
Temporal reasoning in a logic programming
language with modularity

Vitor Beires Nogueira

Orientador: Professor Doutor Salvador Pinto Abreu

Tese submetida à Universidade de Évora

para obtenção do grau de Doutor em Informática

Departamento de Informática
Universidade de Évora

Dezembro de 2008

Temporal reasoning in a logic programming
language with modularity

Vitor Beires Nogueira

Orientador: Professor Doutor Salvador Pinto Abreu

Departamento de Informática
Universidade de Évora

Dezembro de 2008

To Miguel and Susana with love

Acknowledgments

First of all, I would like to thank my son Miguel and my wife Susana for their caring
support throughout the years of this work. To my parents and sister also goes my
endless gratitude.

I thank my supervisor, Prof. Salvador Pinto Abreu, without whom this work wouldn't
have started, continued and most of all, �nished. His participation on this thesis went
far beyond the expected critical watching and directing. I am thankful for the many
interesting discussions that we had, during which he guided me into how to do scienti�c
research. I thank him also for the great working conditions and for carefully reviewing
not only the contents but also the English, making this work not only understandable
but also readable.

I would also like to thank Prof. Gabriel Torcato David for his participation in this work.
Besides providing me with great working conditions at the Faculdade de Engenharia
of Universidade do Porto, he also supervised the beginning of this thesis.

Throughout this thesis, I also had the chance of working with members of Projet
Contraintes at INRIA Rocquencourt and in particular with Prof. Daniel Diaz. Several
important results came out of such cooperation. I acknowledge the INRIA/GRICES
project �Extensions au Logiciel Libre GNU Prolog� for the �nancial support that made
this collaboration possible.

I would like to acknowledge the Universidade de Évora and speci�cally the Departmento
de Informática not only for the conditions given but also for the leave that allowed me
to focus entirely on this work.

I also acknowledge the Centria (Centro de Inteligência Arti�cial) that by providing
supervisor funds, allowed me to participate in summer schools, conferences, workshops,
doctoral programs, etc.

Last, but de�nitely not least, I would like to dedicate this work to my friends, and in
particular to Paulo Estudante who was there for me on many occasions.

i

Abstract

Current Organisational Information Systems (OIS) deal with more and more infor-
mation that is time dependent. In this work we provide a framework to construct
and maintain Temporal OIS. This framework builds upon a logical language called
Temporal Contextual Logic Programming that deeply integrates modularity with tem-
poral reasoning making the usage of a module time dependent. This language is an
evolution of another one, also introduced in this thesis, that combines Contextual
Logic Programming with Temporal Annotated Constraint Logic Programming where
modularity and time are orthogonal features. Both languages are formally discussed
and illustrated.

The main contributions of the work described in this thesis include:

• Optimisation of Contextual Logic Programming (CxLP) through abstract inter-
pretation.

• Syntax and operational semantics for an independent combination of the temporal
framework Temporal Annotated Constraint Logic Programming (TACLP) and
CxLP. A compiler for this language is also provided.

• Language (syntax and semantics) that integrates in a innovative way modularity
(CxLP) with temporal reasoning (TACLP). In this language the usage of a given
module depends of the time of the context. An interpreter and a compiler for
this language are described.

• Framework to construct and maintain Temporal Organisational Information Sys-
tems. It builds upon a revised speci�cation of the language ISCO, adding tempo-
ral classes and temporal data manipulation. A compiler targeting the language
presented in the previous item is also given.

iii

Sumário

Actualmente os Sistemas de Informação Organizacionais (SIO) lidam cada vez mais
com informação que tem dependências temporais. Neste trabalho concebemos um
ambiente de trabalho para construir e manter SIO Temporais. Este ambiente assenta
sobre um linguagem lógica denominada Temporal Contextual Logic Programming
que integra modularidade com raciocínio temporal fazendo com que a utilização de
um módulo dependa do tempo do contexto. Esta linguagem é a evolução de uma
outra, também introduzida nesta tese, que combina Contextual Logic Programming
com Temporal Annotated Constraint Logic Programming, na qual a modularidade e o
tempo são características ortogonais. Ambas as linguagens são formalmente discutidas
e exempli�cadas.

As principais contribuições do trabalho descrito nesta tese incluem:

• Optimização de Contextual Logic Programming (CxLP) através de interpretação
abstracta.

• Sintaxe e semântica operacional para uma linguagem que combina de um modo
independente as linguagens Temporal Annotated Constraint Logic Programming
(TACLP) e CxLP. É apresentado um compilador para esta linguagem.

• Linguagem (sintaxe e semântica) que integra de um modo inovador modularidade
(CxLP) com raciocínio temporal (TACLP). Nesta linguagem a utilização de um
dado módulo está dependente do tempo do contexto. É descrito um interpretador
e um compilador para esta linguagem.

