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Abstract15

The task of paraphrase identification has been applied to diverse scenarios in Natural Language16

Processing, such as Machine Translation, summarization, or plagiarism detection. In this paper we17

present a comparative study on the performance of lexical, syntactic and semantic features in the18

task of paraphrase identification in the Microsoft Research Paraphrase Corpus. In our experiments,19

semantic features do not represent a gain in results, and syntactic features lead to the best results,20

but only if combined with lexical features.21

2012 ACM Subject Classification Computing methodologies → Natural language processing; Theory22

of computation → Support vector machines; Information systems → Near-duplicate and plagiarism23

detection24

Keywords and phrases paraphrase identification, lexical features, syntactic features, semantic fea-25

tures26

Digital Object Identifier 10.4230/OASIcs.SLATE.2019.927

Acknowledgements This work was funded by FCT’s INCoDe 2030 initiative, in the scope of the28

demonstration project AIA, “Apoio Inteligente a empreendedores (chatbots)”, which also supports29

the scholarship of Pedro Fialho.30

1 Introduction31

The task of paraphrase identification consists in deciding if two sentences have the same32

meaning. It is a popular task in Natural Language Processing, as it can be used in several33

scenarios. For instance, it can be used for evaluation purposes in Machine Translation: a34

translation result can be missing a reference, and, still, be a good translation; thus, we35

should be able to see if it is a paraphrase of some sentence in the reference [25]. In addition,36

paraphrase identification can also be used by a chatbot that has in its knowledge base a set37

of pre-defined question/answer pairs. Here, a question submitted by the user needs to be38

compared with existing questions. If the user question is a paraphrase of an existing question,39

the system only needs to return the appropriate answer [20]; other applications in which40

paraphrase identification can help include summarization [22], or plagiarism detection [19].41

In many cases, just by comparing the shared lexical elements of two sentences (seen as42

bags of words) we are able to identify paraphrases. However, in many other cases we need to43

move to a semantic level to be able to say that two sentences are equivalent. For instance,44
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9:2 From lexical to semantic features in paraphrase identification

Symptoms of influenza include fever and nasal congestion. and Fever and nasal congestion45

are symptoms of influenza. can be identified as paraphrases by taking advantage of features46

at a lexical level (for instance, by counting the number of common words). However, the47

previous sentences and the sentence A stuffy nose and elevated temperature are signs you48

may have the flu.1 will only be identified as paraphrases if we have access to some semantic49

information, for instance, if we know that fever is similar or equal to elevated temperature50

and the same between nasal congestion and stuffy nose. Thus, a system with the goal of51

identifying paraphrases should be able to reason at a semantic level. Unfortunately, some52

semantic features, such as explicit meaning representations, only exist for some languages.53

The same happens with syntactic features, although at a less dramatic scale, as syntactic54

analyzers exist for many languages.55

In this paper we present a comparative study on the performance of lexical, syntactic and56

semantic features for paraphrase identification. To the best of our knowledge, the whole set of57

features that we use in this work was never employed altogether for paraphrase identification,58

particularly the ensemble of structural modelling for syntax and explicit whole sentence59

meaning representations for semantics. Results show that syntactic features lead to the best60

results, but only if combined with lexical features; semantic features in comparison with61

lexical features, bring a small improvement to recall, f-measure and accuracy when applied62

in addition to the lexical features.63

This paper is organized as follows: in Section 2 we present Related Work, in Section 364

we describe the features from the different linguistic levels, and, in Section 4 we present the65

experimental setup. Finally, in sections 5 and 6 we present the obtained results and main66

conclusions, respectively; in the latter section we also point to future work.67

2 Related work68

As previously mentioned, this work is focused on paraphrase identification. Two sentences69

are paraphrases of each other when they express equivalent meanings. The difficulty of70

detecting if two sentences have equivalent meaning varies with the linguistic mechanisms71

employed in paraphrasing, since a target sentence may employ various lexical and/or syntactic72

transformations on its source.73

Popular features employed in paraphrase identification were primarily designed for machine74

translation evaluation, such as BLEU [27]. However, many other features have already been75

applied to paraphrase identification, and there are even toolkits that allow to extract features76

from different linguistic levels. For instance, HARRY [29] provides lexical features from77

string similarity metrics applied to various word granularities, and SEMILAR [30] provides78

sentence to sentence similarity metrics based on techniques such as BLEU. It also provides79

word to word similarity metrics based on semantic information, as it employs Wordnet [7]80

and co-occurrence models such as Latent Semantic Analysis [17]. In this work we will take81

advantage of both these toolkits (along with INESC-ID@ASSIN [8]).82

Still in the semantic features domain, explicit meaning representations of sentences can83

also be compared for paraphrase identification purposes. For instance, in [35] features based84

on the overlap among semantic representations are used. Examples of meaning representations85

are Abstract Meaning Representation (from now on AMR) [1] and Discourse Representation86

