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Abstract: The results presented in this paper deal with the existence of solutions of a first order fully
coupled system of three equations, and they are split in two parts: 1. Case with coupled functional
boundary conditions, and 2. Case with periodic boundary conditions. Functional boundary conditions,
which are becoming increasingly popular in the literature, as they generalize most of the classical cases
and in addition can be used to tackle global conditions, such as maximum or minimum conditions.
The arguments used are based on the Arzèla Ascoli theorem and Schauder’s fixed point theorem.
The existence results are directly applied to an epidemic SIRS (Susceptible - Infectious - Recovered -
Susceptible) model, with global boundary conditions.

Keywords: coupled nonlinear systems; functional boundary conditions; Schauder’s fixed point theory;
Arzèla Ascoli theorem; lower and upper solutions; first order periodic systems; SIRS epidemic model;
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1. Introduction

In this paper two different problems are analyzed.
Part one is concerned with the study of a fully nonlinear coupled system of equations

u′1(t) = f1 (t, u1(t), u2(t), u3(t))
u′2(t) = f2 (t, u1(t), u2(t), u3(t))
u′3(t) = f3 (t, u1(t), u2(t), u3(t))

, (1)

fi : [a, b]×R3 → R and i = 1, 2, 3 are L1−Carathéodory functions, subject to the nonlinear functional
boundary conditions

u1(a) = L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a))
u2(a) = L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a))
u3(a) = L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a))

(2)
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where Li : (C[a, b])3 ×R5 → R, i = 1, 2, 3, are continuous functions with properties later to be defined.
The technique used for the functional problem is based on the Arzèla-Ascoli theorem and Schauder’s fixed
point theorem.

Part two, more precisely, Section 4, deals with the fully nonlinear couple system of Equation (1)
coupled with the periodic boundary conditions

u1(a) = u1(b)
u2(a) = u2(b)
u3(a) = u3(b).

(3)

Given that the conditions on Li, do not allow the problem (1)–(2) to cover the periodic case, a different
approach for the problem (1)–(3) is required. In this case, in order to obtain the existence and location
of periodic solutions, the upper and lower solutions method, along with some adequate local monotone
assumptions on the nonlinearities, is used.

Mathematical modelling and applications are becoming increasingly popular nowadays. With the
sudden outburst of keywords such as big data, data analytics and modelling, the quest for mathematical
models is on high demand. In the area of mathematical modelling, systems of differential equations are a
must, due to their high applicability in areas such as population dynamics [1–3], finance [4], medicine [5],
biotechnology [6] and physics [7,8], and also examples treated in [9,10].

Nevertheless, in the literature available, the cases dealing with coupled systems of equations are not
abundant. Such systems can be found in [11–13], however, in this paper the authors present a problem
where both equations are coupled. In addition to that, to the best of our knowledge, it is the first time
where coupled systems are considered with coupled functional boundary conditions.

This feature allows to generalize the classical boundary data in the literature, such as two-point or
multi-point, nonlinear, nonlocal, integro-differential conditions, among others. Indeed, the functional
part can deal with global boundary assumptions, such as minimum or maximum arguments, infinite
multi-point data, and integral conditions on the several unknown functions. Functional problems, along
with their features, can be seen in [14–19] and the references therein.

The methods and techniques applied in this paper can be easily adapted to coupled systems with n
equations and variables. However, as the notation and writing appear to be heavy, and may avoid the
clarity of the results, we prefer to prove our theoretical part for n = 3, which is adequate for our application.

This paper has the following structure: Section 2 contains some definitions and generic assumptions
on the nonlinearities. Section 3 shows the main result for problems with functional boundary conditions.
In Section 4 it is studied the periodic problem via lower and upper solutions technique together with some
local growth conditions. The final section presents an application of (1)–(2) to an epidemic SIRS model
to illustrate the applicability of the problem discussed and to show the potentialities of the functional
boundary conditions, exploring global initial boundary conditions on the system.