• Ambiente de trabalho para construir e fazer a manutenção de SIO Temporais.
Assenta sobre uma especi�cação revista da linguagem ISCO, adicionando classes e
manipulação de dados temporais. É fornecido um compilador em que a linguagem
resultante é a descrita no item anterior.

v

Contents

Acknowledgments i

Abstract iii

Sumário v

List of Acronyms xix

Preface 1

1 Introduction and Motivation 3

1.1 Introduction . 3

1.1.1 Time . 3

1.1.2 Modularity . 4

1.1.3 Organisational Information Systems 5

1.2 Temporal (Logic-Based) OIS . 5

2 Temporal Reasoning in AI 7

2.1 Introduction . 7

2.2 General Notions of Time . 8

2.2.1 Model of Time . 8

2.2.2 Temporal Quali�cation . 8

2.3 Constraint-Based Temporal Reasoning . 9

2.3.1 Qualitative Temporal Constraints . 10

vii

viii CONTENTS

2.3.2 Metric Point Constraints . 11

2.3.3 Hybrid Approaches . 12

2.3.4 Programming Languages . 12

2.4 Temporal Modal Logic . 15

2.4.1 Temporal Logic Programming . 15

2.5 Reasoning About Actions and Change . 16

2.5.1 The Situation Calculus . 17

2.5.2 The Event Calculus . 18

2.5.3 Temporal Nonmonotonic Reasoning 18

2.6 Conclusions . 19

3 Temporal Databases 21

3.1 Introduction . 21

3.2 Temporal Data Semantics . 22

3.3 Temporal Data Models and Languages . 22

3.3.1 Temporal Data Model . 23

3.3.2 Temporal Languages . 26

3.4 Temporal Databases Design . 32

3.5 Temporal Database Products . 32

3.5.1 Log Explorer . 32

3.5.2 Time Navigator . 33

3.5.3 Data Propagator . 33

3.5.4 SQL:2003 . 33

3.5.5 Oracle . 34

3.5.6 TimeDB . 35

3.6 Conclusions and Future Pointers . 35

4 Modular Logic Programming 37

4.1 Introduction . 37

CONTENTS ix

4.2 Algebraic Approach . 38

4.2.1 The Algebra of Programs and Its Operators 38

4.3 Logical Approach . 39

4.3.1 Embedded Implications . 39

4.3.2 Lexical Scoping . 41

4.3.3 Closed Scope Mechanisms . 42

4.3.4 Contextual Logic Programming . 43

4.3.5 Lexical Scoping as Universal Quanti�cation 44

4.4 Syntactic Approach . 45

4.4.1 Prolog Modules: the ISO Standard . 46

4.4.2 Implementations . 47

4.5 Logic and Objects . 50

4.5.1 Object-Oriented Programming and Embedded Implications 50

4.5.2 Logtalk . 51

4.6 Conclusions . 52

5 Contextual Logic Programming 53

5.1 Introduction . 53

5.2 The CxLP Language . 54

5.3 Operational Semantics . 55

5.3.1 Application of the Rules . 57

5.4 Declarative/Fix-Point Semantics . 57

5.5 Extensions . 58

5.6 Optimisations . 59

5.6.1 Abstract Interpretation for Static Scope Systems 60

5.7 Implementations . 62

5.7.1 CSM (Contexts as SICStus Modules) 62

5.7.2 GNU Prolog/CX . 63

x CONTENTS

5.8 Conclusions . 66

6 Temporal Reasoning in a Modular Language 67

6.1 Introduction . 67

6.2 CxLP with Temporal Annotations . 68

6.3 Constraint Theory . 70

6.4 Operational Semantics . 70

6.5 Interpreter and Compiler . 71

6.5.1 Time Point Domain . 71

6.6 Related Work . 73

6.6.1 MuTACLP . 74

6.6.2 Other Approaches . 76

6.7 Concluding Remarks . 77

7 Temporal Contextual Logic Programming 79

7.1 Introduction . 79

7.2 Language of TCxLP . 80

7.2.1 Annotating Units . 80

7.2.2 Temporal Annotated Contexts . 81

7.2.3 Relating Temporal Contexts with Temporal Units 81

7.3 Computing the Least Upper Bound . 84

7.3.1 Ground Temporal Conditions . 84

7.3.2 Non Ground Temporal Conditions . 85

7.4 Operational Semantics . 87

7.4.1 Inference Rules . 87

7.5 TCxLP Compiler and Interpreter . 89

7.5.1 From TCxLP to CxLP+TACLP . 89

7.6 Application Examples . 91

7.6.1 Management of Work�ow Systems . 91

CONTENTS xi

7.6.2 Legal Reasoning . 94

7.6.3 Vaccination Program . 95

7.7 Related Work . 97

7.8 Conclusions . 98

8 Language for Temporal OIS 99

8.1 Introduction . 99

8.2 Revising the ISCO Programming Language 100

8.2.1 Classes . 100

8.2.2 Methods . 101

8.2.3 Inheritance . 102

8.2.4 Composition . 102

8.2.5 Persistence . 103

8.2.6 Data Manipulation Goals . 105

8.3 The ISTO Language . 106

8.3.1 Temporal Classes . 106

8.3.2 Temporal Data Manipulation . 107

8.4 Compilation Scheme for ISTO . 107

8.4.1 Classes . 108

8.4.2 Methods . 108

8.4.3 Inheritance . 108

8.4.4 Composition . 109

8.4.5 Persistence . 110

8.4.6 Data Manipulation Goals . 110

8.4.7 Temporal Classes . 110

8.4.8 Temporal Data Manipulation Goals . 111

8.5 Comparison with Other Approaches . 112

8.6 Conclusions . 112

xii CONTENTS

9 Conclusions and Future Work 115

9.1 Conclusions . 115

9.2 Future Work . 116

A GNU Prolog/CX 117

A.1 Tutorial . 117

A.1.1 Unit Directive . 117

A.1.2 Unit Arguments . 118

A.1.3 Context Extension . 119

A.1.4 Current Context . 119

A.1.5 Context Traversal . 120

A.1.6 Context Switch . 123

A.1.7 Supercontext . 124

A.1.8 Guided Context Traversal . 124

A.1.9 Calling Context . 125

A.1.10 Lazy Call . 126

A.2 Reference Manual . 128

A.2.1 Introduction . 128

A.2.2 Directives . 128

A.2.3 Operators . 128

A.2.4 Utilities . 132

B Constraint Logic Programming 133

B.1 Introduction . 133

B.2 Constraint Domains . 134

B.2.1 Booleans: CLP(B) . 134

B.2.2 Pseudo�Booleans: CLP(PB) . 134

B.2.3 Rationals/Reals: CLP(R) . 134

B.2.4 Finite Domains: CLP(FD) . 134

CONTENTS xiii

B.3 Constraint Solvers . 134

B.3.1 Incomplete Constraint Solvers . 135

B.4 Finite Domains . 136

B.4.1 Finite Domain Solvers . 136

