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Problems - Room Locations                                                  
 
 
  

______________________________________ 

 

 
 
Company Problem MR# CMS# Capacity 

Aviva Improving weather models for the insurance industry MR11 B1.39 40 

BP Statistical modelling and pattern recognition for 
predicting evolution of temperature forecasts.  

MR14 FL.05 50 

Faraday 
Predictive  

Identification of changes in noisy spectra – to detect 
incipient problems in rotating equipment.  

MR9 B0.43 98 

National Grid The value of information in managing the electricity 
system 

MR13 EL.05 50 

Prudential Quantile regression with a time series structure MR12 DL.01 40 

DSTL Limits on simultaneous transmit and receive MR3 AL.01 108 

BP  Uncertainty in seismic inverse problems. MR15 GL.02 46 

PepsiCo Mash disc forming  MR2 AL.06 180 

Syngenta Towards managing landscapes: how can we interpret 
and design better environmental monitoring surveys? 

MR5 AL.02 60 

DSTL  Hardening techniques for image classifiers. MR4 AL.08 60 

UKRI Industrial Strategy Challenge Fund Discussion 
(Wednesday 15:45-17:30) 

MR21 DL.07 25 

 
 
 
Confidential Disclosure Agreements (CDAs) 
 

The following companies have CDAs: BP (both problems), National Grid and Prudential. These cover 

confidential code, algorithms, information or data that the Company may share with the group.  The 

University of Cambridge has signed the CDAs, which will cover the ESGI delegates, so there is no need 

for individual delegates to sign.  However, please note that delegates who download or use the 

confidential code, algorithms, information or data will by that action be agreeing to be bound by the 

CDA. The CDAs are on display in the relevant rooms.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 ESGI 145 • Cambridge • 8 – 12 April 2019 
 

 

 

 

CENTRAL CORE 
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Monday – Problem Introductions 
________________________________________ 

 
 

Problem Sessions 
 

  
09:40-10:05 

Aviva 
Improving weather models for the insurance industry 

Mick Comerford 

 
10:05-10:30 

BP 
Statistical modelling and pattern recognition for predicting evolution of temperature 

forecasts 
Milos Krkic 

 
10:30-10:55 

 

Faraday Predictive 
Identification of changes in noisy spectra – to detect incipient problems in rotating 

equipment 
Geoff Walker 

 
10:55-11:20 

 

Morning Coffee 
Central Core, CMS 

 
11:20-11:45 

National Grid 
The value of information in managing the electricity system 

Andrew Richards 

 
11:45-12:10 

Prudential 
Quantile regression with a time series structure 

Ziwei Wang and Daniel Slavik 

 
12:10-12:35 

DSTL 
Limits on simultaneous transmit and receive 

Christopher Swinerd 

 
12:35-13:00 

BP 
Uncertainty in seismic inverse problems 

York Zheng 

 
13:00-14:00 

 

Lunch  
Central Core, CMS 

 
14:00-14:25 

PepsiCo 
Analysis of shear forces during mash disk formation 

Tom Bullock 

 
14:25-14:50 

Syngenta 
Towards managing landscapes: how can we interpret and design better environmental 

monitoring surveys? 
Paul Sweeney 

 
14:50-15:15 

DSTL 
Hardening techniques for image classifiers 
Phillippa Spencer and Sophie Debenham 
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Friday – Final Presentations 
________________________________________ 

 
 

Presentation Sessions 
 

  
09:00-09:25 

Aviva 
Improving weather models for the insurance industry 

 

 
09:25-09:50 

BP 
Statistical modelling and pattern recognition for predicting evolution of temperature 

forecasts 
 

 
09:50-10:15 

 

Faraday Predictive 
Identification of changes in noisy spectra – to detect incipient problems in rotating 

equipment 
 

 
10:15-10:40 

National Grid 
The value of information in managing the electricity system 

 
 

10:40-11:00 

 

Morning Coffee 
Central Core, CMS 

 
11:00-11:25 

Prudential 
Quantile regression with a time series structure 

 

 
11:25-11:50 

DSTL 
Limits on simultaneous transmit and receive 

 

 
11:50-12:15 

BP 
Uncertainty in seismic inverse problems 

 

 
12:15-12:40 

PepsiCo 
Analysis of shear forces during mash disk formation 

 
 

12:40-13:20 

 

Lunch  
Central Core, CMS 

 
13:20-13:45 

Syngenta 
Towards managing landscapes: how can we interpret and design better environmental 

monitoring surveys? 
 

 
13:45-14:10 

DSTL 
Hardening techniques for image classifiers 

 

 
14:10-14:20 

 
Conclusions and Awards 

Depart  
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Improving weather models for the insurance 
industry 
 
 

Introduction 
 
Predicting the risk of extreme weather events, such as floods, storms, or ground frost is critical in 
property insurance. The dominant approach in the primary insurance industry is to classify the risk of 
events into coarse categories — a 1-in-100 year or 1-in-250 year storm or flood, for example — 
without time dependence. This ignores the effect of global trends which could influence the future 
activity of extreme events on a range of time scales.  
 
The broad goal for the study group is to evaluate the feasibility of developing more detailed estimates 
of extreme weather risk. These could allow an insurance company to: 
 

• Invest in claims, underwriting and pricing initiatives to diversify risk 

• Guide reinsurance strategy 

• Inform customers on how best to prepare during a high-risk period 

• Ensure that claims departments have all necessary resources in place 

• Plan early interventions to minimise damage in the event of a storm, flood, or freeze. 
 
 

Specific goals 
 

1) To propose strategies for estimating the risk of extreme weather in the UK seasons to decades 
ahead 

2) To explore the seasonal dependence of weather risks, using historical data. 