2. Definitions and Assumptions

Throughout this work we consider the space of continuous functions in [a, b], on the Banach space
E := (C[a, b])3 , equipped with the norm

‖u‖E = max {‖ui‖ , i = 1, 2, 3}

where ‖ui‖ = maxt∈[a,b] |ui (t)|.
The functional boundary functions verify the assumption:
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Hypothesis 1. Li : (C[a, b])3 ×R5 → R are continuous functions. Moreover, each of the functions, Li (η, x, y)
are uniformly continuous when (η, x, y) is bounded.

The admissible nonlinearities will be L1−Carathéodory functions, according the following definition:

Definition 1. The functions fi : [a, b]×R3 → R, i = 1, ..., n, are L1−Carathéodory if they verify:

(i) for each (y1, y2, y3) ∈ R3, t 7→ fi(t, y1, y2, y3) are measurable on [a, b], for i = 1, 2, 3;
(ii) for almost every t ∈ [a, b], (y1, y2, y3) 7→ fi(t, y1, y2, y3) are continuous on R3, for i = 1, 2, 3;
(iii) for each L > 0, there exists a positive function ψiL ∈ L1 [a, b] , i = 1, 2, 3, such that, for

max {‖yi‖ , i = 1, 2, 3} < L,

| fi(t, y1(t), y2(t), y3(t))| ≤ ψiL(t), a.e. t ∈ [a, b], i = 1, 2, 3.

To demonstrate the final result, Schauder’s fixed point theorem will be an important tool to guarantee
the existence of fixed points for the operator to be defined:

Theorem 1. ([20]) Let Y be a nonempty, closed, bounded and convex subset of a Banach space X, and suppose that
P : Y → Y is a completely continuous operator. Then P has at least one fixed point in Y.

3. Main Result for Functional Problems

In this section, we present and prove the main existence result for (1)–(2), given by the following
theorem:

Theorem 2. If fi are L1−Carathéodory functions, for i = 1, 2, 3, and the continuous functions Li, i = 1, 2, 3, verify
(H1) and

Hypothesis 2. there exists R > 0 such that

max
{

ki +
∫ t

a
ψiR (s) ds, i = 1, 2, 3

}
≤ R,

with
k1 := max {L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a))} ,
k2 := max {L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a))} ,
k3 := max {L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a))} ,

then the problem (1)–(2) has at least one solution u = (u1, u2, u3) ∈ (C [a, b])3 .

Proof. Let us consider the integral system given by

u1(t) = L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a)) +∫ t
a f1 (s, u1(s), u2(s), u3(s)) ds,

u2(t) = L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a)) +∫ t
a f2 (s, u1(s), u2(s), u3(s)) ds,

u3(t) = L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a)) +∫ t
a f3 (s, u1(s), u2(s), u3(s)) ds,

(4)
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and the operator
T : (C [a, b])3 → (C [a, b])3

defined by
T (u1, u2, u3) = (T1 (u1, u2, u3) , T2 (u1, u2, u3) , T3 (u1, u2, u3)) , (5)

where Ti : (C [a, b])3 → C [a, b] , i = 1, 2, 3, given by

T1 (u1, u2, u3) = L1 (u1, u2, u3, u1(b), u2(b), u3(b), u2(a), u3(a)) +∫ t
a f1 (s, u1(s), u2(s), u3(s)) ds,

T2 (u1, u2, u3) = L2 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u3(a)) +∫ t
a f2 (s, u1(s), u2(s), u3(s)) ds,

T3 (u1, u2, u3) = L3 (u1, u2, u3, u1(b), u2(b), u3(b), u1(a), u2(a)) +∫ t
a f3 (s, u1(s), u2(s), u3(s)) ds,

(6)

As the fixed points of T are fixed points of Ti, i = 1, 2, 3, and vice-versa, which are solutions of (1)–(2),
the goal of this architecture will be to use the Arzèla-Ascoli theorem and Schauder’s fixed point theorem
to prove that the problem (1)–(2) has at least one solution.

