‖I − P‖ ≤ 1 + F(1/d). By Lemma 6.1,
‖Xins‖ ≤ F4(1/d) and ‖Xout‖ ≤ F2(1/d)(1 + F(1/d))2. Condition (80) takes the form:

q0F(1/d) < 1. (93)

Therefore,
ψ0 ≤ ψ1 := F(1/d)(1 − q0F(1/d))−1

and q0,ins ≤ q0ψ1F(1/d). In addition, by (84) q0,out ≤ q0(1+ ψ1F(1/d)). Condition (85) is provided by:

F4(1/d)(2q0ψ1F(1/d))‖AP‖+ q2
0ψ2

1 F2(1/d)) ≤ F6(1/d)q0ψ1(2‖A‖+ q0ψ1) < 1.

Condition (87) is provided by:

2F2(1/d)(1 + F(1/d))2q0(1 + ψ1F(1/d))‖A(I − P)‖ ≤ 2F2(1/d)(1 + F(1/d))3q0(1 + ψ1F(1/d))‖A‖ < 1,

Now, Lemma 9.3 yields:

Theorem 5. For some A ∈ B(H), let the Conditions (50), (27), (93), and:

q0F2(1/d)max{F4(1/d)ψ1(2‖A‖+ q0ψ1), 2(1 + F(1/d))3 (̂1 + ψ1F(1/d))‖A‖} < 1

be fulfilled. Then, (72) is a dichotomic equation. Moreover, its solution satisfies Inequalities (91) and (92).

Similar results for the periodic equations in the finite-dimensional space were established in the
article [19].

10. Nonlinear Nonautonomous Equations

For a positive � ≤ ∞, put ω(�) = {x ∈ H : ‖x‖ ≤ �}.
Let Ak ∈ B(H) and Gk : ω(�) → H. Consider the equation:

uk+1 = Akuk + Gk(uk) (k = 0, 1, 2, ...) (94)

with given u0 ∈ H, assuming that:

‖Gk(x)‖ ≤ νk‖x‖ (x ∈ ω(�); k = 0, 1, 2, ...) (95)

with nonnegative constants νk.
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Lemma 12. Let Condition (95) hold with � = ∞. Let there be an A ∈ B(H) with rs(A) < 1 and:

γ := ‖X‖ sup
k
[2‖A‖‖A − Ak‖+ ‖A − Ak‖2 + 2‖Ak‖νk + ν2

k ] < 1, (96)

where X is the solution of (62). Then:

(Xuk, uk) ≤ (1 − 1 − γ

‖X‖ )k(Xu0, u0) (k = 1, 2, ...) (97)

for any solution uk of (94).

Proof. Multiplying (94) by X and doing the scalar product, we have.

(Xuk+1, uk+1) = (X(Akuk + Gk(uk)), Akuk + Gk(uk)) = (XAkuk, Akuk) + Φk(uk), (98)

where:
Φk(x) = (XGk(x), Akx) + (XAkx, Gk(x)) + (XGk(x), Gk(x)) (x ∈ H).

However,
A∗

k XAk = (A + Zk)
∗X(A + Zk) = A∗XA + Wk = X − I + Wk,

where Zk = Ak − A and Wk = Z∗
k XA + A∗

k XZ + Z∗
k XZk. Thus,

(Xuk+1, uk+1) = (Xuk, uk)− (uk, uk) + (Wkuk, Akuk) + Φk

≤ (Xuk, uk)− ‖uk‖2(1 − ‖Wk‖)− ‖Φk‖.

According to (95):

‖Φk(x)‖ ≤ ‖X‖(2‖Ak‖‖Gk(x)‖‖x‖+ ‖Gk(x)‖2 ≤ ‖X‖(2‖Ak‖νk + ν2
k )‖x‖2)

and:
‖Wk‖ ≤ ‖X‖(2‖A‖‖A − Ak‖+ ‖A − Ak‖2).

Consequently,

‖Φk(x)‖+ ‖Wkx‖ ≤ ‖X‖(2‖A‖‖A − Ak‖+ ‖A − Ak‖2 + νk‖Ak‖+ ν2
k )‖x‖2 ≤ γ‖x‖2.

From (98), it follows:

(Xuk+1, uk+1) ≤ (Xuk, uk)− γ(uk, uk) ≤ (Xuk, uk)(1 −
γ

‖X‖ ).

Hence, (97) follows, as claimed. �

Since X ≥ I, X is invertible and:

1
‖X−1‖ (uk, uk) =

1
‖X−1‖ (X−1Xuk, uk) ≤ (Xuk, uk).

From the latter lemma with � = ∞, we have:

(uk, uk) ≤ ‖X−1‖‖X‖(1 − 1 − γ

‖X‖ )k(u0, u0) (u0 ∈ H),
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and thus:
‖uk‖ ≤ (‖X−1‖‖X‖)1/2(1 − 1 − γ

‖X‖ )k/2‖u0‖ (k = 1, 2, ...). (99)

Theorem 6. Let Condition (95) and there be an A ∈ B(H) with rs(A) < 1 satisfying (96). In addition, let:

‖u0‖ <
�

(‖X−1‖‖X‖)1/2 . (100)

Then, the solution to (94) admits the estimate (99).

Proof. In the case � = ∞, the result is due to the latter lemma. Let � < ∞. By the Urysohn
theorem ([20], p. 15), there is a scalar-valued function ψ� defined on H, such that:

ψ�(w) = 1 (w ∈ H, ‖w‖ < �) and ψ�(w) = 0 (‖w‖ ≥ �).

Put Gk(�, w) = ψ�(w)Gk(w) and consider the equation:

vk+1 = Akvk + Gk(�, vk), v0 = u0. (101)

Besides, (95) yields the condition:

‖Gk(�, w))‖ ≤ νk‖w‖ (w ∈ H; k ≥ 0).

Thanks to the latter lemma, a solution vk of Equation (101) satisfies (99). According to (100),
‖vk‖ ≤ (‖X−1‖‖X‖)1/2‖u0‖ < � (k = 1, 2, ...). Therefore, solutions of (101) and (94) under (102)
coincide. This proves the required result.

Definition 2. The zero solution to (94) is said to be exponentially stable if there are constants m0 > 0, m1 > 0
and m2 ∈ (0, 1), such that the solution uk to (94) satisfies the inequality, ‖uk‖ ≤m1mk

2‖u0‖ (k = 1, 2, ...),
provided ‖u0‖ < m0.

Corollary 3. Under the hypothesis of Theorem 10.1, the zero solution to (94) is exponentially stable.

Definition 3. We will say that Equation (1) is quasi-linear, if:

lim
w→0

‖Gj(w)‖/‖w‖ = 0 (102)

uniformly in j ≥ 0.

Corollary 4. Let (94) be quasi-linear and there be an A ∈ B(H) with rs(A) < 1 satisfying the inequality:

‖X‖[2‖A‖‖A − Aj‖+ ‖A − Aj‖2] < 1 (j = 0, 1, 2...).

Then, the zero solution to (94) is exponentially stable.

Indeed, according to (102),

‖Gj(w)‖ ≤ ν̂(�)‖w‖ (w ∈ ω(�))

with a ν̂(�) → 0 as � → 0. Therefore, for a sufficiently small �, we have Condition (95) with ν̂(.)
instead of νk. Now, Theorem 10.1 yields the required result.
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1. Introduction

As far as we know, in spite of the intensive studies of limit-periodic (especially Schrödinger-type)
operators (see, e.g., [1,2], and the references therein), the results about the existence of limit-periodic
solutions to nonlinear differential and difference equations are very rare (see e.g., [3–8]). For some
related periodicity and almost-periodicity problems and applications, see, e.g., [9–12], and the
references therein. As already pointed out in [5], since the space of limit-periodic sequences is
(unlike for limit-periodic functions) Banach (cf. [4,13]), the existence criteria for limit-periodic solutions
of difference equations are significantly simpler than those for differential equations. Nevertheless,
an obstruction related to the absence of global Lipschitzianity restrictions, imposed on the given
right-hand sides of equations under consideration, remains also in the discrete case. For the recently
investigated continuous case, see [6] and the references therein.

Hence, the aim of the present note is to obtain, by means of our technique (see [5], Theorem 3.2,
resp. Corollary 3.3), which we state below in the form of Proposition 2, the effective solvability criteria
of the equation from the title. Its scalar and vector cases will be treated separately. Let us note that,
in particular cases, the equation from the title can describe discrete population models for a single
species. For instance, if h(x) := −μx + μ − λ, μ > 0, then we get the forced logistic equation. For more
details, see e.g., ([14], Chapter 1, [15], Chapter 2).

2. Preliminaries and Auxiliary Results

At first, we will recall the notion of a limit-periodic sequence and its basic properties.

Definition 1. A sequence x := {xt} ∈ (Rn)Z, where R and Z denote respectively the sets of reals and integers,
is called limit-periodic if there exists a family of periodic sequences xk := {xk

t }, k ∈ N (N denotes the set of
positive integers), such that limk→∞ xk

t = xt, uniformly w.r.t. t ∈ Z.

Axioms 2019, 8, 19; doi:10.3390/axioms8010019 www.mdpi.com/journal/axioms147
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It is well known (see e.g., [5]) that Definition 1 is equivalent to the following definition of
a semi-periodic sequence (cf. [13]).

Definition 2. A sequence x := {xt} ∈ (Rn)Z is called semi-periodic if

∀ε > 0, ∃T ∈ N, ∀m ∈ Z, ∀k ∈ Z, |xk+mT − xk| ≤ ε.

Remark 1. Since the uniform and Stepanov norms, namely ‖ · ‖∞ and ‖ · ‖S
p
T
, where

‖x‖∞ := sup
t∈Z

|xt|,

‖x‖S
p
T

:= sup
m∈Z

(
1

T + 1

m+T

∑
t=m

|xt|p
) 1

p

, T ∈ {0} ∪N, p ≥ 1,

were shown in ([16], Proposition 1 and Remark 2) to be equivalent, both Definitions 1 and 2 can be easily
reformulated in terms of Stepanov limit-periodic and Stepanov semi-periodic sequences by means of the Stepanov
norm ‖ · ‖S

p
T
, p ≥ 1.

Summing up, it will be convenient to recall the following proposition (cf. [5], Proposition 2.12).

Proposition 1. The following properties of a sequence {xt} ∈ (Rn)Z are equivalent:

(i) {xt} is uniformly limit-periodic,
(ii) {xt} is (Stepanov) S

p
T-limit-periodic,

(iii) {xt} is uniformly semi-periodic,
(iv) {xt} is (Stepanov) S

p
T-semi-periodic.

Moreover, the set of all (Stepanov) limit-periodic, resp. (Stepanov) semi-periodic sequences {xt} ∈ (Rn)Z,
endowed with the uniform or Stepanov norms ‖ · ‖∞ or ‖ · ‖S

p
T
, p ≥ 1, is a Banach space.

Now, let us proceed to the difference system

xt+1 = f (xt) + pt, (1)

where f ∈ C1(Rn,Rn) and {pt} ∈ (Rn)Z is a (Stepanov) limit-periodic sequence. Let us also consider
the associated one-parameter family of systems

xt+1 = f (xt) + pN
t , (2)

where the class of Tk-periodic (Tk > 0) sequences{pN
t } ∈ (Rn)Z, N ∈ N, converges uniformly to {pt}.

Our technique in ([5], Corollary 3.7) will be stated here in the form of the following proposition.

Proposition 2. Assume still that

(i) for each fixed N, system (2) admits a Tk-periodic solution {xN
t },

(ii) supN∈N ‖{xN
t }‖∞ < ∞,

(iii) if AN
t is the Jacobian matrix of f at xN

t , then there exists a non-singular solution of the homogeneous system

yt+1 = AN
t yt, (3)

which satisfies the exponential dichotomy, for all sufficiently large values of N, with common constants K and α,
characterizing the exponential dichotomy.

Then, system (1) possesses a uniformly limit-periodic solution.
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Let us recall the definition of an exponential dichotomy for Equation (3). Introducing the resolvent
R : Z2 → Mn, where Mn denotes the space of real n × n matrices, and

R(t, s) :=

⎧⎪⎪⎨
⎪⎪⎩

At−1 . . . As, for t > s,

A−1
s . . . A−1

t−1, for t < s,

In, for t = s,

where In is the identity matrix, it has the semi-group property. Taking Φt := R(t, 0), we say that
Equation (3) satisfies an exponential dichotomy if there exists a projection P (P2 = P) and constants
K > 0, α ∈ (0, 1) such that

{
|ΦtPΦ−1

s | ≤ Kαt−s, for t ≥ s,

|Φt(In − P)Φ−1
s | ≤ Kα−(t−s), for t ≤ s.

(4)

Let us note that ΦtPΦ−1
s y is the t-iterated image of the projection by P of the solution of Equation

(3) such that ys = y. In the stable case, P = In, and so ΦtPΦ−1
s = R(t, s), when t ≥ s, and Φt(In −

P)Φ−1
s = 0, when t ≤ s.