3) To evaluate the effect that global phenomena such as climate oscillations, global warming, and 
even solar activity may have on risk estimates. 

4) To suggest metrics for the assessment of the benefits of new weather risk estimates using 
insurance claims data. 

 
 
 

Methodological considerations 
 
There are various ways of estimating risks of weather events that can cause severe damages and 
losses. Historical data can be analysed to determine frequency of occurrence and probability 
distributions — but data may be sparse and may have trends. Weather generators (statistical models 
fitted to past time series) can be used to simulate weather and create a wide range of scenarios. 
There are several methodological challenges to consider: (i) how best to deal with correlations 
between weather variables such as precipitation, temperature, and frost, (ii) how to model the spatial 
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dependence of the variables, (iii) how to model the probability distribution at each time point and the 
risk of extreme events.  
Dynamical models like those used for numerical weather forecast systems and climate change 
projections provide outlooks for days to decades ahead, and data from such systems may be used to 
modify risk estimates. The climate system contains slow variability on a wide range of timescales, 
and knowledge of the observed current climate state can condition risk estimates. 
 
Participants should consider a range of approaches to estimate relevant risks. It will be important to 
suggest methods to cross-validate the model with the data available and evaluate the predictive 
value of different modelling choices. 
 
More broadly, participants can consult experts from Aviva to further define the scope of the problem. 
For example, what is the geographic area of interest; how far in advance are estimates useful, and 
what types of extreme events may be of interest? An important part of the exercise will be to explore 
what data are needed to train a model, what is available, and consider how to acquire more data 
relevant to the problem – observations, simulations, and forecasts. 
 
Finally, it is important to consider how to validate the weather risk estimates against insurance claims 
data, combining the predictions with important side information available to the insurer, such as 
detailed maps of flood risk. 
 
 
 

Data and modelling resources 
 
There are many relevant sources of data, model, and risk information, and an initial task will be to 
explore these. A few starting points are provided here. 
 
Observational data: The Met Office provides open access to several observational datasets. In 
particular, the HadUK Gridded Dataset contains data from weather stations across the UK going back 
to 1862 interpolated on grids of various sizes over the country. This dataset contains information on 
air temperature (monthly means, minima, and maxima), precipitation, wind speed, and days of 
ground frost, among others.  
 
A broader source of climate datasets including observational data, seasonal forecasts, and climate 
change projections is provided by the Copernicus Programme. 
 
The IRI Climate Data Library is an alternative source for climate datasets, projections, and analysis 
tools. 
 
Long-range forecasts: 
https://climate.copernicus.eu/seasonal-forecasts 
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/index 
 
 
Stochastic weather generators: 
https://www.ipcc-data.org/guidelines/pages/weather_generators.html 
https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.3896 
 
 
Return periods: 
http://climatica.org.uk/climate-science-information/return-periods-extreme-events 
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.1155 
 
Climate oscillations: Climate oscillations are recurrent patterns with wide-ranging, effects on e.g. 
temperature, precipitation, and storm tracks. They are irregular, although some oscillations have a 

https://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb
https://climate.copernicus.eu/climate-datasets
http://iridl.ldeo.columbia.edu/index.html
https://climate.copernicus.eu/seasonal-forecasts
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characteristic time scale. In particular, the North Atlantic oscillation has an important effect on UK 
weather. 
 
North Atlantic Oscillation 
https://en.wikipedia.org/wiki/North_Atlantic_oscillation 
https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml 
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/ens-mean/nao-
description 
 
Atlantic Multidecadal Oscillation 
https://en.wikipedia.org/wiki/Atlantic_multidecadal_oscillation 
https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo 
 
Madden-Julian Oscillation. ‘The 40-day wave’ mainly impacts the tropics, but also has mid-latitude 
effects. 
https://www.metoffice.gov.uk/weather/learn-about/weather/atmosphere/madden- 
julian-oscillation 
https://www.climate.gov/news-features/blogs/enso/what-mjo-and-why-do-we-care 
 
Climate change and extremes: 
https://www.ipcc-data.org/sim/ar5_tables/ar5_extremes.html 
 
Solar activity: A relationship between solar activity and the climate has been previously reported. 
For an example, see 
https://www.nature.com/articles/ngeo1282 
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Statistical modelling and pattern recognition for predicting 
evolution of temperature forecasts 
 

Company Background 

BP is a global energy company that is leading the transition to a lower carbon future. No matter your 

role here, we each play a part in progressing the way we deliver heat, light and mobility to the world. 

Our business is the exploration, production, refining, trading and distribution of energy. BP operates 

with business activities and customers in more than 80 countries across six continents and every day 

we serve millions of customers around the world. Integrated Supply & Trading (IST) is BP’s 

commercial face to the global energy and commodity markets. We market the company's upstream 

production of hydrocarbons, secure feedstocks for our refinery system and provide services to 

external customers, including fuel supply and hedging solutions.  

 

Problem Background 

Global energy companies deeply care about the weather in order to forecast energy demand for most 

of Europe and North America. In the US, the energy demand peaks twice a year driven by heating 

demand in winter months and power demand in summer months. With extreme weather becoming 

the norm especially during summer months (see the chart below that depicts how summer months 

have become more extreme globally), energy companies such as BP need to pay a close attention to 

not only the current forecast of temperatures but also to how the forecast may evolve in time (known 

as the forecast of forecast). 

 

Source: NY Times 

https://www.nytimes.com/interactive/2017/07/28/climate/more-frequent-extreme-summer-heat.html
https://www.nytimes.com/interactive/2017/07/28/climate/more-frequent-extreme-summer-heat.html
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Currently there are two global numerical weather prediction (NWP) systems relied upon for 

temperature forecasts by academics, industry, enthusiasts and the governments across the world. 

