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Abstract

One of the fundamental problems in mathematical finance is the pricing of derivative assets such as op-
tions. In practice, pricing an exotic option, whose value depends on the price evolution of an underlying
risky asset, requires a model and then numerical simulations. Having no a priori model for the risky asset,
but only the knowledge of its distribution at certain times, we instead look for a lower bound for the option
price using the Monge-Kantorovich transportation theory. In this paper, we consider the Monge-Kantorovich
problem that is restricted over the set of martingale measure. In order to solve such problem, we first look
at sufficient conditions for the existence of an optimal martingale measure. Next, we focus our attention on
problems with transports which are two-dimensional real martingale measures with uniform marginals. We
then come up with some characterization of the optimizer, using measure-quantization approach.

Keywords: martingale measure, Un -quantization, uniform marginals, bistochastic matrices

1 Introduction

The origins of theory of optimal transportation can be traced back around 1780’s, in France, when Gaspard
Monge proposed a problem, which in modern terms can be stated as follows: Given two densities, f and g in
Rn , we want to find a map T :Rn →Rn such that∫

A
g (y)d y =

∫
T −1(A)

f (x)d x for any Borel set A ⊂Rn . (1)

We then want to minimize the quantity ∫
Rn

|T (x)−x| f (x)d x

among all maps T that satisfy (1).

One can think of x as a mass particle, while T describes where this particle is being transported (that we
choose in an optimal way). The integrand above can be thought of as the cost of transporting x to T (x). One
can further generalize the above problem to: Given two measure spaces (X ,µ) and (Y ,ν), we are interested
on a measurable map T : X →Y that sort of transforms the measure µ into ν in this manner

ν(B) =µ(T −1(B)) for any measurable set B ⊂Y

or equivalently,
∫
Y
φdν=

∫
X

(φ◦T )dµ for every measurable function φ : X →R.

Such maps that satisfy the above condition are called transport maps. So, given a cost function c : X ×Y →
R∪ {∞}, we have the Monge problem given by

min
{T : T#µ=ν}

{∫
X

c(x,T (x))dµ

}
(2)

If a minimizer T ∗ exists, then we call such map an optimal transport map.
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Unfortunately, this problem of Monge is hard to solve due to a number of reasons - including the non-linearity
of the problem, as well as the possibility of the non-compacteness of the set of admissible transport maps.
Furthermore, an easy example for the non-existence of a transport map is when we need to map a space with
finite number of mass points to a space with a continuous measure. It is possible that due to these reasons,
Monge’s problem remained unsolved for decades.

Then in 1942, a Russian mathematician by the name of Leonid Kantorovich proposed, unknowingly, a relax-
ation of Monge’s transport problem, wherein masses are allowed to be split. He proposed on working with
measures on the product space having appropriate marginals, which he called as transference or transport
plans. Unlike with the transport maps of Monge’s problem, transference plans always exist, and optimality
can be achieved with just mild conditions. In 1975, Kantorovich won the Nobel Prize in Economics for his
contribution on the development of linear programming.

In the field of mathematical finance and economics, martingale processes are often used in pricing derivative
assets. Normally, in modeling an arbitrage-free financial asset, one uses a martingale or a random process that
can be transformed into a martingale via a change of measure. This new measure is usually referred to as a
risk-neutral measure. Martingales are vital in non-arbitrage pricing since the martingale property of an asset
is equivalent to not being able to get or create arbitrage through trades in that asset.

The study on the set of martingale measures first came up as an application of the Theory of Optimal Trans-
portation [10]. From then on, authors ([1] [3]) have adapted it to exotic option pricing. Furthermore, such
papers are focused on the existence and characterization of the martingale measure that optimizes their de-
sired pay-off function. Through the use of Riesz-Kakutani theorem, one can see that the space of measures
over R2 is infinitely dimensional, thus in order to investigate the properties of the set of martingale measures
having fixed marginals, we shall first apply a discrete approximation on the marginal measures, where we
shall use the so called Un-quantization, proposed by David Baker on his PhD dissertation [4]. The novelty
of this paper is we shall transforming an optimization problem over an infinite dimensional set into a linear
programming problem via the use of such quantization.