B.4.2 Network Consistency . 136

B.4.3 Constraint Propagation (CP) vs. Backtracking 137

B.4.4 Constraint Propagation and Heuristics 137

B.4.5 Advanced Techniques . 138

B.4.6 Global Constraints . 138

B.4.7 Optimisation Constraints . 138

B.5 Defeasible Constraints . 138

B.6 Conclusions . 139

References 140

List of Tables

1 Reading paths . 2

2.1 Tense logic modal operators . 15

3.1 Prototypical temporally ungrouped employee relation 23

3.2 Prototypical temporally grouped employee relation 24

3.3 Temporal data models . 25

3.4 BCDM tuple . 25

3.5 Evaluation of algebras against criteria . 27

3.6 Table 3.5 (continued) . 29

5.1 Derivation: CxLP and embedded implications 62

7.1 Vaccination recommended scheme . 96

xv

List of Figures

2.1 Temporal quali�cation methods . 9

7.1 The student enrolment process model . 92

A.1 File system . 122

xvii

List of Acronyms

ACL Annotated Constraint Logic

BCDM Bitemporal Conceptual Data Model

CLP Constraint Logic Programming

CRUD Create, Read, Update and Delete

CSP Constraint Satisfaction Problem

CxLP Contextual Logic Programming

EC Event Calculus

IA Interval Algebra

ISCO Information System COnstruction language

ISTO Information System Tools for Organisations

MuTACLP Multi-theory Temporal Annotated Constraint Logic Programming

OIS Organisational Information Systems

SC Situation Calculus

STP Simple Temporal Problems

TACLP Temporal Annotated Constraint Logic Programming

TCSP Temporal Constraint Satisfaction Problem

TCxLP Temporal Contextual Logic Programming

xix

Preface

This work is the synthesis of several years1 of research. One of the most important
lessons learned during that time was that research is by no means a straight line, one
might even say that it is an (acyclic) graph. Not only did we follow paths that turned
out to be dead-ends but also sometimes we had to abandon others which, although
promising, would cause us to stray from our goals.

One must say, that due to the (at least) lack of excellency of the author in the English
language, writing this thesis in such language was a bold act. We ask for the reader
sympathy on this subject.

Structure of the Work

Chapter 1 brie�y introduces the concepts of time and modularity together with a logic
programming perspective of Organisational Information Systems (OIS). This chapter
also motivates for the integration of temporal reasoning with modularity in order to
obtain a language to construct and maintain OIS.

For self containment reasons, we survey several approaches to temporal reasoning in
Arti�cial Intelligence, temporal databases and modularity in logic programming in
Chap(s). 2, 3 and 4, respectively.

Chapter 5, besides describing the modular logic language that is at core of this work
called Contextual Logic Programming (CxLP), also presents a revised speci�cation
together with an optimisation framework obtained with abstract interpretation.

In Chap. 6 we combine consolidated approaches for temporal reasoning (in this case
Temporal Annotated Constraint Logic Programming) and modularity (CxLP) into a
single language. Although such a combination provides an expressive language, in
Chap. 7 we propose a model where the usage of a module is in�uenced by temporal
conditions. Moreover, the CxLP program structure is very suitable for integrating with
temporal reasoning since it is quite straightforward to add the notion of time of the

1The use of an inde�nite adjective was (unfortunately) on purpose.

1

2 LIST OF FIGURES

context and let that time help in deciding whether a certain module is eligible or not
to solve a goal.

In Chap. 8 we propose to augment the ISCO framework for constructing OIS with
an expressive means of representing and implicitly using temporal information. This
evolution builds upon the frameworks proposed in the previous chapters. Having
simplicity as a design goal, we present a revised and stripped-down version of ISCO,
keeping just some of the core features that we consider crucial in a language for the
development of Temporal OIS.

We draw some concluding remarks and provide pointers for future work in Chap. 9.

In Appendix A we present a tutorial and a reference manual for the contextual part
of GNU Prolog/CX. Finally, in Appendix B we brie�y overview Constraint Logic Pro-
gramming.

Part of this work has appeared before in joint publications with Prof. Salvador Abreu
(my supervisor), Prof. Gabriel David and Prof. Daniel Diaz. I thank all of them for
letting me use the following common work [NAD03, NAD04, ADN04, AN05, NA06b,
AN06, ET06, NA06a, NA07d, NA07b, NA07a, NA07c].

Roadmap

There can be various reading paths for this thesis, in Table 1 we outline some of them.

Subject Chapter
Survey on temporal reasoning 1 - 2 - 3
Survey on modularity 1 - 4 - 5 (optional)
Combining temporal reasoning and modularity 1 - 2.3 - 6 - 7
Temporal Information Systems 1 - 2.3 - 7 - 8
Brave reader 1 to 9

Table 1: Reading paths

Chapter 1

Introduction and Motivation

In this chapter we start with a brief overview of the concepts that are at the

core of this work: time and modularity. We also provide a short description

of Organisational Information Systems from a logic programming point of view.