These are – 

1. Global Forecast System (GFS) – Run by the US National Weather Service, this model runs 4 

times a day and produces forecasts for up to 16 days in advance at varying spatial resolution 

(13 km to 27 km). This model is a basis for derivative models such as Global Ensemble 

Forecast System (GEFS) and North American Ensemble Forecast System (NAEFS). 

2. ECMWF European Model – Run by European Centre for Medium-Range Weather Forecasts 

(ECMWF), this model also runs 4 times a day. Like GFS, there are derivative models run by 

the agency with varying resolution to balance computational cost and accuracy. 

 

Data 

The numerical models (GFS or ECMWF) divide the globe into a grid and predict temperatures for the 

grid points at regular time increments out the next 15 days. Shown below is a snapshot of the output 

from GFS model. 

 

For our use cases, temperature data is condensed into Average Daily Temperature representing a 

single value for each location and for each day.  

 

 

For the scope of this project, you will be provided with 15-day temperature forecast for the period 

of 1-Mar-2007 to 28-Feb-2019 for 150 locations that fall within the continental US. This dataset is 

sourced from a vendor that uses proprietary algorithms to average and bias-correct the intraday 

outputs of GFS and ECMWF weather runs along with additional human forecaster nudging at times, 

resulting in a single forecast vector for each day. A sample from the dataset is shown below. 
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1. RUN_DATETIME: The ‘as of date’ for the forecast 

2. LOCATION_CD: Location code 

3. OBSERVATION_DATE: The forecast target date 

4. TEMPERATURE:  Average Daily Temperature for the location 

 

 

 

 

 

 

RUN_DATETIME LOCATION_CODE OBSERVATION_DATE TEMPERATURE

3/1/2007 1 3/1/2007 54.5

3/1/2007 1 3/2/2007 47

3/1/2007 1 3/3/2007 40.5

3/1/2007 1 3/4/2007 37

3/1/2007 1 3/5/2007 40.5

3/1/2007 1 3/6/2007 44.5

3/1/2007 1 3/7/2007 48.5

3/1/2007 1 3/8/2007 51.5

3/1/2007 1 3/9/2007 54.5

3/1/2007 1 3/10/2007 52

3/1/2007 1 3/11/2007 49.5

3/1/2007 1 3/12/2007 51.5

3/1/2007 1 3/13/2007 54.5

3/1/2007 1 3/14/2007 54.5

3/1/2007 1 3/15/2007 52.5

3/2/2007 1 3/2/2007 47.5

3/2/2007 1 3/3/2007 42.5

3/2/2007 1 3/4/2007 37

3/2/2007 1 3/5/2007 41.5

3/2/2007 1 3/6/2007 46

3/2/2007 1 3/7/2007 50.5

3/2/2007 1 3/8/2007 53

3/2/2007 1 3/9/2007 53.5

3/2/2007 1 3/10/2007 51.5

3/2/2007 1 3/11/2007 52.5

3/2/2007 1 3/12/2007 53.5

3/2/2007 1 3/13/2007 56.5

3/2/2007 1 3/14/2007 54.5

3/2/2007 1 3/15/2007 52.5

3/2/2007 1 3/16/2007 50.5
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Problem Description 

Each day’s forecast at a given point is comprised of 15 numbers which represent temperatures for 

days 0-14 in the future. As we move to the next day the forecast vector rolls by 1 day such that tenor 

14 of previous day’s forecast now becomes tenor 13 of current day’s forecast. Predicting the weather 

forecast for the next day is to predict the 15-dimensional vector for the next day. The table shown 

below illustrates the structure of the data. 

 

 

Problem Statement 

The problem we present to you is as follows: estimate, for each time point t, the conditional 

distribution of the 150 × 15-dimensional vector corresponding to the 15-day forecast at each location, 

given the historical data up to time t-1. 

 

 

 

Note: datasets are provided to the working group under a Confidentiality Agreement signed 

on behalf of the University of Cambridge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBSERVATION_DATE 3/1/2007 3/2/2007 3/3/2007 3/4/2007 3/5/2007 3/6/2007 3/7/2007 3/8/2007 3/9/2007 3/10/2007 3/11/2007 3/12/2007 3/13/2007 3/14/2007 3/15/2007 3/16/2007 3/17/2007 3/18/2007 3/19/2007 3/20/2007

RUN_DATETIME

3/1/2007 x x x x x x x x x x x x x x x

3/2/2007 x x x x x x x x x x x x x x x

3/3/2007 x x x x x x x x x x x x x x x

3/4/2007 x x x x x x x x x x x x x x x

3/5/2007 x x x x x x x x x x x x x x x

3/6/2007 x x x x x x x x x x x x x x x

TEMPERATURE
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Identification of changes in noisy spectra – to detect 
incipient problems in rotating equipment 
 

Background/overview of problem context 

 

Faraday Predictive is a small Cambridge-based technology company, specializing in the predictive 

maintenance of rotating industrial equipment such as pumps, fans, compressors, and conveyors.  

Issues associated with maintenance of this industrial equipment are estimated to cost $700 billion pa 

worldwide, with much of this money being wasted through inappropriate maintenance strategies.  

Faraday Predictive provides a means of remotely monitoring rotating equipment and diagnosing 

impending faults. This helps the customer (who might be a water company, for example) maintain 

their assets in a timely manner and avoid a catastrophic machine failure by scheduling preventative 

actions well in advance and conversely to avoid doing un-necessary maintenance on a time-schedule 

when it is not required.  

