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Abstract:

We study different models of Schistosomiasis transmission a water borne disease. Modeling
tools as well as analysis of differential equations are presented and various scenarios are
simulated (with Python).

Keywords:
Schistosomiasis, Macdonald, Ross, Cauchy problem, Equilibrium, Stability, Progressive
wave, Python.
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Chapter 1

Introduction

Schistosoma mekongi is first reported in 1957 and prevalent in the Mekong river basin from
the Khong district in southern Laos to Kratie province in northern Cambodia. The total
population at risk for schistosomiasis mekongi is estimated as 60,000 in Laos. Schistosoma
mekongi can be parasitic in various mammalian hosts such as humans, dogs, and pigs.
Neotricula aperta, an aquatic snail is known to be the intermediate host of S. mekongi. It
was observed that the water level of the Mekong river fluctuates seasonally; the period of
low water lasts from February to May, while that of high water lasts from June to January.
The transmission of S. mekongi from snails to humans occurs during the low water period
because water contact of humans is practicable.

Mathematical models are useful to predict the effect of various control measures on
suppression of infectious diseases. Macdonald (Macdonald, 1965) proposed a first mathe-
matical model for the transmission of schistosomiasis, and thereafter a number of mathe-
matical models for schistosomiasis transmission have been published. Chan et al. (Chan
et al., 1995) constructed an age-structured model for schistosoma mansoni transmission to
predict the prevalence and morbidity for the long-term consequences of drug treatment.
Ishikawa et al. (Ishikawa, Ohmae, Pangilinan, Redulla, & Matsuda, 2006) developed a
model of schistosoma japonicum transmission that took account of a seasonal variation of
snail density to predict the effect of control measures in the Philippines. They previously
proposed a mathematical model for the transmission of S. mekongi in Cambodia that was
described by a system of partial differential equations of time and age, which was aimed
at estimating the coverage rate and range of ages in targeted mass treatment to interrupt
schistosomiasis transmission.

Objectives

Our aims are:

e In terms of mathematics: to familiarize with modeling and standard tools for the
analysis of differential equations;

e In terms of scientific computing: to simulate various scenarios of transmission with
Python;
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e In terms of biology: to understand the water borne disease (Schistosomiasis) trans-
mission.

Relative Researches

Some researches about Schistosoma mekongi occuring in the south of Laos were performed.
In particular, we may cite:

1. K. Fukuhara, S. Phompida, S. Insisiengmay, M. Kirinoki, Y. Chigusa, S.
Nakamura, H. Matsuda, and H. Ishikawa, Analysis of the effectiveness of control
measures against Schistosoma mekongi using an intraand inter-village model in
Champasak Province, Lao PDR, Parasitology International 60,4 (2011) 452-445.

2. N. Hisakane, M. Kirinoki, Y. Chigusa, M. Sinuon, D. Sochea, H. Matsuda, and H.
Ishikawa, The evaluation of control measures against Schistosoma mekongi in
Cambodia by a mathematical model, Parasitology International 57,3 (2008) 379-385.

Methodology

The methodology used in this dissertation is based on the following strategy:

e Existence and uniqueness are established according to the Cauchy-Lipschitz theorem:

Theorem 1.0.1 (Cauchy-Lipschitz, Picard-Lindeldf) Let f : [ xR"™ a continu-
ous function and locally Lipschitz with respect to the second variable (for |lu—vl|| <9,
I|f(t,u) — f(t,v)|| < L||u—v||). Then there exits T > 0 and a unique solution of
the differential equation

u'(t) = f(t u(t)),
of class C* on |0, T| with u(0) = ug. Moreover if f € C* then u € C*L.

e The stability of equilibrium (stationary point such that f(u*) = 0) with respect
to sign of the eigenvalues of Jacobian matrix Jf(u*) thanks to the Routh-Hurwitz
theorem:

Theorem 1.0.2 (Routh-Hurwitz) Let u* an equilibrium.

1. If every eigenvalue of J f(u*) has a negative real part, then limy_, o u(t) = u*
(u* is said asymptotically stable).

2. If there is one eigenvalue of Jf(u*) with a positive real part, then u* is said
unstable.

e Numerical simulations with Python.

Details about these theorems and Python codes are provided inside the appendices.



Chapter 2

Description of the Schistosomiasis

Human schistosomiasis is a family of diseases caused primarily by five species of genus
Schistosoma flatworms. The parasites, schistosomes, have to go through an intermediate
host (snails in most cases) to complete their life cycle: from eggs, to miracidia, to cercaria,
finally to adult worms. The aldult worms inhabit the blood vessels lining either in the
bladder or intestine, depending on the species of worm. The worms are also known as
blood flukes.

Larvae mature in

— /-—' ~_the liver
o4 e X ~
& ‘2/ \ "
Worms mature }

and pair off Larvae migrate to the left

7 heart and into circulation
4f
Chronic

Worms migrate to mesenteric schistosomiasis
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Figure 2.1: The Life Cycle of Schistosomiasis (i et al., 2000).
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The worldwide prevalence of schistosomal infections has not been measured credibly.
A figure conventionally cited is 200 million people. Except for imported case, the disease
is virtually unknown in the rich countries of the world. There is little doubt that all
schistosomes cause considerable pathological change in a comparatively large proportion
of the population. Evidences suggest that only a proportion of affected people die from the
disease. The absence of quantitative information on health fairly reflects the information
available.

Schistosomiasis is characterized by a long-term disability and is thought to significantly
impede the advancement of many underdeveloped countries where the disease is endemic.
Due to successful control projects, the distribution of schistosomiasis has changed in the
last 50 years. However, the total number of people infected or at risk of infection has
not changed (Chitsulo, Engels, Montresor, & Savioli, 2000; Ghiboda, Engels, & Berquist,
2000). The public health impact and magnitude of the problem are evident from informa-
tion available from the World Health Organization (Organization, 1993): more than 600
million people in 74 countries are at risk and more than 200 million people are infected
(increased from 114 million in 1974). Mortality exceeds 100,000 annually. Schistosomiasis
remains formidable to humans because of the complexities of parasitic adjustment to two
or more different hosts (Garrett, 1994; McNeill, 1977). The persistence of a schistoso-
miasis infection in a locality depends on a complex cycle involving humans and possibly
additional mammalian species (definite hosts), certain parasitic flatworms (schistosomes),
and particular species of snails (intermediate hosts). The adult schistosome worms mate
heterosexually. The paired adults reproduce in the blood vessels of a human or mam-
malian host. The fertilized eggs pass from the blood into the intestine or bladder and are
voided with the feces or urine.

Because of low hygienic standards, some of the eggs are deposited in fresh water where
small ciliated larvae (miracidia) emerge and enter a molluscan host. By asexual reproduc-
tion in the snail, thousands of a second larval form, cercariae, are produced. When mature,
the cercariae enter a free-swimming stage and on contact with a human, they rapidly pen-
etrate the skin and mature into juvenile schistosomes. This is followed by pairing with the
opposite sex, copulation, and oviposition which begins the cycle over again.

Human schistosomiasis is caused by five species of flatworms: Schistosoma Mansoni,
Schistosoma Intercalatum, Schistosoma Japonicum, Schistosoma Mekongi, and Schisto-
soma Haematobium. The three most widespread are Schistosoma Japonicum which is
found in several Asian countries, Schistosoma Haematobium which is present in much
of Africa and the Middle East, and Schistosoma Mansoni which is prevalent in much of
Africa, the Caribbean, and South America. It is well known that Schistosoma Japonicum
has multiple mammalian definite hosts (Li et al., 2000; Wu & Feng, 2002).

Schistosoma Mekongi

Schistosoma Mekongi is first reported in 1957 and prevalent in the Mekong River basin
from the Khong district in southern Laos to Kratie province in northern Cambodia. The
total population at risk for schistosomiasis mekongi is estimated as 60,000 in Laos and
80,000 in Cambodia. Schistosoma mekongi can be parasitic in various mammalian hosts
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such as humans, dogs, and pigs. Neotricula aperta, an aquatic snail is known to be the
intermediate host of S. mekongi. It was observed that the water level of the Mekong
River fluctuates seasonally; the period of low water lasts from February to May, while
that of high water lasts from June to January. The transmission of S. mekongi from
snails to humans occurs during the low water period because water contact of humans is
practicable.

Figure 2.2: Neotricula Aperta and Aquatic Snail.

In Cambodia, a control program of annual mass drug administration was initiated
by the Ministry of Health and Médecins Sans Frontiéres in 1995 (present program con-
ductor: National Center for Parasitology, Entomology and Malaria Control). Sasakawa
Memorial Health Foundation (SMHF) joined the cooperative program in 1997, and mainly
took charge of examination of animal reservoirs, serodiagnostic surveys, and evaluation of
morbidity using ultrasound. The control programs in Cambodia are considered to be suc-
cessful because of the low level of detection of egg positive cases in recent years, although
there remains a high positive rate in several villages where S. mekongi is endemic. In
Laos, the average prevalence of schistosomiasis mekongi among the villages decreased to
less than 1 percent after six courses of mass treatment with praziquantel during a 10-year
control program, which resulted in a cessation of the control program in 1999. Thereafter,
the resurgence of schistosomiasis in the Khong district of Laos was confirmed by epidemi-
ological surveys by WHO in 2003, and it was revealed that the prevalence was restored to
20-50 percent in the same area. The situation of re-emergence of Schistosoma mekongi in
Laos indicates the necessity for the continuation of both surveillance and control programs,
which are required in order to adopt more cost-effective measures.



Chapter 3

Study of Time Dependent Models

3.1 The Macdonald Model

This model was introduced by Macdonald (Macdonald, 1965) in 1965. It is the first
mathematical model for the transmission of Schistosomiasis. The transmission of Schis-
tosomiasis can be thought of as a closed loop, in which infection travels from definitive
hosts to snails and back again (see Figure 3.1). Any such closed feedback loop which
exhibits stability, here the existence of endemic Schistosomiasis, has to have a nonlinear
transfer somewhere in the cycle. The first of these statements is trite; the second shows
the power of mathematics in demonstrating the consequences of such simple statements.
The concrete meaning of a nonlinear transfer is that there must at some stage be a density
dependent effect, an interaction between infective units, which reduces the infectivity of
each individual as the overall level of infection increases a manifestation of diminishing
returns. Since these effects are responsible for the stability of the cycle, it is extremely
important to represent them faithfully in any model: indeed, the correct specification of
the density dependent effects is likely to be the most critical part of the modeling process.

A 4

Figure 3.1: Compartimental representation of Macdonald’s model.

In terms of mathematics, the variation of the total number of infected snails (s;) due
to the number of parasites (p) is solution of the following ordinary differential equation
(Macdonald, 1965; Barbour, 1994):
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P =<w(ﬂ@)h—ww> (3.)

S

S

W(t) = 0. (3.3)

s = oot (1= 2 s (32)

Parameters appearing in these equations are sum up into Table 3.1.

Symbol Description
total number of parasite
total number of infected snails
a total number of definitive hosts
total number of snail
rate of exposure to water
force of infection
death rate of the snails
density of definitive hosts
density of snails
death rate of parasite
s; | total number of non-inflected snails

2o s |2 |w |2

V)

Table 3.1: Parameters of the Macdonald model.