For clarity, we consider several claims:

Claim 1. TD ⊂ D, for some D ⊂ (C [a, b])3 a bounded, closed and convex subset.

Consider
D =

{
(u1, u2, u3) ∈ (C [a, b])3 : ‖(u1, u2, u3)‖E ≤ k

}
,

with k > 0 such that

max
{

ki +
∫ t

a
ψik (s) ds, i = 1, 2, 3

}
≤ k.

Given (u1, u2, u3) ∈ D, by Definition 1 (iii) and (Hypothesis 2), we have that for (u1, u2, u3) ∈ D,
i = 1, 2, 3,

| fi (s, u1(s), u2(s), u3(s))| ≤ ψik (s) , a.e. s ∈ [a, b] .

Therefore, ‖T (u1, u2, u3)‖E ≤ k and Claim 1 is proved.

Claim 2. The operator T is completely continuous.

To prove that the operator T is completely continuous it is sufficient to show that T is uniformly
bounded and T is equicontinuous. Using the above arguments, it can be proved that Ti are uniformly
bounded, for i = 1, 2, 3, and therefore T is uniformly bounded.

In order to show that the operator T is equicontinuous, let us consider t1, t2 ∈ [a, b], such that, without
any loss of generality, t1 < t2.

Then for Ti, i = 1, 2, 3, we have

|Ti (u1 (t2) , u2 (t2) , u3 (t2))− Ti (u1 (t1) , u2 (t1) , u3 (t1))|

≤
∫ t2

t1

| fi (s, u1(s), u2(s), u3(s))| ds ≤
∫ t2

t1

ψiL (s) ds→ 0,

as t1 → t2. So, each operator Ti is equicontinuous and, hence, the operator T is equicontinuous.
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Therefore, by Arzèla-Ascoli’s theorem, the operator T is compact and using Schauder’s fixed point
theorem, we obtain that T has a fixed point, that is, the problem (1)–(2) has at least a solution u ∈
(C [a, b])3 .

Remark that (Hypothesis 2) implies that the periodic case is not covered by (2).

4. Existence and Localization Result for the Periodic Case

Consider now the system (1) with the periodic boundary conditions (3). As it is well known, in
nonlinear differential equations, the periodic case is more delicate and requires a different approach for
general nonlinearities.

The method to be used will apply lower and upper solutions technique, based on the definition:

Definition 2. Consider the C1-functions αi, βi : [a, b]→ R, i = 1, 2, 3. The triple (α1, α2, α3) is a lower solution
of the periodic problem (1), (3) if 

α′1(t) ≤ f1 (t, α1(t), α2(t), α3(t))
α′2(t) ≤ f2 (t, α1(t), α2(t), α3(t))
α′3(t) ≤ f3 (t, α1(t), α2(t), α3(t))

(7)

and
α1(a) ≤ α1(b)
α2(a) ≤ α2(b)
α3(a) ≤ α3(b).

(8)

The triple (β1, β2, β3) is an upper solution of the periodic problem (1), (3) if the reversed inequalities hold.

This method allows to obtain an existence and localization theorem:

Theorem 3. Let (α1, α2, α3) and (β1, β2, β3) be lower and upper solutions of (1), (3), respectively, such that
αi(t) ≤ βi(t), ∀t ∈ [a, b] and for i = 1, 2, 3.

Define the set

A =
{
(t, u1, u2, u3) ∈ [a, b]×R3 : αi(t) ≤ ui ≤ βi(t), i = 1, 2, 3

}
and assume that fi are L1−Carathéodory functions on A, for i = 1, 2, 3 verifying

f1 (t, x, α2(t), α3(t)) ≤ f1 (t, x, y, z) ≤ f1 (t, x, β2(t), β3(t)) , (9)

for t ∈ [a, b] , α2(t) ≤ y ≤ β2(t), α3(t) ≤ z ≤ β3(t),

f2 (t, α1(t), y, α3(t)) ≤ f2 (t, x, y, z) ≤ f2 (t, β1(t), y, β3(t)) ,

for t ∈ [a, b] , α1(t) ≤ x ≤ β1(t), α3(t) ≤ z ≤ β3(t),

f3 (t, α1(t), α2(t), z) ≤ f3 (t, x, y, z) ≤ f3 (t, β1(t), β2(t), z) ,

for t ∈ [a, b] , α1(t) ≤ x ≤ β1(t), α2(t) ≤ y ≤ β2(t).
Then the problem (1), (3) has, at least, a solution u = (u1, u2, u3) ∈ (C [a, b])3 such that