 

Our technology uses the electric motor driving the equipment as a sensor, by measuring the voltage 

applied to, and current drawn by, the motor, and identifying subtle distortions in the shape of the 

current waveform relative to the voltage waveform.  These relative distortions, identified by means of 

a mathematical modelling approach, are expressed as a residual current.  The frequency 

components in this residual current correspond to the characteristic frequencies of the phenomena 

causing them, which are typically related to deterioration of the equipment, such as bearing wear, belt 

slippage, internal corrosion, rubbing, misalignment, etc. By matching the observed frequencies 

against known characteristic frequencies, we are able to identify the likely cause of the distortion, and 

the amplitude of the signal at this characteristic frequency indicates the severity of the problem.   

 

The overall steps in this process are as shown in figure 1 below: 
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Figure 1 - overview of mathematical processes 

 

Problem Briefing 

A range of mathematical techniques are used in each step of this process, and we can describe them 

and explore limitations or alternatives to them if this is of interest, particularly  if the initial “exam 

question” is solved early in the week.  However, the “Exam Question” is a specific one in the area of 

Anomaly Detection:  

 How can we reliably detect changes of shape of our spectrum given a noisy signal? 
 

Once this step is firmly established, the subsequent steps in the process can be called into action, 

and whilst we can describe and discuss these other steps with the group, their effective deployment 

is all predicated on having detected the anomaly in the first place, so that is where we want the group 

to focus first. 

 

For some failure modes, the problem manifests itself as a simple peak at a particular location on the 

spectrum, and this can be detected relatively easily.  This is not the focus for ESGI. 

 

However, some other phenomena show up as a broad “hump” of signals rather than at a single peak, 

and so far we do not have a good solution to identifying this sort of shape change.  Examples of this 

issue are shown in figures 2 & 3 below: 
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Figure 2 - shows the spectra for two identical pumps - with the red one showing two elevated 
areas 

 

Figure 3 - Spectra for one item of equipment that has changed over time.  Brown = baseline 
from October, Blue = single instant in December (note shape continues to display this 

elevated shape over extended period, eg right up to Feb 2019) 

Figure 2 shows the spectra for two otherwise identical pumps.  It can be seen how similar the shapes 

are, which indicates how similar the pumps are and what similar duties they are on.  However, it is 

clearly visible to the eyeball that there are two distinct humps on the red trace that are not present on 

the blue trace.  It is believed that these humps indicate the early stages of deposit build up inside the 

pump.  What we seek is an automated method for spotting this sort of anomaly. 

 

Figure 3 shows two spectral traces – the blue one is a single “instant” spectrum corresponding to a 

measurement made at a particular point in time.  The brown trace is a baseline, created by combining 

and averaging a number of consecutive spectra at an earlier period.  Two points to note from this 

figure are firstly, the instant spectrum is much noisier than the baseline, where noise has been 

averaged out; and secondly, the two broad areas where the more recent blue spectrum is elevated 

compared to the baseline, indicating something is going on, ie some deterioration is occurring in the 

rotating equipment.   We seek a way of automatically alerting users to the presence of this change, 

without creating false alarms from random noise.   
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If the primary “exam question” were solved early on during the week, a number of other areas would 

also be of interest, including: 

 What causes these humps, as opposed to peaks? 

 What causes signals to show up as sidebands on higher harmonics as opposed to sidebands 
on the fundamental?  In addition, is there a rational basis for weighting the significance of one 
of these higher harmonic peaks as compared to ones on the fundamental? 

 Empirically, we see subharmonics (e.g. 1/3, 1/5, 1/7th and sometimes multiples of these, e.g. 
2/7th, 3/7ths) of the rotational speed when rubbing friction is present.  Can you explain why 
this should be the case, and why it shows up at the particular frequency in any particular case 
(e.g. why sometimes 1/5, and other times, 1/7th)? 

 

 

Available Data and Tools for the study group 

We can make available a number of data sets that are held in SQL databases, and tools that allow 

easy viewing of the spectra, trends, and in some cases the underlying source voltage and current 

waveforms. 
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The value of information in managing the electricity system 

 
Introduction 

The GB electricity network is organised into the Transmission network and Distribution networks. 

Distribution networks are in charge of all the distribution within their local area (a local area could be 

London or South-West England for example). The Transmission network is a high voltage network 

designed to transport electricity over large distances. Distribution networks connect to the 

Transmission network at suitable points. As a schematic representation, the Transmission network 

can be viewed as a central hub, with distribution networks attached radially (see Fig. 1). 

Electrical power is provided by generators. Large generating units (shown in Fig. 1 by the green 

boxes) are known as Balancing Mechanism Units (BMUs) and these units connect either directly to 

the transmission network or to their local distribution networks.  Small generating units, termed non-

BMUs, connect directly to their local distribution networks. These latter generators may be solar 

panels on people’s houses, wind farms or local diesel generators/batteries (shown in the Fig. 1 by the 

red circles). This means that at any given time some of GB’s total electricity demand is met by BM 

units and some by non-BM units.  

 

Figure 1: Approximation of the electrical network in Great Britain.  
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The Transmission System Operator, TSO (in Great Britain this is National Grid Electricity System 

Operator, NG ESO) has to manage the entire system. It is its job to keep the total supply of electrical 

power and the total demand throughout the country perfectly in balance at all times. The TSO does 

this by forecasting the supply-demand balance so that it can accurately schedule generation (this has 

to be done ahead of real time). The TSO also needs to schedule a certain amount of ‘reserve’ 

generation which can be used at short notice in order to meet an unexpected increase in demand or 

sudden loss of scheduled generation.  This adds considerably to the expense of running the system. 

