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ABSTRACT 
 

Easel paintings are important Cultural Heritage assets with significant historic and cultural value. 

They usually possess a multi-tiered structure, composed of different layers, some of which may 

present protein binders. Proteins have been commonly used as paintings medium, adhesives and 

coating layers in easel paintings. Hence, their recognition is a crucial step for easel painting’s 

conservation and restoration processes. The present work presents a novel fluorescent labelling 

methodology, using a coumarin derivative chromophore, C392STP (sodium (E/Z)-4-(4-(2-(6,7-

dimethoxycoumarin-3-yl)vinyl)benzoyl)-2,3,5,6-tetrafluorobenzenesulfonate) as a fluorophore 

probe to bond proteinaceous binders used in paintings. The method was developed and 

optimized using commercial proteins and proteins extracted from hen’s egg yolk and white, 

bovine milk, and rabbit skin. In order to mimic the real conditions, paint models of easel paintings 

have been prepared by mixing proteins such as ovalbumin, casein and rabbit glue with different 

pigments (lead white, chrome yellow and black bone) and the fluorescent labelling method was 

miniaturized and tested. The results revealed that proteins in concentration as low as 6.0 μg/ml 

could be detected. 

Finally, for validation methodology, real micro samples of easel paintings were analyzed. The 

extracted proteins were submitted to the fluorescent labelling method developed and clearly 

identified in electrophoretic profiles. The results evidence the applicability of this methodology 

as an effective and useful analytical tool for the identification of protein binders obtained from 

easel paintings and, possibly in other art work. 

Additionally, theoretical quantum chemical calculations based on the Density Functional Theory 

(DFT) and Time Dependent Density Functional Theory (TD-DFT) have been performed in the 

C392STP coumarin and in a related coumarin derivative ((E/Z)-4-(2-(6,7- dimethoxycoumarin-3-

yl)vinyl)-N-propylbenzamide), that mimics the coumarin bonded to lysine. The calculations 

confirm the experimental trends in absorption wavelengths and are in good agreement with the 

experimental absorption spectra, providing a comprehensive characterization of the main 

spectral features of the studied compounds. 
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RESUMO 
 

Identificação de ligantes proteicos em arte 

As pinturas de cavalete são um componente importante do Património Cultural, com um 

significativo valor histórico e cultural. Geralmente possuem uma estrutura composta por 

diferentes camadas, algumas das quais podem apresentar ligantes proteicos. As proteínas 

surgem geralmente em pinturas de cavalete como meio de suporte da pintura, adesivos e 

camadas de revestimento. A sua identificação é, portanto, um passo crucial para os processos 

de conservação e restauração da pintura de cavalete. O presente trabalho apresenta uma 

nova metodologia de marcação fluorescente, utilizando um cromóforo derivado da cumarina, 

C392STP ((E/Z)-4-(2-(6,7- dimetoxicoumarin-3-yl)vinil)-N-propilbenzamida) como sonda 

fluorescente para marcar os ligantes proteicos usados em pinturas. O método foi 

desenvolvido e otimizado utilizando proteínas comerciais e proteínas extraídas da gema e 

clara de ovo de galinha, de leite de bovino e de pele de coelho. Para simular as condições 

reais, foram preparados modelos de pintura de pinturas de cavalete, misturando-se proteínas 

como ovalbumina, caseína e cola de coelho, com diferentes pigmentos (branco de chumbo, 

amarelo de crómio e negro de osso) e o método de marcação fluorescente foi miniaturizado 

e testado. Com base nos resultados obtidos, o método revelou-se capaz de detetar proteínas 

a concentração tão baixa quanto 6,0 μg / ml. 

Finalmente, para validação do método, foram analisadas micro amostras reais de pinturas de 

cavalete. As proteínas extraídas foram submetidas ao método de marcação fluorescente 

desenvolvido, tendo sido claramente identificadas em perfis eletroforéticos. Os resultados 

evidenciam a aplicabilidade desta metodologia como uma ferramenta analítica eficaz e útil 

para a identificação de ligantes proteicos extraídos de pinturas de cavalete e, possivelmente, 

de outras obras de arte. 

Adicionalmente, foram realizados cálculos quânticos baseados na Teoria Funcional da 

Densidade (DFT) e na Teoria do Funcional da Densidade Dependente do Tempo (TD-DFT) da 

cumarina C392STP de um derivado desta cumarina, ((E/Z)-N-propyl-4-(2-(6,7-dimethoxy-2-
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oxo-2H-chromen-3-yl)vinyl)benzamide)), que modela a cumarina ligada a lisina. Os cálculos 

confirmam as tendências experimentais observadas nos comprimentos de onda de absorção 

e estão de acordo com os espectros de absorção experimentais, fornecendo uma 

caracterização abrangente das principais características espectrais dos compostos estudados. 

 

PALAVRAS-CHAVE 

método de marcação fluorescente, cumarinas, ligantes proteicos, pinturas de cavalete 
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Easel paintings are extremely important Cultural Heritage assets with significant historic and 

cultural value. It emerged in the Middle Ages and since then have become one of the most 

important art expressions. Possessing multilayered structures composed of different layers, 

these artworks contain a diversity of organic materials, namely proteic compounds commonly 

produced from egg, milk or animal skin and bones.  Proteins in paintings can be found in painting 

binders, adhesives, and additives in coating layers. The wide range of organic and inorganic 

materials mixtures in the painting’s matrices makes the detection of the different protein 

materials a difficult task and contribute to the complexity of the materials identification [1].  The 

degradation of the materials in the paintings due to aging and improper storage conditions also 

complicate the protein materials detection [2, 3]. Furthermore, improper restoration practices 

like repainting, coatings application and over cleaning that can cause alteration of the original 

painting materials can interfere with the protein identification too [2, 4, 5]. Besides that, 

strategies commonly used to detect proteins, such as chromatographic, spectroscopic and 

proteomic techniques are useful but costly because the instruments involved are expensive, 

while immunological methodologies involve expensive commercially manufactured antibodies. 

It is then of paramount importance to develop analytical, low invasive, approaches in protein 

identification in order to design appropriate restoration and conservation methods or even to 

acquire deeper insights into a particular artist’s technique.  
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1.1 Scope and objectives 
 

The main objective of this PhD research was to develop a new fluorescent labelling method 

to identify different proteinaceous materials usually used in art. In order to perform the 

fluorescent labelling, a coumarin chromophore has been used. Initially, computational 

studies on the coumarin chromophore and of a related compound intended to mimic the 

chromophore-amino acid complex were done to explore its spectral features. Following the 

theoretical quantum chemical calculations, experimental works using C392STP [6] to 

fluorescent label the protein binders followed by electrophoretic separation and 

identification with protein patterns by PAGE (Polyacrylamide gel electrophoresis), that allows 

its detection and identification, were performed. Firstly, we have tested and optimized the 

protocols to bond C392STP to commercial proteins such as BSA (A2153), ovalbumin (A5378), 

casein (C3400), collagen (C9879) and fish gelatin (G7765). The optimized method was then 

used on proteins extracted from hens’ egg yolk and white, bovine milk and rabbit skin using 

the previously optimized protocol [7]. To improve the fluorescent labelling methodology, by 

taking into account the complexity of the painting matrices, namely the presence of pigments 

and the aging processes, we have studied the method on laboratory made paint models. The 

proteinaceous content was extracted from the paint models and the extracted protein was 

used to bind with C392STP. Finally, the method was applied on real easel paintings samples.  

Figure 1.1 shows the PhD research roadmap of the work developed on this thesis. From 

the studies of C392STP using theoretical methods to the construction of the protocols for 

fluorescent labelling using C392STP and continuing to applications, this roadmap can provide 

the reader with a brief overview of this research route. 
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Figure 1.1 PhD research roadmap. 
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1.2 Easel painting 
 

Generally, easel means a frame with legs which is made from wood. It is used to hold either 

a picture, a painting or a drawing [8, 9]. Easel painting refers to a midsize painting that an 

artist has painted on an easel. Easel paintings are composed of a few layers as shown in Figure 

1.2. Usually, the materials used for the supports are either wood, canvas or metal.  

 

Figure 1.2 Structure of an easel painting [10]. 

 

The first layer applied on the support is the ground layer/preparation layer which can either 

be gesso (animal glue and calcium sulfate or animal glue with calcium carbonate), oil (drying 

oil and white lead pigment) or bole (red clay, normally applied on gesso layer). After 

producing a smooth surface, chromatic layers/paint layers (a mixture of organic binders and 

pigments) are applied. Several binders used include egg tempera (egg yolk and pigment), 

drying oil (linseed/walnut/poppyseed), distemper (animal glue or casein paint) and ecaustic 

(wax). Lastly, a surface coating (semitransparent glazes and transparent varnish) is applied 

for the aesthetic presentation as well as for protective purposes [8–12]. Easel paintings 

emerged in the Middle Ages and since then have been one of the most important art 

expressions, constituting today’s relevant Cultural Heritage assets with important historical 

and cultural values. Paintings as earlier as 15th century are exhibited in the museums.  
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In the history of art, artists used a variety of materials to paint. The materials and 

techniques used may vary among the artists, studios or guilds [11]. Since the period of 

Renaissance, artists chose natural binding media which can produce the desired effects [12]. 

Another interesting point to consider is the techniques to draw the underdrawing which also 

differed among the artists and workshops [13]. The compositions of the easel paintings 

produced in different countries might be different, depending on the availability of the 

materials and the difference in the practice of the artists. For an example, the painting “Lady 

of the Rose” in the National Museum of Machado de Castro, Coimbra, dating from the first 

half of the 15th century, exhibits as main characteristics the use of vibrant colors, the lack of 

perspective, and larger scale of the sacred figures, with the use of tempera and painted on 

chestnut panel. This information evidence that it is a work from the workshop of Coimbra 

[14]. The artist frequently adapted his skills to the resource available at the time. An example 

is the famous Portuguese-Flemish painter, Frei Carlos, who has produced his paintings 

adapting the concepts of the Portuguese painters.  

The main objective of research on easel painting is to understand the structure of the 

easel paintings in order to plan a conservation strategy, according to the information 

gathered. Normally, the first step is to identify the painting materials used. The 

characterization of the materials allows us to understand the structure of the paintings, as 

well as the cause of the changes, happened on the paintings. Besides, material studies may 

also reveal previous restoration works done [3, 15]. After gathering enough information on 

the paintings, a strategy to preserve the paintings, such as the selection of materials suitable 

for restoration [3], can be decided. Another point to be considered is the creation of an 

environment suitable to display or store the artwork [5]. The presence of the proteins can be 

the nutritional source for the growth of microorganism that contributes to the deterioration 

of the paintings. For instance, the mixture of ovalbumin, collagen, and casein found in the 

paintings was suggested to be the cause of microbial contamination [11]. 
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1.3 Organic materials in easel paintings  
 

A diversity of organic materials, especially proteinaceous compounds (Figure 1.3), has been 

used as binders, adhesives and additives in coating layers in easel paintings. Egg ovalbumin, 

milk casein and animal glue collagen produced from animals’ bones, cartilages and skins are 

among the most commonly found proteins in the artworks [4, 16, 17]. These proteic 

compounds sometimes used together with siccative oils is known as tempera [4, 18].  

 

 

Figure 1.3  Proteinaceous binders commonly used. 

 

Unfortunately, those organic materials are particularly susceptible to the environmental 

conditions [5] as shown in Figure 1.4. Exposure to the environment cause changes in the 

organic materials which contribute to composition changes.  The surface of the painting, 

particularly, can degrade under different conditions of lighting, humidity, and temperature 

[5, 19]. Another factor responsible for structural damages are the degradation compounds 

produced by pollution [4, 20]. 

In this way, materials identification, particularly proteins, from paint samples are 

challenging because: 

i. The detection of the different protein materials in these complexes matrices is a difficult 

task; wide ranges of organic and inorganic materials mixture in the paintings contribute 

to the complexity of the materials identification [1, 17, 21].  

ii. Protein alterated/ degradated [1, 17]. 
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iii. Limited amount of sample; destruction on the artworks must be limited to a minimum 

[17, 21].  

iv. Low protein concentration in the sample [22]. 

v. Low solubility [4]. 

 

 

Figure 1.4 Factors contributing to the degradation of easel paintings. 

 

Due to the high importance of the preservation of these artworks, the correct 

identification of proteinaceous binders is a crucial step for an understanding of the 

techniques used by the artist, and to provide relevant information for conservation and 

restoration processes [19]. It is then of paramount importance to develop low invasive 

analytical methodologies in protein identification in artwork materials that are suitable for 

protein identification in painting samples. 

 

1.4  Proteinaceous binder detection 
 

The ubiquitous presence of proteins in artworks as binders, adhesives and additives in coating 

layers makes their identification an important step for characterizing the artist technique and 

for the development of appropriate conservation and restoration treatments. The pioneer 

work was initiated by Ostwald [23] in 1936, by using biological dyes such as iodesine or acid 
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green to stain proteins. The use of iodesine/acid green to stain proteins allowed the 

identification of some binders for the first time. Solutions of ammonium hydroxide containing 

iodesine stained tempera and glue red while solutions of methyl violet stained tempera and 

glue violet. Acid green could stain gelatin and casein and vanillin were also able to stain 

tempera red or violet [24]. The study of binders in paintings using staining tests were also 

reported by other studies [25]. Nile blue could stain drying oil effectively while acid fuchsin 

stained animal glue and egg tempera. Acid fuchsin has already been found to be effective in 

staining protein through the reaction with the ammonium group of proteins since the early 

20th century [24, 25]. 

The use of other classical colorimetric reactions such as the ninhydrin reaction, the Biuret 

reaction, the Millon reaction, and the Sakaguchi reaction, among others, have been used for 

the detection of proteins in paintings [26]. These methods based on the production of visible 

stains presented limited sensitivity and, depending on the pigment present in the painting 

sample, produced visible stains that could be difficult to distinguish. Nowadays analytical 

methods such as high-performance liquid chromatography (HPLC), gas chromatography (GC), 

combined with mass spectrometric (MS) detection, and thin-layer chromatography infrared 

spectrometry methods are commonly used in the identification of proteinaceous binders in 

paintings being capable to distinguish between egg, animal glue and milk proteins [15, 22, 

27–33]. 

Proteomic is used in a broad range of studies like clinical medicine, forensic, food analysis 

and the origins of life [34, 35]. In the early 2000, the use of proteomic methods was suggested 

in cultural heritage studies to analyze proteins in artworks including archeological samples 

[17, 34–37]. Proteomics techniques were adapted to the scientific analysis of archeological 

microsamples and research work was developed [35, 36] focused on the optimization of the 

protocols to address the problem of the small quantity of the aged and deteriorated 

microsamples. 

A new technique using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass 

Spectrometry (MALDI-TOF-MS) was used to detect protein components in painting. Painting 

models were formulated using egg white, lead white pigment, and linseed oil while another 
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with whole egg, lead white pigment and linseed oil [33].  Application of new protocol of 

MALDI analysis has also been tried on paint models produced from a mixture of lead white 

pigment and egg yolk, whole egg, linseed oil or both egg and oil [38] while the further 

simplification of MALDI protocol was tested on a mixture of inorganic pigments and egg, milk 

and collagen applied on glass slide [39]. Another study by Romero-Pastor and colleagues [18] 

tried for the first time the use of PCA on MALDI-TOF-MS-data in cultural heritage using paint 

models prepared with rabbit glue and rabbit glue with cinnabar or azurite in glue tempera 

production. Three painting models were prepared based on old medieval recipes.  

Nonetheless, there are a few limitations of those methods that need to be considered. 

Firstly, chromatographic and proteomics techniques involve laborious sample treatment [39] 

which only experts can implement [4, 40]. It is important to take note that chromatographic 

methods involve the hydrolysis of the protein in the sample and this can reduce the amount 

of information (origins of protein, degradation level and interaction between pigment and 

binder) one can get from the sample [30]. Secondly, expensive instruments are required in 

performing those techniques [40]. Thirdly, the analysis of the sample using chromatographic 

and spectroscopic methodology is largely dependent on the characteristics of the sample 

such as the composition of the sample, level of degradation and contamination [41, 42]. 

Furthermore, the interpretation of the analysis using chromatographic techniques is difficult 

if the sample is a complex mixture of organic and inorganics materials [43, 44] and the results 

have lower specificity [33] when compared with immunological methods. 

More recently immunological techniques inspired from biological methods such as 

Enzyme-Linked ImmunoSorbent Assay (ELISA) [41] or Surface Enhanced Raman Scattering 

(SERS) nanotags has been successfully used to localize/identify protein binders. The ELISA 

technique is particularly sensitive and specific in protein identification using antigen-antibody 

reactions [5, 21, 40, 42]. ELISA is a potential complementary analysis when the information 

of biological sources of proteins is needed from a sample. The emerging immunological 

techniques were tested to be used in cultural heritage studies. In the optimization of indirect 

ELISA to identify proteinaceous binders used in art work, tests have been made [21, 45] on 

paint models constructed based on old recipes that mimic easel painting/mural painting. 
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Layers of paint models were prepared by using gypsum and animal glue applied on wood 

panels. Then, the protein binders like whole egg/egg yolk/milk/bovine glue/rabbit glue were 

mixed with pigments in the ratio of pigment to binder=3:1.  In order to test the dot-ELISA test, 

Potenza and colleagues [46] have prepared model paintings using egg and rabbit glue mixed 

with red ochre pigment for tempera layer and applied it on mortar surfaces. Gambino et al. 

(2013) [47] further study the application of non-competitive dot-blot immunoassay and 

addressed pigment and aging effects using microsamples of paint replicas prepared in the 

laboratory; egg white and pigments were mixed and applied on glass slides. In the study by 

Sciutto et al. (2011) [48], the use of chemiluminescent immunochemical microscope imaging 

has been tested on ovalbumin and casein followed by testing on collagen [44]. Testing have 

been done on paint models prepared according to ancient painting recipes in which gypsum 

and rabbit glue (weight ratio of 19:1) has been applied as ground layer and a mixture of 

inorganic pigments and rabbit glue (blue smalt: rabbit glue=2:1)/ egg (lead white: egg=20:13)/ 

casein (red ochre: casein=10:7) as paint layers.  