Let

D number of parasites
rT = — =
h  number of definitive hosts

be the average parasistes burden in the definitive hosts, and

sy number of infected snails
y = — = -
S number of snails

be the prevalence of infection in the population of snails. Then we obtain

(1) = ady(t) —yelt) (3.4)
y(1) = Bxa(t)(1—y(t) - py(t). (3.5)

3.1.1 Qualitative Study

Since there is no explicit solution, we study the qualitative properties of the solution of
the differential equation.

Theorem 3.1.1 Let (z9,y0) be non negative. Then there exits T > 0 and a unique solu-
tion of the differential equation (x,y) € C([0,T];R) x C([0,T];R) associated to the initial
datum (xq, yo)-



3.1. The Macdonald Model

Proof: We rewrite (3.4) and (3.5) as

u'(t) = f(t u(t)),

v (5) St ) = (ﬁ%xo(“lsy—_y)wi My> '

The function f is C* in particular f is locally Lipschitz with respect to u. The Cauchy-
Lipschitz theorem B.1.3 allows to conclude. 0

where

Corollary 3.1.2 Let (zg,y0) > 0. Then the solution (x(t),y(t)) remains positive and
bounded for all the time. In particular, the solution id global in time, i.e. T = +o0.

Proof: The proof bases on the phase portrait (Figure 3.2C) using that the function (0, 0)
is solution and the uniqueness given by the previous theorem noticing that

¥ = afy—yr>0ify > % (Fig. 3.2A)
r ox . T .
y = /37(1—y)—uy>01fy<w+§_u (Fig. 3.2B).

Bo
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3.1. The Macdonald Model

Knowing that the initial value problem is well posed, we compute the equilibrium. The
equilibrium (z*,y*) are the solution of

{0453/* —yx* =0 N {yi i J—gf*

Bga*(1—y") —py" =0 V= orz
Then i
Yo« Zz
—r =
ad r* + %
We have
‘ L _ a0 op
v =0,2" = — — —
v Bo

which is of biological interest if %5 — >,

The Jacobian is defined for (z, y)’ (t) = J;E%z;) by

of of _ 5
J.T*’*: 6x 9y _( v " Oé* )
@v’) (— —) By —Ber -
0

We deduce for the first equilibrium (0, 0)

and

trJ(0,0) = — (v +pu) <0
det J(0,0) =yu — afo

The Routh-Hurwitz theorem B.2.2 implies that the equilibruim (0, 0) is
1. a saddle point if det J(0,0) < 0,
2. asymptotically stable if det J(0,0) > 0, i.e. yu —afoc >0 (A)
Moreover, since
(trJ)* —4det J > 0 < (v + p)* — 4(ypu — afo) > 0,

the equilibrium (0, 0) is a stable focus.
Similarly for the positive equilibrium

(2%, y*) = ad  op 1 I
.T,y - 7 BO" OZBO' )

we have

* - Oé(;
J($,y*)=(ﬂ _ Bowt _ )
s 5 H

10
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Here
trd = —(7+u)—?x* <0
dethv(%jx*%—u) — Y= 7{%93* >0 (B)

and (z*,y*) is asymptotically stable.
Moreover, since

(trJ)* —4det J >0

2 2
((7 + 1) + %—Ux*) — 4%5‘ = (7 — %jx*) + Sy + p

and (z*,y*) is a stable focus.
This study can be summarized in terms of basic reproduction number as follows.

Theorem 3.1.3 Let Ry be the basic reproduction number defined as

Ry = 277,
TH
1. If Ry > 1, the disease is endemic.
2. If Ry < 1, the disease disapears.
Proof: It is enough to rewrite the conditions (A) and (B) as

(A) 'y,u—ozﬁa>()<:>a,y—ﬁi<1

80 v _ 380 (a6 _ ou aBo
(B) Z2z* = X5 (7 ﬁg>>0<:)w>1.

3.1.2 Numerical Simulations

The values of parameters are chosen from (Hisakane et al., 2008) reflecting data from
North of Cambodia.

« | rate of exposure to water 1

I force of infection 10~4
p | death rate of the snails | 7 x 1073
o | density of definitive hosts 1

) density of snails 40

vy death rate of parasite 6 x 10~*

Simulations are made during 25 years with a time step equal to 1 day. Figure 3.3 represents
. . —4

the evolutlpn W}th respect to day of x and y. Here Ry = O‘ﬁf = % =180 >1

and the epidemic occurs.

11
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3.1. The Macdonald Model

To control the epidemic, it is necessary to provide Ry = aﬂ/—%’ smaller than 1. To do
that, it is allowed to:

e increase p using pesticides to reduce the number of snails;
e increase 7y by killing parasites inside hosts with drugs;

e decrease o by change the behavior of people who should avoid contact with dirty
water.

In Figure 3.4, we show the value of equilibrium (z*, y*) for different values of x. We notice
that when Ry < 1, the disease disappears.

13
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3.2. Ross’Model

3.2 Ross’Model

Suppose that the definitive hosts, like the snails, come only in two sorts, infected and
uninfected, with the infectivity of an infected definitive host not being influenced by the
number of times he may subsequently have been infected or by his current parasite burden.
Assume also that infected definitive hosts have a per capita recovery rate of g, which is
fixed, whatever the infection history of the host. This might, for instance, plausibly be
the case with perfect concomitant immunity. Upon recovery, the definitive host is taken
to become once more normally susceptible to infection. Host lifetimes are tacitly assumed
to be negative exponentially distributed, mortality being exactly compensated by births
of new susceptibles, the mortality rate being subsumed into the recovery rate g. Once
again, these assumptions are highly oversimplified, but present a feasible starting point
for models incorporating density-dependent effects arising in the human host.

Reasoning in the same way as for Macdonald’s model, we translate these model as-
sumptions into a system of ordinary differential equations. The relevant variables for the
transmission are now J, the number of infected hosts, and Y, the number of infected snails
and satisfy the following differential equations (Macdonald, 1965; Barbour, 1994):

Y(t)

J'(t) = aéT(H —J(t)) — gJ(t) (3.6)

Y'(t) = bJ(t) (1 - %) — pY(t) (3.7)

Parameters appearing in these equations are sum up into Table 3.2.

Symbol Description
total number of definitive hosts

total number of snail
rate of incidence for one single definitive host

rate of snail infections

recovery rate for definitive host infections
death rate of the snails
density of infinitive hosts
density of snails

SOESHE <R NSR RS RN B> Bay

Table 3.2: Parameters of the Ross model.

Consider .
J number of parasites
xr = — =
H  number of definitive hosts

the average parasistes burden in the definitive hosts, and

Y  number of infected snails

y=—~= :
N number of snails
the prevalence of infection in the population of snails provides
#'(t) = ady()(1—ax(t) — gx(t) (3.8)
o
y(t) = bzl —y(t) — uy(D). (3.9)
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3.2. Ross’Model

3.2.1 Qualitative Study

Theorem 3.2.1 Let (xo,yo) be non negative. Then there exits T > 0 and a unique solu-
tion of the differential equation (z,y) € C([0,T];R) x C([0,T]; R) associated to the initial
datum (xg, yo).

Proof: We rewrite (3.8) and (3.9) as

u'(t) = f(t u(t)),

o= (o) = ()

The function f is C* in particular f is locally Lipschitz with respect to u. The Cauchy-
Lipschitz theorem B.1.3 allows to conclude.

where

O

Corollary 3.2.2 Let (zo,y0) > 0. Then the solution (x(t),y(t)) remains positive and
bounded for all the time. In particular, the solution id global in time, i.e. T = +o0.

Proof: The proof bases on the phase portrait (Figure 3.5C) using that the function (0, 0)
is solution and the uniqueness given by the previous theorem. We note that

: aoy :
oy(l —x) — 0 if d 1 (Fig. 3.5A
ady(l —z) — gz > 1x<a5y+g and = # 1 (Fig )

1
b%x(l —y)—py >0ify < T and y # 1 (Fig. 3.5B).

box
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3.2. Ross’Model

The equilibrium (z*, y*) are the solution of

which gives

(z,y)
J(ZL’* y*): % % :<—a5y—g ad(l—x))
g ) T sy b
Then
J(0,0>:(_g" ‘“5),
5 M
and

The equilibruim (0, 0) is
1. a saddle point if det J(0,0) < 0
2. asymptotically stable if det J(0,0) > 0, i.e. gu —abo >0 (C).
Moreover, since
(trJ)? —4det J > 0= (g + p)* — 4(gu — abo) > 0,
(0,0) is a stable focus.

Theorem 3.2.3 Let Ry be the basic reproduction number defined as

abo

Ry = —.
gH

1. If Ry > 1, the disease is endemic.
2. If Ry < 1, the disease disappears.

Proof: It is enough to rewrite the conditions (C)

b
gu—ab0>0(:>—ag<1.
gu
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3.2. Ross’Model

3.2.2 Numerical Simulations

The values of parameters are chosen from (Hisakane et al., 2008) reflecting data from
North of Cambodia.

a | rate of incidence for one single definitive host 1

b rate of snail infections 1074
1 death rate of the snails 7x 1073
o density of definitive hosts 1

) density of snails 40

g recovery rate for definitive host infections 5x 1074

Simulations are made during 25 years with a time step equal to 1 day. Figure 3.6 represents
. . —4

the evolution with respect to day of z and y. Here Ry = C;b—/f = % = % > 1

and the epidemic occurs.

2.2
2.0
1.8
< 1.6
1.4

1.2

1.0 ——nu_

0 2000 4000 6000 8000
day

0.0

0] 2000 4000 6000 8000
day

Figure 3.6: Evolution with respect to day of x and y.
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3.2. Ross’Model

To control the epidemic, it is necessary to provide Ry = Cg’—; smaller than 1. To do

that, it is allowed to:
e increase p using pesticides to reduce the number of snails;
e increase g by killing parasites inside hosts with drugs;

e decrease a by change the behavior of people who should avoid contact with dirty
water.

In Figure 3.7, we show the value of equilibirum (z*, y*) for different values of x. We notice
that when Ry < 1, the disease disappears.

20



3.2. Ross’Model
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Figure 3.7: Bifuraction with respect to p the mortality rate of snails.
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3.3. A Human-Mammal Model

3.3 A Human-Mammal Model

We propose a new mathematical model that describes here four definite mammalian host
subpopulations and two intermediate snail host subpopulations. It shall be assumed here
that infected snails and infected mammals do not recover from schistosomiasis as their life
spans are short in comparison to that for humans. The dynamical quantities in the model
are

Symbol Description
susceptible (uninfected) human population density
infected human population density
susceptible snail host population density
infected snail host population density
susceptible mammal population density

infected mammal population density

disease transmission
recovery
disease transmission
death rate
growth rate
capacity
competition coefficient
disease transmission
death rate
growth rate
capacity
competition coefficient

SR EIHEREEIEI E N SESES R ss

Table 3.3: Parameters of the Human-Mammal Model.