However, the problem now faced by the TSO is that it is only aware of – and can therefore only 

control – the generation being provided by the BMUs.  These provide generation schedules ahead of 

time and real-time output data to the TSO. Therefore, the BMUs are visible to and controllable by the 

TSO. On the other hand non-BMUs (all connected directly to the distribution networks) do not provide 

such information to the TSO, and indeed the TSO in general does not know how many non-BMUs 

there are, their capacity, location and fuel type. Therefore, the non-BMUs are invisible to the TSO 

and the only way they are ‘seen’ is as a net change in the total demand on the system.  The activities 

of the non-BMU generators, and in particular the fact that these activities are not known to the TSO, 

therefore add greatly to the uncertainties involved in managing the system. 

Traditionally the impact of non-BMUs on the system has been small. However, the rise of renewable 

energy, such as wind and solar, has led to a huge increase in non-BMUs. As a result there is now 

much greater variability in the TSO’s forecast of the supply-demand balance (since non-BMUs are 

invisible to the TSO) and these forecasts are becoming less and less accurate. This in turn means 

that greater levels of reserve generation must be scheduled, thereby considerably increasing the total 

cost of running the system. 

If there were more information on the activities of non-BMUs this could be incorporated into the 

TSO’s forecasting models and the TSO would then be able to make more accurate forecasts and 

reduce the required levels of reserve, thus reducing costs. But the question remains - what is the 

value of this additional information on non-BMUs and how much could this information improve 

current forecasts?  

 

Problem Question 

What is the value of greater knowledge about the activity of non-BMUs versus the cost of needing 

increased reserves to cope with the increased variability in forecast supply-demand balances?  

Data that you might find useful to answer this question are available at - 

https://www.nationalgrideso.com/balancing-data/data-explorer 

Note: datasets are provided to the working group under a Confidentiality Agreement signed 

on behalf of the University of Cambridge. 

 

 

 

 

 

 

 

  

https://www.nationalgrideso.com/balancing-data/data-explorer
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Conditional quantile estimation using high-

dimensional time series data 
 
 

Motivation 
Stock market returns are subject to large drawdowns, which can take years to recover. The global 

financial crisis led to a fall of $7.9 trillion in the market capitalisation of the S&P500. It took investors 

over 3 years to recover their capital, assuming they stayed fully invested: many do not. The fallout 

from the dot-com bubble took even longer to recover. Avoiding large drawdowns is crucial for savers 

and pensioners. It can have a dramatic effect on the ending wealth of their portfolios. Abstract 

movements in stock markets are life-changing events. 
 
As asset allocators, the view of future returns is a crucial input in securing solid performance and 

avoiding large drawdowns. The challenge is not just to understand the median or mean return but 

the distribution of returns and the size and probability of tail risk. The problem we outline below is a 

significant part of this challenge. 

 

Figure 1 Conditional quantile estimation of asset returns 
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The problem 
 
An important problem faced in our long-term strategy work is to deal with estimating the broad 

future outcomes of time series, with a slightly greater emphasis on extremes. In this instance, the 

preference is to focus on estimating conditional quantiles of the series, given other historical data, 

rather than estimating a generative parametric model for the data. 
 

We have available data consisting of monthly and quarterly observations of around 50 continuous 

economic and financial variables covering the period since 1970. We also have available a further 

time series over the same period to be treated as a response. Our goal is to estimate, for each time 

point, the conditional quantiles of the response series given historical observations of the remaining 

series. 
 
Our problem may differ from classical forecasting problems in the following aspects: 

 
• We are interested in estimating conditional quantiles rather than conditional means. 

• We have a large number (around 50) of covariate series we would like to condition on 

instead of conditioning on the history of the response series itself. Moreover, we have 

relatively few observations (around 600 for the monthly series) making our problem high- 

dimensional. 

• We are interested in exploring methods that do not make strong parametric assumptions on 

the time series. 
 

Questions 
Q1: Given the nature of the problem described above, which methods are particularly suitable to 

attack this problem? 
 
Q2: What would be a good validation framework allowing us to compare performance of various 

conditional quantile estimation methods (existing versus new methods)? 
 
Q3: How robust / stable are the proposed methods in terms of their sensitivity to assumptions, 
and can one provide guarantees for the estimated conditional quantiles in terms of confidence 
intervals? 

 
Q4: So far, the problem has focused on the conditional distribution of a single response variable. 
How could one extend the methods to cater for joint conditional distribution estimation when we 
have a vector of time series? 

 

The available dataset 
Whilst some of the economic time series were designed with stationarity in mind, other time series 

will have to be transformed to be approximately stationary. 
 
An important aspect to consider is avoiding look-ahead bias: when estimating the conditional 

quantile of interest, only sufficiently lagged observations can be used (for instance, end-of-quarter 

data are typically released few months later). Look-ahead bias must be also carefully reflected in 

cross-validation (CV) set construction/generalisation error estimation. 

 

 

Note: datasets are provided to the working group under a Confidentiality Agreement signed 

on behalf of the University of Cambridge. 
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Limits on Simultaneous Transmit and Receive 

The Challenge 

To understand the fundamental limits on our ability to emit and receive radio signals at the same 

frequency and at the same time (i.e. in same-channel full duplex mode) using a transceiver radio 

system.  

For this challenge we want to focus not on improving the technology but on finding the fundamental 

mathematical limits on what can be achieved — limits that will apply whatever technology is used: 

limits perhaps analogous to Cramer-Rao lower bounds on variance, or the Shannon-Hartley limit on 

information rate. 