αi(t) ≤ ui(t) ≤ βi(t), i = 1, 2, 3, for all t ∈ [a, b] .
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Proof. For i = 1, 2, 3, define the truncature functions δi given by

δi(t, ui) =


αi(t) if ui < αi(t)

ui if αi(t) ≤ ui ≤ βi(t)
βi(t) if ui > βi(t)

and consider the modified problem composed by the truncated and perturbed differential equations
u′1(t) + u1(t) = f1 (t, δ1(t, u1), δ2(t, u2), δ3(t, u3)) + δ1(t, u1)

u′2(t) + u2(t) = f2 (t, δ1(t, u1), δ2(t, u2), δ3(t, u3)) + δ2(t, u2)

u′3(t) + u3(t) = f3 (t, δ1(t, u1), δ2(t, u2), δ3(t, u3)) + δ3(t, u3),
(10)

together with the boundary conditions (3).
As the linear and homogeneous problem associated to (10), (3) has only the null solution, then we can

write (10), (3) in the integral form

u1(t) =
∫ b

a G1(t, s)

[
f1 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ1(s, u1(s))

]
ds

u2(t) =
∫ b

a G2(t, s)

[
f2 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ2(s, u2(s))

]
ds

u3(t) =
∫ b

a G3(t, s)

[
f3 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ3(s, u3(s))

]
ds,

(11)

where Gi(t, s) are the Green functions corresponding to the problem

u′i(t) + ui(t) = fi (t)

ui(a) = ui(b),

for i = 1, 2, 3.
Then the operator

T : (C [a, b])3 → (C [a, b])3

given by
T (u1, u2, u3) = (T1 (u1, u2, u3) , T2 (u1, u2, u3) , T3 (u1, u2, u3)) ,

with Ti : (C [a, b])3 → C [a, b] , i = 1, 2, 3, defined as

T1 (u1, u2, u3) =
∫ b

a G1(t, s)

[
f1 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ1(s, u1(s))

]
ds

T2 (u1, u2, u3) =
∫ b

a G2(t, s)

[
f2 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ2(s, u2(s))

]
ds

T3 (u1, u2, u3) =
∫ b

a G3(t, s)

[
f3 (s, δ1(s, u1(s)), δ2(s, u2(s)), δ3(s, u3(s)))

+δ3(s, u3(s))

]
ds

is completely continuous in (C [a, b])3 .
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By Schauder’s fixed point theorem, we obtain that T has a fixed point, that is, the problem (10), (3)
has at least a solution u∗ := (u∗1, u∗2, u∗3) ∈ (C [a, b])3 .

To prove that this function u∗ is a solution of the initial problem (1), (3), it will be enough to show that

αi(t) ≤ u∗i(t) ≤ βi(t), i = 1, 2, 3, for all t ∈ [a, b] .

Suppose that the first inequality does not hold for i = 1 and some t1 ∈ [a, b] , that is

u∗1(t1) < α1(t1).

Extend the function u∗1 − α1 by periodicity and consider

t0 := inf {t ∈ [t1 − b + a, t1] : ∀s ∈]t, t1], u∗1(s) < α1(s)} .

Therefore, for t ∈]t0, t1[ we have, by Definition 2 and (9),

u′∗1(t)− α′1(t)

≥ f1 (t, α1(t), δ2(t, u2), δ3(t, u3)) + α1(t)− u∗1(t)− f1 (t, α1(t), α2(t), α3(t))

≥ α1(t)− u∗1(t) > 0.