Structures [15]. In this work we will use AMR representations of sentences to calculate87

semantic features, as suggested in [13].88

1 https://examples.yourdictionary.com/examples-of-paraphrasing.html

https://examples.yourdictionary.com/examples-of-paraphrasing.html
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Considering syntactic features, some works (e.g., [34, 24]) take advantage of these struc-89

tures on paraphrase identification. In these scenarios, the features extracted from structural90

comparison of parse trees, from constituent or dependency analysis, identify which sub trees91

are the same (structure wise), and may employ lexical semantics on leaf nodes (which carry92

the words of the sentence) to weight the importance of a common sub tree.93

Typically, approaches for paraphrase identification employ a supervised learning setting,94

where a model is derived from a training corpus, composed by pairs of sentences labeled95

with 1 or 0 (for instance) considering that they are or they are not paraphrases, respectively.96

The Microsoft Research Paraphrase Corpus [6], from now on the MSRP corpus, is a popular97

choice to train and benchmark such models, since there is a constantly updated ranking of the98

various systems using it2. Features from machine translation evaluation achieve competitive99

results in MSRP, as shown in [19]. Although other publicly available corpora exist, as the100

paraphrases from Twitter messages [16], or, more recently, the open domain questions from101

Quora3, in this paper we will target the MSRP corpus.102

3 Features from different linguistic levels103

We gathered features at the different linguistic levels. In the following we describe these sets.104

3.1 Lexical Features105

We call lexical features to the ones based on different distance metrics calculated between the106

lexical elements of a sentence, and assuming that these distances can be computed both at107

the character or word level. We also assume that words can be transformed in their lexical108

variants, by applying, for instance, stemming or encoding text into the way it sounds. An109

example of a lexical feature is the longest common subsequence metric applied to lowercased110

versions of the sentences in analysis.111

Table 1 illustrates some of the lexical features used in this work, where each feature112

corresponds to the application of the metric on the leftmost column to two sequences, built113

according to the lexical variants identified in the remaining columns (a detailed explanation114

of each metric can be found in [8]). Such variants comprise lowercased (L) and stemmed115

(S) versions of the original (O) text. The cluster (C) and Double Metaphone (DM) variants116

produce a sequence composed by non verbal codes, which:117

for cluster are binary strings that identify the cluster of each word, according to the118

Brown clustering algorithm [3] on the Yelp dataset of online reviews4,119

for DM are the codes of the Double Metaphone algorithm for each word.120

The trigrams (T) variant produces a sequence with a different length from the number of121

words in the original sentence, since it is composed by strings of 3 characters, one for each122

character in the original text.123

3.2 Syntactic Features124

In what concerns syntactic features we consider that these features are also based in distances,125

but between syntactic constituents of the sentence. Thus, similarity scores are computed126

for pairs of trees, based on the number of common substructures [23]. Here, a tree kernel is127

2 https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)
3 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
4 https://www.yelp.com/dataset/
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Feature O L S C DM T
LCS X X X X X
Edit Distance X X X X X
Cosine Similarity X X X X X X
Abs Length X X X X X
Max Length X X X X X
Min Length X X X X X
Jaccard X X X X X X
Soft TF-IDF X X X
NE Overlap X X X X X X
NEG Overlap X X X X X X
Modal Overlap X X X X X X
METEOR X X X X X
ROUGE N X X X X X
ROUGE L X X X X X
ROUGE S X X X X X
TER X X X X X
NCD X X X X X
Numeric X X X

Table 1 Combination of features with representations, where O, L, S, C, DM and T correspond
to Original, Lowercased, Stemmed, Cluster, Double Metaphone and Trigrams, respectively.