In order to address the challenge of doing on site analysis, one recent study by Zangheri 

et al (216) [40] tried a newly developed portable analytical device on paint models which 

were prepared according to ancient painting recipes; gypsum and rabbit glue were applied 

on wood panel followed by inorganic pigments and egg (egg white: yolk: water= 1:1:1). The 

combination of immunological techniques and chemiluminescence detection reported the 

possibility of ovalbumin identification in the paint models as well as from samples of canvas 

painting, wall painting and painted wood panels. Nevertheless, the main limitation of this 

method is that it can only detect proteins which are part of the assay [5, 21, 40, 42, 45]. 

Therefore, negative results from ELISA assays cannot confirm the absence of other proteins. 

Furthermore, ELISA test is time-consuming [49]. The analysis are also highly costly as 

materials such as expensive commercially manufactured antibodies specifically tailored for 

cultural heritage study [41] are needed. Both chromatographic techniques as well as 

immunological techniques involve expensive equipment and require specialized personnel 

[5].  
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In recent years, protein detection based on fluorescence techniques using fluorescent 

organic compounds has received much attention.  Its use for protein detection in paintings 

was proposed in the end of the 1980s [50]. Thereafter, several dyes like fluorescamine, LISSA, 

fluorescein isothiocyanate (FITC) and cycloheptaamylose-dansyl chloride complex (DC-C7A) 

fluorochrome have been introduced [50, 51]. More recently, a ruthenium complex 

commercial dye, SYPRO Ruby, has also been used for detection of proteins in the works of art, 

including paintings. These fluorescent dyes interact with different functional groups in the 

proteins [52, 53] producing fluorescent products. Both fluorescamine and LISSA reacts with 

primary amines of proteins during fluorescent labelling [24, 54]; the reaction involving 

primary amines is shown in Figure 1.5.  

 

 

Figure 1.5 Example of fluorescent labelling targeting primary amines of proteins (adapted 
from Skelley et al., 2003) [54]. 

 

In the reaction between FITC and proteins, the sulfhydryl group can also be involved. The 

same happens with DC-C7A in which the sulfonyl chlorides/isothiocyanates of DC-C7A react 

with the primary amines and thiols of the proteins [24, 55]. Sypro Ruby is a noncovalent stain 

adapted from the biomedical field for protein identification through protein mapping, using 

gel electrophoresis [24, 56]. Staining using Sypro Ruby have been tried on paints [56],  a 

polychromy section of an altarpiece [37, 57], sculptures [58] and on easel painting samples 

[52]; proteins commonly used in art work (egg, animal glue, fish glue) could be successfully 
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detected. These fluorescent dye, however, are very expensive and must be used with 

parsimony [59].  

The applicability of a particular molecule as a fluorescent dye is highly dependent on its 

photophysical and photochemical properties like UV−vis absorption and fluorescence spectra, 

molar extinction coefficients, quantum efficiencies, Stokes shifts, pH and thermal stabilities 

among others [60]. Many coumarins (benzopyranones) and coumarin derivatives fit these 

conditions, which make it particularly adequate for use in fluorescent labelling [61]. The use 

of coumarin derivatives as fluorescent dyes will be discussed in the following section. The 

identification of proteinaceous components in paintings remains a challenging task and much 

effort have been made to develop simpler and less time consuming approaches [39, 40, 46, 

62]. Table 1.1 shows a list of some recent research on current methods used in protein 

detection in art. 

 

Table 1.1 Examples of research using different methodologies to detect proteins in art. 

Methodology Samples Authors 

Immunofluorescence Proteins in paint media Ramírez-Barat et al., 

2001 [63] 

In-situ Pyrolysis and Silylation Proteinaceous binders Chiavari et al., 2003 

[64] 

Combined GC/MS Proteinaceous materials in 

paint 

microsample 

Andreotti et al., 

2006 [15] 

Enzyme-linked immunosorbent assay 

and immunofluorescence microscopy 

Protein-based materials Heginbotham et al., 

2006 [65] 

Proteomics Proteins in Renaissance 

paintings 

Tokarski et al., 2006 

[36] 

Chemiluminescence 

imaging detection combined with 

optical microscopy 

Protein components 

in painting 

Dolci et al., 2008 

[66] 
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Immunofluorescence microscopy Proteins in painting Vagnini et al., 2008 

[1] 

Gas chromatography/mass 

spectrometry 

Organic paint media Colombini et al., 

2010 [22] 

Proteomic strategies Proteinaceous binders in 

paintings 

Leo et al., 2009 [17] 

FT-NIR spectroscopy Organic components in 

painting materials 

Vagnini et al., 2009 

[1] 

Enzyme-linked immunosorbent assay 

(ELISA) and immuno-fluorescence 

microscopy (IFM) techniques 

Proteins in ancient paint 

media 

Cartechini et al., 

2010 [41] 

Liquid chromatography–tandem mass 

spectrometry 

Protein binders in 

historical paints 

Fremout et al., 2010 

[30] 

GC/MS Proteinaceous materials 

from paint microsample 

Lluveras et al., 2010 

[43] 

Surface enhanced Raman scattering 

(SERS) nanotags 

Avian egg, animal glue, or 

casein binders 

Arslanoglu et 

al. ,2011 [67] 

Enzyme-linked immunosorbent assay 

(ELISA) 

Bovine milk (or casein) and 

chicken albumen 

Palmieri et al., 2011 

[45] 

Indirect Enzyme-Linked 

Immunosorbent Assay (ELISA) method 

Proteinaceous binding 

media and adhesives 

Schultz and 

Petersen, 2011 [42] 

Multiplexed chemiluminescent 

immunochemical imaging technique 

Organic 

components in the 

complex stratigraphy of 

paintings 

Sciutto et al., 2011 

[48] 

Radiographs and technical 

photographs, x-ray fluorescence 

 

Materials in the portraits 

executed between 

Soares et al. 2012 

[3] 
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the 16th and 19th centuries 

from National Library of 

Portugal (BNP) 

Dot-blot immunoassay Egg white Gambino et al. 2013 

[47] 

Enzyme-linked immunosorbent assay 

(ELISA) 

Animal glue and hen-egg 

yolk 

Palmieri et al. 2013 

[21] 

Chemiluminescent 

imaging detection 

Animal glues Sciutto et al., 2013 

[44] 

MALDI-MS Lipid- and protein-based 

binders 

Calvano et al. 2015 

[39] 

XRF, optical microscopy, Raman 

spectroscopy, 

and SEM-EDX 

Pigments and fillers on the 

paintings by 

Giorgio Marini 

Bordalo et al. 2016 

[68] 

Combined surface analysis and 

microanalytical techniques 

 

Materials of the 

underdrawings of the 

Flemish-Portuguese easel 

paintings 

Valadas et al. 2016 

[13] 

Chemiluminescent immunochemical 

contact imaging 

Chicken ovalbumin Zangheri et al. 2016 

[40] 

Scanning electron microscopy 

analyses, 

Energy-dispersive X-ray spectroscopy, 

μ-X-ray diffraction, μ-Raman, μ-FTIR 

and optical microscopy, immunological 

assays 

Painting materials of the 

easel paintings by Giorgio 

Marini 

 

Salvador et al. 2017 

[11] 
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1.5 Use of coumarin derivatives 
 

Coumarins/benzo-α-pyrones/2H-chromen-2-one/1-benzopyran-2-one are large family of 

compounds, consisting of a fusion of a pyrone and a benzene ring, with the pyrone carbonyl 

at position 2 (Figure 1.6) [69].  

 

Figure 1.6 Chemical structure of coumarin. 

 

Coumarins possess a variety of biological activity including antibacterial, anticancer, 

anticoagulant, antifungal, antihelmintic, anti-HIV, anti-inflammatory, antimicrobial, 

antioxidant, antiviral, estrogenic, dermal photosensitising, vasodilator, molluscucidal, 

sedative and hypnotic, analgesic and hypothermic activity [70–78]. Studies reported the used 

of coumarin derivatives in different fields like biology, chemistry, medicine, and 

pharmacology [79]. It has been applied as anesthetic in laboratory experiments, for fixing 

odors in perfume, in flavoring and in synthetic vanilla production, as a constituent of lavender 

oil, and as a natural source of essential antioxidants [80, 81].  

Coumarin derivatives represent one of the most important chemical classes of fluorescent 

organic compounds, being one of the most extensively investigated and commercially 

significant groups of organic fluorescent materials [6, 70, 71, 82–84]. Some of its substituted 

derivatives can emit strong fluorescent light [84, 85]. It has been applied in fields such as 

biological science, environmental monitoring, clinical chemistry, DNA sequencing and genetic 

analysis by fluorescence in situ hybridization (FISH) [86]. Due to the outstanding 

photophysical properties of coumarin, it is used in: 

i. High-performance liquid chromatography 

ii. Studying heterogeneous chemical systems and media 
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iii. Generating fluorescent derivatives 

iv. Probing proteins        [69, 86] 

 

Coumarin derivatives provide some of the most important commercial fluorescent 

brightening agents and appropriately substituted compounds are also used as highly effective 

fluorescent dyes on synthetic fibers and in daylight fluorescent pigments, conveying a vivid 

brilliance to a range of paint and printing ink applications. In addition, fluorescent coumarins 

may be used in a range of applications which specifically exploit their light emission 

properties, including non-destructive flaw detection, tunable dye lasers, emission layers in 

organic light-emitting diodes (OLED) and solar energy collectors. The most commonly-

encountered fluorescent coumarins either absorb in the UV region emitting blue light (FBAs) 

or are yellow dyes emitting a green fluorescence [70, 87, 88]. Although several derivatives 

that both absorb and emit at long wavelengths are known, there is much interest in the 

molecular design and synthesis of new coumarins derivatives which would extend the 

available range of long-wavelength emitting fluorescent materials [87, 88]. 

In particular, coumarins that react with target biomolecules, metals or reactive groups 

have been extensively exploited as fluorescent labels [89–94]. Examples include the 

coumarins that have amine reactive moieties, tetrafluorophenyl (TFP) or N-

hydroxysuccinimide (NHS) esters, which are effective dyes for biolabelling of molecules 

possessing primary amine groups [60, 95–97]. 

 It is known that the 4-sulfotetrafluorophenyl coumarin esters, like coumarin 392 STP 

ester, bonds covalently with amino acids [98], particularly with the lysine side chain amine, 

providing an efficient labelling. Coumarin392STP, the coumarin derivative fluorophore that 

was studied in this work, possesses very interesting physicochemical characteristics as a large 

Stokes shift, pH-independence of absorbance and emission and excellent photo-stability [99]. 

Other properties of this coumarin derivative include a high fluorescent quantum yield, and 

easiness to synthesize, and its possession of photophysical and spectroscopic properties 

which can be easily tailored according to the desired application [6, 70]. These properties, 
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together with its low cost, point to the possibility of C392TFP to become a fluorescent dye 

with a wide range of applications in bioimaging and biolabelling. 

This work proposes using the coumarin derivative chromophore (Coumarin 392 4-

sulfotetrafluorophenyl coumarin ester) [6] to develop a new simple, fast and affordable 

protocol to detect and identify protein binders used in easel paintings. Figure 1.7 shows a 

model of C392STP labelling a protein. The proteinaceous extracted from the paints are made 

react with the coumarin chromophore that binds to the proteins and its fluorescent 

properties allow an easy detection and identification of the proteins separated by gel 

electrophoresis. Furthermore, the step of electrophoresis gel staining is not needed in the 

identification process. 

 

 

 Figure 1.7 Model of C392STP labelling a protein (ovalbumin). 
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1.6 Theoretical quantum calculation 
 

Quantum chemistry is based on the application on chemistry of methods derived from 

the laws of quantum mechanics [100]. A few years after the introduction of the Schrödinger 

equation, the Hartree-Fock approach was introduced and it has been widely used in the 

quantum chemistry research [101]. Not long after, post-Hartree Fock ab initio method, based 

on the wave function, has been introduced to address the question on the correlation 

between electrons [101].  

Parallelly, Density Functional Theory (DFT) which is based on Hohenberg-Kohn [102], and 

Kohn and Sham [103] theorems were also proposed [101, 104, 105]. It is also known as static 

DFT and formally has the form of an effective one-particle Schrödinger equation [104]. Since 

then, DFT has been used widely in modeling the ground states of molecules [106, 107]. DFT 

methods have an increasing popularity in first principles quantum chemical calculations that 

explore the electronic structure [84, 108–110]. Less CPU time is required when compared 

with conventional ab initio calculations, it computes the results with greater accuracy than 

the Hartree-Fock Theory and solvent effect can be taken into account [84, 108, 110]. That 

makes nowadays DFT as the leading method in theoretical quantum chemical calculation for 

electronic structure exploration [109]. 

A few years later, time dependent DFT (TD-DFT), an extension of DFT, has been proposed 

by Runge and Gross [111]. The TD-DFT method has been proposed for the exploration of 

electronic excited-states energies [84, 112]. It is formulated in the form of an effective two-

particle equation [104] which can be used to calculate the transition energies, dipole 

moments and emitting geometries [113]. It is now established that TD-DFT theory is an 

accurate method for analyzing structural, thermodynamic, kinetic and spectroscopic 

properties [84, 114–120] providing good results with a lower computational cost [101, 105, 

121] when compared with other approaches. Parac and Grimme (2002) [122] have shown the 

applicability of TD-DFT on calculating excitation energies of large molecules.  
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There are in the literature many examples of DFT and TD-DFT calculations on coumarin 

and coumarin derivatives, a few of them reported in Table 1.2. In one study 30 coumarin 

derivatives were studied to investigate molecular properties such as the energy of the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital energy 

(LUMO), the energy gap and the dipole moment, by using DFT together with the B3LYP 

functional and the 6-31G* basis set [81]. Also, a recent work has produced benchmarking 

studies that explored the spectroscopic characteristic of the absorption spectra of 25 

coumarin derivatives [123, 124].   

In the study, DFT and TDDFT methods with different functionals and basis set have been 

used to study the absorption spectra of a diversity of simple coumarins and furanocoumarins 

derivatives. The calculated spectra were well estimated when comparing to the experimental 

spectra. The properties of solvated coumarins have also been studied using TDDFT 

calculations [125–127]. The combination of the functionals and the polarizable continuum 

model (PCM) was found useful in the study of solvent effects. It is known that PCM is able to 

give a good estimation of solvent effects [128] with solvatochromic and Stokes’ shift 

calculated   presenting good agreement with experimental values [126]. The choice of the 

functional is largely dependent on the type of the coumarin, the accuracy required, and the 

computational cost allocated [125, 128].  

 

Table 1.2 Key references of theoretical quantum chemical calculations on coumarin 
derivatives. 

Subjects Methodology Authors 

Coumarins 151 and 120 Time-Dependent Density Functional 

Theory (TDDFT) calculations against 

CASSCF, CASPT2 (both single and 

multistate versions), CIS, and ZINDO 

Cave 2002 [129] 

Coumarin derivatives Density Functional Theory framework 

(DFT) at Becke–Lee–Yang–Parr functional 

(B3LYP)/6-311+G(2d,2p) basis set 

Preat et al., 2005 

[120] 
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Acetyl coumarin DFT and Hartree- Fock (HF) at 6-31G* and 

6-311++G** basis sets 

Bahgat 2006 

[130] 

Coumarin derivatives PBE0/6-31+G(d) Jacquemin et al. 

2006 [84] 

Coumarin based dyes TDDFT with the Baer, Neuhauser, and 

Livshits BNL RSH functional, 

Stein et al. 2009 

[131] 

7-acetoxy-4-methyl 

coumarin 

Density functional theory at B3LYP/6-

311+G** basis set 

Arivazhagan et 

al. 2010 [80] 

Coumarin–thiourea 

conjugate 

Ab initio molecular orbital calculations Shiraisi et al. 

2010 [118] 

3-cyano-4-

methylcoumarin 

Density functional theory (DFT) at 6-

31G(d,p) basis sets 

Chaitanya et al. 

2012 [79] 

3,4-dihydrocoumarin 

and 3-methylcoumarin 

SQM force field method based on ab initio 

and DFT calculation at 6-311++G(d,p) basis 

set 

Arivazhagan et 

al. 2014 [132] 

7-Acetoxy-4-

(Bromomethyl)Coumarin 

DFT calculation at B3LYP/6-311++G(d,p) 

basis set 

Erdogdu et al. 

2015 [86] 

coumarin 151 TDDFT/EFP1  

 

Ramegowda et 

al. 2015 [127] 

V-shaped bis-coumarins DFT and TDDFT 

with the M06-2X hybrid 

exchange–correlation functional 

Šimon Budzák et 

al. 2016  

Coumarin derivatives Density functional theory (DFT) methods 

at B3LYP functional and a 6-31G* basis set 

Hmamouchi et 

al. 2016 [81] 

Simple coumarins and 

Furanocoumarins 

derivatives 

DFT functional CAM-B3LYP, WB97XD, 

HSEH1PBE, MPW1PW91 and TD-B3LYP 

with 6-31 + G (d,p) basis set 

Irfan et al., 2017 

[124] 
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The literature also shows several studies focused on a specific type of coumarins. For 

instance, properties such as conductivity, solvatochromism, gas-phase spectroscopy, 

solution-phase spectroscopy and electroabsorption spectroscopy of coumarin 151 [129, 133–

135]  and coumarin 120 [129, 135, 136] were thoroughly studied. The properties of coumarin 

120 and coumarin 151 were investigated using TDDFT calculations founding close agreement 

with the experimental S1S0 excitation energies [129]. It is also reported that the PBE0 and 

the MPW1PW91 hybrid functionals gave the better results presenting results nearer to the 

experimental values [114, 129]. Barone and colleagues presented the UV-Vis absorption 

spectrum of 7-amino-coumarin based on TDDFT calculations [126, 137]. According to the 

calculations, the B3LYP functional provided the more reliable geometry the 7-aminocoumarin, 

among those functionals tested. 

In this work, theoretical quantum chemical calculations based on the DFT and TDDFT have 

been performed on both the E and the Z isomers of C392STP coumarin, the fluorophore label 

molecule that we used as a probe to bond proteinaceous binders used in paintings. 

Calculations were also done on a related compound that mimics the fluorescent coumarin 

bonded with a protein amino acid amine side chain.  
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2.0 Overview 
 

This chapter aims to explore the electronic and spectroscopic characteristics of the coumarin 

derivative chromophore, Coumarin 392 4-sulfotetrafluorophenyl coumarin ester, C392STP 

(sodium (E/Z)-4-(4-(2-(6,7-dimethoxy-coumarin-3-yl) vinyl) benzoyl)-2,3,5,6-

tetrafluorobenzenesulfonate) and of a simple model of C392STP bonded to an amino acid, 

(E/Z)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide. 