Each population is split into susceptible and infected as follows:

1. Human with constant population
H;(t) = —tHHS<t)Si(t) + THHL'(t) (310)
Hi(t) = twH(t)Si(t) — ruHi(t); (3.11)
2. Mammals, e.g. dogs or pigs, with logistic growth

Mé(t) = as(Ks - Ms(t) - CsiMi(t))Ms(t) - msMs(t) - tMMs(t>Sz(t)
(3.12)
M;(t) = al(Kl — Ml(t> — Csts(t))Mz<t) — szz(t) + Zf]uMs(t)Si(t);
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3.3. A Human-Mammal Model

Figure 3.8: Compartimental representation of the human-mammal model.

3. Snails with logistic growth

Si(t) = ag(ks — Ss(t) — XxsiSi(t))Ss(t) — psSs(t) (3.13)
O HA(#)S(t) — Oa Mi(£)Sa (1)
Sit) = au(ki — Si(t) — XisSs(t))Si(t) — paSi(t) (3.14)

+ O Hi(1)S, () + 00 Mi(1) Ss(2).

3.3.1 Qualitative Study
Theorem 3.3.1 Let (H?, HY, M2, M?, 5% S?) be non negative. Then there exits T > 0

and a unique solution of the differential equation (H,, H;, My, M;, S,,S;) € C([0,T];R)"
associated to the initial datum (H?, H?, MO, M? S2, S?).

s (2

Proof: We rewrite the equation with

(751 Hs —tHUﬂLG -+ THU2
Ug H; truiug — Uy
ue || = M £t u) = as(Ks — u3 — Coitig)us — Mgz — tprusiis
Uy M |77 a;(Ki — ug — cisuz)ug — myus + tarusug
us S, (Fs — Us — Xsille)Us — fisUs — Omugus — Oprugus
Ug Si (ki — Ug — XisUs)Us — fitlg + Opusus + Opruaus

The function f is C* in particular f is locally Lipschitz with respect to u. The Cauchy-
Lipschitz theorem B.1.3 allows to conclude. 0

Corollary 3.3.2 Let (H?, H), MY, M? 5%, S9) > 0. Then the solution (H,, H;, My, M;, Sy, S;)

remains positive and bounded for all the time. In particular, the solution 1s global in time,
1.e. T'= +o0.
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3.3. A Human-Mammal Model

Proof: The proof bases on the phase portrait using that the function (0,0,0,0,0,0) is
solution and the uniqueness given by the previous theorem.
To describe the phase portrait of humans (Fig. 3.9), we denote x = H,,y = H;, thus

tyS;

¥ = —tySix+ryy >0 if y> a2,
TH
tyS;

Y = tySir—rgy >0 if y> 2 g
TH

Concerning mammals (Fig. 3.10), the phase portrait reads for x = My, y = M;

as(Ks —x) —mg — tyS;
Csils
myy — a; (K1 —y)
trSi — aicisy

¥ = as(Ky —x —cqy)r —mgxr —ty Sz >0 if y <

/

vy = ai(K;—y—cisx)y —my+tySiz >0 if x>

Finally, the phase portrait for snail (Fig. 3.11) is given by, for x = S,y = S;

¥ = aylks — T — xay)T — psv — O Hix — Oy Mix > 0
s\fvs ™ - 3_6 H, -0 Mz
if > Qolis =) = s = bl =
XsiOlgg
if @ > Y —olmi 7 y)

O H; + 0y M; — xisaiy
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A Human-Mammal Model

3.3.

s AbERERRAbEY
Gle HEEEEEEEE S
S e
Y TRRNIR RNy
TR ERRIEY

(RARRARARAREA]
(RARRARARAREA]
IAAARAREARAR
\AARRARARARE
IAAARARARER]
(AAARARARRA]
\RAARARARAR]
IRAARARARA
\RAARARAAR
(ARARARAR]
\BAARARAR]
IRARARAR]
\BARRARA
IRAREAR]
(RARAAR]
\ARARA]
\BARAA
IRARR]
\RRRR]

IEEEERERERERER]

IEEEEREREEE R

IEEREEEEEERERER]
IEREEREREREEREEREREN
IR RN
IEEEERERRERERERERERNE
IEEEEREEEREEEERERERER
IR EEEEEEREEEEREREREE
[EEEEEEEEEEEEE RN EN)
IEEEEEE RN RN
IR RN,
IR R RN
IR EEEERE R R RN ERE N
IR RN RN
IR RN
IEEEEREEEEREEREREERERRERE)
IR R R RR
R R R R RN
R R RN
IR R RN
IR RN
IR R
IR R R RN
IR RN RN
IR R RN

Q n
I —

0.0

n
o

>~1.0

tyS;
T

— .y:=

2.0

1.5

>~1.0

0.5

X AAAAAAASAAA A

FFFFFIIIIFIIFY

s
ey S dddd TP P
" HISAIATIITTIN b ¥ b ¥ 44 2 ¥
S AAIIIIAISIING yyrygns

AAAAAASAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAASAAAAS
AAAAAAAAAAAAAAAAAA A
AAAAAAAAAAAAAAAAAAASA
AAAAAAAAASAAASAAAAAS A
AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA A
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA A
AAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA A AAAS
AAAAAAAAAAAAAAAAAAAAAAS
AAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAASAAAAAAAAA S
AAAAAAAAAASAAAAAAAAAAAAAS
AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAASA
AAAAASAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAASA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA S AAAAAAAAS
AAAAAAAAASAAA S AAAASAAAAAAAAS
AAAAAAAAAAAAAAAAAAAAAAAAAAAASA

FIFFIIIIIIS
KIFFIIIII S
KIFFFFIFFS
AR
KIFIIIII S
FKIFFFFFIY
KPP FFFIS
FYIFFIIFS

a

3

X
Phase portrait of Human dynam

1 2

0

Q n
I —

0.0

n
o

>~1.0

1CS.

Figure 3.9

25



A Human-Mammal Model

3.3.

le2

1CS.

Phase portrait of Mammal dynam
26

1

0
Figure 3.10

p p
G R bbb [ Xs, \ in 9 R Py
iR R R R R R R R R R R R R R R R V_mrw \ v TR
ms AR R AR AR AR R R R AR AR AR A R AR AR ,man._a \ ms Sla s w A s s a2y
M CEAAARRARA AR AR AR AR AR AR RARE] 1l A S _,%xxxxxxxxx,,(x rrryyy
S LR R R R R R R R RN AR RRRRRET! th _— = KA RN PPy,
1 AR AR AR AR R R R R R AR AR AR AR AR AR < { | q_a,_////////xxxx( P yrrrryy.
mm. AR AR AR AR AR R R R AR AR AR AR AR AR I < mw. Wﬁx;x;x;x;x;x;( yryyy;
RN R R AR AR AR AR AR RRRRRE] x m P B S ) PPy’
(AR AR AR R R R R R R R R R R R R AR R R R ] \ Il I oo w A s s x
>N AR AR A R A R A R R R R R R AR AR AR AR} { S0 X ovvvvooeaeeaeaswl s s x s v p
AR R AR AR AR AR R AR AR AR AR AR AR \ NN Y 2 s r s p
AR AR AR R AR R R AR AR R AR R R AR m f . NANNNNNNNNNNNNY AL A vy
R AR R AR AR R R AR AR R R AR RN ﬂ ALY
AR AR AR AR R AR R AR R R R R AR R R AR AR R R — SN O N SN NSNS NNN" €224
(RAARRA AR AR R R AR R AR AR R R R R R R R AR X f X AUV W A/ 2 4 7 7
(AR AR AR AR R AR AR R R AR R AR R R RARE m AU LY
(AR AR R R AR AR R R R AR AR R R R R w AU Y »
(R AR R AR AR R AR R AR R AR RARER Vhbay [N f ~ AU Ly
(AR R AR AR R AR AR R RRRRRRE] YRV m ALY
(AR RRRARRRARARRRRRRE YRR u AUy
(AR AR AR AR R R R AR R R AR ATYTRTIOY f ANy
(RRRRRRRRRRR AR R A NYTYPRRIRY % AU Y
R - L NRRRRRRRNNNN
RN RN \
AN LT TRTRRRRRRRINY] \ SRNRRARRRRAY
AR Z (YRS YRRRTRRRRRRTRY! ) AR
Y TR Y. \ AR,
AN LR TR R NIRRT RNy, \ AR
AN (RN TR RSN RN RNy, \ AR
(XXX o o AN
o o o o o o o o o o o o o o o o o o o o o
o o] o n o Te] o N @] Te] o n o o] o n o Te]
m NN o —~ — m o o —~ — m (o] o —~ —
A A A



A Human-Mammal Model

3.3.

IEEEEEEEEENE]

S|
SLHEHE
S el
= RROAAAARARAL TYTRTRTRRTIN
HARARAARARAALY SRRPRRRRRRRRY!
S CAARAARARRLY /PR RTRPRRRN
NEEXERRRREAT
Ad PEARAR R RAbEtY
N BRAAAASAAS SYTTRRTTRRRRTRY
KIRAAAASRY/ TYTRRRRRRNRRILY.
KIRAARRAARARAY FRRPRRRPRRRRRRRN
I HHHHHHH*:III::»::
S
FARRARER R R dhhd
AAAR/ FETTR TR TR PR RPN
””““HH RIS RRRTRR ARy
ATTTRYTRRYTRRRRILY
IAAAAAAARS ST TR PR RN TR RPN
AAARARY FTT PRI T TR R RN
AAARALY TR TR PR PPN
IAEAAS [TTTTTRRY RN SRR RR Ry
”HHHH% PARRARAR R R R b A atd
FARRAR AR R R b b dhd
AL TP PR PP PR RPN
HHHHH FARRAR AR R bbb dbttd

RN R N
L RN
IR R R RN
IR R RN RN

o

3.5

1.5 2.0 2.5 3.0

1.0

0.5

0.0

HH RN RN
o o o O o o O o
o o o O o o O
o (@} o O o o O
N~ O N < m N —

le3

My — ai(Ki— y)y

OyHi + OuM; — ajXisy

X

0
le5

0.8

0.6

0.4

0.2

0.0

7000

6000

5000

4000

3000

2000

AR S N S N NS LLRR RN
AR N NN NN RN RN
A S N N NN NN RN
AN L
AU L Y
AU LY
ASR RN NN RRLRRNRRNY
AR RL LN LR LN NR RN
ALRELLLLLLLERLRNNEEY
ASS SRR NNLNNN NN
AN SRR L RN NN 3
AR SRR N RSN 3
AR NN NN NSNS 3
AN NSNS 3
AR NSRS NN .2
AR S S N N S NN NN i
AR N S S S N N N N N NN
LRSS N NSNS LR 24
AR NSNS LN LR RN 24
AR S N N NSNS LN RN NNNNY 24

QAsXsi

Wiy —ai(ki = y)y

as(Ks — X) — s — OyH; — OuM;
OuHi + OuM; — aiXisy

y’:
X =

AR

8

0

0.6

0.4

0.2

0.0

"y NXRRXRRRXXRRRXXRX X
o o o o =3
o o o o =3
o o o o o
~ [(e] N < m
A

2000

le5

1CS.