Subsequently we argue for the need to integrate modularity with temporal reasoning

in order to provide a high level language in which to construct and maintain

Organisational Information Systems.

1.1 Introduction

1.1.1 Time

Time is an elusive concept, studied across such diverse disciplines as physics, mathemat-
ics, linguistics, philosophy, etc. Each one provides an evolving perspective of Time: in
physics, Newton de�ned Time as a dimension in which events occur in sequence whereas
Einstein, in the special theory of relativity, stated �time intervals appear lengthened
for events associated with objects in motion relative to an inertial observer� [Wik08].

In the last decades a great number of logic languages that deal with Time have been
proposed. According to Van Benthem [Joh91], logic can be considered as a bridge
between linguistics and mathematics since logic takes into consideration both the
aspects of language and ontology. This author also points out that logics multiplicity
of languages, theories of inference and formal semantics are adequate for the diverse
intuitions inherent to the study of Time.

In a broad sense we can de�ne a temporal database as a repository of temporal informa-
tion [Cho94] therefore one can say that most database applications are supported by
temporal databases. SQL [fS03] is often the language chosen for interacting with such
databases. Although SQL is a very powerful language for writing queries, modi�cations

3

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

or constraints in the current state, it does not provide adequate support for the
temporal counterparts: for instance the temporal equivalent to an ordinary query
can be a very challenging task to express in SQL. To overcome such di�culties,
several temporal data models, algebras and languages have been proposed. Moreover,
McKenzie and Snodgrass [LEMS91] demonstrated that the design space for temporal
algebras has, in some sense, been explored in that all combinations of basic design
decisions have at least one representative algebra.

The logical and the database approach to Time are closely related: according to
[BMRT02] temporal logic languages are responsible not only for the temporal databases
theoretical foundations but also for their powerful knowledge representation and query
languages.

Temporal reasoning plays an important role in many areas of Arti�cial Intelligence
such as Natural Language, Planning, Agent-Based Systems, etc. Most approaches are
restricted to the propositional case and follow an interval-based view originated in
Allen's Interval Algebra [All83]. Moreover, temporal reasoning in AI is concerned with
using additional assumptions (such as persistence or defaults) or special procedures
(like abduction) to derive conclusions [Cho94].

1.1.2 Modularity

Module systems are an essential feature of programming languages, namely because
besides structuring programs they also allow the development of general purpose li-
braries.

A modular extension to logic programming has been the object of research over the last
decades. In a broad sense one can distinguish three di�erent approaches to modularity:
the algebraic, the logical and the syntactic. The algebraic approach started with work
by O'Keefe [O'K85] and considers logic programs as elements of an algebra, whose
operators are the operators for composing programs. The logical approach is based on
work by Miller [Mil86, Mil89a], and extends the Horn language with logic connectives
for building and composing modules. Finally, the syntactic approach (see [HF06] for
a recent overview and a proposal of such approach) addresses the issue of the global
and �at name space, dealing with the alphabet of symbols as a mean to partition large
programs.

Contextual Logic Programming is modular extension of Horn clause logic proposed
by Monteiro and Porto [MP89, MP93]. The CxLP extension goal can be regarded
as a non-monotonic version of Miller implication goal [Mil86, Mil89a]. The extension
goal is denoted by � and D � G (D is a set of clauses and G a goal) is derivable
from a program P if G is derivable from A ∪ D and A is derivable from P , for some

1.2. TEMPORAL (LOGIC-BASED) OIS 5

�nite set A of atoms for predicates not de�ned in D. Therefore � provides a sort of
lexical scoping for predicates: predicates in G which are de�ned in D are bound to
such de�nitions, the others can be obtained from program P . Besides lexical scoping,
CxLP also accounts for contextual reasoning, that is widely used for several Arti�cial
Intelligence tasks such as natural language processing, planning, temporal reasoning,
etc. Work by [AD03a] presents a revised speci�cation of CxLP together with a new
implementation for it and also explains how this language can be viewed as a shift into
the Object-Oriented Programming paradigm.

1.1.3 Organisational Information Systems

Organisational Information Systems (OIS) have a lot to bene�t from Logic Program-
ming (LP) characteristics such as the rapid prototyping ability, the relative simplicity
of program development and maintenance, the declarative reading which facilitates
both development and the understanding of existing code, the built-in solution-space
search mechanism, the close semantic link with relational databases, just to name a
few. In [Por03, ADN04] we �nd examples of LP languages that were used to develop
and maintain information systems.

Information System COnstruction language (ISCO) [Abr01] is a state-of-the-art logical
framework for constructing Organisational Information Systems. ISCO is an evolution
of the previous language DL [Abr00] and is based on a Constraint Logic Programming
(CLP) framework to de�ne the schema, represent data, access heterogeneous data
sources and perform arbitrary computations. In ISCO, processes and data are struc-
tured as classes which are represented as typed1 Prolog predicates. An ISCO class may
map to an external data source or sink, such as a table or view in a relational database,
or be entirely implemented as a regular Prolog predicate. Operations pertaining to
ISCO classes include a query which is similar to a Prolog call as well as three forms of
update.

1.2 Temporal (Logic-Based) OIS

Chomicki and Toman [CT98] stated that current Information Systems deal with more
and more complex applications where, besides the static aspects of the world, one
also has to model the dynamics, i. e., time, change and concurrency. This statement
illustrates very clearly the importance of Time in OIS. It is our opinion that a language
for OIS must have the capability of performing temporal representation and reasoning
beyond the ad hoc approaches.

1The type system applies to class members, which are viewed as Prolog predicate arguments.