Theoretical quantum chemical calculations based on the Density Functional Theory (DFT) 

and Time Dependent Density Functional Theory (TD-DFT) have been performed firstly on free 

C392STP. The same method was used to investigate (E/Z)-4-(2-(6,7- dimethoxycoumarin-3-

yl)vinyl)-N-propylbenzamide. The spectroscopic characteristics of the free C392STP have 

been studied in several solvents. The DFT and TD-DFT calculations confirm the experimental 

trends in absorption wavelengths and are in good agreement with experimental absorption 

spectra.  

 

2.1 Introduction 
Nowadays, DFT calculations are the most commonly used methods in quantum chemistry [1, 

2]. The most significant advantage of DFT methods when compared with the Hartree-Fock 

approach relays on a significant increase in accuracy without a substantial additional increase 

in computational time. It time dependent extension, the time-dependent density functional 

theory (TD-DFT), originally proposed by Runge and Gross [3], is also, probably, the most used 

approach for the theoretical calculation of electronic absorption spectra and  excited-state 

properties [4–7]. 

The popularity of TD-DFT relay on its accuracy on the evaluation of excited state energies, 

on being much less computationally demanding when compared  with ab initio wave function 

methods, its rapidity and applicability to large molecules [8–10] and also  its relative simplicity 

of  implementation [4]. It is known that DFT methods can predict with good accuracy the 

structure and spectroscopic properties of coumarins [11]. Thus, DFT calculations were 
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performed to gain more insight into the geometric and electronic properties of C392STP and 

(E/Z)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide. 

Additionally, the accuracy is also depended on the environment of the model system. The 

use of continuum models is particularly attractive, due to its low computational cost when 

compared with methods that represent explicitly the surrounding solvent molecules. In 

continuum models, the model is divided into a solute part, lying inside a cavity, surrounded 

by the solvent part represented as a structureless material, characterized by some 

parameters like its dielectric constant, molar volume, the polarizability, etc. The polarizable 

continuum model (PCM) is one of the most widely used methods to bulk solvent effects [12–

19]. In this approach, the solvent reaction field is represented as a set of charges, induced by 

the solute charge distribution, dispersed all over the solute cavity surface and has been found 

an essential tool to explore solvent effects and evaluate solvatochromic shifts for absorption 

and fluorescence. 

In this chapter, the interaction between the target molecule and the solvent were 

considered by using the polarizable continuum model (PCM) [8, 9, 20-21]. In the first step, we 

used the theoretical methods to study the C392STP coumarin (Figure 2.1).  

 

 

Figure 2.1  Structural formulas of the C392STP, sodium (E/Z)-4-(4-(2-(6,7-dimethoxy-
coumarin-3-yl) vinyl) benzoyl)-2,3,5,6-tetrafluorobenzenesulfonate. 

 

By doing this, we can gain a better understanding of the geometry, electronic structure 

and spectral features of the compound.  

In the labeling process the chromophore, C392STP, bonds covalently with some amino 

acids [22] as depicted in Figure 2.2. 
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Figure 2.2 Reaction between C392STP and a protein side chain amino acid amine group. 

 

To mimic the bonding of the coumarin chromophore with an amino acid we studied the (E/Z)-

4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide, coumarin derivative (Figure 2.3), 

which results from the reaction of C392STP and propylamine. Based on the results, we can 

estimate the potential of C392STP as a chromophore probe to bind proteinaceous binders used 

in easel paintings. 

 

 

Figure 2.3  Chemical structure of (E/Z)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-

propylbenzamide.  
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2.2 Theoretical quantum chemical calculation 
 

Theoretical quantum chemical calculations at DFT and TD-DFT level have been performed on 

the C392STP coumarin chromophore. Optimization of the molecular structures was 

performed with the widely used B3LYP hybrid functional together with the 6-31G (d,p) basis 

set. Subsequent frequency analysis was done to confirm the optimized geometries were in a 

minimum energy configuration by showing no imaginary frequencies. Next, TD-DFT was used 

for calculating the low-lying excited states and electronic transitions by using the hybrid PBE0 

functional with the 6-311+g (2d, p) basis set. The equations were solved for 20 excited states. 

Initially, the conformational landscape of C392STP was explored in water. After that, the 

optimization of the geometry was also done in several other solvents including THF, acetone, 

dioxane, methanol by means of the implicit polarized continuum model (PCM) [13] in order 

to mimic the experimental conditions and also with an explicit water model. 

After the calculations on the C392STP coumarin, we have studied the (E/Z)-4-(2-(6,7- 

dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide, coumarin derivative. Similar theoretical 

quantum chemical calculations at DFT and TD-DFT level have been performed on this 

coumarin derivative. Optimization of the molecular structures was performed by using the 

B3LYP hybrid functional with the 6-31G (d,p) basis set, followed by frequency analysis. 

Similarly, in order to mimic the experimental conditions, the optimization of the coumarin 

derivative geometry was done in acetonitrile solvent by means of the implicit polarized 

continuum (PCM) [13]. Next, TD-DFT was used for calculating the low-lying excited states and 

electronic transitions of the systems, by using the hybrid PBE0 functional together with the 

much larger 6-311+g (2d, p) basis set. The equations were solved for 20 excited states. All 

calculations were performed using the Gaussian 09 and Gaussian 16 software Packages [23].  
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2.3 Results and discussions 

2.3.1 Study of the free coumarin derivative chromophore C392STP 
 

The C392STP coumarin derivative chromophore can exist in two conformations, either as a E or 

a Z isomers. In real samples, depending on the synthesis conditions, coumarin compounds can 

appear as a mixture of E and Z isomers in different percentages. 

The minimum-energy molecular geometry (Figure 2.4) has been computed through DFT 

calculations at B3LYP/6-31+G(d)/PCM level for both E and Z isomers, and the optimized 

geometries calculated in the solvent of THF are depicted in Figure 2.4.  

 

 

 

ELUMO= - 2.546 eV 

 

 

 

Egap= 3.271 

 

EHOMO= - 5.817 eV 

 

E-C392STP 

 

 

ELUMO= - 2.384 eV 

 

 

 

Egap= 3.579 

 

EHOMO= - 5.963 eV  

 

Z-C392STP 

Figure 2.4  Optimized molecular geometry for E-C392STP and Z-C392STP in THF at the 
B3LYP/6-31+G(d) level and the HOMO and LUMO orbitals.  
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It was found that the E isomer has a nearly coplanar structure (with efficient pi conjugation) 

while the Z isomer is twisted out of plane of the carbon-carbon double bond (steric hindrance). 

In the case of E-C392STP, the calculated eigen values of LUMO and HOMO are – 5.817 eV and 

-2.546 eV respectively, with an energy gap of 3.271 eV (Figure 2.4). The HOMO orbital spread 

over the entire molecule while the LUMO orbital concentrates at the pyrone carbonyl group 

and benzene ring. This suggests that charge transfer can occur between the pyrone carbonyl 

group and benzene ring moiety, and the entire molecule through the C-C double bond. In the 

case of Z-C392STP, the calculated eigen values of LUMO and HOMO are – 5.963 eV and -2.384 

eV respectively, with an energy gap of 3.579 eV. The spreading of the LUMO and HOMO 

orbitals on the molecule is similar for the Z-392STP isomer case. The optimized geometries 

were found to be similar in other solvents. Calculated energies for both isomers at the 

B3LYP/6-31+G(d) theory level of the C392STP coumarin in different solvents have been 

compared in Table 2.1. Based on the calculated energies values obtained, the E isomer has in 

all cases a lower energy as compare with the Z isomer. The energy difference is between 7.0 

to 8.5 kcal/mol, depending on the solvent. These results show that the E isomer is the most 

stable form for both compounds as expected since the bulky groups on the same side on the 

Z isomer cause repulsive interactions forcing the aromatic ring out-of-plane. Also in 

experiments, the E isomer is the most abundant species as it is more stable when compared 

with the Z isomer. Based on the 1H-RMN spectra, the E isomer constitutes 84% of the total 

while the Z isomer is 16 % which will be discussed in section 3.1. 

  

Table 2.1 Calculated energies for the E-392STP and Z-C392STP isomers in different solvents 
at the B3LYP/6-31+G(d) theory level. 

Solvent Energy (a.u) ΔE (kcal mol-1) 
E isomer Z isomer 

Dioxane -2474.4763 -2474.4629 8.41 
THF -2474.5127 -2474.5002 7.41 

Acetone -2474.5240 -2474.5120 7.53 
Methanol -2474.5264 -2474.5146 7.86 

Water -2474.5289 -2474.5172 7.33 
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Photophysical properties of the C392STP coumarin were explored through in silico 

calculations. The TD-DFT methodology has been used and the two isomers of the C392STP 

coumarin have been studied in dioxane, THF, acetone, methanol, and water modeled by the 

PCM model. A mixed implicit/explicit model, including explicit water molecules, has been 

studied as well. 

The calculated lowest energy, oscillator strength (f) and the major contributions for the 

transitions for both isomers in different solvents were shown in Table 2.2. The lowest energy 

transitions of the C392STP coumarin, corresponding to the S0→S1 transition, is the most 

intense presenting the higher oscillator strength, for the both conformers, and it is similar in 

the different solvents. This lowest energy transition of the C392STP coumarin is mainly of 

HOMO→LUMO character in THF, methanol, water and in the explicit water model while is 

mainly of HOMO-1→LUMO character in dioxane and acetone (Figure 2.5).  
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Table 2.2 Calculated properties of the C392STP coumarin in different solvents at the 
PBE0/311+G(2d,p) level of theory. 

 
 State Wavelength, 

λ/nm 
Oscillator strength 

(f) 
Major transitions 

Dioxane     
 S1 404 1.755 H-1->LUMO (99%) 

E S2 318 0.026 H-4->LUMO (80%) 
 S3 317 0.121 H-1->L+1 (81%)  
      
 S1 378 0.916 H-1->LUMO (99%) 

Z S2 323 0.0001 H-2->LUMO (83%)  
 S3 319 0.022 H-4->LUMO (45%) 

THF      
S1 409 1.773 H->L (99%) 

E S2 324 0.046 H->L+1 (90%)  
S3 320 0.085 H-2->L (86%)  
  

  
  

S1 384 0.870 H->L (99%) 
Z S2 324 0.093 H->L+1 (89%)  

S3 314 0.175 H-2->L (84%) 
Acetone     

 S1 407 1.770 H-1->LUMO (99%) 
E S2 319 0.053 H-1->L+1 (83%) 
 S3 317 0.088 H-5->LUMO (76%) 
      
 S1 381 0.955 H-1->LUMO (99%) 

Z S2 329 0.001 H-2->LUMO (92%)  
 S3 323 0.005 H-3->LUMO (86%)  

Methanol   
  

  
S1 410 1.753 H->L (99%) 

E S2 326 0.031 H->L+1 (89%)  
S3 321 0.106 H-1->L (85%)  
  

  
  

S1 388 0.847 H->L (99%) 
Z S2 327 0.124 H->L+1 (92%)  

S3 315 0.172 H-1->L (86%) 
H2O   

  
  

S1 411 1.753 H->L (99%) 
E S2 326 0.030 H->L+1 (89%)  

S3 321 0.109 H-1->L (42%)  
  

  
  

S1 389 0.842 H->L (99%) 
Z S2 327 0.132 H->L+1 (92%)  

S3 315 0.175 H-1->L (87%) 
H2O explicit   

  
  

S1 406 1.826 H->L (99%) 
E S2 329 0.045 H->L+1 (94%)  

S3 316 0.046 H-1->L (85%)  
  

  
  

S1 375 0.786 H->L (99%) 
Z S2 324 0.123 H->L+1 (92%)  

S3 309 0.130 H-1->L (86%) 



 

65 
 

INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA 
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Lumo+1 
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Homo 

  
Homo-1 

  
 

Figure 2.5  Schematic drawings of the frontier molecular orbitals of both isomers involved in 
the most important transitions for E- and Z-C392STP in acetone. 

 

Simulated absorption spectra of the isomers in some solvents, comparing with experimental 

spectra, are shown in Figure 2.6 and the calculated absorption data of the lowest energy 

transition in table 2.3. The calculated lowest energy transition in non-aqueous solvents shows 

very good agreement with the experimentally measured wavelengths of the coumarin 

derivative chromophore absorption [24]. However, the model is not capable of reproducing 

the blue shift that occurs in water. This can be attributed to the use of a continuum model 

for a solvent in which specific interactions between the solute and the solvent may need 

special considerations. Therefore, an explicit solvent cluster model was also used to model 

the absorption spectra of the isomers in aqueous solutions. 
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Figure 2.6 Calculated UV-Vis spectra for the Z and E isomers of C392STP (green and red, 
respectively) and for their mixture (E/Z 84:16) (black) and comparison with the experimental 
(blue) spectra in THF, methanol and water.  Adapted from González-Pérez et al. [24].  

 

Table 2.3 Calculated absorption data of the lowest energy transition for E and Z isomers in 

different solvents. 

Solvents E isomer Z isomer E/Z 
mixture 

Experimental [24] 

 λ (nm) f λ (nm) f λa (nm) λ, FWHMb (nm) 

Dioxane 404 1.755 378 0.916 - - 
THF 409 1.773 384 0.870 408 399,68 
Acetone 407 1.770 381 0.955 - - 
Methanol 410 1.753 388 0.847 409 396,69 
Water 411 1.753 389 0.824 410 385,74 
Explicit 
water 

406 1.826 375 0.786 405 - 
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In order to investigate the properties of C392STP coumarin in water, theoretical 

calculation using the model of coumarin with nine explicit water molecules were performed. 

The coumarin–water complex was optimized, and its absorption spectra was calculated by 

TD-DFT, embedded in a PCM water medium (Figure 2.7).  

 

 

 
Figure 2.7 Optimized molecular geometry for E-C392STP (up) and Z-C392STP (down) in 
the PCM/water explicit model, at the B3LYP/6-31+G(d) level. 

 

The results of optimization with explicit water molecules showed that at least seven hydrogen 

bonds are formed with E-392STP, two intermolecular CO---H-O are formed between the 

methoxy oxygens of the C392STP and water hydrogens, one intermolecular C=O---H-O bond 

and one O---H-O between the coumarin moiety and hydrogen of water molecules, one 

intermolecular C=O---H-O hydrogen bond between the carbonyl group and the hydrogen of 

one water molecule and three SO---H-O bonds  between the sulphonate oxygens and water 

hydrogens. The Z-392STP only shows six hydrogen bonds between the coumarin and waters, 
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probably due to its more compact shape. When compared with the continuum model, the 

mixed PCM/explicit water model excitation corresponding to the S0→S1 transition shifts to 

higher energies than in non-aqueous solvents (Table 2.3), as observed experimentally, 

although with a smaller blue shift than in the experiment. 

The DFT calculations of electronic structure confirm the experimental trends in the UV 

wavelength absorption and are in good agreement with the experimental absorption spectra. 

The properties of C392STP coumarin were further explored by calculating the infrared 

spectrum. Figure 2.8 compares the calculated infrared spectra and the  infrared spectra of 

C392STP coumarin chromophore. Through the theoretical calculations, one band measured 

at 1265 cm-1 can be assigned to the CO stretching vibrations as the range of the CO stretching 

vibration ester of aromatic acids is around 1250 to 1300 cm-1. On the other hand, peaks were 

observed at the range between 2916 and 3068 cm-1 which were assigned to the CH stretching 

vibrations of the aromatic ring. The calculated IR peaks of CH stretching, found between 2916 

and 3068 cm-1, are comparable with the experimental IR peaks found in the range of 2849 

and 3016 cm-1. 

 

 
Figure 2.8 Theoretical and experimental IR spectra of sodium (E/Z)-4-(4-(2-(6,7-dimethoxy-
coumarin-3-yl) vinyl) benzoyl)-2,3,5,6-tetrafluorobenzenesulfonate.  
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2.3.2 Study of (E/Z)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-

propylbenzamide 
 

The C392STP coumarin can react with the primary amines of proteins amino acids during the 

fluorescent labelling process. By forming a covalent bond, C392STP coumarin bonds with the 

amino acid amine and lose its’ 2,3,5,6-tetrafluorobenzene sulfonate group, producing the 

resulting fluorescent amino acid. To model this process, C392STP coumarin react with 

propylamine to produce (E/Z)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide, 

as represented in Figure 2.9. The reaction is further discussed in the section 3.3. 

 

  

 

Figure 2.9 Reaction of C392STP coumarin and propylamine to produce (E)-4-(2-(6,7- 

dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide  

 

The optimized molecular geometries of the chromophore isomers determined at the 

B3LYP/6-31G(d,p) theory level using acetonitrile as solvent are reported in Figure 2.10.  

  
 

Figure 2.10 Optimized molecular geometry of the E and Z conformers of the coumarin 
derivative in acetonitrile at B3LYP/6-31G(d,p) level.  

 

+ CH3CH2CH2NH2    
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Contrary to the Z isomer, the E isomer is mostly planar, suggesting an efficient pi conjugation 

though the molecule. An energy difference of 7.7 kcal/mol between the E and Z isomers 

calculated at the same theory level, including ZPE corrections was found, with the E isomer 

showing the lower energy. These results show that the E isomer is the most stable form for 

both compounds as expected similarly to the case of the C392STP coumarin. 

Figure 2.11 shows the highest occupied molecular orbital (HOMO) and HOMO-1 and the 

lowest unoccupied molecular orbital (LUMO) and LUMO+1 in acetonitrile for the both 

isomers.  The frontier orbitals present typical π character, delocalized over the entire 

molecule with less significance for the propyl moiety, and are similar for both isomers. The 

main difference is that while in the E case the orbitals are spread for all the conjugated moiety, 

for the Z isomer the orbitals are slightly more localized on the coumarin part. From the TD-

DFT calculations with the 6-311+g(2d, p) basis set the 20 lowest energy transitions were 

obtained. The TD-DFT calculated E and Z isomers absorption spectra in acetonitrile solution 

are reported in Figure 2.12 as well as the experimentally determined spectrum of the 

compound. The first experimental absorption band is located around 392 nm while the 

second absorption band is observed at 324 nm. When comparing the calculated spectra of 

the E and Z isomers the lower energy band of the Z isomer is shifted to higher energies due 

to sterical hindrance that forces the aromatic ring out-of-plane, resulting in a reduction on 

conjugation.  