2 Preliminaries

Let (Ω,F ,P) be a probability space and X , a random variable on that space. X induces a new the probability
space (R,B(R),PX ), with PX (B) =P(X −1(B)) for all B ∈B(R). Here, PX is called as the law or distribution of X .
We shall use the notation law(X ) to denote the law of X or write X ∼PX . Moreover, the function FX :R→ [0,1],
such that FX (x) =PX ((−∞, x]) is called the (cumulative) distribution function of X (and of PX ).

2.1 Martingale Measures

Let X and Y be random variables defined over (Ω,F ,P), such that law(X ) = µ and law(Y ) = ν. If Z is a cou-
pling (bivariate random variable) of X and Y then the law(Z ) is called a transport plan. Clearly, the marginal
measures of law(Z ) are µ and ν. The set of transport plans with marginals µ and ν is denoted by Π(µ,ν). The
next theorem gives one of the best property of the set of transport plans, which is useful on optimization.

Lemma 2.1 ([10]). Let X and Y be compact . Take µ ∈P (X ) and ν ∈P (Y ). The setΠ(µ,ν) is weakly compact.

Proof. Take a sequence γn ⊂ Π(µ,ν). By the Banach-Alaoglu theorem, the closed Ball(C (X ×Y )∗) is weak-∗
compact, thus there exists a subsequence γkn that converges weakly to γ ∈ C (X ×Y )∗. Furthermore, by this
weak convergence, γ ∈P (X ×Y ). What remains to be shown is that γ ∈Π(µ,ν).

Indeed, for any φ ∈C (X ) and ψ ∈C (Y ), we have
∫
X×Y

φdγkn =
∫
X
φdµ and

∫
X×Y

ψdγkn =
∫
X
ψdν.

Passing to the limit, we have
∫
X×Y

φdγ=
∫
X
φdµ and

∫
X×Y

ψdγ=
∫
X
ψdν. Which implies that the marginals

of γ are µ and ν, respectively.

We are interested on a specific subset of transport plans. We define the set M (µ,ν) to be a subset of Π(µ,ν)
such that any π ∈ M (µ,ν) satisfies Eπ[Y |X ] = X , µ-almost surely. Any such measure is a called a martingale
measure.
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Theorem 2.2 ([3]). Let X and Y be random varibles defined over the same space. If lawX = µ, lawY = ν and
Q ∈Π(µ,ν). Then, the following are equivalent.

1. EQ [Y |X ] = X , µ-almost surely.

2. EQ [(Y −X )∆(X )] = 0 for any continuous, bounded ∆.

Example 2.3. Let Ω1 = {H ,T }. Take Ω = Ω1 ×Ω1, F = 2Ω and P be the uniform (discrete) measure on Ω.

X ∼Uni f or m{1,3} and
Y

2
∼ Bi nomi al (2,0.5). Z = (X ,Y ) ∼Uni f {(1,0), (1,2), (3,2), (3,4)}.

So, P (Y = 4|X = 3) = P (Y = 2|X = 3) = 0.5

P (Y = 2|X = 1) = P (Y = 0|X = 1) = 0.5

P (Y = 4|X = 1) = P (Y = 0|X = 3) = 0

T hen, E[Y |X = 3] = 4 · 1

2
+2 · 1

2
= 3

E[Y |X = 1] = 2 · 1

2
+0 · 1

4
= 1

Hence, E[Y |X ] = X and the distribution of Z is a martingale measure.

2.2 Convex Ordering

The setΠ(µ,ν) is non-empty since it always contains the product measure µ×ν. However, the set M (µ,ν) can
be empty as demonstrated in the next example.