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

The amount of information handled by OIS is enormous and has increased by orders of
magnitude over the last decades. Besides the already mentioned bene�ts of modularity,
we consider that this fact by itself should be su�cient to justify that modularity is a
sine qua non condition for designing and implementing OIS.

One common approach in combining modularity and time in a language is to consider
them as independent, or orthogonal, features. In this work we start by presenting a
logical based language that follows such guidelines.

Nevertheless, time and modularity can combine into a more fruitful environment, i. e.
one where these features are more intertwined. We propose an extension of a modular
logic language where temporal reasoning is deeply integrated, making the usage of a
module itself time dependent. We consider this proposition to be natural and in fact
largely employed in several domains where a given law, criteria application is time
dependent.

Finally, we will show that the language above provides a sound basis for a framework
to construct and maintain Temporal Organisational Information Systems.

Chapter 2

Temporal Reasoning in Arti�cial

Intelligence

This chapter provides an overview of temporal reasoning in Arti�cial Intelligence.

It starts by introducing the notion of model of time and temporal quali�cation.

Afterwards it describes several constraint and modal logic based proposals for

temporal reasoning. Finally, some theories for reasoning about actions and change

are discussed.

2.1 Introduction

Temporal reasoning plays an important role in many areas of Arti�cial Intelligence
such as Natural Language, Planning, Agent-Based Systems, etc. Most approaches are
restricted to the propositional case and follow an interval-based view originated in
Allen's Interval Algebra [All83] (see Sect. 2.3.1 for a description of such an algebra).
Moreover, temporal reasoning in AI is concerned with using additional assumptions
(such as persistence or defaults) or special procedures (like abduction) to obtain con-
clusions [Cho94]. For further reading on this subject see for instance [Vil94, CM00,
Aug01, FGV05].

This chapter, for self-containment reasons, presents a general survey of temporal rea-
soning in AI and is organised as follows: Sect. 2.2 starts out by specifying several
key concepts pertaining to the foundations of temporal reasoning such as temporal

ontology, topology and quali�cation. Afterwards, we present three sub�elds of temporal
representation and reasoning in AI: constraint-based temporal reasoning (Sect. 2.3),
temporal modal logic (Sect. 2.4) and reasoning about actions and change (Sect. 2.5).
The chapter ends with a brief summary of the concepts and approaches described
therein.

7

8 CHAPTER 2. TEMPORAL REASONING IN AI

2.2 General Notions of Time

In this section we brie�y describe the notions of model of time and temporal quali�ca-
tion.

2.2.1 Model of Time

To de�ne a model of time we need to de�ne not only the time ontology but also the
time topology. By time ontology we mean the class or classes of objects time is made of,
i.e. one has to choose between time points and intervals as the basic temporal entities.

Regarding the time topology we can consider di�erent structures for time, namely
whether it is:

• discrete, dense or continuous;

• bounded, partially bounded or unbounded;

• linear, branching, circular or with a di�erent structure.

Moreover, it is helpful to know what kind of properties the structure of temporal
individuals have as a whole, i.e.:

• are all individuals comparable by the order relation (connectedness)?

• are all individuals equal (homogeneity)?

• is it the same to look at one side or at the other (symmetry)?

2.2.2 Temporal Quali�cation

Temporal quali�cation refers �to the way logic is used to express that temporal propo-
sitions are true or false at di�erent times� [RV05] and is by itself a very proli�c �eld of
research.

Besides modal logic proposals, from a �rst�order point of view we can consider the
following methods for temporal quali�cation: temporal arguments, token arguments,
temporal rei�cation and temporal token rei�cation. For a brief description of the
di�erent proposals please consider Fig. 2.1 taken from [RV05]. Temporal rei�cation
assigns a special status to time and allows quanti�cation over propositions. The
main criticism made to rei�cation is that such an approach requires a sort structure

2.3. CONSTRAINT-BASED TEMPORAL REASONING 9

Temporal Arguments Token Reification

Classical Logic
Atomic Formula

Temporal Reification

Token Arguments

Modal Temporal Logics

Add_argument(t ime)

effective(o, a, b, ...)

effective(o, a, b, ..., t1, t2) holds(effective(o, a, b, ..., t1, t2))

Reify_into(token)

Reify_into(type) + Add_argument(t ime)

holds(effective(o, a, b, ...), t1, t2))

Add_argument(token)

effect ive(o, a, b, . . . , t t1), holds(tt1), begin(tt1)=t1, end(tt1)=t2

holds [t1, t2] (effective(o, a, b, ...))

First-Order Logic

Modal Logic

Figure 2.1: Temporal quali�cation methods

to distinguish betewen terms that denote real objects of the domain (terms of the
original object language) and terms that denote propositional objects (propositions of
the original object language).

2.3 Constraint-Based Temporal Reasoning

According to [Pao] constraint�based approaches mainly focus on the de�nition of a
representation formalism and of reasoning techniques to deal speci�cally with temporal
constraints between temporal entities, independently of the events and states associated
with them. Following these guidelines, a class of Constraint Satisfaction Problem (CSP)
was de�ned, called Temporal Constraint Satisfaction Problem (TCSP), where variables
represent time and constraints represent temporal relations between them. Di�erent
TCSPs are de�ned depending on the time entity that variables can represent, namely
time points, time intervals, durations (i.e. distances between time points) and the class
of constraints, namely qualitative, metric or both [SV98]. Each class of constraints is
characterised by the underlying set of basic temporal relations.1

TCSP constraints are binary and Cij = {r1, . . . , rk} is a constraint2 between the
variables Xi and Xj where each ri is a basic temporal relation. A singleton labelling

1The elements of all basic temporal relations are mutually exclusive and their union is the universal

constraint.
2The set is interpreted as a disjunction of relations.