In real samples, depending on the synthesis conditions, the coumarin compounds can 

appear as a mixture of E and Z isomers in different percentages. In the present case, NMR 

experimental data (Appendix) shows that the E isomer is the most abundant form (around 

100%) after synthesis and purification. Comparing the E isomer spectra with the experimental 

one, the lower energy absorption band is only slightly red-shifted and the agreement 

between the theoretical calculated and experimental spectra is remarkable. 

To gain insight into the origin of the absorption spectra and the nature of the electronic 

transitions, the calculated transitions in terms of energy, oscillator strength, and the most 

important molecular orbital involved, together with the experimental absorption maxima, 

are depicted in Table 2.4. The lowest-energy transition corresponds to an S0→S1 transition 
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and originates from a π→π* transition being mainly associated with a HOMO→LUMO 

transitions, for the both isomers.  

 

 

 E Z 
Lumo+1 

  
Lumo 

  
Homo 

  
Homo-1 

  
Figure 2.11 Schematic drawings of the frontier molecular orbitals of the both isomers 
involved in the most important transitions. 
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Figure 2.12 Comparison between the experimental (blue line) and the calculated absorption 
spectra of the coumarin E (black) and Z (red) isomers. 

 

It is followed by two excited states close in energy (S2 and S3), presenting small oscillator 

forces and are mainly associated with HOMO-1→LUMO and HOMO→ LUMO+1 transition, 

for the both isomers. 

The infrared spectra of (E)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide 

is shown in Figure 2.13. Calculated IR peakss are observed between 1513 and 1631 cm-1. The 

peaks in the range of 1510 to 1650 cm-1 suggested the N-H bending vibration of amines. Peaks 

are also observed from 1674 to 1758 cm-1 which suggests –C=O stretching vibrations (Amide-

I band). In our case, the CH stretching vibrations of aromatic rings was observed at 3050-3125 

cm-1. In previous research, the CH stretching were also found at 3046–3109 cm–1 (3-

(bromoacetyl)coumarin), 3051–3120 cm–1 (3-acetyl-7-methoxycoumarin) [25], 3172, 3092 

and 3064 cm-1 (6-methyl-4-bromomethylcoumarin) [26], 3172 and 3079 cm–1 (7-methyl-4-

bromomethylcoumarin) [27], 3159, 3087, 3067 and 3043 cm-1 (6 and 7-Chloro-4-

bromomethylcoumarin) [28] respectively. The present DFT calculation predicts the N-H 

bending vibration of amine in the range between 1513 and 1631 cm-1. Additionally, the C=O 

stretching vibrations of amide-I band is predicted at 1674 to 1758cm-1. The N-H bending 

vibrations and C=O stretching vibrations are comparable between the theoretical predicted 

IR peaks and the experimental measured spectra. 
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Table 2.4 Experimental and calculated spectral properties of the coumarin isomers at hybrid 
Pbe0 functional with 6-311+g (2d, p) theory level.  

 State Wavelength (nm) f Major MO → MO 

transitions 

Experimental  

 

 

 

 

 

E isomer 

S1 396.81 1.627 HOMO→LUMO (99%) 392 

S2 316.43 0.068 H-1→LUMO (83%) 

H-3→LUMO (3%) 

H-2→LUMO (4%) 

HOMO→L+1 (2%) 

HOMO→L+3 (3%) 

 

 

 

 

 

324 

S3 313.91 0.101 HOMO→L+1 (90%) 

H-1→LUMO (4%) 

 

 

 

 

Z isomer 

S1 376.65 0.940 HOMO→LUMO (99%) 
 

S2 316.82 0.044 H-1→LUMO (85%) 

HOMO→L+1 (8%) 

 

S3 308.38 0.095 H-2→LUMO (10%) 

HOMO→L+1 (79%) 

H-1→LUMO (5%) 
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Figure 2.13 Experimental and calculated IR spectra of (E)-4-(2-(6,7- dimethoxycoumarin-3-
yl)vinyl)-N-propylbenzamide. 

 

2.4 Conclusion 
 

The electronic structure and spectral features of the potential chromophore proposed for the 

new fluorescent labelling methodology, C392STP coumarin, was presented. Characteristics of 

C392STP in different solvents were also explored. Furthermore, the characteristics of a 

related compound intended to mimic the chromophore-amino acid complex has been 

investigated as well. To gain a better understanding of the electronic structure and spectral 

features of the chromophore-amino acid complex, DFT and TD-DFT calculations on both the 

E and Z conformers of this coumarin derivative have been performed. The TD-DFT 

calculations for both C392STP coumarin and (E/Z)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-

N-propylbenzamide have presented a good agreement with the experimental absorption 

spectra and a comprehensive assignment of the main spectral features of the studied 

compounds was done. In the following chapter, the C392STP chromophore was tested as a 

label both with commercial proteins and with extracted proteins from natural products.  
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Chapter 3 FLUORESCENT LABELLING METHODOLOGY DEVELOPMENT 
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• S. Y. Ooi, C. Salvador, A. Candeias, A. Pereira, J. P. P. Ramalho, and A. T. Caldeira, Abstract 

of “Development of a simple method in the identification of proteinaceous binders in art,” 

TECHNART 2017 Non-destructive and microanalytical techniques in art and cultural 

heritage, pp. 235, 2017.  
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3.0 Overview 
 

This chapter describes the steps in developing the new fluorescent labelling methodology 

using C392STP, in order to increase the detection signals of proteins. Initially, we have 

developed and optimized the method by using commercial proteins such as BSA (A2153), 

ovalbumin (A5378), casein (C3400) and collagen (C9879). The optimized method was also 

used to test proteins extracted from hen’s egg yolk and white, bovine milk and rabbit skin. 

The electrophoretic profiles showed similar characteristic band profiles between the 

extracted and the commercial proteins. These results evidence the potential to apply this 

optimized methodology as an effective and useful analytical tool in the identification of 

protein binders in samples obtained from easel paintings. 

 

3.1 Introduction 
 

Easel paintings emerged in the Middle Ages and since then have been one of the most 

important art expressions, constituting today’s relevant Cultural Heritage assets with 

important historical and cultural values. These artworks contain a diversity of organic 

materials, namely proteic compounds. The proteinaceous binders are commonly produced 

from egg, milk or animal skin and bones. Unfortunately, the detection of different protein 

materials in these complex matrices is a difficult task. Moreover, wide ranges of organic and 

inorganic materials mixture in the paintings also contribute to the complexity of the materials 

identification [1]. It is then of paramount importance to develop analytical methodologies in 

protein identification for artwork materials investigation that can be applied as low invasive 

approaches and that are suitable for protein identification in painting samples. 

In the remaining part of this chapter, the description of this new simple, fast and 

affordable protocol to detect and identify protein binders used in easel paintings was done. 

A coumarin derivative chromophore, C392STP (sodium (E/Z)-4-(4-(2-(6,7-dimethoxy-

coumarin-3-yl) vinyl) benzoyl)-2,3,5,6-tetrafluorobenzenesulfonate) was used as a 

fluorescent label to identify and distinguish the different protein binders used in easel 
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paintings’ samples. The C392STP is a fluorescent amine-reactive coumarin synthesized by our 

research group [2]. The 4-sulfotetrafluorophenyl (STP) ester synthesis is chosen because it is 

easy to synthesize with high yield and due to its high amine reactivity. It is also highly soluble 

in water compared to N-hydroxysuccinimidyl (NHS) esters and is unlikely to suffer hydrolysis 

when compared with succinimidyl esters and pentafluorophenyl (PFP) esters. The mentioned 

properties of C392STP make it very useful for biomolecules (containing amine groups) 

labelling. The synthesis of C392STP produces a mixture of E and Z isomers in different 

percentages. The 1H-RMN experimental data (Supplementary info, Figure 1) showed that the 

ratio of E isomer to Z isomer is 84:16. The E isomer has two doublets, at 7.41 and 7.72 ppm 

with a 16.3 Hz coupling constant characteristic of this kind of isomer and two singlets at 7.30 

and 7.61 ppm from the Z isomer.  

The C392STP coumarin derivative was synthesized in high yield, with a simple, effective 

and low cost reaction, according to the synthetic pathway (Figure 3.1) and described below: 

Synthesis of (E)-methyl 4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)benzoate (A) 

Under a nitrogen atmosphere, a mixture of 6,7-dimethoxy-3-vinylcoumarin (73) (250 mg, 

1.077 mmol), methyl 4-iodobenzoate (256 mg, 0.979 mmol), Pd(PPh3)4 (57 mg, 0.049 mmol) 

and CH3CO2Ag (180 mg, 1.077 mmol) in DMF (3 mL) was stirred at 80ºC for a period of 72 h. 

After cooling to r.t., the reaction mixture was diluted with CH2Cl2, and washed with H2O. The 

organic layer was dried (Na2SO4), filtered, and concentrated under vacuum. The residue was 

purified by flash column chromatography on silica gel (230 400 mesh; CH2Cl2/EtOAc gradient) 

to yield (E)-methyl 4-(2-(6,7-dimethoxy-coumarin-3-yl)vinyl)benzoate (330 mg, 0.900 mmol, 

92%). 1H NMR (400 MHz, CDCl3)  (ppm): 3.92 (3H, s, OCH3), 3.94 (3H, s, OCH3), 3.96 (3H, s, 

OCH3), 6.85 (1H, s, H-8), 6.89 (1H, s, H-5), 7.18 (1H, d, J=16.3, H-1’), 7.58 (2H, d, J=8.0, H-4’, 

H-8’), 7.62 (1H, d, J=16.3, H-2’), 7.77 (1H, s, H-4), 8.02 (2H, d, J=8.0, H-5’, H-7’). 13C NMR (100 

MHz, CDCl3) : 52.3 (COOCH3), 56.5 (OCH3), 56.6 (OCH3), 99.8 (C-8), 107.9 (C-5), 112.3 (C-

4a), 121.5 (C-3), 125.2 (C-1’), 126.8 (C-5’, C-7’), 129.5 (C-6’), 130.2 (C-4’, C-8’), 131.4 (C-2’), 

138.6 (C-4), 141.7 (C-3’), 146.8 (C-6), 149.2 (C-8a), 153.1 (C-7), 160.7 (C-2), 167.0 (CO2CH3). 

MS-TOF(+) calc. for C21H18O6Na [M+Na]+ 389.09956 found 389.0989. FTIR max(cm-1): 2953, 
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2922, 2852, 1713, 1603, 1561, 1523, 1449, 1397, 1287, 1258, 1221, 1185, 1156, 1113, 1008, 

968, 870, 816, 752. 

 

 

Figure 3.1 Synthesis of sodium (E/Z)-4-(4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)-benzoyl)-
2,3,5,6-tetrafluoro-benzenesulfonate (C392STP). 

 

Synthesis of ((E)-4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)-benzoic acid (B) 

To a mixture of (E)-methyl 4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)benzoate (250 mg, 

0.682 mmol) in 1,4-dioxane (3.41 mL) was added 1 M sodium hydroxide (3.41 mL, 3.41 mmol). 

The reaction was stirred at 60ºC for about 2 h. After cooling to r.t., the reaction was acidified 

with HCl (10%) solution. The reaction mixture was diluted with CH2Cl2, and washed with H2O. 

The organic layer was dried (Na2SO4), filtered, and concentrated under vacuum. The residue 

was purified by flash column chromatography on silica gel (230 400 mesh; CH2Cl2/MeOH 

gradient) to yield (E)-4-(2-(6,7-dimethoxy-coumarin-3-yl)vinyl)benzoic acid (216 mg, 0.614 

mmol, 90%). 1H NMR (400 MHz, DMSO-d6)  (ppm): 3.83 (3H, s, OCH3), 3.88 (3H, s, OCH3), 

7.11 (1H, s, H-8), 7.23 (1H, s, H-5), 7.29 (1H, d, J=16.3, H-1’), 7.64 (1H, d, J=16.3, H-2’), 7.68 

(2H, d, J= 8.2, H-4’, H-8’), 7.94 (2H, d, J= 8.2, H-5’, H-7’), 8.22 (1H, s, H-4), 12.97 (1H, s, CO2H). 
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13C NMR (100 MHz, DMSO-d6)  (ppm):.55.9 (OCH3), 56.3 (OCH3), 99.8 (C-8), 108.6 (C-5), 

111.8 (C-4a), 119.9 (C-3), 125.5 (C-1’), 126.6 (C-5’, C-7’), 129.9 (C-4’, C-6’, C-8’), 130.1 (C-2’), 

140 (C-4), 141.2 (C-3’), 146.2 (C-6), 148.6 (C-8a), 152.9 (C-7), 159.8 (C-2), 167.1 (CO2H). MS-

TOF(+) calc. for C20H16O6Na [M+Na]+ 375.08391 found 375.0845. FTIR max(cm-1): 2950, 

2921, 28511725, 1682, 1600, 1557, 1503, 1459, 1423, 1406, 1383, 1312, 1286, 1256, 1175, 

1146, 1039, 1021, 995, 970, 961, 926, 875, 837, 797, 757, 697. 

 

Synthesis of sodium (E/Z)-4-(4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)-benzoyl)-2,3,5,6-

tetra-fluorobenzenesulfonate (C392STP) 

To a mixture of (E)-4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)benzoic acid (200 mg, 0.568 

mmol), 4-sulfotetrafluorophenol sodium salt (163 mg, 0.607 mmol) and N,N'-

dicyclohexylcarbodiimide (137 mg, 0.664 mmol) in CH3CN (8 mL) and DMF (2 mL) was stirred 

at room temperature for a period of 18 h. The reaction mixture was evaporated to dryness 

and the residue was purified by flash column chromatography on silica gel (230–400 mesh; 

CH2Cl2/MeOH gradient) to yield sodium (E/Z)-4-(4-(2-(6,7-dimethoxycoumarin-3-

yl)vinyl)benzoyl)-2,3,5,6-tetrafluorobenzenesulfonate (335 mg, 0.556 mmol, 98%).E-isomer: 

1H NMR (400 MHz, DMSO-d6)  (ppm): 3.83 (3H, s, OCH3), 3.88 (3H, s, OCH3), 7.12 (1H, s, H-

8), 7.24 (1H, s, H-5), 7.41 (1H, d, J=16.3, H-1’), 7.72 (1H, d, J=16.3, H-2’), 7.84 (2H, d, J= 8.2, H-

4’, H-8’), 8.18 (2H, d, J= 8.2, H-5’, H-7’), 8.27 (1H, s, H-4). Z-isomer: 1H NMR (400 MHz, DMSO-

d6)  (ppm): 3.83 (3H, s, OCH3), 3.88 (3H, s, OCH3), 7.10 (1H, s, H-8), 7.23 (1H, s, H-5), 7.30 

(1H, s, H-1’), 7.61 (1H, s, H-2’), 7.66 (2H, d, J= 8.0, H-4’, H-8’), 7.94 (2H, d, J= 8.0, H-5’, H-7’), 

8.22 (1H, s, H-4). 13C NMR (100 MHz, DMSO-d6)  (ppm): 56.0 (OCH3), 56.3 (OCH3), 99.8 (C-

8), 108.7 (C-5), 111.8 (C-4a), 119.7 (C-3), 124.7 (C-1’), 126.5 (C13’), 127.3 (C-5’, C-7’), 129.2 

(C-2’), 129.9 (C6’) 131.1 (C-4’, C-8’), 140,0 (C12’, C14’), 141.0 (C-4), 141.5 (C10’), 143.8 (C-3’), 

144.3 (C11’, C15’),146.3 (C-6), 148.8 (C-8a), 153.1 (C-7), 159.8 (C-2), 162.0 (COO). MS-TOF(-) 

calc. for C26H15NO9F4S [M-H]- 579.037841 found 579.0378. FTIR max(cm-1): 2952, 2921, 

2852, 1769, 1712, 1602, 1561, 1493, 1461, 1376, 1285, 1246, 1217, 1181, 1151, 1100, 996, 

639. UV (CH3CN) max (nm): 197, 293, 332, 392. 
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Our previous study has reported its’ potential as chromophore. Evaluation has been made 

on its’ potential for producing singly fluorescent-labeled oligonucleotides and assessment of 

their performance as RNA-FISH probes [3]. The properties of this coumarin derivative such as 

its effectiveness and high fluorescent quantum yields, as well as its low price and easy to 

synthesize makes it particularly suitable for labelling. Another advantage of this family of 

compounds is that it possesses photo physical and spectroscopic properties which can be 

easily tailored according to the desired application [4–6]. It is known that C392STP bonds 

covalently with amino acids [7]. The proteinaceous content extracted from the paints can 

then react effectively with the coumarin chromophore, producing fluorescent proteins that 

can be separated and identified by gel electrophoresis, with the advantage of the gel staining 

step not being necessary in the identification process. The following of this chapter addressed 

the questions: Can C392STP label the commercial proteins? Is C392STP able to label the 

proteins extracted from animal material? 

 

3.2 Materials and methodology 

3.2.1 Materials 
 

All the commercial reagents such as acetic acid (PanReac), BSA, ovalbumin, casein, collagen 

from bovine achilles tendon, gelatin from cold water fish skin (all from Sigma-Aldrich), 

acrylamide (Sigma-Aldrich), bisacrylamide (Sigma-Aldrich), bromophenol blue (Sigma-

Aldrich), glycerol (Merck), Tris-HCl buffer (VWR) were used as it was received. The buffer was 

prepared in distilled water with Na2CO3 (6398, Merck) (0.1 mol) and NaHCO3 (6329, Merck) 

(0.1 mol), pH 8.2. On the other hand, rabbit glue was prepared in the lab using the natural 

glue (extracted from the rabbit skin) which is stored in solid state. 

  

3.2.2 Fluorescent labelling of commercial proteins 
 

In this section, the method was tested with commercial proteins such as BSA (A2153), 

ovalbumin (A5378), casein (C3400) and collagen (C9879). In the first step, the commercial 
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proteins are allowed to react with C392STP. The reactions were prepared by mixing C392STP 

(0.00234 g, 1.0 mmol, 20.0 equiv) and the commercial proteins, in different protein: 

chromophore ratios and at two different temperatures, in sodium bicarbonate buffer (4.0 ml) 

and stirred for a period of 24 hour (Table 3.1). In the case of collagen, C392STP (1) (0.00234 

g, 1.0 mmol, 20.0 equiv) was mixed with collagen (14.62 mg/ml) in acetic acid (0.1M) (4.0 mL) 

and was stirred at 40°C for a period of 24 h. 