Example 2.4. Let X ∼N (0,σ2) and Y ∼N (1,σ2). Take P ∈Π(law(X ), law(Y )). Then,

EP [(Y −X ) ·1] =
∫
R

(y −x)dP (x, y) =
∫
R

y d law(Y )−
∫
R

x d law(X ) = 1 6= 0.

So, any transport plan can not be a martingale measure. Thus, M (law(X ), law(Y )) =φ.

As it turns out, having an additional assumption on the marginal measures leads to the existence of a martin-
gale measure. Let µ,ν ∈P (R). We say that µ is dominated by ν in (stochastic) convex order, denoted by µ¹c ν,
if for all convex function φ(x),

Eµ[φ] ≤ Eν[φ]

Moreover, two random variables X and Y are said to be in convex order, denoted by X ¹c Y , if law(X ) ¹c

law(Y ). The next important theorem, shows that convex ordering in the distributions of the marginal random
variables is both sufficient and necessary for the existence of a martingale measure.

Theorem 2.5 (Strassen [7]). Let µ,ν ∈P (R). The set M (µ,ν) is non-empty if and only if µ¹c ν.

The next two theorems, in conjuction with Strassen’s Theorem, give sufficient conditions for the existence of
martingale measures and will be used in the latter sections.

Lemma 2.6 (Ohlin [8]). Suppose X and Y are random variables with finite and equal means. Let F and G be
the distribution functions of X and Y , respectively. Then X ¹c Y whenever there exists x0 ∈R such that

F (x) ≤G(x), ∀x ≤ x0 and F (x) ≥G(x), ∀x ≥ x0.

Theorem 2.7 ([6]). Let X and Y be random variables defined over the same probability space, such that law(X ) =
µ and law(Y ) = ν. Let FX and FY be the cumulative functions of X and Y , respectively, and let F−1

X and F−1
Y be

the quantile functions of X and Y , respectively. Then, the following are equivalent.

1. µ¹c ν
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2.

 E[X ] = E[Y ]∫ x

−∞
FX (t )d t ≤

∫ x

−∞
FY (t )d t , ∀x ∈R

3.


E[X ] = E[Y ]∫ k

0
F−1

X (u)du ≥
∫ k

0
F−1

Y (u)du, , ∀k ∈ [0,1]

Using these previous results, we then come up with sufficient and necessary conditions for the existence
of martingale measures having continuous, uniform marginals.

Proposition 2.1. Suppose X ∼Uni f ([a,b]) and Y ∼Uni f ([c,d ]). Then X ≤c Y if and only if there exists α≥ 0
such that c = a −α and d = b +α.

Proof. (⇒) By definition of convex ordering, E[X ] = E[Y ] and E[X 2] ≤ E[Y 2]. Moreover, Var(X ) = E[X 2] −
(E[X ])2 ≤ E[Y 2]− (E[X ])2 = E[Y 2]− (E[Y ])2 = Var(Y ).

WLOG, assume that a = 0. Using the expected value and variance of both X and Y , we get that b = c +d and
b2 ≤ (d −c)2. If d ∈ (0, b̂), then so does c, and thus, d −c < b, which is a contradiction to the required variances
of X and Y . Therefore d ≥ b. Take α = d −b and so c = b −d = −α. Translating X along the real line gives us
the desired conclusion.
(⇐) We have the following distribution functions:

FX (x) = x −a

b −a
1[a,b](x)+1(b,∞)(x)

FY (y) = y −a +α
b −a +2α

1[a−α,b+α](x)+1(b+α,∞)(y)

a-α b+α

FX

FY

a b

1

0

Note that FX ≤ FY for all x ≤ a +b

2
and FX ≥ FY for all x ≥ a +b

2
. So by Ohlin’s Lemma, X ¹c Y .