10 CHAPTER 2. TEMPORAL REASONING IN AI

assigns an ri to the pair Xi, Xj, and the solutions of a TCSP are its consistent singleton
labelling.

The main techniques to �nd a solution to the general problem are path-consistency
and backtracking algorithms. Finally, there are typically two tasks when working with
TCSP: deciding consistency and answering queries about scenarios that satisfy all
constraints.

For a comprehensive survey on this subject see for instance [SKD94, Kou95, SV96,
Sch98, SV98]

2.3.1 Qualitative Temporal Constraints

Qualitative temporal constraints deal with the relative position between time points
or intervals.

Allen's Interval Algebra

The Interval Algebra (IA) was proposed by James F. Allen [All83]. In this work, domain
elements are temporal intervals3 and constraints are built using the thirteen basic
relations between intervals: before, after, meets, met by, equal, overlaps, overlapped by,
during, contained by, starts, started by, �nishes, �nished by. The operations on those
relations include composition and Boolean operators.

Intervals are used to qualify properties, events and processes. We say that a property

holds over an interval if and only if it holds for all its subintervals whereas a proccess

occurs over an interval if it occurs in at least one of its subintervals. Events occur over
the smallest possible interval [Rib93].

In [VKvB90] it is shown that the satis�ability of Allen's algebra is NP-complete. The
study of maximal tractable subclasses started with Nebel and Bürckert (ORD-Horn
algebra [NB94]) and recently Krokhin et. al. [KJJ03] showed that the IA contains
exactly eighteen maximal tractable subalgebras. Moreover, they also proved that
reasoning in any fragment not entirely contained in one of the these subalgebras is
NP-complete.

3Besides intervals, the only other structural property de�ned is that time is linear. Everything else

is set by the user according to the application.

2.3. CONSTRAINT-BASED TEMPORAL REASONING 11

Vilain and Kaut'z Point Algebra

The Point Algebra was introduced by Vilain and Kautz [VK86]. In their proposal, the
domain elements are the temporal points and de�ne the three basic relations that can
hold between temporal points, i.e., before, equal and after (<,=, >). Moreover, the
Point Algebra de�nes two operations between these point-point relations: composition
and intersection.

Regarding complexity, the full point algebra is tractable [VK86, VKvB90, Hir97].

Interval-Point Algebra

The Interval-Point algebra was proposed by Vilain in [Vil82]. In this algebra variables
stand for time points or intervals and the only type of relations are between between
a point and an interval. Moreover, since in an interval [a1, a2] we have a1 < a2, there
are only �ve possible relations: before, starts, during, finishes and after.

The complexity of deciding satis�ability in this algebra is NP-complete [Mei96].

Qualitative Algebra

Meiri [Mei96, Mei91] proposes a combination of the all the preceding algebras: Allen's
Interval Algebra, the point algebra and the interval-point algebra. As expected, this
proposal handles both time points and time intervals and can relate points with points,
points with intervals and intervals with intervals.

In [JK04] the authors identify all tractable fragments of this algebra and also prove
that all other fragments are NP-complete.

2.3.2 Metric Point Constraints

The metric point constraints proposal is based on the notion of time points and the
distance between them, i.e. variables represent time points and the allowed temporal
relations is the set of intervals of time-structure. A constraint has the form Cij =

{[a1, b1], . . . , [ak, bk]} and stands for4:

(a1 ≤ Xj −Xi ≤ b1) ∨ . . . ∨ (ak ≤ Xj −Xi ≤ bk)

4The representation was taken from [SV98], replacing the conjunction by a disjunction that was

probably a typo.

12 CHAPTER 2. TEMPORAL REASONING IN AI

There are three operators for the metric constraints: inverse, intersection and compo-

sition. With respect to complexity we have that deciding consistency and computing
a solution of a metric point constraint problem is NP-complete [DMP91]. Finally,
[SV98] describes the three known relation based tractable classes, i.e. Simple Temporal
Problems (STP), STP with inequation constraints (for continuous domains only) and
Star TCSPs.

2.3.3 Hybrid Approaches

Meiri [Mei96] proposed a very expressive constraint language in which both qualitative
and quantitative/metric constraints can be represented, this way allowing the repre-
sentation and processing of most types of constraints. This proposal combines the
Qualitative Algebra (Sect. 2.3.1) with Metric Point Constraints (Sect. 2.3.2).

Besides this general proposal, Meiri studied other subclasses that were also found to
be intractable:

• qualitative point with unary metric;

• qualitative interval with unary metric.

2.3.4 Programming Languages

This section describes a short list of languages for temporal reasoning that, besides
being constraint-based, have some a�nity to (Constraint) Logic Programming.

Temporal Prolog

Temporal Prolog [Hry93] can be regarded as a �synthesis of temporal logic and of the
Constraint Logic Programming paradigm, in which temporal constraints are formu-
lated�. Temporal Prolog has several objectives, namely: the temporal logic inherent
to the language should be intuitive and e�cient, easily integrated in a LP paradigm
and easy to implement on top of the Prolog interpreters. Following these guidelines,
Temporal Prolog proposed a �rst-order rei�ed logic where HOLDS(P,T) means that the
statement (e.g. a Prolog clause) P holds (i.e., is true) in interval T and HOLDS(P) means
that P holds without limitation to a temporal interval. The interval-based axioms of
Temporal Prolog are the following:

• HOLDS(A, S) & subinterval(T, S) → HOLDS(A, T).