 

Table 3.1 Optimization process of fluorescent labelling methodology. 

 Test 

1 2 3 4 5 

BSA/Ovalbumin/ 
Casein/Collagen/Fish 
gelatin 

Ovalbumin/Casein Collagen 

Proportion of 
protein: 
chromophore 

1:20 1:20 5:20 10:20 5:20 

Reaction 
temperature (°C) 

R.T. 40 40 40 40 

R.T. – room temperature 

 

3.2.3 Test of the optimized method by using the proteins extracted from 

hen’s egg, bovine milk and animal glue 

3.2.3.1 Protein extraction 
 

Extraction of ovalbumin was based on isoelectric precipitation using TCA. This method uses a 

quantity of egg white/yolk (10 ml), separately, on three centrifugation steps of 10 minute at 

3000 rpm. Firstly, 10 ml H20 was used to help the dissolution and clean some of the impurities. 

Then, 10 ml of trichloroacetic acid (5%) was added to promote the proteins precipitation and 

followed by another washing step. The extracted proteins were resuspended in 10 ml of H2O 

[8]. 

Extraction of casein was made by precipitation with hydrochloric acid, by mixing 10 ml of 

bovine milk with 10 ml of H2O and adding 2 ml hydrochloric acid (2 %). It was then centrifuged 
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at 2000 rpm for 5 minutes (obtaining 2 ml of protein crude). The supernatant was discarded, 

and the precipitate was washed with H2O and centrifuged at 2000 rpm for 10 minutes. The 

supernatant was discarded, and the final crude was resuspended in 4 ml of distilled water [8]. 

Rabbit glue was prepared in the lab using commercial rabbit glue (Sennelier) in water with 

a ratio of 1:9 and then placing over a bain-marie (55ºC) during 30 min. Subsequently, the 

samples were incubated overnight at 25°C and then mixed with a glass stirring rod to ensure 

homogeneity. The glue solution was ready to use and stored at 5°C. The fluorescent labelling 

with C392STP was then performed on the rabbit glue. 

 

3.2.3.2 Bonding of the extracted proteins with C392STP 
 

The previously described procedure in section 3.2.2 has been applied on the extracted 

proteins, a mixture of C392STP (0.00234 g, 1.0 mmol, 20.0 equiv) and the proteins extract, in 

sodium bicarbonate buffer (4.0 ml), was stirred for a period of 24 hour. 

 

3.2.3.3 Spectroscopy analysis 
 

Before the labeling process, the experimental UV-Vis absorption spectra of the free 

C392STP was recorded in acetonitrile at room temperature. The experimental UV-Vis 

absorption spectra of the unbonded commercial proteins, unbonded extracted proteins, the 

fluorescent commercial proteins and the fluorescent extracted proteins were also recorded 

using a Thermo Electron Corporation (Nicolet Evolution 300) spectrophotometer. All the 

commercial proteins were measured in the solution of sodium bicarbonate buffer except 

collagen which was measured in the solution of the mixture of acetic acid and sodium 

bicarbonate buffer. The Infrared spectra of the unbonded commercial proteins and the 

fluorescent commercial proteins were obtained with an Infrared spectrometer Bruker 

Hyperion 3000. The infrared spectra were acquired with a spectral resolution of 8 cm-1, 32 

scans, in the infrared region between 4000 and 650 cm-1. 
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3.2.3.4 Electrophoretic Separation by PAGE 
 

The electrophoretic profiles of the proteins and the proteins bonded to the coumarin 

derivative chromophore were analyzed by PAGE (Polyacrylamide gel electrophoresis). The gel 

of the PAGE was prepared according to the composition of concentration and resolution gels 

showed in Table 3.2. After the polymerization of gel [Acrylamide: Bisacrylamide (30: 0.8)] was 

completed, electrophoresis was prepared using the MiniPROTEAN equipment from Bio-Rad.  

 

Table 3.2  Composition of concentration and resolution gels in PAGE. 

Composition of gels for PAGE 
Concentration gel 

(2.5%) 

Resolution gel 

(4%) 

Acrylamide: Bisacrylamide (8: 0.8) 
(mL) 

1.562 7 

Concentration buffer  
(Tris- HCl 0.5 M pH 6.8) (mL) 

1.250 - 

Resolution Buffer 
(Tris- HCl 3M, pH 8.8) (mL) 

- 1.750 

TEMED (µL) 5 9.8 

H2O (mL) 1.933 4.540 

Ammonium persulphate 1.5% (mL) 0.250 0.700 

 

The gel was placed on the support and the electrophoresis buffer (Tris 25 mM with glycine 

0.192 M, pH 8.3) was added. Samples were prepared by mixing 15 µL of sample with 10 µL of 

loading buffer (20 µg/mL of bromophenol blue and 10% of glycerol at 87% in Tris-HCl buffer 

62.5 mM, pH 6.8) and were applied in the wells (25 µL per well). In addition, NZY Colour 

Protein Marker II (Nzytech) with molecular weight (MW) between 11 and 245 kDa was used 

as the molecular marker and was applied in the wells of the acrylamide gel ends. 

Electrophoretic run was started at a potential difference of 110 V until the bromophenol blue 

travel throughout the gel. The gels were visualized in a UV chamber (Molecular Imager, Gel 

Doc - XR+ Imaging System, Bio-Rad), analyzed and results recorded using the Image Lab 5.0 

software (Copyright 2013, Bio-Rad Laboratories). 
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3.3 Results and discussions 
 

The C392STP new fluorescent dye was synthesized in our lab, as a mixture of E (84%) and 

Z (16%) isomers [3]. In the chromophore C392STP reaction with propylamine (Figure 3.2 and 

described below), performed to mimic the reaction that occurs with proteins, particularly 

with the lysine amino acid, only the E-isomer is observed in the products. The 1H NMR 

experimental data of 4-(2-(6,7-dimethoxy-coumarin-3-yl) vinyl)-N-propylbenzamide 

(Supplementary info, Figure 2), show that the E isomer is the most abundant form (around 

100%) after synthesis and purification. The 1H NMR spectrum presents two doublets, at 7.26 

and 7.63 ppm, from the double bond protons with a 16.8 Hz coupling constant, characteristic 

of E isomer. These results suggest that the chromophore reaction with proteins will produce 

only the most stable isomer and with greater bathochromic shift, ie, the E isomer. 

 

 

 

Figure 3.2 Reaction of (E/Z)-4-(4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)benzoyl)-2,3,5,6-
tetrafluorobenzenesulfonate and propylamine to produce (E)-4-(2-(6,7- dimethoxycoumarin-
3-yl)vinyl)-N-propylbenzamide. 

 

 

Reaction of C392STP reaction with propylamine to produce (E)-4-(2-(6,7- 

dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide  

A mixture of sodium (E)-4-(4-(2-(6,7-dimethoxycoumarin-3-yl)vinyl)benzoyl)-2,3,5,6-

tetrafluorobenzenesulfonate (60.2 mg, 0.1 mmol) and propylamine (5.9 mg, 8.2 μL, 0.11 

mmol, 1.1 equiv) in 2.0 mL of sodium bicarbonate buffer (pH 8.2) was stirred at 25ºC for a 

period of 24 h. The reaction mixture was concentrated under vacuum. The residue was 
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purified by flash column chromatography on silica gel (230 400 mesh; CHCl3/MeOH gradient) 

to yield (E)-4-(2-(6,7- dimethoxycoumarin-3-yl)vinyl)-N-propylbenzamide (38.5 mg, 98%). 1H 

NMR (400 MHz, DMSO-d6)  (ppm): 0.89 (3H, t, J=7.6, NHCH2CH2CH3), 1.53 (2H,m, 

NHCH2CH2CH3), 3.22 (2H, m, NHCH2CH2CH3), 3.83 (3H, s, OCH3), 3.88 (3H, s, OCH3), 7.11 (1H, 

s, H-8), 7.23 (1H, s, H-5), 7.26 (1H, d, J=16.8, H-1’), 7.63 (1H, d, J=16.8, H-2’), 7.65 (2H, d, J= 

6.8, H-4’, H-8’), 7.86 (2H, d, J= 6.8, H-5’, H-7’), 8.20 (1H, s, H-4), 8.48 (1H, t, J=5.6, 

NHCH2CH2CH3)). 13C NMR (100 MHz, DMSO-d6)  (ppm):.11.5 (NHCH2CH2CH3), 22.4 

(NHCH2CH2CH3), 41.0 (NHCH2CH2CH3), 55.9 (OCH3), 56.3 (OCH3), 99.8 (C-8), 108.6 (C-5), 111.9 

(C-4a), 120.0 (C-3), 124.6 (C-1’), 126.4 (C-5’, C-7’), 127.8 (C-4’, C-8’), 130.4 (C-2’), 133.8 (C-6’), 

139.5 (C-3’), 139.7 (C-4), 146.2 (C-6), 148.6 (C-8a), 152.8 (C-7), 159.9 (C-2), 165.6 (CONH). FTIR 

max (cm-1): 3018, 2922, 2851, 1697, 1642, 1605, 1541, 1503, 1284, 1150, 1006, 746. UV 

(CH3CN) max (nm): 195, 240, 291, 324, 392. 

 

3.3.1 Spectroscopic characteristics 
 

In this section we intend to apply UV-Vis and FTIR spectrometry to identify several proteins 

after labeling with chromophore C392STP. Considering the photochemical properties of the 

chromophore C393STP, in UV-Vis spectrometry we expect to obtain different protein profiles 

between 250 and 500 nm before and after the labeling reaction. In the case of FTIR 

spectroscopy, considering the complexity of the spectra of the proteins in this type of 

spectroscopy, we expect to observe different profiles, between 1500 and 1700 cm-1 after the 

labeling reaction. The changes in the referred range will confirm the possible reactions of the 

lysine residues with the chromophore, as they will produce new amides with different 

vibrational modes. 

 

3.3.1.1 UV 
 

The experimental UV-Vis spectrum of C392STP is shown in Figure 3.3, and present peaks at 

293, 332 and 392 nm.  



 

89 
 

INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA 

 

 

Figure 3.3 UV-Vis spectra of C392STP in acetonitrile. 

 

The UV-Vis spectra of all fluorescent labelled proteins tested (Figure 3.4 to Figure 3.8), 

show different profiles in the region between 230 to 470 nm, when compared with the UV-

Vis spectra of their commercial unlabelled counterparts. Fluorescent BSA presents 

differentiated peaks at 243, 285 and 381 nm. Similar situations are observed in the UV-Vis 

spectra of fluorescent ovalbumin, with peaks at 255, 335 and 389 nm, in UV-Vis spectra of 

fluorescent casein, with peaks at 240 and 374 nm, in UV-Vis spectra of fluorescent collagen, 

with peaks at 268 and 368 nm and in UV-Vis spectra of fluorescent fish gelatin, with peaks at 

245 and 382 nm. The peaks observed in these profiles are not due to the presence of the free 

chromophore, that absorbs at different wavelengths, which suggest the effectiveness of the 

labelling reaction of the related proteins.  
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Figure 3.4 UV-Vis spectra of BSA (black) and Fluorescent Labelled BSA (red) in sodium 
bicarbonate buffer. 

 

Figure 3.5 UV-Vis spectra of Ovalbumin (black) and Fluorescent Labelled Ovalbumin (red) in 
sodium bicarbonate buffer. 



 

91 
 

INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA 

 

 

Figure 3.6 UV-Vis spectra of Casein (black) and Fluorescent Labelled Casein (red) in sodium 
bicarbonate buffer. 

 

Figure 3.7 UV-Vis spectra of the Collagen (black) and Fluorescent Labelled Collgen (red), was 
recorded in a mixture of glacial acetic acid (1mL) and sodium bicarbonate buffer solution 
(4mL), due to its low solubility. 
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Figure 3.8 UV-Vis spectra of Fish Gelatin (black) and Fluorescent Labelled Fish Gelatin (red) in 
sodium bicarbonate buffer. 

 

The comparison of the UV-Vis spectra of fluorescent BSA, ovalbumin, casein, collagen and 

fish gelatin are shown in Figure 3.9. All the fluorescent proteins showed different profiles in 

the region of 230 to 470 nm.  
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Figure 3.9 UV spectra of the fluorescent labelled BSA (red), ovalbumin (black), casein (green), collagen 
(grey), fish gelatin (blue) in sodium bicarbonate buffer. 

 

3.3.1.2 FTIR 
 

The infrared spectra of all commercial proteins tested are shown in Figure 3.10 to Figure 

3.14. The peaks ranging from 1510 to 1650 cm-1 may be attributed to the N-H bending 

vibration in amines. The peaks between 1630 to 1700 cm-1, and 1510 to 1570 cm-1 may be 

attributed to the –C=O stretching vibrations (Amide-I band) and to the combination bands of 

N-H deformation and C-N stretching vibrations, respectively, in secondary amides. Changes 

in the samples of commercial BSA, ovalbumin casein, collagen and fish glue, after the 

fluorescent labelling with C392STP were detected by infrared spectroscopy.  

The infrared spectra of fluorescent BSA show a different profile in the region between 

1500 to 1560 cm-1 and 1660 to 1700 cm-1. Similar situations are observed in the infrared 

spectra of fluorescent ovalbumin (1510 to 1560 cm-1 and 1625 to 1700 cm-1), in the infrared 

spectra of fluorescent casein (1500 to 1575 cm-1 and 1610 to 1720 cm-1), in the infrared 

spectra of fluorescent collagen (1500 to 1570 cm-1 and 1600 to 1720 cm-1) and in the infrared 

spectra of fluorescent fish gelatin (1500 to 1560 cm-1 and 1600 to 1700 cm-1). These different 
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profiles in the infrared region of primary amines and secondary amides confirm the 

effectiveness of the labelling reaction on the related proteins.  

 

 

 

Figure 3.10 FTIR spectra of BSA (blue) and Fluorescent Labelled BSA (red). 

 

 

 

 

 

Figure 3.11 FTIR spectra of Ovalbumin (blue) and Fluorescent Labelled Ovalbumin (red). 

 

 

 

      BSA 
Fluorescent Labelled BSA 

       Ovalbumin 
       Fluorescent Labelled Ovalbumin 
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Figure 3.12 FTIR spectra of Casein (blue) and Fluorescent Labelled Casein (red). 

 

 

 

 

 

Figure 3.13 FTIR spectra of Collagen (blue) and Fluorescent Labelled Collagen (red). 

 

 

 

       Casein 
       Fluorescent Labelled Casein 

       Collagen 
       Fluorescent Labelled Collagen 
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Figure 3.14 FTIR spectra of Fish Gelatin (blue) and Fluorescent Labelled Fish Gelatin (red). 

 

3.3.3 Electrophoretic profiles 
 

To proceed with the identification of the different proteins, electrophoresis was used. 

Electrophoretic profiles of unbonded proteins and the proteins labeled with C392STP were 

analyzed for the determination of the characteristic profiles. The PAGE separates the proteins 

according to their charge and its molecular weight, based on its structure. Through the 

electrophoresis performed for the commercial proteins (Table 3.3) without the linkage to 

C392STP, four distinct proteic bands were observed for BSA (200.8, 160.5, 101.4, 52.4 kDa). 

The result found was similar to the result reported in  a previous work which has shown 

proteic bands of BSA with MW of (198, 132, 66 kDa) [9].  For ovalbumin four distinct proteic 

bands were observed (64.1, 46.3, 40.0, 36.0 kDa) while casein presented two bands at 66.6 

and 38.0 kDa. The lowest concentration that produces clear bands, for both unlabeled 

commercial ovalbumin and casein, was 0.0625 mg/ml. In the electrophoretogram, it was 

difficult to observe the band profile corresponding to the unlabelled commercial collagen and 

fish gelatin (Figure 3.15). 

Electrophoresis was also performed with the commercial proteins bonded with C392STP 

after each step of the optimization process. In test 1, commercial BSA has bonded successfully 

       Fish Gelatin 
       Fluorescent Labelled Fish Gelatin 
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with C392STP; four distinct proteic bands, between 35 kDa and 135 kDa, have appeared in 

the electrophoresis gel. However, the electrophoretic profiles of ovalbumin and casein were 

not clearly shown.  Thus, the optimization process proceeded to test 2, test 3, test 4 and test 

5 by increasing the temperature to 40°C with 3 different ratios of C392STP to protein. In this 

case, four distinct proteic bands, between 20 to 75 kDa, were observed for commercial 

ovalbumin while three proteic bands, between 35 to 75 kDa, were observed for commercial 

casein, showing that ovalbumin and casein bond more effectively with C392STP in slightly 

increased temperature (40°C) conditions. Test 2 was then chosen for the detection of 

ovalbumin and casein in order to minimize the amount of sample needed. As shown in the 

electrophoretogram (Figure 3.15) it was difficult to observe the band profile corresponding 

to the unlabelled commercial collagen. On the other hand, a fluorescent band corresponding 

to 35 kDa is clearly seen after labelled with coumarin 392 STP ester. From the results, test 5 

was efficient in labelling collagen with the proportion of protein:C392STP=5:20. Nevertheless, 

the electrophoretic profile of fish gelatin showed a fluorescent band with >245 kDa. These 

electrophoretic profiles (Figure 3.15) confirm the effectiveness of the labelling reaction of the 

proteins. 
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Figure 3.15 Electrophorectogram of commercial BSA, casein, ovalbumin, collagen and fish gelatin without labelling and after 
fluorescent labelling. 
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Table 3.3 Molecular weight (kDa) of the commercial proteins displayed in PAGE profiles. 