2.3 Quadratic Cost Function

Consider the classical Monge-Kantorovich Problem

inf
γ∈Π(µ,ν)

{∫
R2

c(x, y)dγ

}
(3)

If γ∗ ∈Π(µ,ν) minimizes the integral, then it is called an optimal transport plan.

Having c to be the quadratic cost funtion, gives us some interesting results for both the classical and martingale
settings.

Theorem 2.8 (Brenier [2]). Let X and Y be compact subsets of R, and c(x, y) = (x − y)2

2
. If µ is absolutely

continuous with respect to λ, then there exist a unique optimal transport plan that solves (3), which is induced
by a map T . Moreover, this map is given by T = F−1

ν ◦Fµ.
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For the martingale setting, if Q ∈M (µ,ν), then

EQ
[
(Y −X )2] = EQ

[
Y 2 −2X Y +X 2]

= EQ
[
Y 2]+EQ

[
X 2]−2(EQ [X ])2 −2EQ [X Y ]+2(EQ [X ])2

= V ar (X )+V ar (Y )−2CovQ (X ,Y )

So minimizing the left hand side is equivalent to maximizing Cov(X ,Y ).
Using this fact, together with Prop. (2.1) we obtain the following result.

Proposition 2.2. Let X ,Y be uniform distributed such that X ¹c Y . Then

min
Q∈M (µ,ν)

EQ
[
(Y −X )2]= (√

V ar (Y )−
√

V ar (X )
)2 = α2

3

and that the optimal martingale measure is induced by the map T (x) = x −α+2α
( x −a

b −a

)
.

3 Quantization of Measure

From here on, we only focus on martingale measures over R2. Even with this streamlining, working with the
set of martingale measures with arbitrary marginal measures over R still proves to be difficult, so we instead
approximate the marginal measures and from there form a set of approximate martingale measures.

3.1 Un-quantization

Approximating a probability measure by a discrete probability measuring is called quantization of the original
measure. For our purposes, we shall be using the Un-quantization proposed by [4]. It is called Un-quantization
due to the fact that it produces a uniformly discrete distributed random variable with at most n support points.

Let X be a random variable with law µ, distribution function F and quantile function F−1. Given n ∈ N, the
Un-quantization of X is the discrete random variable with law µn , which is a (discrete) uniform measure with
mass points a1, a2, . . . an , where

ai = n
∫ i

n

i−1
n

F−1(u)du. (4)

Here µn is also referred as the Un-quantization of µ.

Example 3.1. Take X ∼ E xp(0.5), so F (x) = (1−e−0.5x )1[0,∞)(x). Thus F−1(u) =−2ln(1−u)1[0,1](u). Take n = 4.
Then,

a1 = 4
∫ 1/4

0
−2ln(1−u)du = 2+4ln

(
3
p

3

8

)
a3 = 4

∫ 3/4

1/2
−2ln(1−u)du = 2

a2 = 4
∫ 1/2

1/4
−2ln(1−u)du = 2+4ln

(
4

3
p

3

)
a4 = 4

∫ 1

3/4
−2ln(1−u)du = 2+4ln2

So U4 ∼Uni f or m{a1, a2, a3, a4}.

Proposition 3.1. Suppose X ∼Uni f ([a,b]) then its quantization Un(a1, . . . , an) has mass points given by

ai = a + b −a

2n
+ (b −a)(i −1)

n
, i = 1, . . . ,n.

The proof of the above theorem uses the fact that if X ∼Uni f ([a,b]), then its cumulative function is given by

FX (x) = x −a

b −a

while its quantile function is given by
F−1

X (u) = a + (b −a)u.

5



Then applying the formula from (4), gives the desired mass points.
Next, we present some of the properties of the Un-quantization, which show that this type of approximation
is an ideal tool for the purposes of maintaining the existence of marginal measures.

Lemma 3.2 (Un-quantization preserves the mean). Let X ∼µ and has distribution function F . If U (a1, . . . , an)
is the Un - quantization of X , then X and U (a1, . . . , an) have the same mean.