2.3. CONSTRAINT-BASED TEMPORAL REASONING 13

• HOLDS(A) → (∀ T) HOLDS(A, T).

• HOLDS(A, T) & HOLDS(B, T) → HOLDS(A & B, T).

• HOLDS(A, U) & HOLDS(B, V) & union(U, V, T) → HOLDS(A ∨ B, T).

• HOLDS(A, S) & HOLDS(¬ A, T) → disjoint(S, T).

Horn Temporal Reference Language

Horn Temporal Reference Language [Pan95] is also a temporal extension of Prolog.
In this language, atoms can have temporal labels to express their validity. It allows
two types of extended atoms: events (not necessarily true over every subinterval) and
properties (hold over every subinterval). Moreover, it provides inference rules for these
extended atoms together with a transformation from this language to Constraint Logic
Programming.

Temporal Annotated Constraint Logic Programming

Temporal Annotated Constraint Logic Programming (TACLP) [Frü93, Frü94b, Frü96]
is presented as an instance of Annotated Constraint Logic (ACL) [Frü96], suited for
reasoning about time. ACL generalises basic �rst�order languages with a distinguished
class of predicates called constraints, and a distinguished class of terms, called anno-

tations, used to label a formula.

TACLP allow us to reason about qualitative and quantitative, de�nite and inde�nite
temporal information using time points and time periods as labels for atoms [RF00a].
This section presents a brief overview of TACLP that follows closely Sect. 2 of [RF00a].
For a more detailed explanation of TACLP see for instance [Frü96].

We consider the subset of TACLP where time points are totally ordered, sets of
time points are convex and non-empty, and only atomic formulas can be annotated.
Moreover clauses are free of negation.

Time can be discrete or dense. Time points are totally ordered by the relation ≤. We
call the set of time points D and suppose that a set of operations (such as the binary
operations +,−) to manage such points, is associated with it. We assume that the
time-line is left-bounded by the number 0 and open to the future (∞). A time period

is an interval [r, s] with 0 ≤ r ≤ s < ∞, r ∈ D, s ∈ D and represents the convex,
non-empty set of time points {t | r ≤ t ≤ s}. Therefore the interval [0,∞[denotes the
whole time line.

14 CHAPTER 2. TEMPORAL REASONING IN AI

De�nition 1 (Annotated Formula) An annotated formula is of the form Aα where

A is an atomic formula and α an annotation. Let t be a time point and I be a time

period:

(at) The annotated formula A at t means that A holds at time point t.

(th) The annotated formula A th I means that A holds throughout I, i.e. at every

time point in the period I.

A th-annotated formula can be de�ned in terms of an at-annotated as: A th I ⇔
∀t (t ∈ I → A at t)

(in) The annotated formula A in I means that A holds at some time point(s) in the

time period I, but there is no knowledge when exactly. The in annotation accounts

for inde�nite temporal information.

An in-annotated formula can also be de�ned in terms of an at-annotated as:

A in I ⇔ ∃t (t ∈ I ∧ A at t).

The set of annotations is endowed with a partial order relation v which induces a
lattice. Given two annotations α and β, the intuition is that α v β if α is �less
informative� than β in the sense that for all formulas A, Aβ ⇒ Aα.

In addition to Modus Ponens, TACLP has the following two inference rules:

Aα γ v α

Aγ
rule (v)

Aα Aβ γ = α t β
Aγ

rule (t)

The rule (v) states that if a formula holds with some annotation, then it also holds with
all annotations that are smaller according to the lattice ordering. The rule (t) says
that if a formula holds with some annotation and the same formula holds with another
annotation then it holds in the least upper bound (denoted by t) of the annotations.
TACLP provides a constraint theory (detailed in Sect. 6.3).

A TACLP program is a �nite set of TACLP clauses. A TACLP clause is a formula of
the form Aα← C1, . . . , Cn, B1α1, . . . , Bmαm (m,n ≥ 0) where A is an atom, α and αi

are optional temporal annotations, the Cj's are the constraints and the Bi's are the
atomic formulas. Frühwirth [Frü96], besides providing a meta-interpreter for TACLP
clauses, also presents a compilation scheme that translates TACLP into Constraint
Logic Programming. Finally, Ra�aetà and Frühwirth [RF00b, RF00a] provide both an
operational semantics and a �x-point one for TACLP.

2.4. TEMPORAL MODAL LOGIC 15

2.4 Temporal Modal Logic

In a succinct way we can say that Modal Logics can be regarded as the logics of
quali�ed truth [Che80]. In this logic besides standard logical symbols one also has
modal operators that are used to qualify formulas in the following way: if A is a
formula and ∇ is a modal operator then ∇A is a formula.

Although the term Temporal Logic is used in a broad sense when referring to any
approach that deals with temporal information within a logic framework, it has a
more speci�c de�nition related to the Modal Logic approach to temporal informa-
tion [DMG94, Gal08]. Tense Logic [Pri57, Pri67, Pri68] de�ned by Arthur Prior is
regarded as the seminal work on this �eld. Prior proposed the four modal operators
described in Table 2.1. There are several formalisms that provide variations or exten-
sions to the Tense Logic, such as:

• Event Logic [Gal87];

• TM [Rei89] of Reichgelt;

• Logic of time intervals [HS91] of Halpern and Shoham.

See [Aug01] for an overview on the formalisms above.