So, α1 − u∗1 is increasing on [t0, t1] and

0 > u∗1(t1)− α1(t1) > u∗1(t0)− α1(t0),

where t0 = t1 − b + a, which is in contradiction of the periodicity of the extension of u∗1 − α1. So α1(t) ≤
u∗1(t), for all t ∈ [a, b] .

Applying similar arguments it can be proved that u∗1(t) ≤ β1(t), for t ∈ [a, b] , and

αi(t) ≤ u∗i(t) ≤ βi(t), i = 2, 3, for all t ∈ [a, b] .

5. An Epidemic Model of an SIRS System With Nonlinear Incidence Rate and Interaction from
Infectious to Susceptible Subjects

The existent literature has innumerous examples of applications of SIR models, namely in [21–23]
where the population is divided into Susceptible (S), Infectious (I) and Recovery (R) . However, in SIR
models, recovered individuals are assumed to develop lifelong immunity, which for some diseases such
as seasonal flu, influenza or venereal diseases is not necessarily true. A recovered individual becomes
susceptible and possibly infected after some time. In this case, SIRS models, where recovered individuals
lose immunity and become susceptible again, are far more adequate. Examples can be found in [24–29]. In
[30], the authors develop and explore a mathematical model of an SIRS epidemic model where a transfer
between infectious and susceptible rate is included, as shown in Figure 1.
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Figure 1. SIRS model diagram.

This approach was designed to model the cases where recovery cannot generate immunity for a long
time. Infected individuals may recover after some treatments and go back directly to the susceptible class.
In addition, a nonlinear incidence with the average number of new cases of a disease per unit time, Sg(I),
is included, as suggested in [31]. This nonlinear incidence replicates a more complex dynamic than the
ones presented on bilinear or standard incidence models, and it seems to perform better when modelling
more complex cholera cases, as shown in [31].

The model presented is then

dS
dt = 1

100 (Λ− µS− Sg(I) + γ1 I + δR) ,

dI
dt = 1

100 [Sg(I)− (µ + γ1 + γ2 + α) I] ,

dR
dt = 1

100 [γ2 I − (µ + δ) R]

(12)

where:

• Λ represents the recruitment rate of susceptible individuals;
• µ is the natural death rate;
• γ1 is the transfer rate from the infected class to the susceptible class;
• γ2 is the transfer rate from the infected class to the recovered class;
• α is the disease-induced death rate;
• δ the immunity loss rate.

In this model Λ and µ are assumed to be positive and δ, γ1, γ2 and α are assumed to be nonnegative.
As per the nonlinear incidence, Sg(I), g is a real locally Lipschitz function on R+with the following
conditions, as presented in [32]:

• g (0) = 0 and g (I) > 0 for I > 0,

• g (I) /I is continuous and monotonously increasing for I > 0 and limI→0+
g(I)

I exists as β > 0.
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Unlike the previous models presented, in this paper we couple the system (12) with the boundary
conditions, for t ∈ [0, T] and T > 0,

S(0) = maxt∈[0,T] I(t),

I (0) =
∫ T

0
S(T)S(s)ds,

R (0) =
∫ T

0
S(T)I(s)ds.

(13)

These functional boundary conditions fully reflect the considerations and conclusions presented
in [30]. These types of boundary conditions have the following practical meaning:

• S(0), the initial number of susceptible subjects, is equal to the maximum of the infected subjects;
• I (0) , the initial number of infected subjects, is a weighted average of the susceptible individuals,

weighted by the final value of the susceptible S, at time T;
• R (0) , the initial number of individuals who recovered, is equal to a weighted average of the infected

individuals, weighted by the final value of the susceptible, S, at time T .

Functional boundary conditions allow these assumptions to be examined in full, as operators can be
considered as boundary conditions. These types of global conditions, that can include somewhat more
abstract conditions, can only be contemplated via functional boundary conditions.