Phase portrait of Snail dynam

Figure 3.11

27



3.3. A Human-Mammal Model

We content ourselves to the study of the Disease Free Equilibirum (DFE) f =

(HY,0,MZ,0,5%0). It is solution of the system

0
0
(20,0, 55, 0) = | e = M M A
g (ks — S7) S5 — ps Sy

0

We deduce

(asKy —asM; —mg) M; = 0.
Then K
M} =0and M} = BsBs 7 M5 (biologically relevent if M} > 0),
aS
and

(asks — St — 1s) S: =0
which provides

S* =0and S = 2 T (hiologically relevent if S* > 0).

Qs

Finally the Disease Free Equilibrium are written

0,0,0,0,0,0)
H*,0,0,0, 0 0)

uy =
ui = (

* p—
U2 h—

( ooo)
w = (H*OOO - “80>

mst’ as/{s_,us,o) )

u =
4
«

f(u07u17u27u37u47u5>
, (U Uy, U2, U3, Ug, Us
For (ug, uy, uz, us, ua, us)' (t) = | k(

~ T

(U Uy, U2, U3, Ug, Us
C(UO, Uy, Uz, U3, Ug, Us

of of of of I9f IOf
8u0 8u1 6u2 811,3 8U4 (9715
99 989 99 99 99 Iy
* * * * * * . Or Ok Ok
J(UO,UI,UZ,U3,U4,U5) - dug  Oui  Ou Ous Ous Ous
B0 ol tor o ot ‘o
dug O 0 Ous Ous O

B D 9l ‘el Bl B0
Oug  Ou; Ouz Ouz Ous Ous

28
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3.3. A Human-Mammal Model

Then the Jacobian is computed for the DFE (HZ,0, M*,0, 5% 0) to give

J(H:0,M:0,550) =
0 rg 0 0 0 —tHH:
0 —rpg 0 0 0 tyH;
0 0 asKs —2asM; —mg —ascs;i M} 0 —tp M}
0 0 0 aiKi - aicisM;k —my 0 ZL/]\/[]W;<
0 —0uS; 0 —00S% asks — 20055% — s —QsXsiSh
0 HHS; 0 GMS;k 0 oKy — aiXisS; — W
Starting with the DFE (0,0,0,0,0), the Jacobian reduces to
J(0,0,0,0,0,0) =
0 ry 0 0 0 0
0 —ry 0 0 0 0
0 0 aK;—mg, 0 0 0
0 0 0 0 QsKs — [hs 0

The eigenvalues are
(0, —=rp,asKs — mg, a; K; — my, Qsks — s, K — [1) .

Then u is asymptotically stable if the real part of all eigenvalues is negative. The eigen-
values of J(u}) are the same.
We deduce

Theorem 3.3.3 Assume that
as Ky < my

a; K; < m;

Qghis < [l

ik <
then u and uj are asymptotically stable.

Concerning u3, the Jacobian reads

0 ry 0 0 0 —tyH?

0 —ru 0 0 0 tH?

0 0 asKs+ms —cgi(asKs—my) 0 —W

0 0 0 a; I —my —aic“(a‘;Krms) tM(ans*ms) )
0 0 0 0 gt — fis 0

and its eigenvalues are

i a;cisms — asm; — Kga;cis + K;a;a,
—TH, —Qgi\g + ms,skg — /Lsa R — ,Uia a
S

We deduce
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3.3. A Human-Mammal Model

Theorem 3.3.4 Assume that

—a, Ky > my
Qsks < s
QiR < [

a;cisms + Ka;a, < agm; + Kga;c;s
then uy is asymptotically stable.
The eigenvalues of J(uj) are computed with Python which provides

07 asKs — Mg,

2 2
QO Xishs — QR — QiXishs + Qspi + st \AH; 2kt a0 — AHEospsta O + ofaxt k2

200 20

2.2, 2 2 2 2 2 2,2 )
—207a2Xiskikis + Q7 Q2KT — 205 Qs XFshshls + 205 Xiskipts + afXF 2 + 20502 Xiskispli — 20402 XisKsTH
20

—20;,02Ki i + 2002 KT — 206,00 Xisifts + 2050 XisphsTH + Q22U — 202 1m + o213
20

)

and

_ Q0 Xishis = 0iQshi = QiXishls + Qsfli + sty VAH; 2kt g0 — 4HFaspsta b + ofa2xi k?
2043 2as

2 2 2 2 2 2 2.2
—20202xXiskiks + QF02KT — 202 s XF Ksfs + 202 XisKifls + QF X212 + 20,02 X s kst — 206,02 X isksTH
204

—20;,02K; i + 20602 KT — 2050 Xisflifhs + 20500 XisphsTH + Q23 — 202y + a?ry
2004 '

Again the eigenvalues of J(uj) can be computed with Python (see code in the ap-
pendix).

3.3.2 Numerical Simulations

The values of parameters are chosen from (Allen & Victory, 2003; Hisakane et al., 2008)
and reflecting data from Ban Houadonhi village, in Champasak Province, Laos. Here the
parameters for mammals are calibrated considering dogs. The initial population is 2750
http://www.fallingrain.com/world/LA/02/Ban_Houadonhi.html.
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3.3. A Human-Mammal Model

ty disease transmission 1074
TH recovery 5x 1074
tu disease transmission 6.32 x 107
my death rate of susceptible mammals 2 x 10~
m; death rate of infected mammals 2 x 107
g growth rate of susceptible mammals 7x 1078
a; growth rate of infected mammals 7x 1078
K capacity of susceptible mammals 750

K; capacity of infected mammals 750

Cyi | competition coefficient between susceptible and infected mammals 0

Cis | competition coefficient between infected and susceptible mammals 0

[bs death rate of susceptible snails 7x 1073
Lbi death rate of infected snails 7x 1073
Qs growth rate of susceptible snails 5x 107°
a; growth rate of infected snails 5x107°
Ks capacity of susceptible snails 10%

K capacity of infected snails 10%

Xsi competition coefficient between susceptible and infected snails 0

Xis competition coefficient between infected and susceptible snails 0

Oy disease transmission from humans 5.15 x 1076
O disease transmission from mammals 5.15 x 107°

Simulations are made during 4 years with a time step equal to 1 day.

Figures 3.12—

3.13-3.14 represents the evolution with respect to day of humans, mammals and snails.
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3.3. A Human-Mammal Model
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Figure 3.12: Evolution of incidence in human population with respect to day.
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3.3. A Human-Mammal Model
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Figure 3.13: Evolution of incidence in mammal population with respect to day.
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3.3. A Human-Mammal Model
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Figure 3.14: Evolution of incidence in snail population with respect to day.
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Chapter 4

Study of Time Dependent Model with
Spatial Invasion

We study the prevalence of infection in the population of humans as well as in the popu-
lation of mammals, denoted by H and M respectively. Ross’ model is applied to describe
the evolution of the prevalence

H'(t) = ayoS(t)(1—H(t)) —guH(t) (4.1)
M'(t) = apdS(t)(1— M(t)) — guM(t). (4.2)

Champassak
UGN

Figure 4.1: Compartimental representation of the human-mammal-snail model. Snails are
living inside the Mekong river.

We investigate the spatial propagation of the epidemics following snails prevalence (.5).
Snails are living inside the river and their movement is governed by the reaction-diffusion
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4.1. Progressive Waves for the Quasi-Steady State

equation
mortality
t b H b M —
05(t.x) _ (buonH  buowMN o\ v St a) —mS(ta) + dAS(ta) . (4.3)
ot ) 1) ——
~ ~ - spatial diffusion

infection

4.1 Progressive Waves for the Quasi-Steady State

The quasi-steady state consists in assuming that the recovery is faster for humans and
mammals than for snails. It can be translated in equations (4.1)-(4.2) by

CLH(SS
0= 05(1 —H) — gy H H=——+—"——
andS(1—H) =gull < andS + g1
aMéS
0= 0S(1— M) — M & M=——"7"—/¥——.
ay ( ) gm 405 + 9ot

The reaction-diffusion equation (4.3) becomes

aS(t,I) . CLHbHO'H aMb]V[UM
ot \awdS(t,x)+gn  andS(t, ) + gu

) S(t,x) (1= S(t,x))—pS(t, x)+dAS(t, x).
(4.4)

Theorem 4.1.1 Let Sy € L*(R). Then there exist T > 0 and a unique solution S €
C>([0,T] x R).
Moreover, if So s non-negative, then the solution remains non-negative for all time.

Proof: The nonlinear part

apbpon anbaronm
t,9) = S(1—S
f( ) (GH(SS +gH + &Njés + gM) ( )

being locally Lipschitz with respect to S, we deduce from Corollary B.4.3 the existence of
solution.
We note that

f(0)=f(l)=0and for 0 < S < 1,f(S) >0,

and thus apply corollary B.4.5. O

Progressive waves are solution of the form
S(t,z) = ®(x — ct)

which relates the unstable equilibrium to the stable equation. It represents waves moving
in one direction (from left to right if ¢ > 0 and from right to left if ¢ < 0). Here ¢ denotes
the speed of the wave. If z = x — ct, we deduce that

8S(t,a:)_8_®%_ 0S(t, x) _8_@%_ ()
ot 0z ot or  0z0r

—e®(2),
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4.2. Qualitative Study

and

9?8 (t, ) B ﬁ oS(t,z)\  0¥'(z) 6@’% _ ()
ox2 Oz ox 9 0z Ot )

The partial differential equation (4.4) turns to the second order ordinary differential equa-
tion

' o agbrog aybrrom "
—c®(z) = <aH5<I>(z) T gM) D(z) (1 — B(2)) — pS(t, ) + d"(2).

Let x = &,y = &', we then obtain the system of first order ordinary differential equations

¥ o=y (4.5)
1 (—c — ( anbuoH + Anbuom ) x(l—x)+ m) (4.6)
YT v agdr +9gg  apm0T + gu HE) '

4.2 Qualitative Study

Theorem 4.2.1 Let (x0,y0) be non negative. Then there exits T > 0 and a unique solu-
tion of the differential equation (z,y) € C([0,T];R) x C([0,T]; R) associated to the initial
datum (xg, yo).

Proof: We rewrite (4.5) and (4.6) as

u'(t) = f(t,u(t)),

where

u = 9 ] t7u - agbgo an g :

The function f is C* in particular f is locally Lipschitz with respect to u. The Cauchy-
Lipschitz theorem B.1.3 allows to conclude. 0

Corollary 4.2.2 Let (xg,y0) > 0. Then the solution (x(t),y(t)) remains positive and
bounded for all the time. In particular, the solution is global in time, i.e. T = +00.