Proof.

E [U (a1, . . . , an)] =
n∑

i=1
ai · 1

n
=

n∑
i=1

1

n
·n

∫ i /n

i−1/n
F−1(u)du

=
∫ 1

0
F−1(u)du = E[

F−1(U )
]= E [X ] .

Theorem 3.3. Un-quantization preserves convex ordering, that is, if X ¹c Y with U and V to be the Un-
quantization of X and Y , respectively, then U ¹c V .

Theorem 3.4. Let U (a1, . . . , an) be the Un - quantization of X . Then U (a1, . . . , an) converges to X in the sense of
distribution.

The above two theorems are consequences of the definition of Un-quantization together with (2.7) and (3.2).

3.2 Matrix Representation

After applying the Un-quantization to any measure, we can then represent the quantized measure as an n-
dimensional vector. It would also be of help, if there is an easy way to represent a martingale measure with
quantized marginals.

Theorem 3.5 (Disintegration Theorem). A measure Q ∈ P (R×R) can be represented by a measure µ ∈ P (R)
and a transition kernel K (·, ·) given by

Q(A×B) =
∫

A
K (x,B)dµ(x)

for all measurable sets A,B in R.

In the discrete case, the above simplifies to

Q(A×B) = ∑
a∈A

P(Y ∈ B |X = a)P(X = a).

Since we are to fix the marginal measures to be discrete uniform distributions, knowledge of the transport
plan is equivalent to the knowledge of its transition probability. Moreover, similar to what is usually done with
Markov chains, we can associate every transport plan with a bistochastic matrix B = (bi j ) that represents the
transition kernel, where bi j =P(Y = b j |X = ai ).

A non-negative matrix B = (bi j ) ∈ Mn(R) is said to be an n ×n bistochastic matrix if

n∑
k=1

bi k = 1 i = 1,2, . . . ,n

n∑
k=1

bk j = 1 j = 1,2, . . . ,n
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In general,the an n by n bistochastic matrices would look like

n∑
i=2

n∑
j=2

ai j − (n −2) 1−
n∑

i=2
ai 2 1−

n∑
i=2

ai 3 . . . 1−
n∑

i=2
ai n

1−
n∑

j=2
a2 j a22 a23 . . . a2n

1−
n∑

j=2
a3 j a32 a33 . . . a3n

...
...

...
...

1−
n∑

j=2
an j an2 an3 . . . ann


,

with each of its entries to be in [0,1].

4 Results

Restating (3) for the martingale case, we have

inf
Q∈M (µ,ν)

{
EQ [c(X ,Y )]

}
. (5)

If Q∗ ∈M (µ,ν) minimizes the above expected value, then it is called an optimal martingale measure. Solving
such problem can be seen as equivalent to solving for the lower bound of an option price, where the pay-off
function c depends on the current price of the underlying asset at two different times t1 and t2. X and Y can
be seen as the random variables that model the prices of the asset at times t1 and t2, respectively.

We now present our results for the martingale case.

4.1 Existence of a Minimizer

Proposition 4.1. Let X and Y be real random variables such that law(X ) = µ, lawY = ν and that µ,ν have
compact support. Then the set M (µ,ν) is weakly compact.

Proof. First, let f be a continuous, bounded function and construct the functional L f :Π(µ,ν) →R∪{∞} given
by

L f (π) =
∫
R2

f (x)(y −x)dπ.

By the weak-* convergence of inΠ(µ,ν), L f is continuous.

Thus, by the continuity of L f , the set L−1
f ({0}) =

{
π ∈Π(µ,ν) :

∫
R2

f (x)(y −x)dπ= 0

}
is closed. The set M (µ,ν)

is the intersection of all the sets L−1
f ({0}) with f varying across all continuous and bounded functions. So,

M (µ,ν) is closed. By lemma 2.1, the set Π(µ,ν) is weakly compact, which by definition contains M (µ,ν).
Thus, M (µ,ν) is also weakly compact.