Remark 2. For some alternative definitions of an exponential dichotomy for Equation (3), see, e.g., [17–19]. In
particular, Palmer gives in [18] a finite-time condition for an exponential dichotomy. In fact, all these conditions
were formulated for a more general class of (uniformly) almost-periodic homogeneous systems (3).

On this basis, we can define the associated Green function G : Z2 → Mn, where (see, e.g., [5], and
the references therein)

G(t, s) := Φt (Plt≥s + (In − P)lt≤s)Φ−1
s =

⎧⎪⎪⎨
⎪⎪⎩

ΦtPΦ−1
s , for t > s,

In, for t = s,

Φt(In − P)Φ−1
s , for t < s,

(5)

and

lt≥s :=

{
1, for t ≥ s,

0, for t < s.

3. Limit-Periodic Solutions: Scalar Case

Consider the equation from the title in the scalar case (n = 1), i.e.,

xt+1 − [h(xt) + λ] xt = rt, (6)

where λ > 1, h ∈ C1(R,R) and r = {rt} : Z → R is a (Stepanov or) uniformly limit-periodic sequence
(see Definition 1 and Proposition 1).

At first, let us deal with the case, when r is periodic. Since we would like to obtain a periodic
solution for Equation (6), we associate to it its Schauder-like parametrization, namely

xt+1 − [h(qt) + λ] xt = rt, (7)

where q ∈ QD := {p ∈ RZ, ‖p‖∞ ≤ D}.
Consider still the homogeneous equation, obtained by the linearization of Equation (6) at {qt},

i.e.,
xt+1 −

[
h′(qt)qt + h(qt) + λ

]
xt = 0. (8)
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Let us assume that there exists a constant D > 0 such that

∀x ∈ [−D, D] : h(x) ≥ 0 and h′(x)x + h(x) ≥ 0, (9)

jointly with

‖r‖∞ ≤ λ − 1
λ + 1

D. (10)

We are ready to formulate the first main theorem (for the scalar case), when applying Proposition 2.

Theorem 1. Let λ > 1 and let there exist a constant D > 0 such that condition (9) holds for h ∈ C1(R,R),
jointly with condition (10) for a (Stepanov or) uniformly limit-periodic sequence {rt} : Z → R. Then, Equation
(6) admits a uniformly limit-periodic solution z satisfying

‖z‖∞ ≤ λ + 1
λ − 1

‖r‖∞ . (11)

Proof. Observe that, under the assumption (9), the homogeneous Equation (8) exhibits an exponential
dichotomy with constants K = 1 and α = 1/λ because

|h′(qt)qt + h(qt) + λ| = h′(qt)qt + h(qt) + λ ≥ λ,

by which

|xt| =
1

|h′(qt)qt + h(qt) + λ| |xt+1| ≤
1
λ
|xt+1|.

Moreover, Equation (7) admits a unique entirely bounded solution u which takes the form

ut = ∑
�∈Z

Gq(t, �)r�−1,

where Gq is the Green function for Equation (7), where rt = 0, (see Formula (5)). By the standard
calculations, we obtain that (see e.g., [5])

‖u‖∞ ≤ K
1 + α

1 − α
‖r‖∞ =

λ + 1
λ − 1

‖r‖∞ .

If r is Tk-periodic, then so must be u (see e.g., [20], Theorem 2.6).
For each k ∈ N, we introduce

Qk :=
{

p ∈ R
Z, p is Tk-periodic and

∥∥∥p
∥∥∥

∞
≤ D

}
,

and the operator Tk : Qk → RZ, where

Tk(q) := ∑
�∈Z

Gq(t, �)r�−1.

One can easily check that this operator is continuous and compact (Qk ∩RZ∩[0,Tk ] is compact),
and such that Tk(Qk) ⊂ Qk, provided condition (10) holds.

Thus, for a given r, we take D such that D ≥ λ+1
λ−1‖r‖∞, and the set Qk as above. Applying

the well known Brouwer fixed point theorem, Tk possesses a fixed point ϕk ∈ Qk, which represents
a Tk-periodic solution of Equation (6), where r is Tk-periodic. Moreover, supk∈N ‖ϕk‖∞ ≤ D.

Now, let us proceed to a limit-periodic sequence r. According to Definition 1, it is a limit of
a family of periodic sequences {rk}. We take D > λ+1

λ−1 supk∈N ‖rk‖∞. Since we have the exponential
dichotomy with the same constants for each perturbated system, all the assumptions of Proposition 2
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are satisfied. Thus, we obtain the existence of a limit-periodic solution z of Equation (6) satisfying the
inequality (11), which completes the proof.

Remark 3. Taking H(x) := h′(x)x + h(x), we can see that if h is even (resp. odd), then H must be also.
Thus, if h is odd, then the only situation in order function H could satisfy the assumption (9) occurs, provided
h(x) = 0, for each x ∈ [0, D], which does not have much meaning. On the other hand, if h is even, then H
must be too, and it is sufficient to satisfy the inequality in condition (9) on (0, D]. One can easily check that the
function h satisfies this assumption on (0, D] if and only if the function x 	→ xh(x) (≥ 0) is non-decreasing.
We can see then that the assumption (9) is in fact a local non-decreasing property.

We can give some illustrative examples in order condition (9) to be satisfied with an implicit or
explicit D.

Example 1 (with an implicit D). Assume that there is an expansion of h arround 0,

h(x) := anxn + o(xn), an > 0,

where n is a (strictly) positive even number. In such a case, we have h′(x)x + h(x) = xn (nan + o(1)), with
nan > 0. Unfortunately, an implicit character of D does not lead to an effective solvability criterium here.

Example 2 (D can be any positive real number). Let h be a polynomial of an even degree, namely

h(x) :=
N

∑
k=0

akx2k,

where ak ≥ 0, for every k.
More generally, we can consider the case of the following even Taylor expansion:

h(x) :=
+∞

∑
k=0

akx2k,

where ak ≥ 0, for every k. Then, any D (strictly) smaller than the radius of convergence of the series exists. For
instance, we can consider the function

h(x) :=
1

1 − x2 ,

with D ∈ (0, 1). In this case, condition (10) can be reduced to

‖r‖∞ <
λ − 1
λ + 1

,

provided D = 1 − ε holds with a sufficiently small ε > 0.

4. Limit-Periodic Solutions: Vector Case

In this section, we will consider again Equation (6), but this time in a vector case.
Hence, let λ > 1, h ∈ C1(Rn,R) and r = {rt} : Z → Rn be a (Stepanov or) uniformly limit-periodic

sequence. As before, we associate to this equation its Schauder-like parametrization (7), and the
homogeneous equation

xt+1 − [(∇h(qt) · xt)qt + h(qt)xt + λxt] = 0, (12)

where this time q ∈ QD := {p ∈ (Rn)Z, ‖p‖∞ ≤ D}. We also introduce, for each q ∈ Rn, the
(continuous) linear mapping Lq : Rn → Rn, where

Lq : x 	→ (∇h(q) · x)q + h(q)x. (13)

151



Axioms 2019, 8, 19

Letting BD := {x ∈ Rn, ‖x‖ ≤ D}, we will assume that one of the following assumptions holds.
Let us note that the first one is a vector analogy of the scalar case. Moreover, it is equivalent to impose
this assumption either for all x ∈ Rn, or on the ball BD:

∃D > 0, ∀x ∈ R
n, ∀q ∈ BD, h(q) ≥ 0 and Lq(x) · x ≥ 0, (14)

∃β > 1, ∃D > 0, ∀x ∈ R
n, ∀q ∈ BD, h(q) ≥ 0 and ‖Lq(x) + λx‖ ≥ β‖x‖. (15)

Assume still that

‖r‖∞ ≤ λ − 1
λ + 1

D, or (in the case of condition (15)) ‖r‖∞ ≤ β − 1
β + 1

D. (16)

We are ready to formulate the second main theorem (for the vector case).

Theorem 2. Let λ > 1 and let there exist a constant D > 0 such that either condition (14) or condition (15),
with a suitable constant β > 1, hold for Lq defined in the mapping (13), where h ∈ C1(Rn,R). Let condition
(16) still hold for a (Stepanov or) uniformly limit-periodic sequence {rt} : Z → Rn. Then, Equation (6) admits
a uniformly limit-periodic solution z satisfying

‖z‖∞ ≤ λ + 1
λ − 1

‖r‖∞, resp. ‖z‖∞ ≤ β + 1
β − 1

‖r‖∞.

Proof. Under the assumptions (14) or (15), the homogeneous Equation (12) exhibits an exponential
dichotomy. Indeed, in the first case, for any solution, we have

‖xt+1‖ · ‖xt‖ ≥ xt+1 · xt ≥ Lq(xt) · xt + λxt · xt ≥ λ‖xt‖2.

Thus, we receive the exponential dichotomy with constants K = 1 and α = 1/λ. In the second
case, a simple calculation leads to the exponential dichotomy with constants K = 1 and α = 1/β.
To consider both situations together, let us replace λ by β in the first case. The unique entirely bounded
solution u of Equation (7) satisfies this time the inequality

‖u‖∞ ≤ β + 1
β − 1

‖r‖∞.

If r is Tk-periodic, then so must be u (see again [20], Theorem 2.6).
Proceeding in a quite analogous way as in the scalar case in Section 3, we can prove the existence

of a Tk-periodic solution ϕk of Equation (6), where r is Tk-periodic and such that supk∈N ‖ϕk‖∞ ≤ D,
provided condition (16) holds.

The claim follows, when applying again Proposition 2.

Although the second inequality in condition (14) is linear with respect to h, we will show that
Example 2 cannot be directly extended in a vector way, even in the case of monoms, which justifies
considering the vector case separately.

Let us consider the monome

h(x) := c
n

∏
j=1

x
αj
j ,

where c > 0, and each αj is even. For any positive D, take qi =
D√

n , for all i = 1, . . . , n− 1, and qn = ε D√
n ,

with ε ∈ (0, 1). Then, q = (q1, . . . , qn) ∈ BD. Now, let us compute Lq(x) · x, for x = (1, . . . , 1,−θ).
It is a quadratic polynomial with respect to θ, whose discriminant Δ takes in terms of ε the form
Δ = a

ε2 + b + cε2. Thus, for a sufficiently small ε, the discriminant Δ is positive, demonstrating that
Lq(x) · x can admit negative values.

152



Axioms 2019, 8, 19

On the other hand, in the following illustrative example, we will be able to obtain a suitable local
condition for h(0) > 0, even with an explicit D.

Example 3 (condition (14)). Let us consider

h(x) := C +
n

∏
j=1

x
αj
j ,

where C > 0, and each αj is even. Observe that h is everywhere positive and such that

Lq(x) · x ≥ [−‖∇h(q)‖ · ‖q‖+ h(q)]‖x‖2.

Hence, in order to satisfy condition (14), it is enough to obtain the inequality

‖∇h(q)‖ · ‖q‖ ≤ h(q),

and since h(q) ≥ C, it is still enough to have

‖∇h(q)‖ · ‖q‖ ≤ C.

A basic majorization of the i-th component of ∇h(q), under the constraint ‖q‖ ≤ D, is αiD∑j αj−1. From
this, for ‖q‖ ≤ D, we obtain

‖∇h(q)‖.‖q‖ ≤ D∑j αj

√
∑

j
α2

j .

Thus, it is sufficient to choose

D =

(
C2

∑j α2
j

) 1
2 ∑j αj

.

We have not obviously made an optimal majorization of ‖∇h(q)‖ in order to obtain a simple and transparent
condition. In other words, our estimation can be certainly improved for obtaining a larger D.

Let us deduce a slightly more effective condition for n = 2 (again not an optimal one). In this case,

‖∇h(q)‖ = |q1|α1−1|q2|α2−1
√

α1q2
2 + α2

2q2
1 ≤ |q1|α1−1|q2|α2−1 max{α1, α2}‖q‖ ≤ c(α)Dα1+α2−1,

where

c(α) :=
(α1 − 1)

α1−1
2 (α2 − 1)

α2−1
2

(α1 + α2 − 2)
α1+α2−2

2

max{α1, α2}.

Thus,
‖∇h(q)‖ · ‖q‖ ≤ c(α)Dα1+α2 ,

and we can choose D =
(

C
c(α)

) 1
α1+α2 .

Example 4 (condition (15)). Let us turn to the ball BD with a fixed D. We assume a priori that h(q) ≥ 0
holds in a neighbourhood of 0. For instance, let h(0) > 0. Furthermore, suppose that, for some c > 0 and p > 0,
we have

‖∇h(q)‖ ≤ c‖q‖p.

Then, |h(q)| ≤ h(0) + c
p+1‖q‖p+1, and subsequently

‖Lq(x)‖ ≤
[

h(0) + c
p + 2
p + 1

‖q‖p+1
]
‖x‖.
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Thus, let us still suppose that h(0) > 1 and β ∈ (1, h(0)). For (an explicit value of) D, we get for any
q ∈ BD that

‖Lq(x) + λx‖ ≤
[

λ −
(

h(0) + c
p + 2
p + 1

‖q‖p+1
)]

‖x‖.