Proof: The proof reads in the phase portrait (Figure 4.2C) since (0, 0) is solution and

¥ = y>0wheny>0
1 apbroy anbrrom ) ) .
= 2| —cy— (1l —2z)4+ ux | >0 (Fig. 4.2A
Y d ( (CLH5$ +9n  apmoT + gu ( ) u (Fig )
—1 CLHbHO'H CleMO'M ) ) .
when y < — + r(l—x)+ ux Fig. 4.2B).
y c ((ade—l—gH aro0x + gy ( )+ (Fig )

0
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4.2. Qualitative Study
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4.3. Numerical Simulations of the Progressive Waves

Equilibrium are given as the solution of

y =0
—cy* — ( agbgon + anmbyom ) ¥ (1 _ l‘*) + pz* = 0.

agdT+gH apoz+gn

Here the two equilibrium are
(0,0) and (z*,0)

with z* > 0.

We look for progressive waves moving from left to right that link the unstable equilib-
rium (z*,0) to the stable equilibrium (0,0). We compute the Jacobian for the equilibrium

(0,0)
0 1
J 070 = a g a (o C = C )
( ) _%l( sz H o MZJIZ M) _‘_% —< (lé (1 _ RO) _E>

where R :— aubuom apmbymom
0 - HYH pgm

Finally, the eigenvalues are

—c— /2 —4(Ry — 1)ud —c+ /A2 —4(Ry — 1)ud
¥ and ¥ .

Theorem 4.2.3 The progressive waves that link the unstable equilibrium (z*,0) to the
stable equilibrium (0,0) ezist if

c¢>2+/(1 = Ry)ud and Ry > 1.

Proof: The equilibrium (0, 0) is asymptotically stable if the eigenvalues are negative real
values i.e.

& —4(Ry — 1)ud > 0.

4.3 Numerical Simulations of the Progressive Waves

The values of parameters are chosen to obtain the progressive waves that link the unstable
equilibrium (z*,0) to the stable equilibrium (0, 0).
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4.3. Numerical Simulations of the Progressive Waves

ag | rate of incidence for one single human host 1

by rate of snail infections to human 1072
oH density of human hosts 10
JH recovery rate for human host infections 6 x 1074
ays | rate of incidence for one single human host 1

bas rate of snail infections to human 1072
oM density of human hosts 10
IM recovery rate for human host infections 6 x 10~*
) density of snails 40

i death rate of the snails 102

d diffusion coefficient 1

Ry reproduction number 10/3

c wave speed 2.5v/(Ro — 1)ud

Simulations are made during 10 days with a time step equal to 0.01 day. Figure 4.3

represents the evolution with respect to day of x and y.

le—-5
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Figure 4.3: Evolution with respect to day of x and y.
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4.4. Numerical Simulations of the Reaction-Diffusion System

4.4 Numerical Simulations of the Reaction-Diffusion Sys-
tem

We come back to the partial differential equation (4.4). Snails are spatially spreading
inside the Mekong river. Here we focus on a part of Champasak border (Figure 4.4).

Figure 4.4: Maps of Champasak border river pictures from Google Maps and extracted
river for the simulation.

Finite differences are used to solve the equation. The partial differential equation turns
to the system of ordinary differential equations for .S; ; the approximation of S at the point

(xia yj)

agbrgoy anbrpom
[0) = (i MM ) 550 (1= 8,5(0) = S (1) + DS, 1)
where D is the discretization operator associated with the Laplacian (see Appendix B.3)

given by
Sit1,; — 25 + Si1; " Sij+1 — 285 + Sij—

0x? oy?
The values of parameters are chosen to reflect the behavior around Champasak province,
Laos.

DSi’j =
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4.4. Numerical Simulations of the Reaction-Diffusion System

ag | rate of incidence for one single human host 1
by rate of snail infections to human 10~4
oH density of human hosts 1
g | recovery rate for human host infections | 6 x 1074
ays | rate of incidence for one single human host 1
bas rate of snail infections to human 1074
oM density of human hosts 1
IM recovery rate for human host infections 6 x 10~*
) density of snails 40
I death rate of the snails 7x 1073
d diffusion coefficient 0.1

Simulations are made during 1 year with a time step equal to 0.01 day. Figure 4.5 repre-
sents the spatial propagation of the prevalence in the snail population.

River initial data prevalence of infection after 365 days

Figure 4.5: Evolution of the prevalence in the snail population.
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Chapter 5

Conclusion

In this dissertation, we aim at better understanding water borne diseases especially, Shis-
tosoma Mekongi and its trasmission in Laos. To do this, we start studying well-known the
Macdonalds and Ross mathematical models. Macdonald first proposed a mathematical
model for the transmission of schistosomiasis. Based on Ross’ model, we then developed
new system of differential equations accounting for human, mammal as four definite mam-
malian hosts and and snail as two intermediate hosts. A new time dependent model with
spatial invasion was proposed to observe the prevalence of infection through the Mekong
river in Champassak state.

Computational simulations, performed here with Python, can become as a planning in-
strument of Schistosomiasis control measures among the following strategies:

1. increase the death rate of the snails by using pesticides;
2. killing parasites inside hosts with drugs;

3. change the behavior of people to reduce contact with dirty water.

Values of parameters used in this dissertation were estimated from (Allen & Victory, 2003;
Hisakane et al., 2008) and reflected data from Ban Houadonhi village, in Champasak
state, Laos and the initial population is from http://www.fallingrain.com/world/LA/
02/Ban_Houadonhi.html. It would be interesting to retrieve more specific data and to
conduct an advanced biological study about Laos.
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Appendix A

Source codes

The codes we developped are available below. They are written in Python using numpy,
scipy and matplotlib libraries.

A.1 The Macdonald model

The first code allows to solve the system of differential equations.

nmnn

Created January 2017
Author: May

Macdonald’s schistosomiasis model
nnn

# import

from math import =

from numpy import

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time
T = 25%365. # final time 25 years
dt = 1. # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# Parameters

alpha = 1.
delta = 40.
gamma = 6.e—4
beta = le—4
sigma = 1.

mu = 7e—3
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A.1. The Macdonald model

# basic reproduction number
RO = alphasxbeta*sigma /(muxgamma)
print ("the_basic_reproduction_number_is_equal_to_’ + str(R0))
if RO > 1:
print ("the_disease_is_endemic. )
else:
print ( "the_disease_disapears.’)

# random initial condition
x0 = abs(randn (1))
y0 = abs(randn (1))
u0 [x0[0], yO[O]]

# define the ODE
def funct(u,t):

x = u[0]

y = u[1]

xprime = alphaxdeltaxy — gammasxx

yprime = betaxsigma/delta*xx(1l.—y) — muxy

return [xprime, yprime]

# Solve the ode
u = odeint (funct , u0, t)

-

# plot the solution

rcParams| 'font .size’] = 32
x = ul:,0]
y = ul:,1]
figure (1)
plot (t,x,’ linewidth=5)

r
ylabel (r’$x

(6)8°)
xlabel (’day’)
figure (2)
plot(t,y, ’g’, linewidth=5)
ylabel (r’$y(t)$")
xlabel (’day’)

# display
show ( )
HHE
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A.1. The Macdonald model

The second code is related with the phase portrait.

Created February 2017
Author: May

Macdonald’s schistosomiasis phase portrait
nnn

+ import

from math import =*

from numpy import =x

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time

T = 25%x365 # final time 25 years

dt = 1 # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# Parameters
alpha = 1.
delta = 40.
gamma — 6.e—4
beta = le—4
sigma = 1.

mu — 7e—3

# phase portrait

rcParams| 'font .size’] = 32

x = linspace (0.01, 8e4, 30); y = linspace(0.01, 2, 30)
[X,Y] = meshgrid(x, y) # generate a grid

Xprime = alphaxdelta*xY — gammaxX

Yprime = betaxsigma/delta*X«(1.—-Y) — muxY

figure (1)
quiver (X,Y,Xprime/sqrt (Xprime**2) ,zeros (Y.shape), color="r")
plot (x, gammasxx/(alphaxdelta), linewidth=5, \
label=r’$y=_\frac {\gamma}{\ alpha\delta}x$")

legend (loc=0)

xlabel (78x$7)

ylabel (78y$7)

ticklabel format (style=’sci

», axis=’'x’, scilimits=(0,0))

figure (2)

quiver (X,Y, zeros (X.shape) ,Yprime/sqrt (Yprime*%2), color="r")

plot (x, x/(x+deltasmu/(betaxsigma)), ’'g’,linewidth=5, \
label=r’'$y=\frac{x}{x+\frac{\delta_\mu}{\beta_\sigma}}$"’)

legend (loc=0)

xlabel (7$x$ ")
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A.1. The Macdonald model

ylabel (7$y$ )
ticklabel format (style=’sci

’, axis=’'x’, scilimits=(0,0))

figure (3)

quiver (X,Y,Xprime/sqrt (Xprimex*2) , Yprime/sqrt (Yprimex*2), color="r")
plot (x, gammaxx/(alphaxdelta), ’b’,linewidth=5)

plot (x, x/(x+delta*mu/(betaxsigma)), ’'g’, linewidth=5)
legend ((r’$y=_\frac{\gamma}{\alpha\delta}x$’ \
r’8y— \frac{ Hx+\frac{\delta_\mu}{\beta_\sigma}}$’),loc=0)
xlabel(’$x )
ylabel (78y$7)

ticklabel format (style="sci’, axis=’x’, scilimits=(0,0))

# display
show ()

LU
A

J

L L]
HHHAAA HEHHHHHHEHE

T 11t

S ]
T //'/ //'f /’f /'f //'f //‘/ //‘/‘ // 7 // ‘/

The third code explains how to handle bifurcations.

)
//7/'//‘//‘//‘//'//‘
nnn

Created February 2017

S
T //'/ //'/ /1'/ /1'/ /'/'f //'/ /" ;

Author: May

Macdonald ’s schistosomiasis bifurcation
nnn

# import

from math import =

from numpy import =

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time
T = 25%365 # final time 25 years
dt = 1. # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# random initial condition
x0 abs(randn (1))
y0 = abs(randn (1))
u0 = [x0[0], yo[0]]

# parameters initialization
alpha = 1; delta = 40.; gamma = 6.e—4; beta = le—4; sigma = 1.; mu = 7e—3

# define the ODE
def funct(u,t):
x = u[0]

y = u[1]
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A.1. The Macdonald model

xprime = alphaxdeltaxy — gammasxx
yprime = betaxsigma/deltasx*(l.—y) — muxy
return [xprime, yprime]

# generate solutions wrt to the bifuraction parameter
i=0; n= 100

xx = zeros(n); yy = zeros(n); RO = zeros(n)

mm = linspace(le—1, 1., n)

for mu in mm:

+ parameters

alpha = 1.
delta = 40.
gamma — 6.e—4
beta = le—4
sigma = 1.

# solve

u = odeint (funct, u0, t)

xx[i] = u[-1,0]

yy[i] = u[-1.1]

RO[i] = alphaxbeta*sigma /(musgamma)
i=1i+1

t plot the solution
rcParams| 'font .size’] = 32
figure (1)

plot (mm,xx, ’r’, linewidth=5)
xlabel (7$\mu$’)

ylabel ("$x"%§$ ")

figure (2)

plot (mm,yy,’g’, linewidth=5)
xlabel (7$\mu$’)

ylabel (78y~*§ ")

figure (3)

plot (mm, RO, '—’, linewidth=5)
xlabel (7$\mu$’)

ylabel (’$R_0$")

# display
show ()

o0



A.2. The Ross model

A.2 The Ross model

The first code allows to solve the system of differential equations.