applied to a pair of parse trees, to automatically produce the similarity scores. For instance,128

an adjective attached to a noun corresponds to a sub-tree in the full tree of constituents for129

a source sentence, and if the tree of the target sentence contains a sub-tree with exactly the130

same leafs (adjective and noun) and root (the syntactic relation), then a tree kernel would131

consider 3 fragments in common, meaning that both sentences apply the same adjective to132

the same noun. Further details on such calculation are found in [23].133

3.3 Semantic Features134

We follow a broad definition of semantic features as all the features that take advantage of135

some sort of semantic information, either at the lexical level (for instance, by comparing136

synonyms of two words) or at the sentence level (for instance, by taking advantage of semantic137

spaces or explicit meaning representations). Considering the latter, we draw on the previously138

mentioned AMR [1]. An example AMR for the sentence My drawing was not a picture of a139

hat., from the AMR corpus for the novel “The Little Prince”, can be seen in Figure 1, as140

produced by trained annotators [1].141

(p / picture-01 :polarity -
:ARG0 (p2 / picture

:ARG1-of (d / draw-01
:ARG0 (i / i)))

:ARG1 (h / hat))

Figure 1 AMR example

In Figure 1 is shown an AMR rooted at concept picture-01, with 01 indicating an entry in142
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OntoNotes [12] where this concept is defined as the act of displaying something in a picture,143

such that its ARG1 represents what is displayed, as detailed in the corresponding PropBank144

[26] frame 5 in which OntoNotes is based (since the latter is not available for free). Hence,145

this AMR includes expression a pictured hat, negated by setting attribute polarity of the146

root concept to a minus sign.147

4 Experimental setup148

In the following we present the resources involved in our experiments, and the method for149

their preparation and usage.150

4.1 Corpora151

As previously mentioned, we will use the Microsoft Research Paraphrase Corpus [6]. Each152

example in MSRP is composed of 2 sentences and a positive or negative value (0 or 1)153

representing whether the sentences are a paraphrase or not. We take as train/test set the154

usual suggested partitions.155

4.2 Gathering Lexical Features156

Considering the lexical features, we collect them from the two aforementioned toolkits:157

INESC-ID@ASSIN, a framework used in the ASSIN competition, and HARRY, a toolkit158

providing string similarity metrics.159

In the INESC-ID@ASSIN framework, language independent metrics are applied to different160

representations of the original text, such as Double Metaphone codes or character trigrams.161

The 91 features identified in Table 1 were gathered from the INESC-ID@ASSIN framework.162

We also use lexical features extracted from HARRY, which also provides a way of163

extracting lexical features based on 3 different representations of a text: bytes, bits or words.164

It contributes with 21 different metrics to apply to each representation, although not all165

metrics are compatible with all representations. For instance, the Normalized compression166

distance is only applicable to bits. From HARRY, we obtain 62 features, which include string167

distances such as the Hamming distance and similarity coefficients such as Jaccard. The168

complete set of features is described in [29].169

4.3 Gathering Syntactic Features170

Regarding syntactic features, constituency parse trees are obtained with the Shift-Reduce171

version of the Stanford parser6. Then, tree kernels are applied to such trees. An efficient172

approach for structural kernels, and particularly tree kernels, was proposed by [31] in173

uSVM-TK, an SVM modelling platform based on the SVM-LIGHT engine [14]. This is the174

chosen learning platform for all our experiments (using tree kernels or not). All the tree175

kernels available in uSVM-TK were employed, namely “Subtree”, “Subset tree”, “Subset tree176

considering leaf labels” and “Partial tree kernel” [23].177

5 http://verbs.colorado.edu/propbank/framesets-english-aliases/picture.html
6 http://nlp.stanford.edu/software/srparser.shtml
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4.4 Gathering Semantic Features178

Taking into consideration semantic features, we used the ones from the already mentioned179

SEMILAR. From this framework, we gather 9 different features on lexical semantics, such that180

most correspond to a score on sentence similarity calculated from word to word similarities181

based on Wordnet, Latent Semantic Analysis or Latent Dirichlet Allocation [2]. The latter182

two word similarities are based on models provided with SEMILAR, pre-trained on Wikipedia183

and the TASA corpus as described in [33].184

In what concerns explicit meaning representations, we obtain the AMR for the sentences185

with the JAMR parser [10]. Then, and in order to extract semantic features for the AMR, we186

use SMATCH [4], a metric that computes the distance between two AMR, with its default187

configuration (hill-climbing with smart initialization and 4 random restarts), established as188

best setting in the original SMATCH research.189

4.5 Evaluation Metrics190

Performance is measured with Precision, Recall, F-measure and Accuracy, except for the191

comparison with other systems from previously mentioned MSRP rank, where only F-measure192