If µ ¹c ν then it guarantees that M (µ,ν) is non-empty and convex, thus the minimizer is always guaranteed
under a mild condition.

Theorem 4.1 (Weierstrass Theorem). If f : X → R∪ {+∞} is lower semi-continuous and X is compact, then
there exists x̄ ∈X such that f (x̄) = min{ f (x) : x ∈X }.

Proposition 4.2. Let µ,ν ∈ P (R) such that µ ¹c ν and c : R2 → R be a continuous function. Then an optimal
martingale measure exist that solves (5).

Proof. Consider the mapping K : M (µ,ν) → R∪ {∞} by K (γ) = ∫
cdγ. This mapping is continuous due to the

continuity of c and the weak convergence of probability measures. By Theorem 2.1 and Weierstrass Theorem,
there exists γ̄ ∈M (µ,ν) such that K (γ̄) = min{K (γ) : γ ∈M (µ,ν)}.
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Even if an optimizer is guaranteed for a wide class of cost functions and marginal measures, characterizing
such optimal martingale measure proves to be difficult. So to have a nice characterization, we shall first restrict
the marginal measures to have uniform distributions and then apply some quantization.

4.2 Quantized Marginals

Proposition 4.3. Let X and Y be distinct, continuous uniformly distributed random variables such that law(X ) =
µ, law(Y ) = ν and X ¹c Y . Let n ∈ N, and take µn and νn to be the Un-quantization of µ and ν, respectively.
Then, the set of transition kernels corresponding to the elements of M (µn ,νn) is an (n −1)(n −2)-dimensional
polytope.

Proof. Let µn have mass points a1, . . . , an while νn have mass points b1, . . . ,bn , obtained using formula (4).
Note that these mass points which are arranged in increasing order. Take Q ∈M (µn ,νn). By the disintegration
theorem, there exists an n×n bistochastic matrix M = (mi j ) corresponding to Q such that mi j =P[Y = b j |X =
ai ]. We then have the following equations satisfied by the entries of M .

n∑
k=1

mi k = 1 i = 1,2, . . . ,n E qn′s(1)− (n)

n∑
k=1

mk j = 1 j = 1,2, . . . ,n E qn′s(n +1)− (2n)

n∑
k=1

bk mi k = ai i = 1,2, . . . ,n E qn′s(2n +1)− (3n)

We can show that equation (2n) can be obtained using equations (1) to (2n −1). Moreover, equation (n +1)
can also be obtained but now using equations (n+2), (n+3), . . . (2n−1), (2n+1), . . . (3n). Due to the linear form
of the ai ’s and the b j ’s, the remaining 3n − 2equations can be shown to be all linearly independent. Hence
the dimension of the solution space is n2 − (3n − 2) = (n − 2)(n − 1). Due to the fact that all the entries of Q
are non-negative, the resulting set M (µn ,νn) will be the intersection of the above solution space and of all flat

regions having the form {e ∈Rn2
: e(i ) ∈ [0,1], for some i ≤ n2}.

We further restrict the marginal measures by applying only U3-quantization. By this restriction, together with
the previous proposition, we can then simplify (5) from an optimization problem on an infinite dimensional
set to a linear optimization problem over a subset of R2.

Proposition 4.4. Let X and Y be continuous uniformly distributed random variables such that X ¹c Y . More-
over, let law(X ) = µ and law(Y ) = ν. If µ3 and ν3 are the U3-quantization of µ and ν, respectively, then any
martingale measure in M (µ3,ν3) can be associated to a matrix of the form

2b −2a +2α

b −a +2α
−x − y 2x +2y − 2b −2a +2α

b −a +2α
1−x − y

x 1−2x x

y − b −a

b −a +2α

2b −2a +2α

b −a +2α
−2y y


where a,b and α are the same as with Proposition (2.1) and that (x, y) lies on the following feasible regions:
Case I. If b −a < 2α
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x + y = 1

x + y = b−a+α
b−a+2α

(
0, b−a+α

b−a+2α

)