Overview 

The ability to Simultaneously Transmit and Receive (STAR) signals in the radio band of the 

Electromagnetic (EM) Spectrum (EMS) offers huge benefits to civil and defence applications. Current 

approaches1 achieve this through time or frequency division duplexing. However, same-channel full-

duplex (i.e. working simultaneously in frequency and time) offers huge efficiencies and system 

performance benefits compared to frequency or time–division duplexing. 

The current state-of-the-art in academic and 

industrial STAR research shows that ~120dB of 

isolation depth can be achieved in a relatively 

narrow operating bandwidth. Whilst we seek to 

extend both isolation depth and operating 

bandwidth (our current aspirations are for 150dB 

of isolation depth over 160MHz of operating 

bandwidth), we need to understand what the 

theoretical limits are in order to direct our 

research investment. 

Figure 1: - Diagram of Signal Measurements 

There is some analogy here to noise cancellation, such as used in commercial noise-cancelling 

headphones. However, in this case we generate the primary interferer (the noise) that we want to 

cancel. Cancellation performance will, therefore, be limited by our ability to accurately model our own 

emissions and the changes that happen to them after they are transmitted into the Electromagnetic 

Environment (EME). 

                                                           
1
 A Survey of Self-Interference Management Techniques for Single Frequency Full Duplex Systems - Nwankwo 2017 - 

http://eprints.gla.ac.uk/151582/7/151582.pdf 
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 24 ESGI 145 • Cambridge • 8 – 12 April 2019 
 

OFFICIAL 

 

Figure 2: Flow model for the challenge 

A simple information flow model for this challenge is presented at Figure 2. It shows: 

1. Our Signals - that we wish to emit to the EME.  

2. Non-Linear Noisy Transmitter Chain - our signals pass through this to enter the EME. 

3. Our Signals in EME - Once in the EME, our emitted signals can couple or propagate to our 

receiver chain (coupling and propagation is used here to differentiate between energy 

coupling due to near-field or far-field EM physics, respectively) along with any other signals, 

including noise, that are present in the EME. 

4. Other Signals in EME – As well as our own emissions there may be other signals in the EME 

(the signals we want to detect) 

5. Non-Linear Noisy Receiver Chain - All the signals pass through our own noisy receiver 

chain from which we wish to detect the presence of other signals: signals that are at the same 

frequency as our own emitted signals at the same time. We are able to tap signals off our 

noisy transmitter chain at any stage and use this information within our receiver chain.  

 

The references to noise in Figure 2 highlight that the knowledge of our transmitter and receiver 

chains and of the EME may not be perfect. For example, although we know the properties of the 

signal that we emit it will pass through the EME before it reaches our receiver. In the environment it 

will experience non-linear effects (i.e. reflections, diffraction, attenuation, signal conversion) that 

mean what is received is not identical to what we emitted. We need to be able to model these effects 

to be able to cancel out our signals and detect the other signals that we are interested in. The limits 

of the model will infer the limits of our capability. 
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 Physical Aim Design Approach 

 

Figure 3: Layered model for STAR 

An engineering approach to exploiting the information flow within this challenge, as outlined at Figure 

2, is expressed at Figure 3. This model highlights opportunities for achieving STAR in a layered 

approach. 

Layer 1. Methods for protecting receiver equipment from our own strong in-band signals are 

considered...  

 

Layer 2. Ensure sub-systems also function without saturation so that behaviours are predictable 

and further noise (including harmonic and intermodulation signal products) is 

mitigated.  

 

Layer 3. See underneath our own emission signals 

  

Layer 4. Use prior knowledge of other signals in the EME in which we are operating in order to 

see signals of interest underneath them.  

Commercial drivers for STAR (for example in internet Wi-Fi) consider energy and radio channel 

efficiency (radio channels are expensive to access). Metrics for such commercial applications may be 

measured in: J/Bit and Bit/s/Hz. 

The primary military benefit is measured through an ability to continually sense anywhere in the EMS 

irrespective of our emissions.  

How would a mathematical approach define this challenge in order to 

determine the limits of performance for STAR? 

We expect the limits to be derived from combinations of factors such as: 

 Nonlinearity in the transmitter and receiver circuitry 

 Poor isolation between the transmitter and receiver resulting in coupling 

 Thermal noise 

 Modulation of our own signal 

 The magnitude of signal to noise ratio we need to detect the other signal 
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Other Useful Reading: 

A Widely Tunable Full Duplex Transceiver Combining Electrical Balance Isolation and Active 

Analog Cancellation – Laughlin 2015 - https://ieeexplore.ieee.org/abstract/document/7145660 

Full-duplex Wireless: Design, Implementation and Characterization – Duarte 2012 - 

https://scholarship.rice.edu/bitstream/handle/1911/70233/DuarteM.pdf 
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Uncertainty in seismic inverse problems 

Background 

Seismic reflection data is used to estimate the properties of the Earth’s subsurface from reflected 

seismic waves. The method is similar to sonar, echolocation, and medical imaging. One main task for 

a geophysicist is to convert the seismic response recorded on the surface to a 3D representation of 

the subsurface. Achieving the best possible quality of image and estimation of rock properties is 

critical in helping identify new reservoirs and understand the depletion and sweep mechanisms in 

existing reservoirs. Even marginal improvements here can significantly reduce the uncertainty 

associated with an opportunity, helping to improve our return on investment. 

Inversion of multi-dimension of seismic data is typically achieved by a local optimization scheme, 

such as steepest gradient descent, during which the difference between modelled and observed 

seismic data (L2 norm) is minimized by iteratively updating the earth parameters (ie. Velocities, 

density, etc.).  Such optimization method only yields a deterministic outcome and requires high data 

quality to succeed.  To better quantify the uncertainty in earth parameter estimation, a probabilistic 

approach is needed.  Bayesian techniques may be used to produce a posterior distribution that 

captures a range of possible earth models, thus providing a probabilistic outcome to the seismic 

inverse problem. 