Assume finally that λ − h(0) > 1, and take any β ∈ (1, λ − h(0)). We have

(
λ −

(
h(0) + c

p + 2
p + 1

‖q‖p+1
)
> β

)
⇔

(
‖q‖ ≤

(
p + 1
p + 2

λ − h(0)− β

c

) 1
p+1

)
.

After all, we can take

D ≤
(

p + 1
p + 2

λ − h(0)− β

c

) 1
p+1

in order to satisfy condition (15). By the optimization with respect to β, we can readily check that any D satisfying

D <

(
p + 1
p + 2

λ − h(0)− 1
c

) 1
p+1

can be chosen for it. The last step is to specify D such that h(q) ≥ 0, for every q ∈ BD.

5. Conclusions

Under the assumptions of Theorems 1 and 2, the obtained limit-periodic solutions are obviously
also almost-periodic. On the other hand, if the forcing terms {rt} in Equation (6) are almost-periodic
(or, in particular, quasi-periodic), then one should proceed in a different manner in order to get an
almost-periodic (resp. quasi-periodic) solution. However, if the forcing terms {rt} in Equation (6)
are at the same time limit-periodic and quasi-periodic, then they become simply periodic (see [4],
Theorem 2 and [5], Remark 4). In this very special case, the existence criteria for periodic solutions can
be significantly improved. Concretely, conditions (9), (14), and (15) can be reduced into h(x) ≥ 0, for
x ∈ BD.

Observe that, in the special case of the limit-periodically forced logistic equation (i.e., h(x) :=
−μx + μ − λ, μ > 0), namely

xt+1 + μ(xt − 1)xt = rt,

condition (9) takes the form

∃D > 0 such that, for some λ ∈ (1, μ),

∀x ∈ [−D, D] : − 2μx + μ − λ ≥ 0.

Condition (10) is the same as above, i.e.,

‖r‖∞ ≤ λ − 1
λ + 1

D.

One can readily check that they can be satisfied for D = μ−λ
2μ , μ > λ > 1, and

‖r‖∞ ≤ λ − 1
λ + 1

· μ − λ

2μ
.

For example, taking μ = 3.5 and λ = 2, we have D = 3
14 , and subsequently ‖r‖∞ ≤ 1

14 .
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Let us finally note that if condition (9) holds on the whole line, like e.g., for h(x) := π
2 + arctan x,

then Equation (6) admits a limit-periodic solution for any limit-periodic forcing {rt}. In the special
case of h(x) := π

2 + arctan x, the second inequality in condition (9) namely holds because

[h′(x)x + h(x)]′ =
2

x4 + 2x2 + 1
> 0,

by which h′(x)x + h(x) is strictly increasing, jointly with

lim
x→−∞

[h′(x)x + h(x)] = lim
x→−∞

[
x

1 + x2 +
π

2
+ arctan x

]
= 0.

More generally, a sufficient condition for satisfying condition (9), for all x ∈ R, takes the form:

h(x) ≥ 0, [h(x)x]′′ ≥ 0 and lim
x→−∞

[h(x)x]′ ≥ 0.

In the vector case, the same is true, provided condition (14) or condition (15) holds, for all q ∈ Rn.
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Abstract: In this work, new Bäcklund transformations (BTs) for generalized Liouville equations were
obtained. Special cases of Liouville equations with exponential nonlinearity that have a multiplier that
depends on the independent variables and first-order derivatives from the function were considered.
Two- and three-dimensional cases were considered. The BTs construction is based on the method
proposed by Clairin. The solutions of the considered equations have been found using the BTs,
with a unified algorithm. In addition, the work develops the Clairin’s method for the system of two
third-order equations related to the integrable perturbation and complexification of the Korteweg-de
Vries (KdV) equation. Among the constructed BTs an analog of the Miura transformations was found.
The Miura transformations transfer the initial system to that of perturbed modified KdV (mKdV)
equations. It could be shown on this way that, considering the system as a link between the real and
imaginary parts of a complex function, it is possible to go to the complexified KdV (cKdV) and here
the analog of the Miura transformations transforms it into the complexification of the mKdV.

Keywords: Bäcklund transformation; Clairin’s method; generalized Liouville equation;
Miura transformation; Korteweg-de Vries equation

1. Introduction

Currently, nonlinear partial differential equations are widely used to describe the so-called “fine
processes”, such as propagation of nonlinear waves in dispersive media [1]. Due to the complexity of
different nonlinear equations, no common method of their solution exists. For the integrable systems,
efficient methods have been developed, such as the inverse scattering method [2,3], Hirota method [4],
Painlevé method [5], Bäcklund transformation [6], a method of mapping and deformation [3], nonlocal
symmetry method [7,8], etc.

In the classical works [2,6] the Bäcklund transformations (BTs) were considered for the couple of
differential second order partial differential equations and presented in form of a system of relations
and containing independent variables, functions of the said equations, and their first-order derivatives.
The BTs allow to obtain not only couples of equations but, if the solution of one of them is known,
obtain the solution of the other one.

BT plays an important role in the integrable systems because it reveals the inner relations between
different integrable properties, such as determination of the point symmetries [9,10], the presence of
the Hamiltonian structure [11–13].

Lots of research has recently been conducted in this area. For example, determining the
complementary symmetries and obtaining the Miura transformations for the hierarchy of the
Kadomtsev–Petviashvili (KP) equation and modified KP, including for the discrete analog [14,15];

Axioms 2019, 8, 45; doi:10.3390/axioms8020045 www.mdpi.com/journal/axioms157
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in [16] the new BTs relative to the residual symmetry of the (2 + 1)-dimensional Bogoyavlenskij
equation [17] have been investigated; construction of new auto Bäcklund transformations for the
Lagrange system and of Hеnon-Heiles system of equations in parabolic coordinates [18]; it has been
shown that the calibration conditions in the theory of the relativistic string, which allow using the
d’Alembert equation instead of the nonlinear Liouville equation, are direct consequences of the BT
relating the solutions of these equations [19].

In Reference [20] it is shown how pseudo constants of the Liouville-type equations can be
exploited as a tool for construction of the Bäcklund transformations. In Reference [21] it is proven
that contact-nonequivalent three-dimensional linearly degenerate second-order equations that are
Lax-integrable are related to each other by the corresponding Bäcklund transformations.

This work describes how new BTs for the Liouville generalized equations are obtained. The second
and third sections deal with the special cases of the Liouville equation with exponential nonlinearity
that have a multiplier that depends upon the independent variables and first-order derivatives from
the function, and the three-dimensional case. The BTs construction is based on the method proposed
by Clairin and has at such approach a clear geometric sense. The solutions of the considered equations
have been found using the BTs, with a unified algorithm.

The fourth section contains the development of Clairin’s method for the system of two third-order
equations related to the integrable perturbation and complexification of the KdV (cKdV) equation [22].
An essential point for these dynamic systems of equations is that the application of special conditions
to the differential forms may lead to different dynamic systems.

Among the constructed BTs an analog of the Miura transformations was found in Section five.
The Miura transformations transfer the initial system to that of perturbed modified KdV (mKdV)
equations. In this way, we were able to show that when considering the system as a relation between
the real and imaginary parts of a complex function, we can pass to the cKdV, and the analog of the
Miura transformations transforms it into the complexification of mKdV.

2. Bäcklund Transformations for Special Cases of Liouville Equations

Theorem 1. Partial differential equation

zξη = f1(ξ) f2(η)ez (1)

and wave equation wξη = 0 are related by the Bäcklund transformation of the form:

∂w
∂ξ

= be
w+z

2

√
f1(ξ) f2(η) +

∂z
∂ξ

+
f ′1(ξ)
f1(ξ)

,
∂w
∂η

= −1
b

e−w−z
2

√
f1(ξ) f2(η) − ∂z∂η −

f ′2(η)
f2(η)

(2)

where b is an arbitrary parameter, f1(ξ), f2(η) are arbitrary functions of one variable, w(ξ, η) and z(ξ, η) are
functions of two variables.

The Proof uses the cross differentiation of the Equations (2) and then summing or finding the
difference of the resulting expression.

Corollary 1. If the wave equationwξη = 0 has the solution

w(ξ, η) = θ(η) + ϑ(ξ) (3)

then Equation (1) has the solution

z(ξ, η) = ϑ(ξ) − θ(η) − ln

⎡⎢⎢⎢⎢⎣∣∣∣ f2(η) f1(ξ)
∣∣∣( 1

2b

∫
e−θ(η)dη+ b

2

∫
eϑ(ξ)dξ

)2⎤⎥⎥⎥⎥⎦ (4)
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where ϑ(ξ), θ(η) are arbitrary functions.

Proof of Corollary 1. Substitute solution (3) into transformations (2), and get the system of equations
for the function z(ξ, η)

∂ϑ
∂ξ

= be
θ(η)+ϑ(ξ)+z

2

√
f1(ξ) f2(η) +

∂z
∂ξ

+
f ′1(ξ)
f1(ξ)

,
∂θ
∂η

= −1
b

e−
θ(η)+ϑ(ξ)−z

2

√
f1(ξ) f2(η) − ∂z∂η −

f ′2(η)
f2(η)

. (5)

Seek for the solution of the system in form z(ξ, η) = 2 lnϕ(ξ, η), then (5) takes the form of two
Bernoulli equations. Their solutions have the forms

ϕ1 =
1√

f1(ξ)

2e
1
2ϑ(ξ)

be
θ(η)

2
√

f2(η)
∫

eϑ(ξ)dξ+ψ1(η)
,ϕ2 =

1√
f2(η)

2e− 1
2θ(η)

b−1e−
ϑ(ξ)

2
√

f1(ξ)
∫

e−θ(η)dη+ψ2(ξ)
(6)

where ψ1(η), ψ2(ξ) are arbitrary functions.
Compare the resulting solutions (6) and determine the condition at which they coincide,

then functions ψ2(ξ) and ψ1(η) must be predetermined as follows

ψ1(η) =
1
b

e
θ(η)

2

√
f2(η)

∫
e−θ(η)dη,ψ2(ξ) = be

−ϑ(ξ)
2

√
f1(ξ)

∫
eϑ(ξ)dξ (7)

obtaining the solution of system (5) in the form

ϕ(ξ, η) = 2e
ϑ(ξ)−θ(η)

2 ( f1(ξ) f2(η))
− 1

2

(
1
b

∫
e−θ(η)dη+ b

∫
eϑ(ξ)dξ

)−1

and the solution of Equation (1) in the form (4).
Clairin has proposed a method of Bäcklund transformations construction for the hyperbolical

form of nonlinear equations. This procedure will be applied to the equation

z̃ξη = ẽz
(
B1z̃ξ + B2z̃η

)
, B1, B2 − const (8)

where z̃(ξ, η) is a function of two variables, and the Bäcklund transformation will be constructed. �

Theorem 2. Bäcklund transformations of the form:

wξξ = − 1
2 B2ẽzwξ + wξ ∂̃z∂ξ ,

wξη = 1
2 B1ẽzwξ +

wξ
2
∂̃z
∂η ,

(9)

relate the two equations, (8), and
B2(w2)ξη + 4B1w2

ξ = 0 (10)

where B1, B2 are arbitrary constants, and w(ξ, η), z(ξ, η) are functions of two variables.

The Proof is similar to that of Theorem 1.

Corollary 2. If Equation (10) has the solution

w = 2B1η− B2ξ, (11)

then Equation (8) has the solution

z̃ = − ln
∣∣∣∣∣C + B1η− B2

2
ξ

∣∣∣∣∣, C− const. (12)
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Proof of Corollary 2. Use the found transformations (9) and substitute the known solution (11), the
system takes the form

B2
∂̃z
∂η

= −2B1
∂̃z
∂ξ

, 0 = B1ẽz +
∂̃z
∂η

, (13)

where, from the first linear partial differential equation, find the relation between the independent
variables ξ, η, and, from the second equation of the system (13) determine the form of the function
z̃ = − ln|C + 0.5t|, t = 2B1η− B2ξ, C− const. The result is the solution of Equation (8) in the form (12).
�

Corollary 3. If Equation (10) has the solution

w = e
λ

2B2
η− λ

2B1
ξ, λ− const, (14)

then Equation (8) has the solution

z̃ =
λ(2B1η− B2ξ)

2B1B2
− ln

∣∣∣∣∣∣1 + B1B2Ce
λ(2B1η−B2ξ)

2B1B2

∣∣∣∣∣∣+ ln|Cλ|, C− const. (15)

The Proof is similar to that of Corollary 2.