L NN IR IR IR IN IR IR ININIRIA
A
nnn

Created April 2017

,.//.//.//.//.//.//.//.//.//.//.//.;‘

AT A

TR A

T T

Author: May

Ross’ schistosomiasis model
nnn

- import

from math import x*

from numpy import =x

from matplotlib.pylab import x*

t import ode solver
from scipy.integrate import odeint

# Time

T = 25%x365. # final time 25 years

dt = 1. # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

,/ Parameters

a = 1.
delta = 40.
g = 6.e—4
b = le—4
sigma = 1.

mu = 7e—3

# basic reproduction number
RO = axbxsigma /(muxg)
print ("the_basic_reproduction_number_is_equal_to_’ + str(R0))
if RO > 1:
print ( "the_disease_is_endemic. )
else:
print ( "the_disease_disapears.’)

# random initial condition
x0 = abs(randn (1))
y0 = abs(randn (1))
u0 = [x0[0], yO[O]]

# define the ODE
def funct(u,t):

x = uf0]
y = u[l]
xprime = axdeltaxyx(1l.—x) — gxx

yprime = bxsigma/deltaxx*(l.—y) — muxy
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A.2. The Ross model

return [xprime, yprime]

# Solve the ode
u = odeint (funct , u0, t)

# plot the solution

rcParams| 'font.size’| = 32

x =ul:,0]

y = uf:,1]

figure (1)

plot (t,x,

ylabel (r

xlabel (’d

figure (2)
(r
¢

'r’, linewidth=5)
$x(t)$7)
ay’)

plot (t y 'g’, linewidth=5)
ylabel (r’$y(t)$")

xlabel (’day’)

+ display

show ()
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A.2. The Ross model

The second code is related with the phase portrait.

Created April 2017
Author: May

Ross’ schistosomiasis phase portrait
nnn

+ import

from math import =*

from numpy import =x

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time

T = 25%x365 # final time 25 years

dt = 1 # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# Parameters

a=1.; delta = 40.; g = 6.e—4; b = le—4; sigma = 1.; mu = 7e—3
+ phase portrait

rcParams| 'font .size’] = 32

x = linspace (0.01, 8e4, 30); y = linspace(0.01, 2, 30)

[X,Y] = meshgrid(x, y) # generate a grid

Xprime = axdeltaxYx(1.-X) — g*X

Yprime = bxsigma/delta*Xx(1.-Y) — muxY

figure (1)

plot (axdeltaxy/(axdeltaxy+g), y, linewidth=5, \
label=r ’$x—_\frac{a\delta_y}{a\delta_y_+_g}$")

legend (loc=0)

quiver (X,Y,Xprime/sqrt (Xprimexx2),zeros (Y.shape), color="r")

xlabel (78x$7)

ylabel (78y$7)

ticklabel format (style=’"sci

», axis=’'x’, scilimits=(0,0))

figure (2)

quiver (X,Y, zeros (X.shape) ,Yprime/sqrt (Yprime*%2), color="r")

plot(x, 1/(1+deltaxmu/(bxsigmaxx)), ’'g’,linewidth=5, \
label=r’$y=\frac{1}{1+\frac{\delta_\mu}{b_\sigma_x}}$")

legend (loc=0)

xlabel (78x$7)

ylabel (78y$ ")

ticklabel format (style="sci’, axis=’x’, scilimits=(0,0))

figure (3)
quiver (X,Y, Xprime//sqrt (Xprime**2) ,Yprime/sqrt (Yprime**2), color="r")
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A.2. The Ross model

plot (axdeltaxy/(axdeltaxy+g), y, ’b’,linewidth=5)
plot (x, 1/(1+deltaxmu/(bxsigmaxx)), ’g’, linewidth=5)

legend(( r’$x=_\frac{a\delta_y}{a\delta_y_+_g}$" \
r’§y—= \frac{l}{1+\frac{\delta_\mu}{b \sigma_x}}$’),loc=0)
xlabel(’$x )
ylabel (78y$7)
ticklabel format (style="sci’, axis=’'x’, scilimits=(0,0))
# display
show ()

I L)L 1)) L)) L
v, £ . 4 A 4 -

The third code explains how to handle bifurcations.

A A A A A i

nnn

Created April 2017

ey
AT

Author: May

Ross’ schistosomiasis bifurcation
nnn

# import

from math import x

from numpy import

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time

T = 25%365 # final time 25 years

dt = 1. # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# random initial condition
x0 = abs(randn (1))
y0 = abs(randn (1))
u0 = [x0[0], yo[O]]

# parameters initialization
a = 1.; delta = 40.; g = 6.e—4; b = le—4; sigma = 1.; mu = 7e—3

# define the ODE
def funct(u,t):
x =uf[0]; y = u[l]
xprime = axdeltaxyx(1l.—x) — gxx
yprime bxsigma/deltaxx*(l.—y) — muxy
return [xprime, yprime|]

# generate solutions wrt to the bifuraction parameter
i =0; n= 100
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A.2. The Ross model

xx = zeros(n); yy = zeros( ); RO = zeros(n)
mm = linspace (le—1, , 1)
for mu in mm:

# parameters
a = 1.; delta = 40.; g = 6.e—4; b = le—4; sigma = 1.

# solve

u = odeint (funct , u0, t)
xx[i] = u[-1,0]

yyli] = u[-1.1]

RO[i] = axbxsigma /(muxg)
i=1+1

t plot the solution
rcParams| 'font .size’] = 32
figure (1)

plot (mm,xx, ’r’, linewidth=5)
xlabel (7$\mu ’)

ylabel (78x"%$ ")
figure (2)

plot (mm,yy, g’ ,
xlabel (7$\mu$’)
ylabel (78y~x$ ")
ticklabel format (style="sci’, axis=’y’, scilimits=(0,0))
figure (3)

plot (mm, RO, '—’, linewidth=5)

xlabel (7$\mu$’)

ylabel (’$R_0$")

linewidth=5)

# display
show ()

1
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A.3. Human-Mammal model

A.3 Human-Mammal model

The first code allows to solve the system of 6 differential equations.

| 1 S

nnn

Created April 2017

Author: May

model

Human—Mammal schistosomiasis
nnn

£ import

from math import x*

from numpy import =x

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time
T = 4%365. # final time 4 years
dt = 1. # time step 1 day

in time
interval

Nt = int (T/dt) iterations
t = linspace (0,T,Nt) # time

# Parameters

th = le—4 ; th = 0.0038/7.

a = 7e—8; Ks = 3000./4.; Csi = 0.0; ms = 0.002/7.; tm = 6.32e—5
ai = 7e—-8; Ki 3000./4.; Cis 0.0; mi = 0.002/7.

alpha = 5e—6; Kappas = 10000 ; Xsi = 0.0; mus = 7e—3; thetah = 5.15e—6 ; thetam = 5.15e—
alphai = 5e—6; Kappai = 10000; Xis = 0.0; mui = 7e—2
# initial condition from Ban Khatouay, Laos
HsO = 2750.; Hi0O = 0.
Ms0 = 2750./4.; Mi0 = 0.
Ss0 = abs(randn (1))[0]; Si0 = abs(randn(1))[0]
u0 = [Hs0,Hi0O, Ms0,Mi0, Ss0, Si0]
# define the ODE
def funct(u,t):
Hs = u[0] ; Hi = u[1]
Ms = u[2] ; Mi = u|3]
Ss = uf[4] ; Si = u[5]
Hsprime — —th*HsxSi + rhxHi
Hiprime = thxHsxSi — rhxHi
Msprime = a*(Ks — Ms — CsixMi)«Ms — ms*Ms — tm+MsxSi
Miprime = ai*(Ki —Mi — Cis*Ms)*Mi — mixMi + tm*Ms*Si
Ssprime = alphax(Kappas — Ss — Xsi®Si)*Ss — musxSs — thetah+HixSs — thetam*MixSs
Siprime = alphaix(Kappai —Si — Xis*Ss)*Si — muixSi + thetah+HixSs + thetam*MixSs
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A.3. Human-Mammal model

return [Hsprime, Hiprime, Msprime, Miprime, Ssprime, Siprime]

# Solve the ode
u = odeint (funct, u0, t)

# plot the solution
rcParams| 'font.size’| = 32
Hs = u[:,0] ; Hi = u[:,1]
Ms = u[:,2] ; Mi = ul:,3]
Ss = ul:,4] ; Si = u[:,5]
figure (1)

plot (t,Hs, r’, linewidth=5)
ylabel (r'$H_s(t)$")

xlabel (’day’)

figure (2)

plot(t,Hi, ’g’, linewidth=5)
ylabel (r’$H_i(t)$")

xlabel (’day’)
figure (3)
plot (t ,Ms,’b’, linewidth=5)
ylabel (r’$M_s(t)$")

xlabel (’day’)
figure (4)
plot (t ,Mi, ’k’, linewidth=5)
ylabel (r’$M_i(t)$")

xlabel (’day’)

figure (5)

plot(t,Ss,’y’, linewidth=5)
ylabel (r’$S_s(t)$")

xlabel (’day’)

figure (6)

plot (t,Si, 'm’, linewidth=5)
ylabel (r’$S _i(t)$")
xlabel (day’)

# display
show ()
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The second code is related with the phase portrait of human population.

Created April 2017

Author: May

Human phase portrait
nnn

+ import

from math import =*

from numpy import =x

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time
T = 4%365. # final time 4 years
dt = 1. # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# Parameters
th = 1le—4 ; rh = 0.00054
Si = 1.