and Accuracy are reported.193

4.6 Machine Learning kits194

We use both uSVM-TK [31] and LIBSVM [5] (from its scikit-learn [28] interface) in our195

experiments. The former allow us to test syntactic features in a plug and play way. The196

latter was used just for sanity checking, considering the non-syntactic features, as it does not197

allows a “plug and play” evaluation of syntactic features.198

5 Experiments and results199

5.1 The impact of the different features200

The best results of applying our feature sets to MSRP are shown in Table 2. By SEMANTICS201

we understand a feature set containing the SEMILAR and SMATCH features, as opposed to202

using only one of these semantic feature sets.203

As expected, lexical features achieve the best results when the majority of words are204

common or very similar. Also, as expected, lexical features are almost useless when a205

paraphrase has low lexical overlap, such as when most words in a target sentence are206

synonyms of the words in the source sentence. In fact, some lexical features are 0 for all207

training examples of MSRP, as identified with the Facets tool7. Figure 2 shows an example208

corresponding to paraphrases from the MSRP test partition that were only correctly identified209

using semantic features, due to low lexical overlap.210

When syntax is not involved (the first 4 results in Table 2), semantics do not improve211

the performance of lexical features isolated. Overall, syntactic features in combination with212

lexical features lead to the best results.213

7 https://pair-code.github.io/facets/

https://pair-code.github.io/facets/
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Features Prec Rec F Acc

lexical 78.79% 85.18% 81.86% 74.90%

lexical + SEMILAR 78.22% 86.40% 82.10% 74.96%

lexical + SMATCH 77.98% 85.53% 81.58% 74.32%

lexical + SEMANTICS 77.44% 85.88% 81.44% 73.97%

syntax 69.87% 95.46% 80.69% 69.62%

lexical + syntax 79.90% 86.66% 83.14% 76.63%

lexical + syntax + SEMILAR 79.44% 86.57% 82.85% 76.17%

lexical + syntax + SMATCH 79.31% 86.92% 82.94% 76.23%

lexical + syntax + SEMANTICS 79.61% 86.83% 83.06% 76.46%

Table 2 Evaluation results on MSRP (best of all configurations attempted).

Consumers would still have to get a descrambling security card from their cable operator to
plug into the set .

To watch pay television, consumers would insert into the set a security card provided by their
cable service .

Figure 2 Example that was not successful classified in lexical + syntax, but it was successful
classified in lexical + syntax + SEMANTICS

5.2 How do we compare with other systems214

In order to compare our results with state-of-the-art systems, Table 3 shows the performance215

of other systems on the MSRP corpus.216

Of particular interest is the result from system [32], which employs neural networks, and217

performs similarly to our best ensemble of features. Although no feature engineering is218

needed, we are able to explain our results.219

System [9] is the most similar to ours, in that it also employs lexical, syntactic and220

semantic features in the uSVM-TK platform. Although with fewer features, it achieves better221

results, as it involves more experiments, additional kernels and an exhaustive configuration222

of SVM parameters.223

5.3 The influence of the Machine Learning toolkit224

Finally, experiments were also performed in LIBSVM [5], which implements the SVM225

decision process in a different manner from SVM-LIGHT. Using LIBSVM for the lexical226

+ SEMANTICS experiment results in F measure of 82.62% and accuracy of 76%. Hence,227

results improved (previous results were of 81.44% and 73.97%, respectively), which suggest228

an influence of the SVM implementation.229

SLATE 2019
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F Acc

lexical similarity [21] 81.3% 70.3%

distributional semantics [18] 82.8% 75.7%

neural networks [32] 83.6% 76.8%

MT metrics [19] 84.1% 77.4%

tree and graph kernels [9] 85.2% 79.1%

our best: lexical + syntax 83.1% 76.6%

Table 3 Other systems employing MSRP on similar feature types.

6 Conclusion and Future Work230

We have presented a study on the contribution of lexical, syntactic and semantic features in231

paraphrase identification on the MSRP corpus.232

Semantic features contribute to a performance enhancement over lexical features isolated233

(if Precision is not considered), but slightly decreases performance when combined with234

lexical and syntactic features, although by less than 1%. Best results were achieved by235

syntactic features in combination with lexical ones. Future work includes balancing the236

amount of features in vector sets, further exploration of SVM parameters, enrich the set of237

semantic features, study the behaviour of these features in other corpora, and apply the same238

approach to the tasks of Semantic Textual Similarity and Recognizing Textual Entailment.239
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