Commercial 
Proteins 

BSA Ovalbumin Casein Collagen 

 Unbonded Fluorescent Unbonded Fluorescent Unbonded Fluorescent  Fluorescent 

 200.8 >100 <135 64.1 >63 <75 66.6 >63 <75  >35 <48  
 160.5 >63 <100 46.3 >48 <63 38.0 >48 <63   
 101.4 >63 <75 40.0 >25 <35  >35 <48   
 52.4 >35 <48 36.0 >20 <25     
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In the next step, the optimized procedure has been applied on the protein extracted from 

hen’s egg, milk, and rabbit skin. Figure 3.16 shows the electrophorectogram of hen’s egg, 

bovine milk and rabbit glue while Table 3.4 shows the molecular weight of the extracted 

proteins tested. Ovalbumin extracted from egg yolk present three clear bands at 195.8, 111.7 

and 64.0 kDa while one weak band around 48 kDa. On the other hand, two distinct bands 

were seen for ovalbumin extracted from egg white (177.9, 109.6 kDa) and casein extracted 

from milk (69.6, 39.9 kDa). Concerning the unlabelled rabbit glue it is possible to detect a 

diffuse band between 63 and 75 kDa. Branco et al. (2014) also found that rabbit skin glue 

presents diffuse bands on PAGE [9].  Additionally, in the electrophoresis gel of fluorescent 

extracted proteins, three clear proteic bands were seen for ovalbumin from egg yolk and 

casein while four proteic bands were observed for ovalbumin from egg white. On the other 

hand, for the fluorescent labelled rabbit glue, a clear band is seen between 63 and 75 kDa, 

evidencing once more the detection capability of this methodology. Comparing the 

commercial proteins and extracted proteins, the proteic bands appeared around the same 

positions which means that the molecular weight of both commercial proteins and extracted 

proteins were similar. 

Advantages of this new fluorescent labelling method are that the coumarin derivative 

ester used can be synthesized easily, at low cost, and has a long wavelength, which is 

significantly important for biological purposes. Furthermore, it has good solubility in the 

reaction buffer media. In fact, it was showed that C392STP have a higher water solubility 

when compared with N-hydroxysuccinimidyl (NHS) esters [7]. This is an important 

characteristic for the application in biological research because it decreases the problem of 

hydrophobicity of some previously used labelling chromophores [10]. The linkage of proteins 

with this coumarin chromophore produces clear bands through electrophoresis in native 

conditions without requiring the step of electrophoresis gel staining making the labelling 

process simpler and rapid.  
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Figure 3.16 Electrophorectogram of extracted proteins [ovalbumin (egg yolk and egg white), 
casein (milk) and rabbit skin glue]. 

 

Table 3.4  Molecular weight (kDa) of the extracted proteins displayed in PAGE profiles. 

Ovalbumin Casein Collagen 
Unbonded Fluorescent Unbonded Fluorescent Unbonded Fluorescent 

(egg yolk) (egg white) (egg yolk) (egg white) Casein (milk) Rabbit glue 

195.8 177.9 >180 >135 <180 69.6 >63 <75 >63 <75 >63 <75 
111.7 109.6 >100 <135 >100 <135 39.9 >35 <48 >63 <75 >63 <75 
64.0  >63 <75      
  >48 <63      
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3.4 Conclusion 

 

A simple and inexpensive method to detect and identify protein binders, using a 

coumarin derivative chromophore (C392STP) as a fluorescent label, was presented. It has 

been applied to commercial proteins and extracted proteins. The proteinaceous samples 

were made react with the C392STP chromophore. The C392STP bonded to the proteins, and 

their fluorescent property allows their detection and identification by gel electrophoresis, 

without the need of the electrophoresis gel staining. The properties of the coumarin 

derivative used, such as its high fluorescent quantum yields, solubility, low price and synthesis 

simplicity makes it particularly suitable for this kind of labeling. Furthermore, this family of 

coumarins owns photo physical and spectroscopic properties that can be easily tailored 

according to the desired application. 

This methodology showed that it is able to identify as well as in detecting the source 

of the protein. The reported results evidence a great potential of the method as an effective 

and useful analytical tool in the identification of protein binders in the samples obtained from 

easel paintings. In the following chapter, the protocol was tested with microsamples from 

Easel painting’s paint models. 
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Chapter 4 APPLICATION OF FLUORESCENT LABELLING METHODOLOGY 

ON PAINT MODELS 
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4.0 Overview 
 

This chapter explores the application of fluorescent labelling method on complex matrices. 

The fluorescent labelling method was tested on proteins extracted from easel painting’s paint 

models. The paint models were made by mixing proteins such as casein, ovalbumin and rabbit 

glue with different pigments (lead white, chrome yellow and black bone), and submitted to 

an artificial aging process. The fluorescent labelling was done using the protocol developed 

in the previous chapter, a mixture of C392STP and the protein extracted from paint model 

were prepared and stirred for a period of 24 hours before proceeding to electrophoresis. 

Fluorescent bands were clearly observed on the electrophoresis gel with fluorescent labelling. 

Results revealed that with fluorescent labelling, proteins extracted from the paint models, in 

a 6.0 μg/ml concentration could be detected. These extracted proteins, clearly observed in 

the electrophoretic profiles after fluorescent labelling, were not possible to detect in the 

conventional electrophoresis performed. The results indicate that fluorescent labelling, 

followed by electrophoresis can act with high specificity in the identification of proteinaceous 

binders since it is also possible to detect the proteins extracted from complex matrices. 

 

4.1 Introduction 
 

As described earlier, the proteinaceous compounds such as eggs ovalbumin, milk casein and 

animal glue collagen produced from animals’ bones, cartilages and skins act as binders, 

adhesives and additives in the coating layer of easel painting [1–5]. They are also mixed with 

pigments during the painting processes. Binders, that are used as the layer after the draft of 

artist, can be composed of one kind of protein, a mixture of proteins, a mixture of protein 

with oil or a mixture of a few types of organic materials [6]. Following a series of original 

painting process and conservation treatment (with adhesives or coatings), the proteinaceous 

binder may be a mixture of different proteins. Dealing with the analysis of the composition 

of this complex mixture of organic materials [6, 7] is even more challenging since it can change 

over time because of the chemical interactions between the different materials under the 
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environment where the painting is stored [8, 9]. It is known that the commonly used 

techniques in proteinaceous materials identification such as chromatographic techniques: 

high-performance liquid chromatography (HPLC), liquid chromatography and gas 

chromatography (GC), combined with mass spectrometric (MS), thin-layer chromatography 

infrared spectrometry), optical methods [1, 10–12] produce signal that is difficult to interpret 

due to the complexity of matrices and do not allow to identify the biological origins of 

proteins. On the other hand, the proteomic strategies [6, 7, 13] require expensive equipment 

and experienced personnel. This chapter was planned to acknowledge the issue of complex 

matrices in protein identification with the new fluorescent labelling method. 

Customarily, a newly developed method is tried on paint models to evaluate the 

performance of the method. During the development of a protocol which will be applied in 

cultural heritage studies, testing on paint model is also important because microsamples from 

paintings are often limited in amount. Painting models are commonly made from 

proteinaceous binders blended with pigments. In the preparation of paint models, one of the 

most commonly used protein is ovalbumin from egg [2, 6, 14–18] because ovalbumin is 

always found as a binder, mixed with pigments or as varnish on top of the paintings. Milk, 

rabbit glue and bovine glue have also been used in paint model construction to mix with 

pigments in producing paint layers [2, 14–16].  

Through the literature review, it was identified that painters in the 19th century often 

used pigments such as lead white, yellow ochre, chrome yellow [9, 19, 20]. Thus, three 

pigments have been chosen for the paint model construction. Lead white, yellow ochre and 

black bone have been chosen because they are detected in previous research on 19th century 

Easel paintings in Portugal [9, 19]. From previous research, steps of paint models’ preparation 

started with the extraction of protein (ovalbumin) from egg followed by mixing with pigments 

and finally applied on glass slide [6, 17]. Another typical proteinaceous binder, rabbit glue, 

was also used in paint models’ preparation of Medieval painting [21]. In the present study we 

have prepared paint models by mixing proteins: casein, ovalbumin and rabbit glue, with 

different pigments: lead white, yellow ochre and black bone. The mixture of pigment and 

binder in a ratio of pigment to binder weight ratio = 3:1 were then applied on the prepared 
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support and the submitted to an artificial aging process. Subsequently, the fluorescent 

labelling method was tested on proteins extracted from the paint models. The following of 

this chapter addressed the fourth research question as below: 

 

1. How does fluorescent labelling assist in identifying the origins of protein binders used 

in easel paintings when painting matrices are complex with the presence of pigments 

and has undergone aging processes? 

 

4.2 Methodology 

4.2.1 Materials 
 

All the commercial reagents such as acetic acid (PanReac), acrylamide (Sigma-Aldrich), 

bisacrylamide (Sigma-Aldrich), bromophenol blue (Sigma-Aldrich), glycerol (Merck), Tris-HCl 

buffer (VWR) were used as they were received. The buffer was prepared in distilled water 

with Na2CO3 (6398, Merck) (0.1 mol) and NaHCO3 (6329, Merck) (0.1 mol), pH 8.2. The rabbit 

glue was prepared in the lab using the concentrated animal glue (boiling the rabbit skin and 

bone) which was stored in solid state. 

 

4.2.2 Protein content 
 

Before the fluorescent labelling methodology be applied on paint models, the concentration 

of samples required were tested using unbonded proteins. The lower concentration needed 

in order to obtain a clear electrophoretic profile were tested by testing the electrophoretic 

profiles for commercial casein and commercial ovalbumin at different concentrations. The 

concentration of protein and the concentrations of C392STP needed were decided and 

applied on the protein recover from paint models. 
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4.2.3 Mimitize real conditions using paint models of Easel paintings 

4.2.3.1 Paint models’ construction with one pigment 
 

Paint models of Easel paintings were prepared by mixing proteins extracted from hen’s egg 

(yolk and white), bovine milk, and rabbit skin glue used as binders, and different pigments. 

Pigments commonly used in Easel paintings such as lead white, yellow ochre and black bone 

were chosen (Table 4.1). These are pigments commonly found in painting, for instance the 

lead white and yellow chrome pigments used in the paint models were found in the paintings 

from Giorgio Marini [19], studied in the next chapter.  The ratio of binders to pigment was 

1:3. Mixtures layers with thickness between 50-150 μm (Figure 4.1) were applied on glass 

supports. The Easel painting paint models were then placed in aging chamber for 1 month to 

undergo the aging process artificially. The aging process was carried out in 3 cycles, each cycle 

consisting of 5 days in a relative humidity of 85 % and a temperature of 45°C followed by 5 

days in a relative humidity of 30 % and a temperature of 12°C. 

 

Table 4.1 Constitution of paint models. 

 Proteic binders Pigments 

PM1 

Whole egg 

Lead white: 2(PbCO3). Pb(OH)2 (10 g) 

PM2 Yellow ochre: FeO(OH) 

PM3 Black bone: Ca5(OH)(PO4)3 and C 

PM4 

Bovine milk 

Lead white: 2(PbCO3). Pb(OH)2 (10 g) 

PM5 Yellow ochre: FeO(OH) 

PM6 Black bone: Ca5(OH)(PO4)3 and C 

PM7  Lead white: 2(PbCO3). Pb(OH)2 (10 g) 

PM8 Rabbit skin glue Yellow ochre: FeO(OH) 

PM9  Black bone: Ca5(OH)(PO4)3 and C 
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Figure 4.1 Easel painting models prepared using (a) hen’s egg, (b) bovine milk, and (c) rabbit 
skin glue, as binder with different pigments, lead white, yellow ochre and black bone. 

 

4.2.3.2 Paint models’ construction with three pigments 
 

These paint models consist of protein binders and a mixture of different pigments. We have 

prepared three paint models, each with one kind of protein and three different pigments 

(Figure 4.2).  

 

PMO PMC PMRG 

 
 

(a) Ovalbumin 
 lead white + 

chrome yellow + 
black bone 

 
 

(b) Casein 
lead white + 

chrome yellow 
+ black bone 

 
 

(c) Rabbit glue 
lead white + 

chrome yellow 
+ black bone 

 
Figure 4.2 Easel painting models prepared using (a) hen’s egg, (b) bovine milk, and (c) rabbit skin 
glue, as binder with three different pigments, lead white, chrome yellow and black bone. 

 

The mixtures of 1 portion of protein and 3 portions of pigments were applied on glass 

support to form paint layer with thickness between 50–150 μm. All the paint models prepared 

were placed in the aging chamber to mimic the aging process artificially. The aging conditions 
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consisted on 5 days in a relative humidity of 85% and a temperature of 45°C followed by 5 days 

in a relative humidity of 30% and a temperature of 12 °C for a cycle. This cycle was repeated for 

3 times. 

 

4.2.3.3 Bonding of extracted proteins with the coumarin chromophore 
 

The samples were obtained from the paint models microsamples. Then, each sample was 

suspended in 1 ml of sodium bicarbonate buffer. The proteins were extracted in three cycles 

consisting of a sonification step during 1h and an incubation step at 37°C with orbital agitation 

during 1h, followed by an overnight incubation at 37°C as described by Salvador et al., 2017 

[9]. 

The proteinaceous content which was extracted from the paint microsamples was 

determined using the Bradford method [22]. Commercial BSA (A2153) was prepared in 

concentrations ranging from 1 to 40 μg/ml as the standard solution. The total protein content 

of the microsamples was expressed as g of BSA equivalents per milligram of microsample [23], 

[24]. After determining the protein content extracted, they were bonded with C392STP using 

the developed fluorescent labelling method. The reactions were prepared by mixing the 

C392STP at the concentration of 0.025 mg/ml and the proteins recovered from the paint 

models in sodium bicarbonate buffer with a total volume of (1.0 ml) and stirred for a period 

of 24 h (Table 4.2). 

 

4.3 Results and discussions 

4.3.1 Fluorescent labelling 
 

Results showed that it was possible to detect the electrophoretic signals of commercial 

casein, commercial ovalbumin and rabbit glue without fluorescent labelling at 

concentrations above 0.0625 mg/ml. Likewise, different concentrations of C392STP were 

tested for labelling this amount of protein (Figure 4.3). The labelled protein produced was 
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then submitted to electrophoresis and based on the fluorescent bands observed, the 

concentration of 0.25 mg/ml of C392STP was chosen for labelling.  

 

 

Figure 4.3 Fluorescent proteins with different concentrations of chromophore. 

 

 This methodology was tested on the paint models prepared as previously described. 

Considering the objective of reducing the amount of microsample and C392STP for 

fluorescent labelling, 0.25 mg/ml of C392STP was applied on the fluorescent labelling of 

protein recovered from different paint models, reactions 1-12 (Table 4.2).  
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Table 4.2 Fluorescents labelling between paint models and C392STP. 

Reactions Paint models with one pigment 

Reaction 1 100 μl protein 
extract recovered 
from PM1 

0
.2

5
 m

l C
3

9
2

ST
P

 (
0

.2
5

 m
g/

m
l)

 

0
.7

5
 m

l b
u

ff
er

 

Reaction 2 100 μl protein 
extract recovered 
from PM2 

Reaction 3 100 μl protein 
extract recovered 
from PM3 

Reaction 4 100 μl protein 
extract recovered 
from PM4 

Reaction 5 100 μl protein 
extract recovered 
from PM5 

Reaction 6 100 μl protein 
extract recovered 
from PM6 

Reaction 7 100 μl protein 
extract recovered 
from PM7 

Reaction 8 100 μl protein 
extract recovered 
from PM8 

Reaction 9 100 μl protein 
extract recovered 
from PM9 

 Paint models with 3 pigments 

Reaction 10 100 μl protein 
extract recovered 
from PMC 

0
.2

5
 m

l C
3

9
2

ST
P

 (
0

.2
5

 
m

g/
m

l)
 

0
.7

5
 m

l b
u

ff
er

 

Reaction 11 100 μl protein 
extract recovered 
from PMO 

Reaction 12 100 μl protein 
extract recovered 
from PMRG 
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4.3.2 Electrophoretic profiles of paint models with one pigment 
 

As mentioned in section 4.2.1.3, proteins were extracted from the paint models (PM1-PM9) 

and labelled with C392STP. The range of protein concentration was between 6.42 μg/ml and 

33.58 μg/ml (Figure 4.4). To proceed with the identification of the proteins, electrophoresis 

was used for the determination of the characteristic profiles. Figure 4.5 shows the 

electrophoresis gel obtained from the extracted proteins from the paint microsamples. 

Fluorescent band were observed at >25 <35 kDa for extracted ovalbumin (PM1-PM3), which 

was in line with the band observed from fluorescent commercial ovalbumin and fluorescent 

ovalbumin from egg yolk. Additionally, a clear fluorescent band was found at >100 <135 kDa 

for the extracted casein from the paint model.  

The electrophoretic profile showed similar characteristic band profiles for the extracted 

and the commercial proteins. Fluorescent bands were observed at the same area (>25 <35 

kDa) for the paint models which contained the same protein (ovalbumin) and different 

pigments (PM1, PM2 and PM3) while fluorescent bands were also observed at the same area 

(>100 <135 kDa) for the paint models containing casein with different pigments (PM4, PM5, 

PM6). On the other hand, the electrophoretic profiles of rabbit glue and fluorescent rabbit 

glue extracted from the paint microsamples (PM7, PM8, PM9) showed coincident patterns, 

permitting to identify collagen proteinaceous binders in the painting matrices. The 

fluorescent bands, characteristics of proteins were clearly visible even after the accelerated 

aging process that can promote complex modifications of the proteinaceous binders. 

 The results showed that is possible to extract and detect these proteic binders from 

different matrices in the presence of several different pigments. The protein content at the 

concentrations ranged from 6.42 μg/ml – 17.42 μg/ml (ovalbumin paint models), 10.10 μg/ml 

– 27.95 μg/ml (casein paint models) and 6.49 μg/ml – 33.58 μg/ml (rabbit glue paint models) 

can be labelled with C392STP. The fluorescent proteins produced can be easily detected using 

spectroscopic methods as well as electrophoresis. 
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(a) 

 
  

(b) 

 
  

(c) 

 
  
  

Figure 4.4 Protein content of paint models prepared from (a) hen’s egg, (b) bovine milk, and (c) 
rabbit skin glue. The labels are the median ± SD of the 3 replicates. 

 

 

 

6,42 17,42 17,34
0

10

20

30

40

50

Lead White Yellow Ochre Black Bone

C
o

n
ce

n
tr

at
io

n
s 

(μ
g/

m
l)

27,95 10,10 12,31
0

10

20

30

40

50

Lead White Yellow Ochre Black Bone

C
o

n
ce

n
tr

at
io

n
s 

(μ
g/

m
l)

6,49 14,44 33,58
0

10

20

30

40

50

Lead White Yellow Ochre Black Bone

C
o

n
ce

n
tr

at
io

n
s 

(μ
g/

m
l)



 

115 
 

 

Standard PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 PM9 Free 
C392STP 

          
 

 

Figure 4.5 Electrophoretic profile of proteins extracted from the paint models labelled with 
fluorescent coumarin 392 TFP ester. 