This model can therefore be presented in the form of (1)–(2), where u1 = S, u2 = I, u3 = R, a = 0 and
b = T,

f1 (t, u1, u2, u3) = Λ− µu1 − Sg(u2) + γ1u2 + δu3,

f2 (t, u1, u2, u3) = u1g(I)− (µ + γ1 + γ2 + α) u2,

f3 (t, u1, u2, u3) = γ2u1 − (µ + δ) u3,

L1 (u1, u2, u3, u1 (T) , u2 (T) , u3 (T) , u2 (0) , u3 (0)) = maxt∈[0,T] u2 := k1,

L2 (u1, u2, u3, u1 (T) , u2 (T) , u3 (T) , u1 (0) , u3 (0)) =
∫ T

0
u1(T)u1(s)ds := k2,

L3 (u1, u2, u3, u1 (T) , u2 (T) , u3 (T) , u1 (0) , u2 (0)) =
∫ T

0
u1(T)u2(s)ds := k3.

It is clear that the boundary conditions L1, L2 and L3 satisfy (H1).
Moreover, f1 , f2 and f3 are L1−Carathéodory functions such that, for max {‖u1‖ , ‖u2‖ , ‖u3‖} < k,

| f1 (t, u1, u2, u3)| ≤ Λ + µk + kβ + γ1k + δk := ψ1k(t),

| f2 (t, u1, u2, u3)| ≤ kβ + (µ + γ1 + γ2 + α) k := ψ2k(t),

| f3 (t, u1, u2, u3)| ≤ γ2k + (µ + δ) k := ψ3k(t).
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To satisfy (Hypothesis 2), one must verify that there exists k > 0, such that,

k > max


k1 +

∫ T

0
(Λ + k (+µk + β + γ1 + δ)) ds,

k2 +
∫ T

0
k (β + µ + γ1 + γ2 + α) ds,

k3 +
∫ T

0
k (γ2 + µ + δ) ds,


.

Let T = 1, Λ = 2, µ = 12.6, γ1 = 2.7, γ2 = 0.28, α = 6.32, δ = 0.38, k1 = 2, k2 = 0.27, k3 = 5, β = 12.
For k ≥ 0.06, condition (Hypothesis 2) is verified and therefore, by Theorem 2, the system (12)–(13)

has at least one solution (S, I, R) ∈ (C [0, 1])3 , for the values considered.

6. Conclusions

In this paper, the authors show the existence of solution for a first order fully coupled system of three
equations, involving two different cases. The first case, with coupled functional boundary conditions, is
an existence result. The second case, with periodic boundary conditions, which is not covered by the first
result, is an existence and location result. The extra information obtained in this second case is associated
with the technique used, as it relies on the upper and lower solution method.

The application to an SIRS model, with global boundary conditions, underlines the key advantage
and flexibility of the functional boundary conditions. The example shown illustrates not only the theorem
proved in this paper, but it also provides guidance on how to arrange global conditions, in order to conform
with the layout in (2).

As a matter of fact, a similar approach can be taken in several other models, allowing global conditions
to be considered as boundary conditions, highly increasing the level of applicability of these models.
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7. Akarsu, M.; Özbaş, Ö. Monte Carlo Simulation for Electron Dynamics in Semiconductor Devices. Math. Comput.
Appl. 2005, 10, 19–26.

8. Malinzi, J.; Quaye, P.A. Exact Solutions of Non-Linear Evolution Models in Physics and Biosciences Using the
Hyperbolic Tangent Method. Math. Comput. Appl. 2018, 23, 35.



Axioms 2019, xx, 5 11 of 11

9. Nieto, J.J. Periodic boundary value problems for first-order impulsive ordinary differential equations. Nonlinear
Anal. 2002, 51, 1223–1232.

10. Zhang, W.; Fan, M. Periodicity in a generalized ecological competition system governed by impulsive differential
equations with delays. Math. Comput. Model. 2004, 39, 479–493.

11. Agarwal, R.P.; O’Reagan, D. A coupled system of boundary value problems. Appl. Anal. 1998, 69, 381–385.
12. Asif, N.A.; Talib, I.; Tunc, C. Existence of solutions for first-order coupled system with nonlinear coupled

boundary conditions. Bound. Val. Prob. 2015, 2015, 134.
13. Asif, N.A.; Khan, R.A. Positive solutions to singular system with four-point coupled boundary conditions.