Corollary 4. If Equation (8) has the solution z̃ = B1η− B2ξ, then Equation (10) has the solution

w(ξ, η) = − 2
B2

exp
(1

2
eB1η−B2ξ − B1

2
η
)
. (16)

Proof of Corollary 4. Use the Bäcklund transformations (9) and substitute the available solution
z̃ = B1η− B2ξ, and get the system of equations, that can be integrated by the relevant variables

ln wξ = 1
2 eB1η−B2ξ − B2ξ+ψ1(η),

ln wξ = 1
2 eB1η−B2ξ + B1

2 η+ψ2(ξ),
(17)

where ψ1(η), ψ2(ξ) are the integration constants. Complete the definition of functions ψ1(η) and
ψ2(ξ), so that the resulting values of the right parts of system (17) coincide. This is possible if
ψ1(η) = 0, 5B1η, ψ2(ξ) = −B2ξ. As a result, the value

wξ = exp
(1

2
eB1η−B2ξ − B2ξ+

B1

2
η
)

is determined. Integration by variable ξ yields

w(ξ, η) = φ(η) − 2
B2

e
1
2 eB1η−B2ξ− B1

2 η,

where φ(η) is an arbitrary function. For a greater certainty of φ(η), substitute the found function into
Equation (10). The equality will be fulfilled identically if

2φ′(η) + B1φ(η)eB1η−B2ξ + B1φ(η) = 0.

The obtained equation depends upon variable ξ, which must not happen, hence, assume φ(η) = 0,
then the desired function has the form (16). �
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3. Bäcklund Transformations for Three-Dimensional Liouville Equation

Theorem 3. Nonlinear partial differential equation

vηξ +
c
γ2 ev

(
3γvη + vζ + γvξ

)
= 0 (18)

is linked to the nonlinear equation
ϕη

[
γϕξ + ϕζ + 3γϕη

]
= ϕξη, (19)

by the Bäcklund transformations of the form:

γϕξ + 3γϕη + ϕζ = γvξ,

γ
[
ϕηη + ϕ2

η

]
+ cev

[
c
γ ev + vη

]
= −2cevϕη,

γ
[
ϕξη + ϕξϕη

]
+ ϕζη + ϕζϕη − γvξϕη − c

γ ev[3cev − γvξ − vζ] = 6cevϕη,

(20)

wherec,γ are arbitrary constants, and ϕ(ξ, η, ζ), v(ξ, η, ζ) are functions of three variables ξ, η, ζ.

Proof of Theorem 3. Shows that system (20) leads to Equation (18). For this differentiate the first
equality of relation (20) by variable η

γϕξη + 3γϕηη + ϕζη = γvξη (21)

and determine from the second and third equalities the second order derivatives ϕξη, ϕηη, ϕζη, then,
having substituted their values into (21), gives[

γvξ − 3γϕη − γϕξ −ϕζ
]
ϕη − c

γ
ev

(
γvξ + vζ + 3γvη

)
= γvξη. (22)

By reason of the first equality of system (20), the coefficient at function ϕη becomes zero and there
remains the equality that relates the only function v(ξ, η, ζ):

− sev
(
γvξ + vζ + 3γvη

)
= γ2vξη.

Then, try to get rid of function v(ξ, η, ζ) in the initial system of transformations (20). In the second
equation of the system separate the combination of functions ϕη + cγ−1ev, so that the equality takes
the form (

ϕη +
c
γ

ev
)
η

+

(
c
γ

ev + ϕη

)2

= 0. (23)

In the third equation of system (20), substitute the value γvξ from the first equality (20), then,
after having grouped the elements together(

c
γ

ev + ϕη

)
ξ

− 3
(

c
γ

ev + ϕη

)2

+
1
γ

(
c
γ

ev + ϕη

)
ζ

= 0. (24)

Having separated the total derivatives, rewrite the first and third equations as(
∂
∂ξ + 3 ∂∂η +

1
γ
∂
∂ζ

)
ϕ = vξ,(

∂
∂ξ + 3 ∂∂η +

1
γ
∂
∂ζ

)(
c
γ ev + ϕη

)
= 0.

(25)
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Obviously if cγ−1ev + ϕη = C, C � 0 is assumed, such form is not a solution of Equation (23),
hence, the two situations are possible:

1. C = 0, 2. cev + γϕη = z(ξ, η, ζ) (26)

z(ξ, η, ζ) is some function. The simplest is that if C = 0 is assumed, then, for function v,
get v = ln(−cγ−1ϕη). As a result of the substitution, the first equality transforms into the nonlinear
form (19). �

Corollary 5. If nonlinear partial differential Equation (18) has the solution

v(ξ, η, ζ) = cγ−1η+ f (ξ− γζ) − 3cζ (27)

where f (ξ− γζ) is an arbitrary function of the combined variable ξ− γζ, then Equation (19) has the solution in
the form

ϕ(ξ, η, ζ) =
aξ+ γbζ

a + b
f ′(ξ− γζ) − exp

(
c
γ
η+ f (ξ− γζ) − 3cζ

)
+ r(ξ− γζ), (28)

where ϕ(ξ, η, ζ), v(ξ, η, ζ) are functions of three variables ξ, η, ζ, r(ξ, η, ζ) is an arbitrary function, a, b, c are
arbitrary constants.

Proof of Corollary 5. Use Bäcklund transformations (20). Perform this substitution of function v(ξ, η, ζ)
(27) into (20); obviously, the last two equations of the system will be fulfilled identically if

ϕη = − c
γ

exp
(

c
γ
η+ f (ξ− γζ) − 3cζ

)
. (29)

Having integrated the last equality get the sought for a function of the form

ϕ(ξ, η, ζ) = q(ξ, ζ) − exp
(

c
γ
η+ f (ξ− γζ) − 3cζ

)
(30)

where q(ξ, ζ) is an arbitrary function. For greater certainty, use the remaining first equality of the
system (20), then

qξ(ξ, ζ) + γ−1qζ(ξ, ζ) = f ′(ξ− γζ). (31)

As in the resulting linear Equation (31), one of the first integrals coincides with the form of the
argument of the function of the right part, write the solution in the form

q(ξ, ζ) = g(ξ, ζ) f ′(ξ− γζ) (32)

with the unknown function g(ξ, ζ), which is obtained from the linear equation obtained after substitution
into (31),

g(ξ, ζ) =
1

a + b
(aξ+ γbζ) + r1(ξ− γζ) (33)

which is determined with accuracy to the summand of the form r1(ξ−γζ), a, b are arbitrary parameters
simultaneously not equal to zero. Now put together the resulting values of the functions (30), (32),
and (33); this yields the sought for solution (28). �

Corollary 6. Equations (18) and (19) have a solution in the form

F = F1(3γζ− η) + F2(ξ− γζ) (34)

where F1, F2 are arbitrary functions.
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Get back to the above rationale and consider the second case (26). It may be shown that
Equation (18) relates to a more complex equation. For this, make in (23) change 2 in (26)

γzη + z2 = 0. (35)

It can be seen that this equality may be integrated

z(ξ, η, ζ) =
γ

η+ψ(ξ, ζ)
(36)

whereψ(ξ, ζ) is an arbitrary function. Substitute the found function into the last equality (25), this yields
the equation for the function ψ(ξ, ζ)

[η+ψ(ξ, ζ)]−2[γψξ(ξ, ζ) + 3γ+ψζ(ξ, ζ)] = 0. (37)

The common solution (37) will be written in the form F(ξ − γζ, 3γζ + ψ) = 0, where F is
an arbitrary function. Consider the partial solution in the form of a linear relation in relation to the
second combined variable

ψ(ξ, ζ) = f (ξ− γζ) − 3γζ (38)

with an arbitrary form of the function f . Hence, (36) takes the form

z(ξ, η, ζ) =
γ

η+ f (ξ− γζ) − 3γζ
. (39)

From (26), find the function v(ξ, η, ζ)

v(ξ, η, ζ) = ln

∣∣∣∣∣∣γc
(

1
η+ f (ξ− γζ) − 3γζ

−ϕη
)∣∣∣∣∣∣ (40)

then the first equality of system (25) takes the form

γϕξη +
γ f ′(ξ− γζ)

[η+ f (ξ− γζ) − 3γζ]2
=

(
ϕη − 1

η+ f (ξ− γζ) − 3γζ

)[
γϕξ + ϕζ + 3γϕη

]
. (41)

Theorem 4. Nonlinear partial differential Equation (18) relates to the class of nonlinear Equations (41) by
Bäcklund transformations (20), where f (ξ− γζ) is an arbitrary function of the combined variable ξ− γζ.

The solution of Equation (41) may be obtained having assumed

ϕη =
1

η+ f (ξ− γζ) − 3γζ

then
ϕ = ln

∣∣∣η+ f (ξ− γζ) − 3γζ
∣∣∣+ q(ξ, ζ) (42)

where q(ξ, ζ) is an arbitrary function.

Corollary 7. Function (42), where f (ξ− γζ) and q(ξ, ζ) are arbitrary functions, is a solution of Equation (41).

Use the fact that, according to theorem 2, Equation (18) and family of Equations (41) are related
by Bäcklund transformations (20), and see how the trivial solution v(ξ, η, ζ)= C − const of the first
equation may serve to construct a solution for the family (41).
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Corollary 8. Family of nonlinear partial differential Equations (41) has the solution

ϕ(ξ, η, ζ) = ln
∣∣∣3γζ− η+ f (ξ− γζ)

∣∣∣+ acγ−1(3γζ− η) + f2(ξ− γζ) (43)

where f2(ξ− γζ) is an arbitrary function of the combined variable ξ− γζ, a is an arbitrary constant.

Proof of Corollary 8. Substitute function v(ξ, η, ζ)= C− const to system (20), then the first equality of
system (20) yields

ϕ(ξ, η, ζ) = F(3γζ− η, ξ− γζ) (44)

with an arbitrary function F. Denote the first component derivative as F′
(1)

and the second component
derivative as F′

(2)
. Substitute (44) into the remaining two equations of the system (20) (for compaction:

eC = a > 0)

γ
[
F′′
(1)(1)

+ (F′
(1)

)2
]
+ a2 c2

γ = 2caF′
(1)

,

−F′′
(1)(2)

− F′
(2)

F′
(1)
− 3F′′

(1)(1)
+ F′′

(1)(2)
− [3F′

(1)
− F′

(2)
]F′

(1)
− 3a2 c2

γ2 = − 1
γ6caF′

(1)
.

It is easily seen that both equalities reduce to the single equation γ
[
F′′
(1)(1)

+ (F′
(1)

)2
]
+ a2c2γ−1 =

2caF′
(1)

, whose solution has the form F = ln
∣∣∣3γζ− η+ f1(ξ− γζ)

∣∣∣ + acγ−1(3γζ − η) + f2(ξ − γζ),
and f2(ξ− γζ) plays the role of the integration constant.

As the resulting solution must comply with a whole class of equalities (41) differing from each
other by the function f (ξ − γζ), the arbitrary functions f1(ξ − γζ), f2(ξ − γζ) relate to the defined
function f (ξ− γζ). The check leads to the necessity to assume f1(ξ− γζ) = − f (ξ− γζ), then solution
(41) has the form (43). �

4. Bäcklund Transformations for System of Two Third-Order Equations

We will develop the ideas of Clairin [5] and try to construct differential relations that transform
the defined system of two equations on the function u(x, t), w(x, t) of the form

ut + uxxx − 12μwwx − 6uux = 0, wt − 2wxxx + 6uwx = 0 (45)

into a certain unknown system on the function f (x, t), r(x, t) of the same order.
As the initial system describes the relation of two functions of two variables x, t, to define the

transition from one system to another one, it is necessary to define two couples characterizing the
differential transformations from the independent variables x and t. Assuming that the considered
system (45) is of third-order for variable x, and of first-order for variable t, and to construct (45) the
cross differentiation is used, the differential relationships of the first order should be defined from
variable t, and those of the second order should be defined from variable x:

∂2r
∂x2 = F1(u, w, f , r, ux, wx, fx, rx), ∂r

∂t = H1(u, w, f , r, ux, wx, fx, rx),

∂2 f
∂x2 = F2(u, w, f , r, ux, wx, fx, rx),

∂ f
∂t = H2(u, w, f , r, ux, wx, fx, rx).

(46)

To define the explicit form of transformation, functions F1, F2, and H1, H2 must be found.
The condition of integrability (equality of mixed second order derivatives) requires functions (46) to
comply with the relationship

∂3r
∂x2∂t

=
∂3r
∂t∂x2 ,

∂3 f
∂x2∂t

=
∂3 f
∂t∂x2 (47)
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where all the functions u, w, f , r, ux, wx, fx, rx depend upon the variables x, t. Taking into account (46),

∂3r
∂x2∂t =

∂F1
∂u ut +

∂F1
∂w wt +

∂F1
∂ f ft + . . .+

∂F1
∂rx

rxt,

∂3r
∂t∂x2 = ∂

∂u

(
∂H1
∂u ux +

∂H1
∂w wx + . . .+

∂H1
∂rx

rxx
)
ux + . . .+ ∂

∂rx

(
∂H1
∂u ux +

∂H1
∂w wx + . . .+

∂H1
∂rx

rxx
)
rxx,

(48)

similarly for functions f . Equaling the right parts of the obtained equalities, and using (46) to exclude
rt, ft, rxx, fxx, rxt, fxt, finally get the condition of consistency, which must lead to system (45).