 

 These results also indicated that the method shows high sensitivity, considering that it 

was able to detect proteic binders from paint model microsamples with protein content as 

low as 6.57 μg/ml (proteins extracted from paint models range from 6.49 μg/ml to 33.58 

μg/ml) while the lowest concentration detected from unlabelled commercial protein samples 

was 0.0625 mg/ml. Thus, it is concluded that the origins of the proteins obtained from the 

aged paint models, corresponding to different matrices and pigments, can be identified with 

this methodology.  

 

4.3.3 Electrophoretic profiles of paint models with three pigments 
 

In the next step, we have taken into account the application of fluorescent methodology on 

the more complex matrices. Here, the protein was recovered from the paint containing 

proteinaceous binders with mixed pigments. Protein contents in the paint models, 

determined by the Bradford method as explained before, were 3.30 μg/ml, 2.09 μg/ml and 

4.14 μg/ml for PMO, PMC and PMRG respectively (Figure 4.6). Promising results were found 
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under the same conditions of fluorescent labelling that it was employed for the labelling of 

commercial ovalbumin, commercial casein and rabbit glue.  

 The results also showed that this method can be applied on the labelling of paint 

microsamples with a minimal amount of C392STP. Looking at the electrophoretic profiles 

(Figure 4.7) we were able to observe fluorescent bands for all the paint models. Clear bands 

can be observed for all the labelled proteins extracted from the paint microsamples although 

the amount of chromophore was reduced from 0.585mg/ml to 0.025 mg/ml in the labelling 

process. It was possible to detect the proteins in all the paint models which also supported 

the fact that pigments did not influence the sample preparation. This fact as also been 

suggested by Fremout and colleagues (2010) who also used historical pigments such as lead 

white in paint models’ preparation [12]. The present study with complex aged paint models 

has determined the applicability of fluorescent labelling on aged samples. 

 

 

Figure 4.6 Protein content of the paint models prepared from hen’s egg (PMO), bovine milk 
(PMC) and rabbit skin glue (PMRG). The labels are the median ± SD of 3 replicates. 
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 Standard (a) PMO (b) PMC (c) PMRG 
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Figure 4.7 Electrophoretic profiles of (a) PMO, (b) PMC and (c) PMRG. 

 

4.4 Conclusion 
 

The methodology was tested on samples taken from paint models with single pigment and 

paint models with three pigments, submitted to an artificial aging process. The results of the 

previous tests on commercial proteins showed that temperature influence the binding 

process between protein and C392STP, so, the bonding process with microsamples of paint 

models were set at 40°C. By using this optimized fluorescent labelling methodology, it was 

possible to label the proteinaceous binders with C392STP. Following electrophoresis analysis, 

fluorescent bands were observed at >25 <35 kDa, for extracted ovalbumin (PM1-PM3), a clear 

fluorescent band was found at >100 <135 kDa for the extracted casein from the paint model 

(PM4-PM6) while a clear band was observed between 63 kDa and 75 kDa for the extracted 

rabbit glue (PM7-PM9). In the same way, fluorescent bands were also observed for PMO, 

PMC and PMRG which were made with a more complex matrix. Analysis on either single 

pigment or three pigments models have shown good results, with fluorescent bands being 

observed in all the paint models. It can be concluded that fluorescent labelling is effective on 

the detection of proteins from microsamples with complex compositions. 

  



 

118 
 

Bibliography 

[1] A. Lluveras, I. Bonaduce, A. Andreotti, and M. P. Columbini, “GC/MS analytical procedure 

for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous 

and polysaccharide materials in the same paint microsample avoiding interferences from 

inorganic media,” Anal. Chem., vol. 82, no. 1, pp. 376–386, 2010. 

[2] C. D. Calvano, I. D. Van Der Werf, F. Palmisano, and L. Sabbatini, “Identification of lipid- 

and protein-based binders in paintings by direct on-plate wet chemistry and matrix-

assisted laser desorption ionization mass spectrometry,” Anal. Bioanal. Chem., vol. 407, 

no. 3, pp. 1015–1022, 2015. 

[3] L. Cartechini, M. Vagnini, M. Palmieri, L.Pitzurra, T. Mello, J. Mazurek, and G. Chiari, 

“Immunodetection of proteins in ancient paint media,” Acc. Chem. Res., vol. 43, no. 6, pp. 

867–876, 2010. 

[4] W. Fremout, S. Kuckova, M. Crhova, J. Sanyoya, S. Saverwyns, R. Hynek,…, and L. Moens, 

“Classification of protein binders in artist’s paints by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry: An evaluation of principal 

component analysis (PCA) and soft independent modelling of class analogy (SIMCA),” 

Rapid Commun. Mass Spectrom., vol. 25, no. 11, pp. 1631–1640, 2011. 

[5] A. Nevin, D. Comelli, G. Valentini, D. Anglos, A. Burnstock, S. Cather, and R. Cubeddu, 

“Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in 

paintings,” Anal. Bioanal. Chem., vol. 388, no. 8, pp. 1897–1905, 2007. 

[6] C. Tokarski, E. Martin, C. Rolando, and C. Cren-Olivé, “Identification of Proteins in 

Renaissance Paintings by Proteomics,” Anal. Chem., vol. 78, no. 5, pp. 1494–1502, 2006. 

[7] G. Leo, L. Cartechini, P. Pucci, A. Sgamellotti, G. Marino, and L. Birolo, “Proteomic 

strategies for the identification of proteinaceous binders in paintings,” Anal. Bioanal. 

Chem., vol. 395, no. 7, pp. 2269–2280, 2009. 

[8] J. Arslanoglu, J. Schultz, J. Loike, and K. Peterson, “Immunology and art: Using antibody-

based techniques to identify proteins and gums in artworks,” J. Biosci., vol. 35, no. 1, pp. 

3–10, 2010. 

[9] C. Salvador, R. Bordalo, M. Silva, T. Rosado, A. Candeias, and A. T. Caldeira, “On the 



 

119 
 

conservation of easel paintings: evaluation of microbial contamination and artists 

materials,” Appl. Phys. A Mater. Sci. Process., vol. 123, no. 1, p. 80, 2017. 

[10] A. Andreotti, M. Bonaduce, M. P. Colombini, G. Gautier, F. Modugno, and E. Ribechini, 

“Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, 

resinous, and proteinaceous materials in a unique paint microsample,” Anal. Chem., vol. 

78, no. 13, pp. 4490–4500, 2006. 

[11] M. T. Doménech-Carbó, “Novel analytical methods for characterising binding media and 

protective coatings in artworks,” Anal. Chim. Acta, vol. 621, no. 2, pp. 109–139, 2008. 

[12] W. Fremout, M. Dhaenens, S. Saverwyns, J. Sanyova, P. Vandenabeele, D. Deforce, and L. 

Moens, “Tryptic peptide analysis of protein binders in works of art by liquid 

chromatography-tandem mass spectrometry,” Anal. Chim. Acta, vol. 658, no. 2, pp. 156–

162, 2010. 

[13] S. Dallongeville, M. Richter, S. Schäfer, M. Kühlenthal, N. Garnier, C. Rolanda, and, C. 

Tokarski, “Proteomics applied to the authentication of fish glue: application to a 17th 

century artwork sample,” Analyst, vol. 138, no. 18, p. 5357, 2013. 

[14] M. Palmieri, M. Vagnini, L. Pitzurra, P. Rocchi, B.G. Brunetti, A. Sgamellotti, and L. 

Cartechini, “Development of an analytical protocol for a fast, sensitive and specific protein 

recognition in paintings by enzyme-linked immunosorbent assay (ELISA),” Anal. Bioanal. 

Chem., vol. 399, no. 9, pp. 3011–3023, 2011. 

[15] C. D. Calvano, I. D. Van Der Werf, and F. Palmisano, “Fingerprinting of egg and oil binders 

in painted artworks by matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry analysis of lipid oxidation by-products,” Anal Bioanal Chem, vol. 400, no. 7, 

pp. 2229–2240, 2011. 

[16] G. Sciutto, L.S. Dolci, A. Buragina, S. Prati, M. Guardigli, R. Mazzeo, and A. Roda, 

“Development of a multiplexed chemiluminescent immunochemical imaging technique for 

the simultaneous localization of different proteins in painting micro cross-sections,” Anal. 

Bioanal. Chem., vol. 399, no. 9, pp. 2889–2897, 2011. 

[17] M. Potenza, G. Sabatino, F. Giambi, L. Rosi, A. M. Papini, and L. Dei, “Analysis of egg-based 

model wall paintings by use of an innovative combined dot-ELISA and UPLC-based 



 

120 
 

approach,” Anal. Bioanal. Chem., vol. 405, no. 2–3, pp. 691–701, 2013. 

[18] M. Zangheri, G. Sciutto, M. Mirasoli, S. Prati, R. Mazzeo, A. Roda, and M. Guardigli, “A 

portable device for on site detection of chicken ovalbumin in artworks by 

chemiluminescent immunochemical contact imaging,” Microchem. J., vol. 124, pp. 247–

255, 2016. 

[19] R. Bordalo, C. Bottaini, C. Moricca, and A. Candeias, “Material Characterisation of a 

Florentine painter in Portugal in the Late 19th century: paintings by Giorgio Marini,” Int. J. 

Conserv. Sci., vol. 7, no. 4, pp. 967–980, 2016. 

[20] N. Eastaugh, V. Walsh, T. Chaplin, and R. Siddall, Pigment Compendium: a dictionary of 

historical pigments, Routledge, 2013. 

[21] J. Romero-Pastor, N. Navas, S. Kuckova, A. Rodríguez-Navarro, and C. Cardell, “Collagen-

based proteinaceous binder-pigment interaction study under UV ageing conditions by 

MALDI-TOF-MS and principal component analysis,” J. Mass Spectrom., vol. 47, no. 3, pp. 

322–330, 2012. 

[22] M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, 

no. 1–2, pp. 248–254, 1976. 

[23] J.M.S. Arroyo, M.R. Martins, C. Salvador, M.F. Candeias, A. Karmali, and A.T. Caldeira, 

“Protein-polysaccharides of Trametes versicolor: production and biological activities,” 

Med. Chem. Res., vol. 21, no. 6, pp. 937–943, 2012. 

[24] C. Salvador, M.R. Martins, M.F. Candeias, A. Karmali, J. Arteiro, and A.T. Caldeira, 

“Characterization and biological activities of protein-bound polysaccharides produced by 

cultures of Pleurotus ostreatus,” J. Agric. Sci. Technol., vol. 2, no. 11A, p. 1296, 2012. 
  



 

121 
 

 

Chapter 5 APPLICATION OF FLUORESCENT LABELLING METHODOLOGY 

ON REAL SAMPLES 
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of “Approaches for the protein binders’ determination on Easel paintings,” INART 2018 

3rd International Conference on Innovation in Art Research and Technology, pp. 91, 2018.  
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5.0 Overview 
 

In this chapter the application of the fluorescent labelling method with C392STP coumarin on 

microsamples obtained from easel paintings will be demonstrated. Proteins were recovered 

from samples of easel paintings by Giorgio Marini (1836–1905), from the museum of Évora 

and private collections. The extracted proteins were submitted to the fluorescent labelling 

method. The fluorescent labelling was done using a coumarin derivative C392STP (sodium 

(E/Z)-4-(4-(2-(6,7-dimethoxy-coumarin-3-yl) vinyl) benzoyl)-2,3,5,6-

tetrafluorobenzenesulfonate) as chromophore, which was mixed with the proteins extract 

for a period of 24 hours. The extracted proteins could be clearly observed in the 

electrophoretic profiles, after fluorescent labelling, which was not possible in the 

conventional electrophoresis performed. Fluorescent labelling with C392STP revealed that 

ovalbumin is present in all three paintings. The results indicate that fluorescent labelling with 

C392STP coumarin, followed by electrophoretic detection, is a simple and fast method with 

high sensitivity, that can act with high specificity in the identification of proteinaceous binders 

used in easel paintings.  

 

5.1 Introduction 
 

According to the previous chapter, protein binders’ detection in paint models mimicking easel 

paintings by fluorescent labelling using the C392STP coumarin have worked well. After 

confirmation about the applicability of fluorescent labelling with protein recovered from 

artificial, laboratory made, complex matrices, we tried it on the microsamples from real easel 

paintings. For the last part of this research, the fluorescent labelling was tested on 

microsamples obtained from easel paintings exhibited in the Museum of Évora. Museum of 

Évora, established in 1915, has some collections of paintings which the earliest were painted 

in mid-14th century. One of the collections are the paintings by an Italian painter, Giorgio 

Marini (Florence 1836 — Castelo Branco, 1905), whose works were produced during the 19th 
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century. Being one of the innovative Italian painters who lived in Portugal, he produced high 

quality portraits, landscapes, religious and historic paintings. Despite the interest of his work, 

reflecting a mixture of cultures, his work is not well studied. Fortunately, most of the paintings 

available are in a good conservation state.  

The present research intends to explore the proteinaceous binders used by Giorgio Marini. 

The paintings are dated from 1887 to 1897 including portraits and landscapes. The earliest 

painting by Giorgio Marini is a copy of the 18th century portrait of the archbishop of Évora, 

Frei Manuel do Cenáculo. The paintings were not studied until recently. Bordalo et al. (2016) 

[1] studied the paintings focusing on the pigments used by the artist in his paintings. Giorgio 

Marini preferred to use canvas as the support for the paintings. He painted the portraits with 

the emphasis on the face details with simple background and clothes. He preferred to sign 

using dark brown or black color on the paintings with light background while yellow and 

orange color were used on dark backgrounds. XRF combined with optical microscopy, Raman 

spectroscopy and SEM-EDX were used in identifying the palette used by Giorgio Marini. 

Additionally, Salvador and colleagues (2017) [2] investigated the origins of the microbial 

contamination on his paintings by characterizing the materials used. Energy-dispersive X-ray 

spectroscopy, μ-X-ray diffraction, μ-Raman, μ-FTIR and optical microscopy techniques were 

used in the materials characterization. It was found that Giorgio Marini prepared the ground 

layers with barium white and the painting media used are based on siccative oil and protein. 

From ELISA analysis studies, the presence of protein has been suggested to be the source of 

nutrition for microbial growth such as fungi of the genera Aspergillus, Cladosporium, Mucor, 

Penicillium, Ulocladium and Scopulariopsis that caused structural degradation on the 

paintings. 

In order to study painting materials, many analytical techniques require the use of 

micro-samples taken from the art work. Microsamples should however be taken according 

to the conservation ethics, trying to reduce the level of destruction on the paintings. The 

researcher should only take the minimal amount of sample from the painting necessary for 

the analytical work. Some research [2–6] tried to scrap the samples from bottom corners or 

edges with the consideration to avoid aesthetical change on the artworks. In this chapter, the 
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applicability of the fluorescent labelling using C392STP coumarin on real artworks has been 

tested. After testing on laboratory models of easel paintings, the developed fluorescent 

labelling has been used for detection of proteins in painting microsamples. The results 

obtained from fluorescent labelling for proteinaceous binders’ identification are presented in 

section 5.3. The knowledge on the material used, in particular the proteinaceous material can 

be very useful in providing information for conservation and restoration. The following of this 

chapter addressed the fifth research question as below: 

 

5. Is the fluorescent labelling methodology applicable on microsample obtained from easel 

painting? 

  



 

125 
 

 

5.2 Methodology 

5.2.1 Microsamples collections 
 

Figure 5.1 shows the three easel paintings by Giorgio Marini (1836–1905) which were tested 

in this study. The portrait of Frei Manuel do Cenáculo (ME1281), dated 1887, is from the 

collection of the museum of Évora. Another two portraits: portrait of a bearded gentleman, 

dated 1897, and portrait of a lady, dated 1886, are from private collections. When the 

sampling process was carrying out, the factor that the sampling will not cause structural and 

aesthetic damage was carefully considered. The samples were collected using micro invasive 

methods, collecting only fragments that were not possible to be conserved and that would 

be eliminated during restoration work. Microsamples were scrapped off from the painting 

layers using a microscalpel.  

 

(a) (b) (c) 

   

Figure 5.1 Portraits by Giorgio Marini (a) A portrait of Frei Manuel do Cenáculo, 1887, 
(ME1281), Museum of Évora (Évora, Portugal); (b) portrait of a bearded gentleman, 1897, 
and (c) portrait of a lady, 1886, private collection (Évora, Portugal). 

 

The protein content was extracted from the microsamples using a previously optimized 

procedure [7]. Each sample was suspended in 1 ml of sodium bicarbonate buffer. The proteins 
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were extracted in three cycles consisting of a sonification step for an hour, and an incubation 

step at 37°C with orbital agitation for an hour, followed by an overnight incubation at 37°C as 

described by Salvador and colleagues [2, 7]. After those procedures, the protein extracts 

obtained were then submitted to the fluorescent labelling method. 

 

5.2.2 Protein binders’ identification 
 

The protein extracted was bonded with C392STP using the developed fluorescent 

labelling method. The reactions were prepared by mixing the C392STP, at the concentration 

of 0.025 mg/ml, and the proteins recovered from easel paintings, in sodium bicarbonate 

buffer with a total volume of (1.0 ml) and stirred for a period of 24 h. Table 5.1 shows the 

conditions of the fluorescent labelling reactions performed. Identification of the fluorescent 

proteins produced was done by electrophoretic separation by PAGE.  

 

Table 5.1 Conditions for the fluorescent labelling of the microsamples of easel paintings. 