+ phase portrait

rcParams| 'font .size’] = 32

x = linspace (0.01, 5, 30); y = linspace(0.01, 2, 30)
[X,Y] = meshgrid(x, y) # generate a grid

Xprime = —th*X*Si + rhxY

Yprime = th*XxSi — rhxY

figure (1)

plot (x,th/rh*Sixx, linewidth=5, \
label=r’'$y=_\frac{t H_.S i}{r H}x$’)

legend (loc=0)

quiver (X,Y,Xprime/sqrt (Xprime**2) ,zeros (Y.shape), color="r")

xlabel ( ’$X$ )

ylabel (78y$ ")

figure (2)
quiver (X,Y, zeros (X.shape) ,Yprime/sqrt (Yprime*%2), color="r")
plot (x,th/rh*Sixx, ’g’,linewidth=5, \
label=r’$y=_\frac{t H_.S i}{r H}x$’)
legend (loc=0)
xlabel (7$x$ ")
ylabel (78y$ ")

figure (3)

quiver (X,Y, Xprime//sqrt (Xprime*%2) , Yprime/sqrt (Yprime**2), color="r")
plot (x,th/rh*Sixx, ’g’,linewidth=5, \
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A.3. Human-Mammal model

label=r’$y=_\frac{t H_.S i}{r H}x$’)
legend (loc=0)
xlabel (7$x$ ")
ylabel (78y$ ")

# display
show ()

i i i 1]/
1 et /

::::::::::::::::::::::::::::::::

{1 1 et S
l 17 7 17 1T 17 1T T 1T

99



A.3. Human-Mammal model

The third code computed eigevalues.

from sympy import x

# parameters

H, M, S = symbols("H.M_S")

tH, rH = symbols ("tH_rH")

a, Ks, csi, ms, tM, ai, Ki, cis, mi = symbols("a_ s_K s_c_si_m s_.t M_a i_K i_c is.m i")
als , Kas, Qsi, mus, teH, teM, ali, Kai, Qis, mui = symbols("alpha s_kappa s_chi si_mu s_

# Jacobian of Ul

JU1l = Matrix ([[0, rH, 0, 0, 0, —tH«H], \
[0, —rtH, 0, 0, 0, tH«H], \
[0, 0, axKs—ms, 0, 0, 0], \

[0, 0, O, ai*Ki-mi, 0, 0], \

[0, 0, 0, 0, alsxKas—mus, 0], \
[0, O, O, 0, 0, ali*xKai—-mui] ])

# eigenvalues of JU1

eUl = JUl.eigenvals ()

print ’the_eigenvalues_of_J(Ul)_are_’, eUl

# Jacobian of U2
JU2 = Matrix ([[0, tH, 0, 0, 0, —tH«H], \
[0, —rtH, 0, 0, 0, tH«H], \
[0, 0, —axKstms, —csi*(axKs—ms), 0, —tMx(a*xKs—ms)/a], \
[0, 0, O, aixKi—mi, —aixcisx(axKs—ms)/a, tMx*(axKs—ms)/a], \
[0, 0, 0, 0, alsxKas—mus, 0], \
[0, O, O, 0, 0, alixKai—mui] ])
# eigenvalues of JU2
eU2 = JU2.eigenvals ()
print ’'the_eigenvalues_of_J(U2)_are_’, eU2
# Jacobian of U3
JU3 = Matrix ([[0, rH, 0, 0, 0, —tH«H], \
[0, —rtH, 0, 0, 0, tH«H], \
[0, 0, axKs—ms, 0, 0, 0], \
[0, 0, O, ai*Ki-mi, 0, 0], \
[0,—teHx(als*xKas—mus)/als ,0,—teMx( als xKas—mus)/als ,—als«Kas+mus,—als«Qsix(als «Ka
[0,teHx(als*Kas—mus)/als ,0,teMx*( als«Kas—mus)/als ,0,alixKai—ali*Qis*(als+«Kas—mus)
# eigenvalues of JU3
eU3 = JU3.eigenvals ()
print ’'the_eigenvalues_of_J(U3)_are_’, eU3

Jacobian of U4
JU4 = Matrix ([[0, tH, 0, 0, 0, —tH«H], \
[0, —rtH, 0, 0, 0, tH«H], \
[0, 0, —axKstms, —csix(axKs—ms), 0, —tMx(axKs—ms)/a], \
[0, 0, O, aixKi—mi —aixcisx(axKs—ms)/a, 0, tMx(axKs—ms)/a], \
[0,—teHx(alsxKas—mus)/als ,0,—teMx( als xKas—mus)/als ,—als*Kast+mus,—als«Qsix(als «Ka
[0,teHx(als*Kas—mus)/als ,0,teMx*( als«Kas—mus)/als ,0, ali*xKai—ali*Qis*(als+«Kas—mus)
# eigenvalues of JU4
eU4 = JU4.eigenvals ()
print ’'the_eigenvalues_of_J(U4)_are_’, eU4

/1

60
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A.4 Progressive waves

The first code allows to solve the system of differential equations.

Created May 2017

Author: May

Progressive waves
nnn

£ import

from math import x*

from numpy import =x

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint
from scipy.optimize import newton

# Time

T = 10. # final time

dt = .01 # time step

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

+ Parameters

aH = 1.; bH= .01; sH = 10.; gH = 6.e—4
aM = 1.; bM = .01; sM = 10.; gM = 6.e—4
delta = 40.

mu = 100.

d = 1.

RO = aHxbHxsH/(muxgH) + aMxbMxsM /(muxgM)
c = 2.5xsqrt ((RO—1)*muxd)

# equilibrium
def f(x):
return (aHxbHxsHx*(aMxdeltaxx+gM) + aMxbMxsMx(aHxdeltasx+gH))* (1. —x) — mux(aHxdelta*x
xs = newton(f, 1.0)
ys = 0

ul0 = [xs,ys—le—5]

# define the ODE
def funct(u,t):

x = u[0]
y = u[l]
xprime =y

yprime = 1./dx(—c*y —(aH*bHxsH/(aHxdeltasx+gH) + aMxbMx*sM /(aMx*delta*x+gM))*x*(1.—x) -
return [xprime, yprime]

# Solve the ode
u = odeint (funct, u0, t)
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A.4. Progressive waves

# plot the solution
rcParams| 'font.size’| = 32
x = uf:,0]

y = uf:,1]

figure (1)

plot(t,x,’r’, linewidth=5)
ylabel (r’$x(t)$")

xlabel (’day’)

text (0,xs, 'unstable )

text (9,0, stable’)
ticklabel format (style="sci’, axis=’y’, scilimits=(0,0))
figure (2)

plot(t,y,’g’, linewidth=5)

ylabel (r’$y(t)$7)

xlabel (’day’)

ticklabel format (style="sci’, axis=’y’, scilimits=(0,0))

# display
show ()
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The second code is related with the phase portrait.

Created May 2017
Author: May

Progressive waves phase portrait
nnn

+ import

from math import =*

from numpy import =x

from matplotlib.pylab import x*

# import ode solver
from scipy.integrate import odeint

# Time

T = 10. # final time

dt = .01 # time step 1 day

Nt = int (T/dt) # iterations in time
t = linspace (0,T,Nt) # time interval

# Parameters

aH = 1.; bH= .01; sH = 10.; gH = 6.e—4
aM = 1.; bM = .01; sM = 10.; gM = 6.e—4
delta = 40.

mu = 100.

d=1.

RO = aHxbHxsH/(muxgH) + aMxbMxsM /(muxgM)
c = 2.5xsqrt (abs (R0O—1)xmuxd)

# phase portrait

rcParams| 'font.size’| = 32

x = linspace (0.01, .5, 30); y = linspace(—1.5, 1.5, 30)

[X,Y] = meshgrid(x, y) # generate a grid

Xprime =Y

Yprime = 1./d*(—cxY —(aHxbHxsH /(aHxdelta+X+gH) + aMxbMxsM /(aMxdelta+«X+gM))*Xx(1.—-X) + mu

figure (1)
quiver (X,Y,Xprime/sqrt (Xprime=**2),zeros (Y.shape), color="r")
plot (x, zeros(len(x)), linewidth=5, \
label=r"$y=0%")
legend (loc=0)
xlabel (7$x$ ")
ylabel (78y$ ")

figure (2)

quiver (X,Y, zeros (X.shape) ,Yprime/sqrt (Yprime*%2), color="r")

plot (x, —1./cx((aH«bHxsH/(aHxdeltaxx+gH) + aM«bMxsM/(aMxdeltaxx+gM))*xx(1.—x) — musx), 1]
label=r’'$y=_\frac{—1}{c}\left (_\left (_\frac{a Hb H\sigma H}{a H\delta_x_+_g H}_\

legend (loc=0)
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xlabel (7$x$ ")
ylabel (78y$ ")

figure (3)

quiver (X,Y,Xprime//sqrt (Xprimex*2) ,Yprime/sqrt (Yprimex*2), color="r")

plot(x, —1./c*((aH«bHx*sH/(aHxdeltaxx+gH) + aMxbMxsM/(aMxdeltasx+gM))*x*(1l.—x) — mu*x), li
label=r’'$y=_\frac{—1}{c}\left (_\left (_\frac{a Hb H\sigma H}{a H\delta_x_+_g H}_\

plot (x, zeros(len(x)), linewidth=5, \
label=r$y=0%")

legend (loc=0)

xlabel (78x$7)

ylabel (7$y$ )

# display
show ()
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A.5. Reaction-diffusion

A.5 Reaction-diffusion

This code show how to solve the partial differential equation within an image.

Created May 2017

Author: May

Spatial schistosomiasis model
nnn

from numpy import
import matplotlib.pyplot as plt
from diffusion import =x

# image processing
from scipy import misc

# Time
T = 365 # final time

# Parameters

aH = 1.; bH = le—4; sH = 1.; gH = 6.e—4

aM = 1.; bM = 1le—4; sM = 1.; gM = 6.e—4

delta = 40.

mu = 7e—3

d =.1

# Read image

image = misc.imread ( 'mekong.png’,flatten=True)
imn = image/image.max() # nomalized

nx, ny = image.shape

Initial data
u0 = np.random.rand (nx,ny)
u0 = ul0x(l—imn)

# Solve the pde
u — diffusion (image, u0, d, T)

# Display solution
plt.subplot(1,3,1)

plt .imshow (image)
plt.title ("River’)
plt.axis("off")
plt.subplot(1,3,2)

plt .imshow (u0)
plt.title(’initial _data’)
plt.axis("off")
plt.subplot(1,3,3)

plt .imshow (u)

plt.title (’prevalence_of_infection_after_’ + str(T) + ’_days’)
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AL,

plt.axis("off")

plt .show ()
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Appendix B

Mathematical tools

This part contains some useful tools for the study of ordinary and parabolic differential
equations. The content is based on Professor Mammeri’s lecture notes during the SEAMS
and CIMPA schools that held in NUOL in December 2016 and January 2017.

B.1 Existence and uniqueness of ODE
We consider the ODE of order 1
u'(t) = f(t,u(t)). (B.1)

Lemma B.1.1 The function u : I — R" is solution of (B.1) with initial datum u(ty) = ug
of class C' if and only if

1. vtel, (tu(t)) e I xU,
2. u(t) = ug + fti f(s,u(s))ds.

Proof: It is enough to write

O

Definition B.1.2 A function f : I x U — R" is said locally Lipschitz with respect to
w if V(to,ug) € I x U, there exists a neighborhood V = V(tg,ug) and k > 0 such that
V(t, u1), (t,u2) € V, we have

£t ua) = f (o) < Kflur = usl.

Theorem B.1.3 (Cauchy-Lipschitz, Picard-Lindeldf) Let f : 1 x R™ a continuous func-
tion and locally Lipschitz with respect to the second variable. Then there exists T > 0 and
a unique solution, without extension u of class C' on | —T + to, to + T

Moreover if f € C* then u € CF+1.
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B.1. Existence and uniqueness of ODE

Proof: We define the operator

ou(t) = ug +/t f(s,u(s))ds,

and we prove that there exists a unique fixed point u = ¢u in the closed ball
B=quel(-T+toto+T); sup |lu(t) —uol| <R |.
te]—T+to,to+T

Let us prove that ¢ is a contraction: we have for v and v in B

llpu(t) — ¢v(®)]] = II/tf(87U(S))—f(8,v($))d8|l
k

sup |[u(t) — v()|] [t — to]
te]—T+to,to+T
KT sup  Ju(t) —o(®)]],
tE]—T+t0,t0+T

IN

IN

and it is enough to choose 0 < T' < %

Similarly
lpu(t) —uol| = [lou(t) — gulto)l|
< kTR
and ¢B C B if supye;_ppg 4017 ||0u(t)]| < Rie. T < 1/(2Kk). O

Corollary B.1.4 Under the same assumptions, if u1 and uy : I — R™ are two solutions
of (B.1) which coincide in one point then uy = uy in all I.