System (45) has the exponential nonlinearity of the first order (ut, uxxx, wt, wxxx) and second order
(wwx, uux, wxu), while each summand in (48) is a product of two or three co-multipliers. To make
the condition of consistency (47) yield the considered system (45) and without terms of higher than
second power it is necessary to assume that functions Fj, Hj, j = 1, 2 are of linear structure in relation
to variables u, ux, w, wx:

Fj = Fj1( f , r, fx, rx)u + Fj2( f , r, fx, rx)ux+

+Fj3( f , r, fx, rx)w + Fj4( f , r, fx, rx)wx + Fj5( f , r, fx, rx),

Hj = Hj1( f , r, fx, rx)u + Hj2( f , r, fx, rx)ux+

+Hj3( f , r, fx, rx)w + Hj4( f , r, fx, rx)wx + Hj5( f , r, fx, rx).

(49)

When composing the condition of consistency (48) at differentiation Fj by variable t, summands
occur with the co-multipliers uxt, wxt that are absent from the initial system (45) and cannot be replaced
or compensated, hence, it is necessary to set the coefficients

Fj2( f , r, fx, rx) = 0, Fj4( f , r, fx, rx) = 0. (50)

As a result, the condition of consistency (47) takes the form

∂Fj1
∂t u + Fj1ut +

∂Fj3
∂t w + Fj3wt +

∂Fj5
∂t =

∂2Hj1

∂x2 u + 2
∂Hj1
∂x ux + Hj1uxx +

∂2Hj2

∂x2 ux + 2
∂Hj2
∂x uxx+

+Hj2uxxx +
∂2Hj3

∂x2 w + 2
∂Hj3
∂x wx + Hj3wxx +

∂2Hj4

∂x2 wx + 2
∂Hj4
∂x wxx + Hj4wxxx +

∂2Hj5

∂x2 ,
(51)

where
∂Fjk
∂t =

∂Fjk
∂ f H2 +

∂Fjk
∂r H1 +

∂Fjk
∂ fx

H2x +
∂Fjk
∂rx

H1x,

∂Hjk
∂x =

∂Hjk
∂ f fx +

∂Hjk
∂r rx +

∂Hjk
∂ fx

F2 +
∂Hjk
∂rx

F1,

∂2Hjk

∂x2 =
∂Hjk
∂ f F2 +

∂Hjk
∂r F1 +

∂Hjk
∂ fx

F2x +
∂Hjk
∂rx

F1x +
∂2Hjk

∂ f 2 f 2
x +

∂2Hjk

∂r2 r2
x +

∂2Hjk

∂ f 2
x

F2
2+

+
∂2Hjk

∂r2
x

F2
1 + 2

(
∂2Hjk
∂ f∂r fxrx +

∂2Hjk
∂ f∂ fx

fxF2 +
∂2Hjk
∂ f∂rx

fxF1 +
∂2Hjk
∂r∂rx

rxF1 +
∂2Hjk
∂r∂ fx

rxF2 +
∂2Hjk
∂ fx∂rx

F2F1

)
.

(52)

Functions u(x, t), w(x, t) are known, while the form of system (51) is determined by the equalities
(45). The terms with multipliers ut, wt, uxxx, wxxx cannot occur during substitutions Fj, Hj, j = 1, 2
and their first order derivatives Fjx, Hjx (only second-order derivatives from x may occur), hence,
comparing the coefficients for the couple ut, uxxx and wt, wxxx in formulas (45) it is necessary to assume

Fj1 = −Hj2, 2Fj3 = Hj4. (53)

Taking into account (53), equality (51) takes the form(
∂Fj1
∂t −

∂2Hj1

∂x2

)
u + Fj1(ut + uxxx) +

(
∂Fj3
∂t −

∂2Hj3

∂x2

)
w + Fj3(wt − 2wxxx) +

∂Fj5
∂t −

∂2Hj5

∂x2 =

=
(
2
∂Hj1
∂x −

∂2Fj1

∂x2

)
ux +

(
Hj1 − 2

∂Fj1
∂x

)
uxx + 2

(
∂Hj3
∂x +

∂2Fj3

∂x2

)
wx +

(
Hj3 + 4

∂Fj3
∂x

)
wxx.

(54)
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System (45) has no terms not containing uxx or wxx. Hence, differentiate (54) by variable uxx

(correspondingly, by wxx), and obtain the relation that must be fulfilled identically(
∂Fj1
∂ fx

F21 +
∂Fj1
∂rx

F11

)
u +

(
∂Fj3
∂ fx

F21 +
∂Fj3
∂rx

F11

)
w +

∂Fj5
∂ fx

F21 +
∂Fj5
∂rx

F11 + Hj1 =

= 2
(
∂Fj1
∂ f fx +

∂Fj1
∂r rx +

∂Fj1
∂ fx

F2 +
∂Fj1
∂rx

F1

)
,

(55)

similarly for wxx: (
∂Fj1
∂ fx

F23 +
∂Fj1
∂rx

F13

)
u +

(
∂Fj3
∂ fx

F23 +
∂Fj3
∂rx

F13

)
w +

∂Fj5
∂ fx

F23 +
∂Fj5
∂rx

F13 =

= 1
2 Hj3 + 2

(
∂Fj3
∂ f fx +

∂Fj3
∂r rx +

∂Fj3
∂ fx

F2 +
∂Fj3
∂rx

F1

)
.

(56)

As the equalities have functions u, w and do not have similar summands, the coefficients at these
functions must return to zero, hence, (55), (56) separate into system j = 1, 2:

∂Fj1
∂ fx

F21 +
∂Fj1
∂rx

F11 = 0,
∂Fj3
∂ fx

F21 +
∂Fj3
∂rx

F11 = 2
∂Fj1
∂ fx

F23 + 2
∂Fj1
∂rx

F13,

∂Fj5
∂ fx

F21 +
∂Fj5
∂rx

F11 + Hj1 = 2
(
∂Fj1
∂ f fx +

∂Fj1
∂r rx +

∂Fj1
∂ fx

F25 +
∂Fj1
∂rx

F15

)
,

∂Fj1
∂ fx

F23 +
∂Fj1
∂rx

F13 = 2
∂Fj3
∂ fx

F21 + 2
∂Fj3
∂rx

F11,
∂Fj3
∂ fx

F23 +
∂Fj3
∂rx

F13 = 0,

∂Fj5
∂ fx

F23 +
∂Fj5
∂rx

F13 = 1
2 Hj3 + 2

(
∂Fj3
∂ f fx +

∂Fj3
∂r rx +

∂Fj3
∂ fx

F25 +
∂Fj3
∂rx

F15

)
.

To make the first, second, fourth, and fifth equalities be fulfilled identically, assume Fj1,
Fj3 independent of functions fx, rx. Note that here the simplest variant is selected. Other relations
between functions Fj1, Fj3 are possible as well. The introduced assumptions are not final and may be
changed when constructing transformations in the event when, at the next steps, incompatible systems
or terms that cannot be eliminated occur. The third and sixth equalities yield

Hj1 = 2
(
∂Fj1

∂ f
fx +

∂Fj1

∂r
rx

)
− ∂Fj5

∂ fx
F21 −

∂Fj5

∂rx
F11, (57)

Hj3 = 2
∂Fj5

∂ fx
F23 + 2

∂Fj5

∂rx
F13 − 4

(
∂Fj3

∂ f
fx +

∂Fj3

∂r
rx

)
. (58)

As a result of the performed analysis, functions (4.5) were transformed into the form

Fj = Fj1( f , r)u + Fj3( f , r)w + Fj5( f , r, fx, rx),

Hj =
(
2
[
∂Fj1
∂ f fx +

∂Fj1
∂r rx

]
− ∂Fj5
∂ fx

F21 − ∂Fj5
∂rx

F11

)
u− Fj1( f , r)ux + 2Fj3( f , r)wx+

+
(
2
∂Fj5
∂ fx

F23 + 2
∂Fj5
∂rx

F13 − 4
[
∂Fj3
∂ f fx +

∂Fj3
∂r rx

])
w + Hj5( f , r, fx, rx).

(59)

Continue examining equality (54). See with what coefficient the term with the multiplier uux,
point (1) (point (2): wwx, point (3): uwx), enters the condition of consistency (54); for this, differentiate
(54) twice, first by variable u (by w in (2), and by u in (3)), then by variable ux (in (2), (3) by
variable wx). During the manipulations, interrelated equations are obtained, hence, describe their
construction separately.

1. After differentiation of (54) in relation to multiplier uux, the following summands remain

∂3Fj1

∂t∂ux∂u
u +
∂2Fj1

∂t∂ux
− ∂

3Hj1

∂x2∂ux
+
∂3Fj3

∂t∂ux∂u
w +

∂3Fj5

∂t∂ux∂u
− 2
∂2Hj1

∂x∂u
+
∂3Fj1

∂x2∂u
, (60)
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where, taking into account (59), derivatives are transformed into a simpler form

∂2Hjk
∂x∂u =

∂2Hjk
∂x∂ux

=
∂Hjk
∂ fx

F21 +
∂Hjk
∂rx

F11,
∂3Fjk
∂t∂ux∂u

= 0,

∂3Fjk

∂x2∂u = − ∂
2Fjk
∂t∂ux

=
∂Fjk
∂ f F21 +

∂Fjk
∂r F11, j = 1, 2, k = 1, 3.

(61)

As a result of the performed differentiation of the condition of consistency get the coefficient (60),
that will be at the multiplier uux. As such term occurs in system (45), the expression (60) must
not be identically equal to zero but must be proportional to the coefficient Fj1, with which the
terms ut + uxxx enter. The coefficient of proportionality conforms to the coefficient of term uux in
system (45) and equals −6. As a result, after substitution (57), expression (60) yields equation⎛⎜⎜⎜⎜⎝2

∂Fj1

∂ f
− ∂

2Fj5

∂ f 2
x

F21 − 2
∂2Fj5

∂rx∂ fx
F11

⎞⎟⎟⎟⎟⎠F21 +

⎛⎜⎜⎜⎜⎝2
∂Fj1

∂r
− ∂

2Fj5

∂r2
x

F11

⎞⎟⎟⎟⎟⎠F11 = 2Fj1. (62)

2. Perform similar actions in relation to the term wwx. In relationship (54) the following
summands remain

∂3Fj1

∂t∂wx∂w
u +

∂2Fj3

∂t∂wx
− ∂

3Hj3

∂x2∂wx
+
∂3Fj3

∂t∂wx∂w
w +

∂3Fj5

∂t∂wx∂w
− 2
∂2Hj3

∂x∂w
− 2
∂3Fj3

∂x2∂w
. (63)

where, taking into account (59), derivatives are transformed into a simpler form

∂2Hjk
∂x∂w =

∂3Hjk

∂x2∂wx
=
∂Hjk
∂ fx

F23 +
∂Hjk
∂rx

F13,
∂3Fjk
∂t∂wx∂w

= 0,

∂2Fjk
∂t∂wx

= 2
∂3Fjk

∂x2∂w = 2
∂Fjk
∂ f F23 + 2

∂Fjk
∂r F13, j = 1, 2, k = 1, 3.

(64)

Expression (63) must not be identically equal to zero but must be proportional to Fj1 with the
coefficient of proportionality corresponding to the term wwx in system (45) and equal to −12μ.
As a result, after substitution (58), expression (63) yields equation⎛⎜⎜⎜⎜⎝∂2Fj5

∂ f 2
x

F23 + 2
∂2Fj5

∂rx∂ fx
F13 − 2

∂Fj3

∂ f

⎞⎟⎟⎟⎟⎠F23 +

⎛⎜⎜⎜⎜⎝∂2Fj5

∂r2
x

F13 − 2
∂Fj3

∂r

⎞⎟⎟⎟⎟⎠F13 = 2μFj1. (65)

3. After differentiation (54) with multiplier uwx the following non-zero summands remain

∂3Fj1

∂t∂wx∂u
u +

∂2Fj1

∂t∂wx
− ∂

3Hj1

∂x2∂wx
+
∂3Fj3

∂t∂wx∂u
w +

∂3Fj5

∂t∂wx∂u
− 2
∂2Hj3

∂x∂u
− 2
∂2Fj3

∂x2∂u
. (66)

Specifying the form of the derivatives using the earlier found form (53), rewrite the remaining
coefficients (66) and equate 6Fj3

2
∂Fj1
∂ f F23 + 2

∂Fj1
∂r F13 − ∂Hj1

∂ fx
F23 − ∂Hj1

∂rx
F13 − 2

∂Hj3
∂ fx

F21−
−2
∂Hj3
∂rx

F11 − 2
∂Fj3
∂ f F21 − 2

∂Fj3
∂r F11 = 6Fj3,

(67)

or, after substitution of the earlier found functions (57), (58):

2
∂Fj3

∂ f
F21 + 2

∂Fj3

∂r
F11 −

⎛⎜⎜⎜⎜⎝∂2Fj5

∂ f 2
x

F21 +
∂2Fj5

∂rx∂ fx
F11

⎞⎟⎟⎟⎟⎠F23 −
⎛⎜⎜⎜⎜⎝ ∂2Fj5

∂ fx∂rx
F21 +

∂2Fj5

∂r2
x

F11

⎞⎟⎟⎟⎟⎠F13 = 2Fj3. (68)
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Now it is necessary to solve the system of six quasilinear partial second order differential equations
(62), (65), (68), j = 1, 2

2
(
∂Fj1
∂ f F21 +

∂Fj1
∂r F11

)
−

(
F21

∂
∂ fx

+ F11
∂
∂rx

)2
Fj5 = 2Fj1,(

F23
∂
∂ fx

+ F13
∂
∂rx

)2
Fj5 − 2

(
∂Fj3
∂ f F23 +

∂Fj3
∂r F13

)
= 2μFj1,

2
(
∂Fj3
∂ f F21 +

∂Fj3
∂r F11

)
−

(
F23

∂
∂ fx

+ F13
∂
∂rx

)(
F21

∂
∂ fx

+ F11
∂
∂rx

)
Fj5 = 2Fj3.