Reactions Volume 

M2 

Portrait of Frei Manuel do 

Cenáculo, 1887, (ME1281) 

100 μl of protein extract from microsamples 

0.25 ml of 0.25 mg/ml C392STP  

0.75 ml of phosphate buffer 

Mb  

Portrait of a bearded 

gentleman, 1897 

100 μl of protein extract from microsamples 

0.25 ml of 0.25 mg/ml C392STP 

0.75 ml of phosphate buffer 

Md  

Portrait of a lady, 1886 

100 μl of protein extract from microsamples 

0.25 ml of 0.25 mg/ml C392STP 

0.75 ml of phosphate buffer 
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5.3 Results and discussions 
 

Figure 5.2 shows the FTIR spectra with the high absorption peaks observed ranging from 

1510 and 1730 cm−1. These results suggest that the absorption bands at 1510 to 1570 cm-

1 may be attributed to the combination bands of N-H deformation and C-N stretching 

vibrations in amides while the peaks between 1630 to 1700 cm-1 may be attributed to the –

C=O stretching vibrations of secondary amides (Amide-I band). The FTIR spectra thus confirm 

the presence of proteins in the portrait of Frei Manuel do Cenáculo. The absorption pattern 

is similar to the one obtained in a previous study which also suggested the presence of 

proteins in the top layer and ground layer of the painting [2]. Figure 5.3 and figure 5.4 show 

similar characteristic absorptions at the range from 1500 to 1710 cm−1, for the portrait of a 

bearded gentleman, and from 1500 to 1700 cm−1 for the portrait of a lady. As evidenced in 

the literatures, the peak at 1545 cm-1 from IR reflectance spectroscopy [9] and the peak at 

1542 cm-1 from IR spectrum [10], were suggested as amide II bands. 

 

 

Figure 5.2 FTIR spectra of the microsamples from the portrait of Frei Manuel do Cenáculo. 
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Figure 5.3 FTIR spectra of the microsamples from the portrait of a bearded gentleman. 

 

 

Figure 5.4 FTIR spectra of the microsamples from the portrait of a lady. 

 

After confirming the presence of the proteins, the proteins were recovered from the 

microsamples, according to Salvador el al, 2017 [2], giving 56.67 μg/ml, 89.05 μg/ml and 

353.16 μg/ml, for Portrait of Frei Manuel do Cenáculo, 1887, (M2), Portrait of a bearded 

gentleman, 1897 (Mb) and Portrait of a lady, 1886 (Md) respectively. The recovered proteins 

were labelled as described in table 5.1 and were successfully bonded with the fluorescent 

labelling methodology (Figure 5.5). The electrophoresis profiles for the 3 easel paintings 

showed strong fluorescent bands (Figure 5.6) for all the portraits samples, similar to the band 

of ovalbumin.  
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M2 Mb Md 

   

Figure 5.5 Fluorescent microsamples. 

 

 
   

   

Figure 5.6 Electrophoresis profiles of microsamples extracted from paint models (A) and 
extracted from easel paintings (B).  M2- portrait of Frei Manuel do Cenáculo, 1887, (ME1281), 
Museum of Évora (Évora, Portugal); Mb- portrait of a bearded gentleman, 1897, and Md- 
portrait of a lady, 1886, private collection (Évora, Portugal). 

 



 

130 
 

Painting from Marini may have the influence of Italian painting in which the use of egg-

based varnish was common. As an example, ovalbumin was found at the top layer of paintings 

of an Italian painter, Nicolò Rondinelli, through chemiluminescent technique and IR 

reflectance spectroscopy [8]. Zangheri et al. (2016) [4], suggested that egg white has been 

used as varnish on the canvas painting, The Saint John (1600) (unknown artist, private 

collection in Italy), because the absorption bands of amide I and amide II were observed. 

Calvano and colleagues (2015) [9] also suggested that egg-based paint binder was used in the 

Italian panel paintings, Christ in Pity, St. Louis of Toulouse, St. Francis of Assisi, St. John Baptist, 

St. Anthony of Padua (1467) (Antonio Vivarini, Italy).  The easel painting in the Santa Maria 

Santissima Church in Carrara, Italy also suggested the presence of egg and animal glue 

according to the PCA analysis [10]. Besides that, studies have also shown that egg was a 

popular binder used in the period of 19th century. MALDI-TOF mass spectroscopy [11] studies  

on Edward Munch’s paintings produced in 1893 also  found egg in the paintings. The 

proteomic approach used in analyzing the 19th century icons from Ortodox churches in Serbia 

has also found egg yolk in the painting layers [12]. 

Previous FTIR analysis on Marini paintings made in our research group [2] also reported 

the characteristic absorption bands of amide I in the top and ground layers, while the 

characteristic absorption band for the amide II was found in the ground layer of the paintings. 

These absorption bands are a clear indication of the presence of proteins. In the same study, 

ELISA analysis also confirmed the presence of proteins, in particular ovalbumin, in the 

Marini’s paintings [2].  

 

5.4 Conclusion 
 

The opportunity to study these 19th century Easel paintings of the collection of Évora museum 

and private collections has demonstrated the efficacy of fluorescent labelling using C392STP 

in proteinaceous binders’ identification. Ovalbumin has been proved to be presented in the 

all the examined paintings. Fluorescent labelling is a potential complementary test in 

determining the origins of proteinaceous materials used in the paintings. Fluorescent labelled 

proteins can be easily detected at a low cost as no expensive instrument is needed. Similarly, 
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indirect ELISA was also proved to be an effective technique in identifying the source of 

proteins [13–15]. However, one of the limitations of indirect ELISA is that is time-consuming 

[10] since the time of incubation for the reaction between antibody and protein is relatively 

longer [14]. Furthermore, it requires materials like commercially manufactured antibodies 

specifically tailored for cultural heritage study [16] that makes the cost of analysis much 

higher for indirect ELISA as compared to fluorescent labelling. In the light of the obtained 

results, both fluorescent labelling and indirect ELISA are recommended as complementary 

tools for proteins detection from complex matrices, along with the consideration of the cost 

and the level of specificity required. 
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Chapter 6 FINAL REMARKS 
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6.1 General conclusion 
 

In short, this PhD research has successfully explored a novel simple and inexpensive 

fluorescent labelling method (Figure 6.1) to detect and identify protein binders present in 

easel paintings by using C392STP coumarin as a fluorophore probe. It explores the 

photophysical properties of this coumarin, a novel low-cost coumarin dye with capability to 

react with primary amine groups, as a fluorescent dye with a potential for applications in 

biolabelling.  

 

 

Figure 6.1 Scheme of fluorescent labelling procedure. 

 

Through DFT and TD-DFT calculations, we were able to understand the electronic 

structure and spectral features of the C392STP coumarin. To gain a better understanding of 

the electronic structure and spectral features of the chromophore-protein complex, we have 

also performed DFT and TD-DFT calculations on both the E and Z conformers of a coumarin 

derivative that was intended to mimic the coumarin bonded to a protein amino acid side 

chain. Results of TD-DFT calculations presented good agreement with the experimental 

Sampling

Protein recovery

Fluorescent labelling with C392STP  
coumarin

Electrophoretic Separation by PAGE
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absorption spectra and a comprehensive assignment of the main spectral features of the 

studied compounds was accomplished. 

Subsequently, we have optimized the labelling method by using commercial proteins and 

proteins extracted from hen’s egg yolk and white, bovine milk and rabbit skin. Fluorescent 

proteins thus produced can be detected by gel electrophoresis, without the need for the 

electrophoresis gel staining (Figure 6.2). UV-Vis and infrared spectra of the fluorescent 

proteins were measured. Fluorescent BSA, fluorescent ovalbumin, fluorescent casein, 

fluorescent collagen and fluorescent fish gelatin show a different profile in the infrared region 

of primary and secondary amides confirming the effectiveness of the labelling reaction of the 

related proteins. 

 

 

Figure 6.2 Time used for protein detection. 

 

In order to mimic real conditions, paint models of easel paintings have been prepared by 

mixing proteins such as ovalbumin, casein and rabbit glue with different pigments (lead white, 
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chrome yellow and black bone). Paint layers with thickness around 50-150 μm were then 

applied on glass supports and submitted to an artificial aging process. The fluorescent 

labelling method was tested and the results revealed that proteins in a concentration as low 

as 6.0 μg/ml could be detected. 

At the last stage, real samples obtained from easel painting were tested using the 

optimized method.  Micro samples of three 19th century easel paintings by Giorgio Marini 

(1836–1905) from the museum of Évora and from private collections were analyzed. The 

extracted proteins were submitted to the fluorescent labelling method and could be clearly 

identified in the electrophoretic profiles. The electrophoretic profile showed that binder used 

in these three paintings was ovalbumin. 

The reported results show evidence of the potential of the method as an effective and 

useful analytical tool in the identification of protein binders in samples obtained from easel 

paintings. In short, the advantages of this method are as follows: 

 

• Inexpensive.  

• Requires little analysis time  

• High sensitivity 

• Only common chemistry/biochemistry laboratory equipment is needed. No 

expensive equipment like mass spectrometers, gas chromatographers or modern 

advanced proteomics apparatus is necessary 

• Can easily be implemented in a museum laboratory 

 

Although the method requires the collection of microsamples from the easel paintings, 

only a small amount of material is necessary for the analyses. Given these points, the strategy 

reported in our work aims to serve as complementary analysis which can be used together 

with other existing methods, when the recognition of the origins of the proteinaceous binders 

is important. The simplicity, the good results of the methods and the economic aspect 

constitute important attractive features of this approach. 
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6.2 Recommendations for future research 
 

Future improvements will include the optimization of the method in order to decrease the 

amount of material necessary for analysis, in view of its application to real works of art, with 

the aggravated problems typical of such objects, due to aging and the complex nature of the 

samples. Fluorescent labelling in cultural heritage studies is a relatively new field. Hence, 

efforts on the exploration of the fluorophore probe molecule properties are very important 

for better exploiting their characteristics and to develop new applications. The study of 

fluorescent label molecule properties like solubility, quantum yields and other photophysical 

and spectroscopic properties are a promising field of research.   

 Finally, although the method was designed and applied for the detection and 

identification of protein binders present in easel paintings, the potential of fluorescent 

labelling using C392STP coumarin in other art samples like: 

 

a) Polychrome statues  

b) Wood paintings 

c) Mural paintings 

d) Manuscripts 

 

can be explored, as a method to complement the analysis of artworks. 

  



 

139 
 

 

APPENDIX 
 

 

Figure 1 1H NMR spectrum (400 MHz, (CD3)2SO) of sodium (E/Z)-4-(4-(2-(6,7-dimethoxy-

coumarin-3-yl) vinyl) benzoyl)-2,3,5,6-tetrafluorobenzenesulfonate (E-isomer, 3.83 (3H, s, OCH3), 

3.88 (3H, s, OCH3), 7.12 (1H, s, H-8), 7.24 (1H, s, H-5), 7.41 (1H, d, J=16.3, H-1’), 7.72 (1H, d, J=16.3, 

H-2’), 7.84 (2H, d, J= 8.2, H-4’, H-8’), 8.18 (2H, d, J= 8.2, H-5’, H-7’), 8.27 (1H, s, H-4); Z-isomer, 

3.83 (3H, s, OCH3), 3.88 (3H, s, OCH3), 7.10 (1H, s, H-8), 7.23 (1H, s, H-5), 7.30 (1H, s, H-1’), 7.61 

(1H, s, H-2’), 7.66 (2H, d, J= 8.0, H-4’, H-8’), 7.94 (2H, d, J= 8.0, H-5’, H-7’), 8.22 (1H, s, H-4)). 
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Figure 2 1H NMR spectrum (400 MHz, (CD3)2SO) of (E)-4-(2-(6,7-dimethoxy-coumarin-3-yl) vinyl)-

N-propylbenzamide (0.89 (3H, t, J=7.6, NHCH2CH2CH3), 1.53 (2H,m, NHCH2CH2CH3), 3.22 (2H, m, 

NHCH2CH2CH3), 3.83 (3H, s, OCH3), 3.88 (3H, s, OCH3), 7.11 (1H, s, H-8), 7.23 (1H, s, H-5), 7.26 

(1H, d, J=16.8, H-1’), 7.63 (1H, d, J=16.8, H-2’), 7.65 (2H, d, J= 6.8, H-4’, H-8’), 7.86 (2H, d, J= 6.8, 

H-5’, H-7’), 8.20 (1H, s, H-4), 8.48 (1H, t, J=5.6, NHCH2CH2CH3)). 
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Ooi Su Yin 1, Ana Teresa Caldeira 1,2, António Pereira 1,2, João Paulo Prates Ramalho 2,3 
1 HERCULES Laboratory, Universidade of Évora, Portugal 

2 Chemistry Department, Sciences and Technology School, Universidade of Évora, Portugal  3 
CQE, Universidade of Évora, Portugal 

  
Labelling is one of the most common methodologies used for bioanalytical purposes and has 
received special attention and showed remarkable progress in recent years. Presently we are 
exploring the use of different coumarin chromophores in order to develop new fluorescent 
labelling methodologies to identify different proteinaceus materials usually used in art. Results 
presented here explore the spectroscopic characteristics of a coumarin derivative chromophore 
(4-sulfotetrafluorophenyl coumarin ester), that can be used to label proteins, and two other 
coumarin derivatives that mimics the bonding of the coumarin chromophore with two protein 
amino acids, namely the lysine and tyrosine. Theoretical quantum chemical calculations based 
on the Time Dependent Density Functional Theory (TD-DFT) have been made on the coumarin 
derivatives in which optimizations were performed using the functional B3LYP and the low-lying 
excited states were calculated using several functionals, namely: CAM-B3LYP, M06 and Pbe0. 
Generally, calculations with the three functionals show that the lower energy transitions have 
mainly HOMO-1→LUMO character when the free coumarin chromophore is in water or 
acetonitrile solvent. However, for coumarin bonded with ethylamine or phenol, the transitions 
were mainly of HOMO→LUMO character. The TD-DFT calculations confirm the experimental 
trends in absorption wavelengths and are in good agreement with experimental absorption 
spectra. In all cases there is an important shift to higher energies of the most important band in 
the bonded coumarin compounds cases.   
 
Keywords: Coumarin, quantum chemical calculation, TD-DFT, DFT, CAM-B3LYP, M06, Pbe0 
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Development of a simple method for the identification proteinaceous binders in easel painting 

Ooi Su Yin(1), Cátia Salvador (1), António Candeias(1,2), António Pereira(1,2), Paulo Prates 

Ramalho(2,3), Ana Teresa Caldeira(1,2) 

 

Easel paintings emerged in the Middle Ages and since then have been one of the most important 

art expressions, constituting today relevant Cultural Heritage assets with important historic and 

cultural value. Due to the high importance in the preservation of these artworks, the correct 

identification of proteinaceous binders is a crucial step for a better understanding of the 

techniques used by the artist, and to provide relevant information for conservation and 

restoration processes [1]. Easel paintings contain proteinaceous binders which are commonly 

produced from egg, milk or animal skin and bones but unfortunately the detection of the 

different protein materials in these complexes matrices is a difficult task. In this work a new 

fluorescent labelling methodology is developed using coumarin derivative chromophore (4-

sulfotetrafluorophenyl coumarin ester) in order to increase the detection signals of proteins. 

Firstly, we have developed and optimized a simple method with high sensibility using commercial 

proteins such as BSA (A2153), ovalbumin (A5378), casein (C3400) and collagen (C9879) (all from 

Sigma-Aldrich). This method is efficient in showing the characteristic profiles of each commercial 

proteins tested with the advantages of higher sensitivity and less time required for the 

electrophoretic detection. The optimized method was also used to test proteins showed similar 

characteristic band profiles between the extracted and the commercial proteins. 

To fulfill the aim in minimizing the amount of samples required and to try to mimic the real 

conditions, we performed paint mockups of easel paintings. For that, we mixed the proteins , 

animal skin with pigments like lead white, yellow ocre and bone black. The proteinaceous content 

was extracted from paint microsamples, using a previously optimized protocol [2] and the 

extracted proteins were used to bind with coumarin derivative chromophore which allowed to 

identify and distinguish the different protein binders used in each paint model. These results 

evidence the enormous potential to apply this optimized methodology as an effective and useful 

analytical tool in the identification of protein binders in samples obtained from easel paintings. 

[1] C. Salvador, R. Bordalo, M. Silva, T. Rosado, A. Candeias, A.T. Caldeira, On the conservation of 

easel paintings: evaluation of microbial contamination and artists materials, Applied Physics A 

123(80), 2017, 1. 

[2] C. Salvador, A. Branco, A. Candeias, A.T. Caldeira, Innovative approaches for immunodetection 

of proteic binders in art, E-Conservation Journal (in press), 2016.  
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Proteins have been commonly used as paintings medium, adhesives and coating layers in easel 
paintings. Hence, the proteins recognition is one important factor for the construction of an easel 
painting’s conservation strategy. This work explores different approaches for proteinaceous 
binders’ identification namely; conventional electrophoretic profile, fluorescent labelling method 
and immunological assay. The fluorescent labelling method was firstly tested on proteins 
extracted from an easel painting paint model. The paint models were made by mixing proteins 
such as ovalbumin, casein and rabbit glue with different pigments (lead white, chrome yellow 
and black bone). From the conventional electrophoresis, protein bands extracted were hardly 
observed on the electrophoresis gel. However, fluorescent band between 25 kDa to 35 kDa were 
clearly observed on the electrophoresis gel with fluorescent labelling. Results revealed that with 
fluorescent labelling, proteins extracted from the paint models, in a concentration of 6.0 μg/ml 
could be detected. Subsequently, proteins were extracted from samples of easel paintings by 
Giorgio Marini (1836–1905), from the museum of Évora and private collections. The extracted 
proteins were then submitted to the fluorescent labelling method and immunoenzymatic assay. 
The fluorescent labelling was done using Coumarin 392 TFP ester (C392) (4-
sulfotetrafluorophenyl coumarin ester) as fluorophore, which was mixed with the proteins 
extract for a period of 24 hours. Simultaneously, immunoenzymatic assay (ELISA) was carried out 
on each sample, according to a previously optimized procedure by Salvador et al., 2016. These 
extracted proteins could be clearly observed in the electrophoretic profiles after fluorescent 
labelling, which was not possible in the conventional electrophoresis performed. Proteins such 
as ovalbumin, collagen and casein also proved to be present in the paintings, through the 
immunological assay. The results indicate that fluorescent labelling, followed by electrophoretic 
detection is a simple and fast method with high sensitivity; this method is like the 
immunoenzymatic assay which can act with high specificity in the identification of proteinaceous 
binders used in easel paintings.  
 
C. Salvador, A. Branco, A. Candeias, A.T. Caldeira, Innovative approaches for immunodetection 

of proteic binders in art. E-Conserv. J. (in press) (2017) 
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