Proof: It is a direct consequence of the uniqueness given by the previous theorem. [J

Theorem B.1.5 Let u be the solution defined in the maximal interval |a,b|. Then either

b=+o0 or lim ||u(t)|| = +oo,
t—b—
and either
a=—o0 or lim |Ju(t)|| = +oc.
t—a™t
Proof: The solution does not has any extension. 0]

Corollary B.1.6 1. If there exists a continuous function k : I — R such that Vt € I
the map u — f(t,u) is k(t)— Lipschitz,
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B.2. Stability of equilibrium

2. or if there exist two continuous functions ¢,k : I — R such that
L (&)l < e(t) + k@)][ull,
then the solution is global.
Remark B.1.7 (1) = (2) with c(t) = || f(t,0)]].

Proof: We only prove (2). Since

ut) =uo+ [ 1o ul)ds,

to

we have

@[] < luoll +/t 1 (s, u(s))l|ds =: ().

Then
V() < ct) +k@)|[u@)]| < C+ K,

where C' = sup, ¢(t), K = sup, k(t). In onther words,

% (e 0700} = (¢ — kp)e U7 < QoK)
B () < (1= e ),
1.6
Il 0] < sup ) < o (107 )
and T = +o0. .

B.2 Stability of equilibrium

We consider the autonomous ordinary differential equation

{u’(t) = f(u(t)) (B.2)

'Lb(to) = Uy,
with f: U — R".

Definition B.2.1 The point u* € U is an equilibrium (or fized point, or stationnary
point) of (B.2) if f(u*) = 0.

The equilibrium u* is said stable if Ye > 0, 30 > 0 such that if ||ug — u*|| < O then
Viel, |lut) —u*|| <e.

If the limit limy_, o ||u(t) — u*|| = 0, the equilibrium is asymptotically stable. If further-
more, ||ug — u*|| < 6, the equilibrium is said locally asymptotically stable.
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B.2. Stability of equilibrium

Theorem B.2.2 (Routh-Hurwitz) Let u* an equilibrium of (B.2).
1. IfYA € o(Jf(u*)), Re(N) <0, then u* is asymptotically stable;
2. If IN € o(J f(u*)), Re(A) > 0, then u* is unstable.
Proof: From Taylor’s expansion, we have in dimension 1
fu(t)) = fu") + (u(t) = u) f(u”) + o(u(t) —u’).
Let v(t) = u(t) — u*. The stability is reduced to the one of the linearized ODE
V() = f(u)o(t).
In higher dimension, the Taylor expansion can be written
fu(®)) = f(u®) + T (@) (u(t) — o) + ofult) —u¥),

where Jf is the jacobian matrix of f.

Remark B.2.3 If u = (uy,...,u,) and f = (f1,..., fm), the jacobian matriz is

; % % g;l
Jf<u>=( fi) S N
;) \<icni1<i<m : I :

%fT“; ‘ngf: V fm

In dimension 2, the study of the stability of an equilibrium is reduced to

Atrd

(tr))2—4det)=0

-——— -
—
-

unstable node

saddle"point s unstable focus

1 /center
» det J

saddle’point ~ stable focus

i
-~
——
- -

stable node

Figure B.1: Stability of equilibrium.

70



B.3. Finite differences

Theorem B.2.4 (Lyapunov) Let u* an equilibrium of (B.2). Assume that there exists a
function L : U — R of class C' such that

1. L(u*) =0,
2. L(u) >0 for allu € U —{u*},
3. L'(u) <0 along all trajectories in U.

Then u* is stable. The function L is called a Lyapunov function.
If furthermore,

4. L'(u) <0, Yu # u*, then u* is locally asymptotically stable.

Proof: Let ¢ > 0 such that the ball B(u*,e) C U and M = inf}j,_y+||=- L(u) and
U. = {u € B(u*,e); L(u) < M} is a neighborhood of «* in U. Then if ug € U. and since
t — L(u(t)) is decreasing, we deduce that

L(u(t)) < Lug) < M, ¥t > 0

and u(t) remains in the neighborhood of u*. O

B.3 Finite differences
To numerically solve an ordinary differential equation, for t € [0, 7T

u'(t) = f(t,u(t), (B.3)

we choose a subdivision 0 = tg < t; < t3... < ty = T and we try to find a "good"
approximation wu; of u(t;).

The idea of finite differences consists of approximating «’'(¢;) thanks to Taylor’s formulas:
let u € CKFL(I), then for t and ¢t + h € U, we have

h? hk

—h//(i) +...+ —'h(k)(t) + Rk(t),

u(t + h) = u(t) + hu'(t) + 51 ’

o Ry(t)

: _ o (pk k

Taylor-Young: Ry (t) = o(h”), i.e. }llli% o

Taylor-Lagrange: Ry (t) = O(h*™Y) i.e.||Ri(t)]| < Ch*
hFt1

1
Taylor with integral remainder: Ry (t) = m/ (1 — 7)*u* V(¢ + 7h)dt.
o

=0

We consider one-step methods written as

{WH = u; + ho(ti, ug, h)

Ug,n, = Uo,

where ¢ is a continuous function on [0,7] x R™ x [0, H].
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B.3. Finite differences

Definition B.3.1 The quantity

n—1
& = Z [ultivr — u(ts) — ho(ti; ui, h)|
i=0
18 the consistency error.
The method is said consitent with the ODE (B.3) if, for u(t) solution of (B.3), &, —h—0 0.

Definition B.3.2 A one-step method is said stable if there exists C' > 0 such that if the
sequence (u;); defined by

Ug = UQ,h-

{am = Ui + ho(ti, s, h) + &

Then
n—1
Orgzag}; lu; — ;) < C <|u07h — Ug p| + Z; |€Z|> )
=

Definition B.3.3 The method is convergent if maxo<;<y, |u(t;) — u;| —n—0 0.

Theorem B.3.4 (Laz) A method stable and consitent is convergent as soon as o, —h—0
Ugp-

Proof: Let us choose w; = u(t;). Then
ZL/Q = Ug.

By stability, we have

n—1
max |u; — ;| < C <\u0,h — Tonl + ) \54) .
0<i<n P

and thanks to the consistence, the error converges to zero when h — 0. U

Proposition B.3.5 A one-step method is consistent if ¢(t,u,0) = f(t,u), for all t €
0,7],u € R

Proof: We write
_ /t s, u(s)) = b(ts, u(ts), h))ds.

However for s € [t;,t;41], we havel
|f(s,u(s)) — o(ti,u(ts), h)| < [f(s,u(s)) — [, ult:)] + | f(ti, u(ts) — ¢(ts, ults), 0)]
+ |p(ti, u(ti), 0) — o(ti, u(ts), h)|.
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B.4. Reaction-diffusion equations

Proposition B.3.6 A one-step method is stable if the function ¢(t,u, h) is Lipschitz with
respect to u with a constant independent of t and u.

Proof: Let 0; = |u; — u;|. We have
91’+1 = ’Uz'+1 - ﬁz’ﬂ‘
= |u; + ho(ti, us, h) —w; — o(ts, Ui, h) — &
0; + hlo(ts, ui, h) — ¢(ti, Ui, h)| + |&i]

<
< (14 Lh)b; + &

The discrete Gronwall lemma implies

1—1

Qi < eXp(Lti)Qo—i—ZeXp(Lti,J-)\gﬂ

exp(LT) (90 + Z_: \q\) .

Jj=0

B.4 Reaction-diffusion equations

Assume that D > 0 is the diffusion coefficient, we define

T 1/2
K = 1 L = )
(2,6) = = o5a wnt) ¢

Theorem B.4.1 The function K : (z,t) € R*xR% — K(t,z) is the fundamental solution
of the heat equation

0K
5 DAK

K(z,0) = 0,

with

K(z,t)de = 1.
Rd

Corollary B.4.2 Let uy € L>*(R).
1. The function

u(z,t) = | Kz —y,t)ue(y)dy = K % up(x)

Rd
18 solution of the initial value problem

%—DAu = 0

ot
u(z,0) = wup(z).
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B.4. Reaction-diffusion equations

The solution u(zx,t) € C* in time and space. Moreover,

Proof: The first part is deduced from the Fubini theorem.
We note that

C
|t|—1/2||U0||
ou(x,t) H < C

< ol

lu(t, 2)]] <

ou 0K .

or Oz U’
and v

7fl/zeﬂ < C.

O
Corollary B.4.3 The function
t
e t) = [ K- yuldy+ [ [ K= y5)(s)uds
R4 0 Rd

18 solution of the reaction-diffusion problem

ou
— — DAy =
ot w =1

u(z,0) = wup(z).

In particular, if f = f(t,u) is Lipschitz with respect to u, there exists a unique strong
solution.

Proof: It is enough to use the Duhamel formula. 0

Proposition B.4.4 Assume v, w, f be continuous with f > 0,¢ > 0 and ug > M. Then
the solution for x € Q C R4t >0

ou 0%u ou

= _pZs 2

ot 0x? U(?:E twutf
u(z,0) = wup(z)

W@, t)pecon = ¢

verifies u(z,t) > M for all x € Q and t > 0.
Proof: Suppose first w > 0 and f > 0. Assume that there exist x, € Q and t* > 0 such

that
u(z*,t*) = M is the minimum.
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B.4. Reaction-diffusion equations

Then 5 3 o
U U U
_— = _— = —_— >
ot 0, ox 0, oxr? — 0
and
v@—i-wu:wu%—f > 0
ox
ou 0*u
=2 _DpDT T <
ot D@xQ s 0

For any w, we take & = ue " which satisfies

ou 0*u ou ~

Corollary B.4.5 Suppose v,w, f continuous such that f > 0,¢ > 0 and ug > M. Then
the solution of

%_ @ — @+ +f
ot oz~ or M
U(l’,O) = UO(:E)

u(r,t)zeon = ¢

verifies u(x,t) > M for all x € Q and t > 0.

75



	Introduction
	Objectives
	Relative Researches
	Methodology

	Description of the Schistosomiasis
	Study of Time Dependent Models
	The Macdonald Model
	Qualitative Study
	Numerical Simulations

	Ross'Model
	Qualitative Study
	Numerical Simulations

	A Human-Mammal Model
	Qualitative Study
	Numerical Simulations


	Study of Time Dependent Model with Spatial Invasion
	Progressive Waves for the Quasi-Steady State
	Qualitative Study
	Numerical Simulations of the Progressive Waves
	Numerical Simulations of the Reaction-Diffusion System

	Conclusion
	References
	Source codes
	The Macdonald model
	The Ross model
	Human-Mammal model
	Progressive waves
	Reaction-diffusion

	Mathematical tools
	Existence and uniqueness of ODE
	Stability of equilibrium
	Finite differences
	Reaction-diffusion equations