(69)

In the resulting system (69) the summands Fj1 f F21 +Fj1rF11, Fj3 f F23 +Fj3rF13, and Fj3 f F21 +Fj3rF11

have occurred that depend only upon variables f , r, and operators of second order differentiation
by variables fx, rx, for which the dependence upon variables f , r is parametric. Obviously,
the system decomposes into two subsystems determining the dependence upon variables fx, rx:(

F21
∂
∂ fx

+ F11
∂
∂rx

)2
Fj5 = 0,

(
F23

∂
∂ fx

+ F13
∂
∂rx

)2
Fj5 = 0,(

F23
∂
∂ fx

+ F13
∂
∂rx

)(
F21

∂
∂ fx

+ F11
∂
∂rx

)
Fj5 = 0,

(70)

and the dependence upon variables f , r:

∂Fj1

∂ f
F21 +

∂Fj1

∂r
F11 = Fj1,

∂Fj3

∂ f
F23 +

∂Fj3

∂r
F13 = −μFj1,

∂Fj3

∂ f
F21 +

∂Fj3

∂r
F11 = Fj3. (71)

It can be seen that both systems (70), (71) are over-determined, hence, we will not search for their
solutions here (they may exist; this variant has not been examined). The second possibility is
when the action of the second order differential operators on function Fj5 yields the expression,
dependent only upon variables f , r. This is possible if Fj5 has quadratic dependence upon
variables fx, rx; write it in the form:

Fj5 = sj1( f , r) f 2
x + sj2( f , r) fxrx + sj3( f , r)r2

x + sj4( f , r) fx + sj5( f , r)rx + sj6( f , r). (72)

In this case, system (69) takes the form:

F21
∂Fj1
∂ f + F11

∂Fj1
∂r − sj1F2

21 − F21F11sj2 − sj3F2
11 = Fj1,

sj1F2
23 + F23F13sj2 + sj3F2

13 − F23
∂Fj3
∂ f − F13

∂Fj3
∂r = μFj1,

2
(
F21
∂Fj3
∂ f + F11

∂Fj3
∂r

)
− F23[2sj1F21 + F11sj2] − F13[F21sj2 + 2sj3F11] = 2Fj3.

(73)

The first equation yields the system, relating two functions F11, F21. Select the simplest solutions
(such an approach is justified because the Bäcklund transformations must, if possible, be of
simple form)

F21 = 0, F11 = a− const (74)

then, it must be additionally assumed

s23 = 0, s13 = −a−1. (75)
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Taking into account (74), (75), the remaining equalities take the form

s11F2
23 + s12F23F13 − 1

a F2
13 −

(
F23

∂
∂ f + F13

∂
∂r

)
F13 = μa, 2a∂F13

∂r = as12F23,

s21F2
23 + s22F23F13 −

(
F23

∂
∂ f + F13

∂
∂r

)
F23 = 0, ∂F23

∂r = 2+as22
2a F23.

(76)

Select, if possible, simpler solutions; for this suppose that F13, F23 depend upon f and do not
depend upon r, then

s12 = 0, s22 = −2a−1 − const. (77)

Only two first-order differential equations remain

s11F2
23 −

1
a

F2
13 − F23

∂F13

∂ f
= μa, s21F2

23 −
2
a

F23F13 − F23
∂F23

∂ f
= 0 (78)

whose solutions may be varied. Let

F13 = 0, s11 = μae−2 f , s21 = 1 e f = F23. (79)

As a result, formulas (59) are transformed into the form

F1 = au + aμe−2 f f 2
x − 1

a r2
x + S1, F2 = e f w + f 2

x − 2
a fxrx + S2,

H1 = (2rx − as15)u− aux + 2
(
2aμe− f fx + e f s14

)
w + H15( f , r, fx, rx),

H2 = [2 fx − as25]u + 2e f
(
s24 − 2

a rx
)
w + 2e f wx + H25( f , r, fx, rx),

(80)

where, for compactness of entry

S1 = s14( f , r) fx + s15( f , r)rx + s16( f , r),

S2 = s24( f , r) fx + s25( f , r)rx + s26( f , r).

Return to the condition of consistency (54)

a(ut + uxxx) +
∂F15
∂t − ∂

2H15
∂x2 =

∂2(H11u+H13w)

∂x2 ,

e f (wt − 2wxxx) +
∂F25
∂t − ∂

2H25
∂x2 =

∂2(H21u+H23w)

∂x2 + e f
[
4 fxwxx + 2

(
f 2
x + F2

)
wx −H2w

]
,

(81)

and find the dependence upon u2 (1) (w2, step (2), uw, step (3)); for this differentiate by u2 (1) (by
variable w2 at step (2), and by variable uw at step (3)). By reason of the only linear dependence
Fj, Hj, Hjkx in relation to function u (52), the condition (81) will, after differentiation by u2 taking
the form

∂2Fj5

∂t∂(u2)
− ∂3Hj5

∂x2∂(u2)
=

∂

∂(u2)

⎛⎜⎜⎜⎜⎝∂2Hj1

∂x2 u

⎞⎟⎟⎟⎟⎠+ ∂3Hj3

∂x2∂(u2)
w, j = 1, 2, (82)

that yields
∂2H15

∂r2
x

=
∂s15

∂r
,

∂2H25

∂r2
x

=
∂s25

∂r
. (83)
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4. Perform the second step of the algorithm. According to (52), and, taking into account the linear
character of Fj, Hj, Hjkx in relation to function w, (81) will, after differentiation, take the form:

∂2F15
∂t∂(w2)

− ∂3H15
∂x2∂(w2)

= ∂
∂(w2)

(
∂2H13
∂x2 w

)
+ ∂3H11
∂x2∂(w2)

u,

∂2F25
∂t∂(w2)

− ∂3H25
∂x2∂(w2)

= ∂
∂(w2)

(
∂2H23
∂x2 w

)
+ ∂3H21
∂x2∂(w2)

u− e f H23.
(84)

After transformations, the relationship (83) takes the form

4aμs15 − e2 f ∂
2H15

∂ f 2
x

= 2e2 f
(
s14 +

∂s14

∂ f

)
+ 4aμs24, 4aμs25 − e2 f ∂

2H25

∂ f 2
x

= −4
a

e2 f s14. (85)

5. The condition of consistency (81) for the values j = 1, 2 yields the system:

∂2F15
∂t∂(uw)

− ∂3H15
∂x2∂(uw)

= ∂
∂(uw)

(
∂2H11
∂x2 u +

∂2H13
∂x2 w

)
,

∂2F25
∂t∂(uw)

− ∂3H25
∂x2∂(uw)

= ∂
∂(uw)

(
∂2H21
∂x2 u + ∂2H23

∂x2 w
)
− e f H21.

(86)

Using the earlier found form of coefficients and their dependence upon variables rx, r, fx, f ,
obtain from (85) two new differential equations:

2a ∂
2H15
∂ fx∂rx

− a∂s15
∂ f + 4s14 + 2a∂s14

∂r + 4a2μe−2 f s25 = 0,

2a ∂
2H25
∂ fx∂rx

+ 4s24 − a∂s25
∂ f + as25 + 2a∂s24

∂r − 4s15 = 0.
(87)

Equalities (83), (85), (87) do not contain in explicit form the variables fx, rx; this allows to suppose
that functions Hj5 = 0, sjk = 0, j = 1, 2, k = 4, 5, 6. Perform a check having returned to
equalities (4.37), where

∂F15

∂t
= −2aμe−2 f f 2

x H2 + 2aμe−2 f fxH2x − 2
a

rxH1x,
∂F25

∂t
= 2

(
fx − 1

a
rx

)
H2x − 2

a
fxH1x,

∂H11

∂x
= 2F1,

∂H13

∂x
= 4aμe− f

(
F2 − f 2

x

)
,
∂H21

∂x
= 2F2,

∂H23

∂x
= −4

a
e f (rx fx + F1),

∂2H11
∂x2 = 2F1x, ∂2H13

∂x2 = 4aμe− f
(
F2x + f 3

x − 3 fxF2
)
, ∂2H21

∂x2 = 2F2x,

∂2H23
∂x2 = − 4

a e f
(
rxF2 + F1x + rx f 2

x + 2 fxF1
)
, ∂F23

∂t = e f H2, ∂2F23
∂x2 = e f F2 + e f f 2

x ,

after substitution

a(ut + uxxx) = 6auxu + 12aμwxw, wt − 2wxxx = −6wxu.

It can be seen that equalities coincide, hence, a Bäcklund transformation of the form (80),
where sjk = 0, Hj5 = 0, j = 1, 2, k = 4, 5, 6 has been found.

Theorem 5. Nonlinear systems of partial differential equations (45) and

rt = 2a−2r3
x − rxxx + 6μe−2 f fx

(
a fxx − a f 2

x + fxrx
)
,

ft = 6a−1 fx
(
rxx − a−1r2

x − a fxx
)
+ 2 f 3

x [1− μe−2 f ] + 2 fxxx,
(88)
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are interrelated by the Bäcklund transformations of the form:

rxx = au + aμe−2 f f 2
x − a−1r2

x, fxx = e f w + f 2
x − 2a−1 fxrx,

rt = 2rxu− aux + 4aμe− f fxw, ft = 2 fxu− 4a−1e f rxw + 2e f wx,
(89)

where u(x, t), w(x, t), f (x, t), r(x, t) differentiable functions of two independent variables, a � 0, μ are
arbitrary non-zero parameters.

Another form of transformation may be obtained, as well. For this, return in the procedure of
examination, to the moment that determines the form, i.e., to system (78). Such an approach has been
implemented in Reference [17].

5. Analog of Miura Transformations

We demonstrate how the results obtained in the previous section can be used. Use the earlier
obtained Bäcklund transformation (89) and substitute the functions f (x, t), r(x, t) by the functions
g(x, t), v(x, t): (

e− f (x,t)
)
x
= g(x, t), rx(x, t) = v(x, t), (90)

To perform the complete substitution with the new functions, the second couple of equalities (89)
must be previously differentiated by variable x. The substitution yields the following relation

vx = au + aμg2 − a−1v2, gx = −2a−1gv−w,

vt =
∂
∂x (2vu− 4aμgw− aux), gt = 2 ∂∂x

(
gu + 2

a vw−wx
)
.

(91)

The first line yields the explicit form of functions u(x, t), w(x, t) via the two other functions:

u = a−1vx + a−2v2 − μg2, w = −2a−1gv− gx. (92)

Supposing that g(x, t) = v(x, t), the resulting relation has terms similar to the known Miura
transformation (q = v2 − ivx) [22], which determines the conformity between the KdV equation and
the modified KdV equation, hence, (92) may be considered a certain analog of this transformation.

Substitute (92) into the equalities of the second line (91), and get the system of two equations

vt =
(
2a−2v3 − vxx + 6μg2v + 6aμggx

)
x
, gt = 2

[
3a−2g

(
avx − v2

)
− μg3 + gxx

]
x
, (93)

each of which is a perturbation of modified KdV equation.

Theorem 6. Systems of partial differential Equations (45) and (93) are related by transformations (92).

Proof of Theorem 6. Substitute (92) into (90). Transform the first equation and separate the total
derivatives

ut + uxxx − 12μwwx − 6uux = 1
a
∂
∂x

[
vt + vxxx − 6 1

a2 v2vx
]
− 6

aμ
∂2

∂x2

[
g2v + aggx

]
+

+ 2
a2 v

[
vt +

(
vxx − 2

a2 v3 − 6μg2v− 6aμggx
)
x

]
+ 2μg

[
2
(
gxx − μg3 + 3

a2 g{avx − v2}
)
x
− gt

]
.