 

An MCMC algorithm 

The Bayes theorem for our problem can be written as: 

𝑝(𝒎|𝒅𝑔) ∝ 𝑝(𝒎)𝑝(𝒅𝑔|𝒎) 

where 𝒎 is earth parameters sampled in depth, and 𝒅𝑔 is seismic data in a gather sampled in time.   

By assuming a Gaussian prior and observation errors, the prior and likelihood can be written as: 

𝑃(𝒎) = 𝑒
[−

1
2(𝒎−𝜇𝑚

𝑑 ) ∑ (𝒎−𝜇𝒎
𝑑 )

𝑇−1
𝑚 ]

 

𝑃(𝒅|𝒎) = 𝑒
[−

1
2(𝒅𝑔−𝑓(𝒎)) ∑ (𝒅𝑔−𝑓(𝒎))

𝑇−1
𝑑 ]

 

where 𝜇𝑚
𝑑  is the Gaussian prior mean, and 𝑓(𝒎) is the simulated seismic data.  The operator 𝑓 is a 

non-linear operator that acts on 𝒎 and returns simulated data 𝒅𝑠𝑖𝑚 = 𝑓(𝒎).   
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The posterior can be assessed by a random walk Metropolis-Hastings algorithm with the acceptance 

ratio 

𝑎 = min [
𝑝(𝒎𝑖|𝒅𝑔) × 𝑞(𝒎𝑖−1|𝒎𝑖)

𝑝(𝒎𝑖−1|𝒅𝑔) × 𝑞(𝒎𝑖|𝒎𝑖−1)
, 1] 

Due to the dimensionality of the problem, convergence of this MCMC algorithm is typically very slow. 

So we need to find ways to sample the posterior more efficiently. 

 

Current solution 

Making ‘better’ proposals 

Often the proposal distributions are chosen to be symmetric (e.g. Gaussian, t-distribution).  We can 

attempt to find an approximate posterior P* that can be used as the proposal distribution.  By 

simplifying the physics of the forward problem, consider the revised acceptance ratio as follows: 

𝑎 = min [
𝑝(𝒎𝑖|𝒅𝑔)𝑝∗(𝒎𝑖−1|𝒅𝑠)

𝑝(𝒎𝑖−1|𝒅𝑔)𝑝∗(𝒎𝑖|𝒅𝑠)
, 1] 

where 𝒅𝑠 is a stacked seismic trace rather than a gather of traces.  To simulate 𝒅𝑠 from the earth 

model 𝒎, a linear operator 𝑓∗ is used, 

𝑓∗ = 𝐶 × 𝐷 

where C is a seismic wavelet and D is a differential operator that converts earth parameters to a 

reflectivity series, and the simulated data 𝒅𝑠𝑖𝑚
𝑠 = 𝑓∗(𝒎).  The approximate posterior 𝑃∗(𝒎|𝒅) is 

Gaussian, 

𝑃∗(𝒎|𝒅) = 𝑁(𝒎; 𝜇𝒎|𝒅
∗ , Σ𝒎|𝒅

∗ ) 

and the mean 𝜇𝒎|𝒅
∗  and covariance Σ𝒎|𝒅

∗  can be found by: 

Σ𝒅,𝒎 = 𝑓∗Σ𝒎 

Σ𝒎,𝒅 = Σ𝒅,𝒎
𝑇  

Σ𝒎|𝒅 = Σ𝒎 − Σ𝒎,𝒅Σ𝒅
−1Σ𝒎,𝒅

𝑇  

𝜇𝒎|𝒅 = 𝜇𝒎Σ𝒅
−1(𝒅𝑠 − 𝑓∗(𝜇𝒎)) 

where 𝜇𝒎 and Σ𝒎 are the prior mean and covariance, respectively.  

Python code has been written for the above algorithm, but it has not been fully tested yet. There are 

some numerical issues encountered with the computation of the approximate posterior that need to 

be addressed.  These numerical issues may be related to how the prior is specified, so prior model 

construction is also something that needs to be explored further. 
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Thoughts for some alternative solutions 

Hamiltonian MC – Improves slow exploration of the parameter space by making proposals to the 

Metropolis-Hastings algorithm by considering Hamiltonian dynamics.  The HMC makes use of the 

momentum variables to augment the target distribution.  This introduces the computation of the 

kinetic energy associated with the state, in addition to the potential energy.   

Reverse Jump MCMC - There are often many possible earth model, with different dimensions of the 

parameter space.  Multi-model inference techniques like RJMCMC allows samples to be drawn from 

the posterior by jumping between different models.   This is an attractive feature for seismic inversion 

because the subsurface structure is made up of layers of different thicknesses.   

Hybrid MCMC – Combine the advantage of sampling efficiency of HMC with the desirable feature of 

multi-model inference offered by RJMCMC. 

Approximate Posterior Inference – Variational methods.  Posterior inherence is transformed into an 

optimization problem, where a variational distribution is introduced to approximate the actual 

posterior.  

 

Note: datasets, algorithms and code are provided to the working group under a Confidentiality 

Agreement signed on behalf of the University of Cambridge. 
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PepsiCo Global Snacks R&D 

 

Analysis of shear forces during mash disk 

formation 

This problem relates to the production of chips in a particular process. A potato composite composed 

of multiple mashed ingredients and small particles is fed through a spreading manifold. This forces 

the mash into a cylindrical mould (forming process) on a rotating drum to produce mouth sized disk 

pieces, which then continue to a drying process. 