J. Math. Anal. Appl. 2012, 386, 848–861.
14. Cabada, A.; Fialho, J.; Minhós, F. Extremal solutions to fourth order discontinuous functional boundary value

problems, Math. Nachr. 2013, 286, 1744–1751.
15. Cabada, A.; Pouso, R.; Minhós, F. Extremal solutions to fourth-order functional boundary value problems

including multipoint condition. Nonlinear Anal. Real World Appl. 2009, 10, 2157–2170.
16. Fialho, J.; Minhós, F. Higher order functional boundary value problems without monotone assumptions. Bound.

Val. Prob. 2013, 2013, 81.
17. Fialho, J.; Minhós, F. Multiplicity and location results for second order functional boundary value problems. Dyn.

Syst. Appl. 2014, 23, 453–464.
18. Graef, J.; Kong, L.; Minhós, F. Higher order boundary value problems with φ -Laplacian and functional boundary

conditions. Comput. Math. Appl. 2011, 61, 236–249.
19. Graef, J.; Kong, L.; Minhós, F.; Fialho, J. On the lower and upper solution method for higher order functional

boundary value problems. Appl. Anal. Discret. Math. 2011, 5, 133–146.
20. Zeidler, E. Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems; Springer: New York, NY,

USA, 1986.
21. Angstmann, C.N.; Henry, B.I.; McGann, A.V. A Fractional-Order Infectivity and Recovery SIR Model. Fract. Fract.

2017, 1, 11.
22. Cui, Q.; Qiu, Z.; Liu, W.; Hu, Z. Complex Dynamics of an SIR Epidemic Model with Nonlinear Saturate Incidence

and Recovery Rate. Entropy 2017, 19, 305.
23. Secer, A.; Ozdemir, N.; Bayram, M. A Hermite Polynomial Approach for Solving the SIR Model of Epidemics.

Mathematics 2018, 6, 305.
24. Alexander, M.E.; Moghadas, S.M. Bifurcation analysis of an SIRS epidemic model with generalized incidence.

SIAM J. Appl. Math. 2005, 65, 1794–1816.
25. Chen, J. An SIRS epidemic model. Appl. Math. J. Chin. Univ. 2004, 19, 101–108.
26. Hu, Z.; Bi, P.; Ma, W.; Ruan, S. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discret.

Contin. Dyn. Syst. Ser. B 2011, 15, 93–112.
27. Liu, J.; Zhou, Y. Global stability of an SIRS epidemic model with transport-related infection. Chaos Solitons Fract.

2009, 40, 145–158.
28. Teng, Z.; Liu, Y.; Zhang, L. Persistence and extinction of disease in non-autonomous SIRS epidemic models with

disease-induced mortality. Nonlinear Anal. Theory Methods Appl. 2008, 69, 2599–2614.
29. Jin, Y.; Wang, W.; Xiao, S. An SIRS model with a nonlinear incidence rate. Chaos Solitons Fract. 2007, 34, 1482–1497.
30. Li, T.; Zhang, F.; Liu, H.; Chen, Y. Threshold dynamics of an SIRS model with nonlinear incidence rate and

transfer from infectious to susceptible. Appl. Math. Lett. 2017, 70, 52–57.
31. Capasso, V.; Serio, G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci.

1978, 42, 43–61.
32. Li, J.; Yang, Y.; Xiao, Y.; Liu, S. A class of Lyapunov functions and the global stability of some epidemic models

with nonlinear incidence. J. Appl. Anal. Comput. 2016, 6, 38–46.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definitions and Assumptions
	Main Result for Functional Problems 
	Existence and Localization Result for the Periodic Case 
	An Epidemic Model of an SIRS System With Nonlinear Incidence Rate and Interaction from Infectious to Susceptible Subjects
	Conclusions
	References