In the resulting equality, the linear operator (a−1∂x + 2a−2v) may be removed:

ut + uxxx − 12μwwx − 6uux =
(

1
a
∂
∂x + 2

a2 v
)[

vt +
(
vxx − 2

a2 v3 − 6μg2v− 6aμggx
)
x

]
+

+2μg
[
2
(
gxx − μg3 + 3

a2 g{avx − v2}
)
x
− gt

]
.

(94)

171



Axioms 2019, 8, 45

Do the same with the second equality of system (45) and factor out the operator (∂x + 2a−1v).

wt − 2wxxx + 6uwx =
(

2
a v + ∂

∂x

)[
2
(
gxx − μg3 + 3

a gvx − 3
a2 gv2

)
x
− gt

]
+

+ 2
a g

([
2
a2 v3 − vxx + 6μvg2 + 6aμggx

]
x
− vt

)
.

(95)

If functions u(x, t), w(x, t) are solutions of system (45) and u(x, t) � 0, w(x, t) � 0, then, at g(x, t) �
0, v(x, t) � 0, it follows from (94) and (95) that functions g(x, t), v(x, t) are solutions of system (93). �

Corollary 9. Complexification of Korteweg-de Vries equation

qt = 3(q− q)qx + 6qxq− 0, 5(3q− q)xxx, (96)

and
st =

[
s
(
3s2 − s2

)
+ 3(s− s)sx + 0, 5(s− 3s)xx

]
x
, (97)

are related by transformation
q = sx + s2, (98)

where q(x, t), s(x, t) are complex functions of independent variables x, t.

The pattern of proof fully coincides with the proof of the theorem above, where u(x, t) = Req(x, t),
w(x, t) = Ims(x, t), v(x, t) = Res(x, t), g(x, t) = Ims(x, t), is supposed to contain parameters a = 1,
μ = 1.

Assuming in equality (97) that s(x, t) is a real function, get a routinely modified KdV equation st =

6s2sx − sxxx, hence, (97) may be considered as a modification of the KdV equation complexification [22].
In the classic case, the resulting transformations can be used to build exact solutions. Let us show

that the found relation (91) of the two systems (45) and (93) allows us to do this. We take, as the
solution of system (45), the following trivial functions

w(x, t) = 0, u(x, t) = β− const. (99)

Using (91) and integrating, we obtain the solution of system (93) in the form of traveling waves:

g(x, t) =
[√

C2
1 +

μ
β ch

(
C2 − 2

√
βx− 4β

√
βt

)
−C1

]−1
,

v(x, t) = −a
√

C2
1 +

μ
β sh

(
C2 − 2

√
βx− 4β

√
βt

)[√
C2

1 +
μ
β ch

(
C2 − 2

√
βx− 4β

√
βt

)
−C1

]−1
,

where C1 and C2 are the arbitrary integration constants. At C1 = 0 we obtain classical solutions:

g(x, t) =

√
β

μ
ch −1

(
C2 − 2

√
βx− 4β

√
βt

)
, v(x, t) = −ath

(
C2 − 2

√
βx− 4β

√
βt

)
.

6. Conclusions

1. In this work, new Bäcklund transformations (BTs) have been obtained for the particular cases
of Liouville equations with the exponential nonlinearity that has a multiplier dependent upon
independent variables and first-order derivatives from the function.

2. BT for three-dimensional Liouville equation has been constructed.
3. A solution of coupled pairs of equations using BT has been found.
4. Clairin’s method for the system of two third-order partial differential equations has

been generalized and algorithm for construction of BTs for these dynamic systems has
been demonstrated.
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5. Non-uniqueness of differential relations has been shown because the application of special
conditions to differential forms leads to different dynamic systems.

6. Analog of Miura transformations that relates the initial system to the system of perturbed modified
KdV equations has been determined.

7. Natural transition of KdV to mKdV using Miura transformations has been received from the
relation of cKdV and complexification of mKdV with an analog of Miura transformations,
supposing that the function is real.
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Abstract: The results presented in this paper deal with the existence of solutions of a first order
fully coupled system of three equations, and they are split in two parts: 1. Case with coupled
functional boundary conditions, and 2. Case with periodic boundary conditions. Functional
boundary conditions, which are becoming increasingly popular in the literature, as they generalize
most of the classical cases and in addition can be used to tackle global conditions, such as
maximum or minimum conditions. The arguments used are based on the Arzèla Ascoli theorem
and Schauder’s fixed point theorem. The existence results are directly applied to an epidemic SIRS
(Susceptible-Infectious-Recovered-Susceptible) model, with global boundary conditions.
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1. Introduction

In this paper two different problems are analyzed.
Part one is concerned with the study of a fully nonlinear coupled system of equations

⎧⎪⎨
⎪⎩

u′
1(t) = f1 (t, u1(t), u2(t), u3(t))

u′
2(t) = f2 (t, u1(t), u2(t), u3(t))

u′
3(t) = f3 (t, u1(t), u2(t), u3(t))

, (1)

fi : [a, b]×R3 → R and i = 1, 2, 3 are L1−Carathéodory functions, subject to the nonlinear functional
boundary conditions

u1(a) = L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a))
u2(a) = L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a))
u3(a) = L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a))

(2)

Axioms 2019, 8, 23; doi:10.3390/axioms8010023 www.mdpi.com/journal/axioms
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where Li : (C[a, b])3 ×R5 → R, i = 1, 2, 3, are continuous functions with properties later to be defined.
The technique used for the functional problem is based on the Arzèla-Ascoli theorem and Schauder’s fixed
point theorem.

Part two, more precisely, Section 4, deals with the fully nonlinear couple system of Equation (1)
coupled with the periodic boundary conditions

u1(a) = u1(b)
u2(a) = u2(b)
u3(a) = u3(b).

(3)

Given that the conditions on Li, do not allow the problem (1)–(2) to cover the periodic case, a different
approach for the problem (1)–(3) is required. In this case, in order to obtain the existence and location
of periodic solutions, the upper and lower solutions method, along with some adequate local monotone
assumptions on the nonlinearities, is used.

Mathematical modelling and applications are becoming increasingly popular nowadays. With the
sudden outburst of keywords such as big data, data analytics and modelling, the quest for mathematical
models is on high demand. In the area of mathematical modelling, systems of differential equations are a
must, due to their high applicability in areas such as population dynamics [1–3], finance [4], medicine [5],
biotechnology [6] and physics [7,8], and also examples treated in [9,10].

Nevertheless, in the literature available, the cases dealing with coupled systems of equations are not
abundant. Such systems can be found in [11–13], however, in this paper the authors present a problem
where both equations are coupled. In addition to that, to the best of our knowledge, it is the first time
where coupled systems are considered with coupled functional boundary conditions.

This feature allows to generalize the classical boundary data in the literature, such as two-point or
multi-point, nonlinear, nonlocal, integro-differential conditions, among others. Indeed, the functional
part can deal with global boundary assumptions, such as minimum or maximum arguments, infinite
multi-point data, and integral conditions on the several unknown functions. Functional problems, along
with their features, can be seen in [14–19] and the references therein.

The methods and techniques applied in this paper can be easily adapted to coupled systems with n
equations and variables. However, as the notation and writing appear to be heavy, and may avoid the
clarity of the results, we prefer to prove our theoretical part for n = 3, which is adequate for our application.

This paper has the following structure: Section 2 contains some definitions and generic assumptions
on the nonlinearities. Section 3 shows the main result for problems with functional boundary conditions.
In Section 4 it is studied the periodic problem via lower and upper solutions technique together with some
local growth conditions. The final section presents an application of (1)–(2) to an epidemic SIRS model
to illustrate the applicability of the problem discussed and to show the potentialities of the functional
boundary conditions, exploring global initial boundary conditions on the system.

2. Definitions and Assumptions

Throughout this work we consider the space of continuous functions in [a, b], on the Banach space
E := (C[a, b])3 , equipped with the norm

‖u‖E = max {‖ui‖ , i = 1, 2, 3}

where ‖ui‖ = maxt∈[a,b] |ui (t)|.
The functional boundary functions verify the assumption:

176



Axioms 2019, 8, 23

Hypothesis 1. Li : (C[a, b])3 ×R5 → R are continuous functions. Moreover, each of the functions, Li (η, x, y)
are uniformly continuous when (η, x, y) is bounded.

The admissible nonlinearities will be L1−Carathéodory functions, according the following definition:

Definition 1. The functions fi : [a, b]×R3 → R, i = 1, ..., n, are L1−Carathéodory if they verify:

(i) for each (y1, y2, y3) ∈ R3, t 	→ fi(t, y1, y2, y3) are measurable on [a, b], for i = 1, 2, 3;
(ii) for almost every t ∈ [a, b], (y1, y2, y3) 	→ fi(t, y1, y2, y3) are continuous on R3, for i = 1, 2, 3;
(iii) for each L > 0, there exists a positive function ψiL ∈ L1 [a, b] , i = 1, 2, 3, such that, for

max {‖yi‖ , i = 1, 2, 3} < L,

| fi(t, y1(t), y2(t), y3(t))| ≤ ψiL(t), a.e. t ∈ [a, b], i = 1, 2, 3.

To demonstrate the final result, Schauder’s fixed point theorem will be an important tool to guarantee
the existence of fixed points for the operator to be defined:

Theorem 1. ([20]) Let Y be a nonempty, closed, bounded and convex subset of a Banach space X, and suppose that
P : Y → Y is a completely continuous operator. Then P has at least one fixed point in Y.

3. Main Result for Functional Problems

In this section, we present and prove the main existence result for (1)–(2), given by the
following theorem:

Theorem 2. If fi are L1−Carathéodory functions, for i = 1, 2, 3, and the continuous functions Li, i = 1, 2, 3, verify
(H1) and

Hypothesis 2. there exists R > 0 such that

max
{

ki +
∫ t

a
ψiR (s) ds, i = 1, 2, 3

}
≤ R,

with
k1 := max {L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a))} ,
k2 := max {L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a))} ,
k3 := max {L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a))} ,

then the problem (1)–(2) has at least one solution u = (u1, u2, u3) ∈ (C [a, b])3 .

Proof. Let us consider the integral system given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a)) +∫ t
a f1 (s, u1(s), u2(s), u3(s)) ds,

u2(t) = L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a)) +∫ t
a f2 (s, u1(s), u2(s), u3(s)) ds,

u3(t) = L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a)) +∫ t
a f3 (s, u1(s), u2(s), u3(s)) ds,

(4)
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and the operator
T : (C [a, b])3 → (C [a, b])3

defined by
T (u1, u2, u3) = (T1 (u1, u2, u3) , T2 (u1, u2, u3) , T3 (u1, u2, u3)) , (5)

where Ti : (C [a, b])3 → C [a, b] , i = 1, 2, 3, given by

T1 (u1, u2, u3) = L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a)) +∫ t
a f1 (s, u1(s), u2(s), u3(s)) ds,

T2 (u1, u2, u3) = L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a)) +∫ t
a f2 (s, u1(s), u2(s), u3(s)) ds,

T3 (u1, u2, u3) = L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a)) +∫ t
a f3 (s, u1(s), u2(s), u3(s)) ds,

(6)

As the fixed points of T are fixed points of Ti, i = 1, 2, 3, and vice-versa, which are solutions of (1)–(2),
the goal of this architecture will be to use the Arzèla-Ascoli theorem and Schauder’s fixed point theorem
to prove that the problem (1)–(2) has at least one solution.

For clarity, we consider several claims:

Claim 1. TD ⊂ D, for some D ⊂ (C [a, b])3 a bounded, closed and convex subset.

Consider
D =

{
(u1, u2, u3) ∈ (C [a, b])3 : ‖(u1, u2, u3)‖E ≤ k

}
,

with k > 0 such that

max
{

ki +
∫ t

a
ψik (s) ds, i = 1, 2, 3

}
≤ k.

Given (u1, u2, u3) ∈ D, by Definition 1 (iii) and (Hypothesis 2), we have that for (u1, u2, u3) ∈ D,
i = 1, 2, 3,

| fi (s, u1(s), u2(s), u3(s))| ≤ ψik (s) , a.e. s ∈ [a, b] .

Therefore, ‖T (u1, u2, u3)‖E ≤ k and Claim 1 is proved.

Claim 2. The operator T is completely continuous.

To prove that the operator T is completely continuous it is sufficient to show that T is uniformly
bounded and T is equicontinuous. Using the above arguments, it can be proved that Ti are uniformly
bounded, for i = 1, 2, 3, and therefore T is uniformly bounded.

In order to show that the operator T is equicontinuous, let us consider t1, t2 ∈ [a, b], such that, without
any loss of generality, t1 < t2.

Then for Ti, i = 1, 2, 3, we have

|Ti (u1 (t2) , u2 (t2) , u3 (t2))− Ti (u1 (t1) , u2 (t1) , u3 (t1))|

≤
∫ t2

t1

| fi (s, u1(s), u2(s), u3(s))| ds ≤
∫ t2

t1

ψiL (s) ds → 0,

as t1 → t2. So, each operator Ti is equicontinuous and, hence, the operator T is equicontinuous.
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Therefore, by Arzèla-Ascoli’s theorem, the operator T is compact and using Schauder’s fixed point
theorem, we obtain that T has a fixed point, that is, the problem (1)–(2) has at least a solution u ∈
(C [a, b])3 .