During the forming process a scraper is used across the top of the mould to leave the mash flush with 

the top of the mould. This shearing process may affect the surface of the mash disk (as illustrated in 

the diagram below).  

What is the effect of this shear on the material properties and structure of the mash disks and how 

can it be controlled? This will affect the texture of the final chip products, an important product 

attribute for consumers.  

How would operating parameters and mould design affect the shear forces on the disk? This could 

impact scale up limitations and product design. 

The key parameters are the composition of the mash, the pressure with which it is pushed into the 

former, the rotational speed of the drum, the shape / design of the scraper blade, force that pushes 

the scraper blade against the drum and the mould design. It is possible to attempt bulk rheology 

measurements on the mash. 

Mathematical Challenge 

Formulate a mathematical model of the scraping process and its effects on the surface of the disk 

and use this model to understand the dependence of the effects on the parameters that are available. 
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Towards managing landscapes: how can we 
interpret and design better environmental 
monitoring surveys? 
 

Question 

How should we interpret extensive environmental monitoring surveys and how can we design them 

better, especially in the light of different landscape factors, cropping and market share?  

 

Background  

Member states routinely conduct groundwater monitoring surveys to demonstrate compliance of 

regulatory triggers for groundwater.  However the link between the level of detect (concentration) and 

actual application is often not known, particularly when a large number of wells are monitored across 

a large landscape (say county level and above).  It is therefore difficult to interpret the results of such 

monitoring exercises in the context of edge-of-field concentrations.   

It is well-known that higher concentrations in groundwater are more likely to be found the closer a 

well is to an agricultural field.  We would therefore like to know how varying the number of treated 

fields (combination of market share and cropping) and number of monitoring wells affects the 

probability distribution of wells close to treated fields.   

An analysis where there are no restrictions on the placement of wells with multiple fields and a single 

well yields a √d relationship, which would be intuitively expected.  However the problem is more 

complex because wells cannot be placed anywhere:  farmers do not like wells placed in fields 

because of difficulties with operating machinery and landscape factors such as roads and woodlands 

place restrictions on the placement of wells.   

To simplify the problem we considered the random placement of fields on a lattice with the squares 

representing fields and the nodes possible well locations.  Figure 1 shows 100,000 trials where a 

single well placed randomly in a grid and a centrally placed field yields a simple triangular distribution 

(Smarandache), however when randomly placed on the grid this relationship no longer holds (see 

Figure 1), and even with over 100,000 trials the exact form of the distribution is difficult to establish. 
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Figure1: relationship between distance to treated field with single well and field placed 

randomly on 1000x1000 grid 

 

When the number of fields and wells is varied on a grid an approximate log-normal distribution is 

obtained (see Figure 2), but this relationship is not exact.  We would first like to derive an exact 

relationship between the number of treated fields and proximity of monitoring locations on a lattice as 

this problem should be solvable and provide valuable insight into the real problem.   

Real landscapes may be approximated by grids but are different: fields vary in size and shape, 

landscapes do not only contain agricultural fields, and groundwater may flow in a direction opposite 

to the monitoring well even if adjacent.  We would like to know how different a real landscape is from 

the idealised problem and whether the results from the lattice can be bridged to landscapes.  Ideally 

we would like to know how landscape factors affect how we should interpret and design monitoring 

surveys.    

Figure2: Distance to treated field (100 wells and 100 fields on 1000x1000 grid) 1000 trials.  
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Subsidiary Questions 

1. Are there any particular sorts of landscape arrangement that makes finding a well closer to 

fields more likely?  E.g. lots of small fields versus fewer large fields 

2. How does the probability change with the presence of non-agricultural areas such as towns, 

forests etc.? 

3. Is it possible to take a general exceedance rate from a number of wells and predict an edge-

of-field concentration? 

4. Can any landscape be turned into an equivalent grid and analysed that way? 
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Identifying potential hardening techniques for 

image classifiers 

Copyright: © Crown copyright (2019), Dstl. 

Autonomous systems and machine learning is an ever accelerating field. In the specific case of 

object detection and image classification, research into neural networks and their applications rapidly 

became a main focus within the open source community. The famous ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) set the precedent in the field for developing networks with high 

levels of accuracy and as such, the security of these networks was often a secondary concern. These 

types of networks can be easily exploited using adversarial imagery. In which, perturbations are 

added to an image that will then cause the network to misclassify an image.  

Often, these images are crafted to exploit specific types of classifier i.e. trained on certain types of 

data or use different architecture. Largely, this becomes an issue when the training of these types of 

classifiers is outsourced – how do we trust the system? Therefore, investigations into protecting 

these models are incredibly important. For this tasking, the possible different hardening techniques 

fall largely into two categories; data manipulation and network manipulation. 

Data Manipulation: 

 Can training data be manipulated sufficiently that a classifier trained on that data will be robust 

to a variety of adversarial methods? 

 Can extra, statistical information be extracted about the data and fed in at the training stage 

(i.e. extra information that an adversary cannot access). 

Network Manipulation: 

 Can hardening be introduced into the pipeline before the training stages? I.e. can the 

architecture of the network be altered such that adversarial images introduced in training have 

little to no effect on the network? 

 Is there a way to tell if a network has been compromised by bad data after it has been 

trained?  E.g. “badnets” [1]. 

It is likely that combinations of the above will be required to harden a neural network sufficiently 

against the majority of attacks. However, insight into why individual components of the system i.e. 

data, architecture, functions have certain effects on the behaviour of the system would be extremely 

beneficial.  

References: 

[1] https://arxiv.org/abs/1708.06733  
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Notes 