(
α

b−a+2α , b−a
b−a+2α

) (
1
2 , b−a

b−a+2α

)

( 1
2 , 1

2

)
(

α
b−a+2α , b−a+α

b−a+2α

)

(0,0) x

y

Case II. If b −a ≥ 2α

x + y = 1

x + y = b−a+α
b−a+2α

(
0, b−a+α

b−a+2α

)

(
α

b−a+2α , b−a
b−a+2α

) (
2α

b−a+2α , b−a
b−a+2α

)

(
α

b−a+2α , b−a+α
b−a+2α

)

(0,0) x

y

Proposition 4.5. Let X and Y be uniformly continuous random variables such that X ¹c Y and c is continuous.
Then an optimal martingale measure Q∗ for

min
Q∈M (µ3,ν3)

EQ [c(X ,Y )]

lies on the boundary of M (µ3,ν3).

Example 4.2. Suppose X ∼Uni f ([1,2]) and Y ∼Uni f ([0,3]). By Proposition (2.1), X ¹c Y . Let n = 3 and take
µ and ν to be the U3-quantization of law(X ) and law(Y ), resp. Then

µ= 1

3
[δ7/6 +δ3/2 +δ11/6]

While,

ν= 1

3
[δ1/3 +δ3/2 +δ8/3] .

Any martingale measure in M (µ,ν) can be represented as 4
3 −x − y 2x +2x − 4

3 1−x − y
x 1−2x x

y − 1
3

4
3 −2y y


Where, (x, y) lies on the region given below:
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x + y = 1

x + y = 2
3

(
0, 2

3

)

( 1
3 , 1

3

) ( 1
2 , 1

3

)

( 1
2 , 1

2

)

x

y

( 1
3 , 2

3

)

So, for the problem
min

Q∈M (µ,ν)
EQ

[
(X −Y )3]

we have

EQ
[
(X −Y )3]= 3∑

i=1

3∑
j=1

(ai −b j )3Q({ai ,b j }) = 1

3

3∑
i=1

3∑
j=1

(ai −b j )3mi j = 2x

3
+ 4y

3
− 8

9

minimizing the right hand side over the feasible region, we shall get the optimal martingale measure Q∗ to be
associated to the matrix 

2
3 0 1

3
1
3

1
3

1
3

0 2
3

1
3


with EQ∗

[
(X −Y )3

]= −2

9
.

Whereas, for the problem
min

Q∈M (µ,ν)
EQ

[|X −Y |3]
we have

EQ
[|X −Y |3]= 3∑

i=1

3∑
j=1

|ai −b j |3Q({ai ,b j }) = 1

3

3∑
i=1

3∑
j=1

|ai −b j |3mi j = 160

243
− 70x

81

and again, minimizing the right hand side over the feasible region, we get that any martingale measure Q∗ that
is associated to the matrix 

5
6 − y 2y − 1

3
1
2 − y

1
2 0 1

2

y − 1
3

4
3 −2y y


with y ∈

[
1

3
,

1

2

]
will be optimal, and that EQ∗

[
(X −Y )3

]= 55

243
.

5 Summary

Under the assumption that the marginal measures are in convex order, we have shown the existence of an
optimal martingale measure for (5). Furthermore, using the Un-quantization on continuously uniform ran-
dom variables, we can came up with discrete marginal measures having n points as support. Since this type
of quantization preserves the convex ordering of the original measures, we also came up with a set of mar-
tingale measures which can be represented as bistochatic matrices. It was then shown that for this scenario,
the set of n ×n matrices which represent martingale measures is (n −2)(n −1)-dimensional. Lastly, we used
U3-quantization and simplified (5) into a linear programming problem in two variables.
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