Remark that (Hypothesis 2) implies that the periodic case is not covered by (2).

4. Existence and Localization Result for the Periodic Case

Consider now the system (1) with the periodic boundary conditions (3). As it is well known,
in nonlinear differential equations, the periodic case is more delicate and requires a different approach for
general nonlinearities.

The method to be used will apply lower and upper solutions technique, based on the definition:

Definition 2. Consider the C1-functions αi, βi : [a, b] → R, i = 1, 2, 3. The triple (α1, α2, α3) is a lower solution
of the periodic problem (1), (3) if ⎧⎪⎨

⎪⎩
α′1(t) ≤ f1 (t, α1(t), α2(t), α3(t))
α′2(t) ≤ f2 (t, α1(t), α2(t), α3(t))
α′3(t) ≤ f3 (t, α1(t), α2(t), α3(t))

(7)

and
α1(a) ≤ α1(b)
α2(a) ≤ α2(b)
α3(a) ≤ α3(b).

(8)

The triple (β1, β2, β3) is an upper solution of the periodic problem (1), (3) if the reversed inequalities hold.

This method allows to obtain an existence and localization theorem:

Theorem 3. Let (α1, α2, α3) and (β1, β2, β3) be lower and upper solutions of (1), (3), respectively, such that
αi(t) ≤ βi(t), ∀t ∈ [a, b] and for i = 1, 2, 3.

Define the set

A =
{
(t, u1, u2, u3) ∈ [a, b]×R

3 : αi(t) ≤ ui ≤ βi(t), i = 1, 2, 3
}

and assume that fi are L1−Carathéodory functions on A, for i = 1, 2, 3 verifying

f1 (t, x, α2(t), α3(t)) ≤ f1 (t, x, y, z) ≤ f1 (t, x, β2(t), β3(t)) , (9)

for t ∈ [a, b] , α2(t) ≤ y ≤ β2(t), α3(t) ≤ z ≤ β3(t),

f2 (t, α1(t), y, α3(t)) ≤ f2 (t, x, y, z) ≤ f2 (t, β1(t), y, β3(t)) ,

for t ∈ [a, b] , α1(t) ≤ x ≤ β1(t), α3(t) ≤ z ≤ β3(t),

f3 (t, α1(t), α2(t), z) ≤ f3 (t, x, y, z) ≤ f3 (t, β1(t), β2(t), z) ,

for t ∈ [a, b] , α1(t) ≤ x ≤ β1(t), α2(t) ≤ y ≤ β2(t).
Then the problem (1), (3) has, at least, a solution u = (u1, u2, u3) ∈ (C [a, b])3 such that

αi(t) ≤ ui(t) ≤ βi(t), i = 1, 2, 3, for all t ∈ [a, b] .

179



Axioms 2019, 8, 23

Proof. For i = 1, 2, 3, define the truncature functions δi given by

δi(t, ui) =

⎧⎪⎨
⎪⎩

αi(t) if ui < αi(t)
ui if αi(t) ≤ ui ≤ βi(t)

βi(t) if ui > βi(t)

and consider the modified problem composed by the truncated and perturbed differential equations
⎧⎪⎨
⎪⎩

u′
1(t) + u1(t) = f1 (t, δ1(t, u1), δ2(t, u2), δ3(t, u3)) + δ1(t, u1)

u′
2(t) + u2(t) = f2 (t, δ1(t, u1), δ2(t, u2), δ3(t, u3)) + δ2(t, u2)

u′
3(t) + u3(t) = f3 (t, δ1(t, u1), δ2(t, u2), δ3(t, u3)) + δ3(t, u3),

(10)

together with the boundary conditions (3).
As the linear and homogeneous problem associated to (10), (3) has only the null solution, then we can

write (10), (3) in the integral form
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) =
∫ b

a G1(t, s)

[
f1 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ1(s, u1(s))

]
ds

u2(t) =
∫ b

a G2(t, s)

[
f2 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ2(s, u2(s))

]
ds

u3(t) =
∫ b

a G3(t, s)

[
f3 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ3(s, u3(s))

]
ds,

(11)

where Gi(t, s) are the Green functions corresponding to the problem

u′
i(t) + ui(t) = fi (t)

ui(a) = ui(b),

for i = 1, 2, 3.
Then the operator

T : (C [a, b])3 → (C [a, b])3

given by
T (u1, u2, u3) = (T1 (u1, u2, u3) , T2 (u1, u2, u3) , T3 (u1, u2, u3)) ,

with Ti : (C [a, b])3 → C [a, b] , i = 1, 2, 3, defined as

T1 (u1, u2, u3) =
∫ b

a G1(t, s)

[
f1 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ1(s, u1(s))

]
ds

T2 (u1, u2, u3) =
∫ b

a G2(t, s)

[
f2 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ2(s, u2(s))

]
ds

T3 (u1, u2, u3) =
∫ b

a G3(t, s)

[
f3 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ3(s, u3(s))

]
ds

is completely continuous in (C [a, b])3 .
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By Schauder’s fixed point theorem, we obtain that T has a fixed point, that is, the problem (10), (3)
has at least a solution u∗ := (u∗1, u∗2, u∗3) ∈ (C [a, b])3 .

To prove that this function u∗ is a solution of the initial problem (1), (3), it will be enough to show that

αi(t) ≤ u∗i(t) ≤ βi(t), i = 1, 2, 3, for all t ∈ [a, b] .

Suppose that the first inequality does not hold for i = 1 and some t1 ∈ [a, b] , that is

u∗1(t1) < α1(t1).

Extend the function u∗1 − α1 by periodicity and consider

t0 := inf {t ∈ [t1 − b + a, t1] : ∀s ∈]t, t1], u∗1(s) < α1(s)} .

Therefore, for t ∈ [t0, t1] we have, by Definition 2 and (9),

u′
∗1(t)− α′1(t)

≥ f1 (t, α1(t), δ2(t, u2), δ3(t, u3)) + α1(t)− u∗1(t)− f1 (t, α1(t), α2(t), α3(t))

≥ α1(t)− u∗1(t) > 0.

So, α1 − u∗1 is increasing on [t0, t1] and

0 > u∗1(t1)− α1(t1) > u∗1(t0)− α1(t0),

where t0 = t1 − b + a, which is in contradiction of the periodicity of the extension of u∗1 − α1. So α1(t) ≤
u∗1(t), for all t ∈ [a, b] .

Applying similar arguments it can be proved that u∗1(t) ≤ β1(t), for t ∈ [a, b] , and

αi(t) ≤ u∗i(t) ≤ βi(t), i = 2, 3, for all t ∈ [a, b] .

5. An Epidemic Model of an SIRS System With Nonlinear Incidence Rate and Interaction from
Infectious to Susceptible Subjects

The existent literature has innumerous examples of applications of SIR models, namely in [21–23]
where the population is divided into Susceptible (S), Infectious (I) and Recovery (R) . However, in SIR
models, recovered individuals are assumed to develop lifelong immunity, which for some diseases such
as seasonal flu, influenza or venereal diseases is not necessarily true. A recovered individual becomes
susceptible and possibly infected after some time. In this case, SIRS models, where recovered individuals
lose immunity and become susceptible again, are far more adequate. Examples can be found in [24–29].
In [30], the authors develop and explore a mathematical model of an SIRS epidemic model where a transfer
between infectious and susceptible rate is included, as shown in Figure 1.
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Figure 1. SIRS model diagram.

This approach was designed to model the cases where recovery cannot generate immunity for a long
time. Infected individuals may recover after some treatments and go back directly to the susceptible class.
In addition, a nonlinear incidence with the average number of new cases of a disease per unit time, Sg(I),
is included, as suggested in [31]. This nonlinear incidence replicates a more complex dynamic than the
ones presented on bilinear or standard incidence models, and it seems to perform better when modelling
more complex cholera cases, as shown in [31].

The model presented is then

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS
dt = 1

100 (Λ − μS − Sg(I) + γ1 I + δR) ,

dI
dt = 1

100 [Sg(I)− (μ + γ1 + γ2 + α) I] ,

dR
dt = 1

100 [γ2 I − (μ + δ) R]

(12)

where:

• Λ represents the recruitment rate of susceptible individuals;
• μ is the natural death rate;
• γ1 is the transfer rate from the infected class to the susceptible class;
• γ2 is the transfer rate from the infected class to the recovered class;
• α is the disease-induced death rate;
• δ the immunity loss rate.

In this model Λ and μ are assumed to be positive and δ, γ1, γ2 and α are assumed to be nonnegative.
As per the nonlinear incidence, Sg(I), g is a real locally Lipschitz function on R+ with the following
conditions, as presented in [32]:

• g (0) = 0 and g (I) > 0 for I > 0,

• g (I) /I is continuous and monotonously increasing for I > 0 and limI→0+
g(I)

I exists as β > 0.
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Unlike the previous models presented, in this paper we couple the system (12) with the boundary
conditions, for t ∈ [0, T] and T > 0,

S(0) = maxt∈[0,T] I(t),

I (0) =
∫ T

0
S(T)S(s)ds,

R (0) =
∫ T

0
S(T)I(s)ds.

(13)

These functional boundary conditions fully reflect the considerations and conclusions presented
in [30]. These types of boundary conditions have the following practical meaning:

• S(0), the initial number of susceptible subjects, is equal to the maximum of the infected subjects;
• I (0) , the initial number of infected subjects, is a weighted average of the susceptible individuals,

weighted by the final value of the susceptible S, at time T;
• R (0) , the initial number of individuals who recovered, is equal to a weighted average of the infected

individuals, weighted by the final value of the susceptible, S, at time T.

Functional boundary conditions allow these assumptions to be examined in full, as operators can be
considered as boundary conditions. These types of global conditions, that can include somewhat more
abstract conditions, can only be contemplated via functional boundary conditions.

This model can therefore be presented in the form of (1)–(2), where u1 = S, u2 = I, u3 = R, a = 0 and
b = T,

f1 (t, u1, u2, u3) = Λ − μu1 − Sg(u2) + γ1u2 + δu3,

f2 (t, u1, u2, u3) = u1g(I)− (μ + γ1 + γ2 + α) u2,

f3 (t, u1, u2, u3) = γ2u1 − (μ + δ) u3,

L1 (u1, u2, u3, u1 (T) , u2 (T) , u3 (T) , u2 (0) , u3 (0)) = maxt∈[0,T] u2 := k1,

L2 (u1, u2, u3, u1 (T) , u2 (T) , u3 (T) , u1 (0) , u3 (0)) =
∫ T

0
u1(T)u1(s)ds := k2,

L3 (u1, u2, u3, u1 (T) , u2 (T) , u3 (T) , u1 (0) , u2 (0)) =
∫ T

0
u1(T)u2(s)ds := k3.

It is clear that the boundary conditions L1, L2 and L3 satisfy (H1).
Moreover, f1 , f2 and f3 are L1−Carathéodory functions such that, for max {‖u1‖ , ‖u2‖ , ‖u3‖} < k,

| f1 (t, u1, u2, u3)| ≤ Λ + μk + kβ + γ1k + δk := ψ1k(t),

| f2 (t, u1, u2, u3)| ≤ kβ + (μ + γ1 + γ2 + α) k := ψ2k(t),

| f3 (t, u1, u2, u3)| ≤ γ2k + (μ + δ) k := ψ3k(t).
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To satisfy (Hypothesis 2), one must verify that there exists k > 0, such that,

k � max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1 +
∫ T

0
(Λ + k (+μk + β + γ1 + δ)) ds,

k2 +
∫ T

0
k (β + μ + γ1 + γ2 + α) ds,

k3 +
∫ T

0
k (γ2 + μ + δ) ds,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Let T = 1, Λ = 2, μ = 12.6, γ1 = 2.7, γ2 = 0.28, α = 6.32, δ = 0.38, k1 = 2, k2 = 0.27, k3 = 5, β = 12.
For k ≥ 0.06, condition (Hypothesis 2) is verified and therefore, by Theorem 2, the system (12)–(13)

has at least one solution (S, I, R) ∈ (C [0, 1])3 , for the values considered.

6. Conclusions

In this paper, the authors show the existence of solution for a first order fully coupled system of three
equations, involving two different cases. The first case, with coupled functional boundary conditions, is
an existence result. The second case, with periodic boundary conditions, which is not covered by the first
result, is an existence and location result. The extra information obtained in this second case is associated
with the technique used, as it relies on the upper and lower solution method.

The application to an SIRS model, with global boundary conditions, underlines the key advantage
and flexibility of the functional boundary conditions. The example shown illustrates not only the theorem
proved in this paper, but it also provides guidance on how to arrange global conditions, in order to conform
with the layout in (2).

As a matter of fact, a similar approach can be taken in several other models, allowing global conditions
to be considered as boundary conditions, highly increasing the level of applicability of these models.
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