Symbol Expression Symbolised
G �It will always be the case that . . . �
F �It will at some time be the case that . . . �
H �It has always been the case that . . . �
P �It has at some time been the case that . . . �

Table 2.1: Tense logic modal operators

2.4.1 Temporal Logic Programming

This section follows the survey of Gergatsoulis in [Ger01] that states that the basis for
developing temporal logic programming languages are syntactic subsets of temporal and
modal logic which present well de�ned computational behaviour. One can consider two
broad approaches to the speci�cation of these languages: linear-time and branching-
time temporal logic programming languages.

The following languages use linear-time:

16 CHAPTER 2. TEMPORAL REASONING IN AI

• Templog [AM89] extends Horn logic programming with the operators © (next),
� (always) and ♦ (eventually). As an illustration consider the Fibonacci sequence
using Templog:

fib (0).

©fib (1).

�(© © fib(Z) <- fib(X), ©fib(Y), Z is X+Y).

• Chronolog [Org91] has two temporal operators �rst and next where �rst stands
for the �rst moment in time and next to the next moment in time. The following
is a simple example of this language:

first light(green).

next light(amber) <- light(green).

next light(red) <- light(amber).

next light(green) <- light(red).

• Disjunctive Chronolog [GRP96] that combines Chronolog with Disjunctive Logic
Programming.

• Chronolog(MC) [LO96] is an extension of Chronolog based on Clocked Temporal

Logic where predicates are associated with local clocks.

• Metric Temporal Logic Programming (MTL) [Brz98] time can be either discrete
or dense. MTL has two temporal operators �I and ♦I de�ned as: �IA is true
if A is true in all moments in the interval I and ♦IA is true if A is true in some
moment in the interval I. As an illustration of a simple fact in this language
consider:

�[2005,2007]salary(peter , 55000).

Cactus [RGP97] is a proposal of a branching-time language that supports two main
operators: the temporal operator first which refers to the beginning of time and the
temporal operator nexti which refers to the i-th child of the current moment.

2.5 Reasoning About Actions and Change

Reasoning about actions and change studies the evolution of (a portion of) the world
as the result of the occurrence of a set of actions and/or events [CM00]. The main
mechanism of this �eld is temporal projection, which can be further re�ned as:

2.5. REASONING ABOUT ACTIONS AND CHANGE 17

• forward temporal projection that can be regarded as inferring consequences of
actions having some knowledge of what is currently believed. Usually this is
performed by deduction.

• backward temporal projection that can be regarded as inferring explanations of
given situations having some knowledge of what is currently believed. Usually
this is performed by induction.

For a comprehensive study on inference of temporal knowledge see for instance [Rib93].

According to [CM00], temporal projection has to deal with three main problems:

• the rami�cation problem: concerns the speci�cation of the e�ects of a given event;

• the quali�cation problem: concerns the speci�cation of the conditions under which
an event actually produces the expected e�ects;

• the frame problem: its related with the ones above and its the problem of
determining what stays the same about the world as time passes and actions
are performed.

Next we survey some of the more relevant theories of action and change.

2.5.1 The Situation Calculus

The Situation Calculus (SC) proposed by McCarthy and Hayes [MH69] was the �rst
formal representation of time in Arti�cial Intelligence. This formalism allows one to
model the evolution of a world and, although there is no explicit representation of time,
situations are used to model the �ow of time. Besides situations, the SC also speci�es
�uents and actions :

• �uents are functions and predicates that change over time;

• actions stand for the possible actions that can be performed in the modeled
world.

Except for the initial situation (usually denoted by S0), all other situations are gener-
ated by applying an action to a situation. As a simple illustration taken from the blocks
world, consider the (rei�ed) �uent on(A, B) stating that block A is on top of block B

and the auxiliary predicate HoldsAt to specify when the �uents are true, one can say:
HoldsAt(on(A, B), result(move(A, B), S)) to state that its true that A is on top B

18 CHAPTER 2. TEMPORAL REASONING IN AI

in the situation that results from moving A to B in situation S. Using predicates instead
of functions, i.e. in a non-rei�ed form we have on(A, B, result(move(A, B), S)).

Finally, the main objection to SC comes from the fact that is impossible to model
concurrent actions.

2.5.2 The Event Calculus

The Event Calculus (EC) formalism was proposed by Kowalski and Sergot [KS86] and
as the name states, the primitive objects are events. In the EC, time is explicit and
events are somewhat similar to the actions of SC. An EC �uent holds at time points
and there is an axiom to allow us to reason about intervals of time5: a �uent is true at
a point in time if an event initiated the �uent at some time in the past and was not
terminated by an intervening event [RN03].

The relation Initiates (Terminates) expresses that the occurrence of an event e at a
time point t causes a �uent f to become (cease to be) true. There is also the relation
Happens that is used to state that an event e happens at a time t. As an example,
Happens(TurnOff(LightSwitch), 0:00) states that the lightswitch was turned o� at
exactly 0:00.

Finally, Kowalski and Sadri [KS97] proved that the Event Calculus and the Situation
Calculus are equivalent.

2.5.3 Temporal Nonmonotonic Reasoning

The research on temporal nonmonotonic reasoning was triggered by the Yale Shooting
Problem [HM87]. Although this is a (very broad) �eld of research reaching beyond
the focus of the present work, for completeness reasons we decided to present a brief
overview (that follows [Aug01]) of several key formalisms in this area.

Shoham's Non-Monotonic Temporal Logic

Shoham's non-monotonic temporal logic [Sho88] is based on model preference and uses
Chronological Ignorance as a criterion to de�ne a partial order between the models, i.e.
it prefers those models where a fact holds as late as possible.

5In the EC an interval stands for the set of points between the interval bounds.

2.6. CONCLUSIONS 19

Extended Situation Calculus

In [Pin94] Pinto adds explicit time to Situation Calculus and addresses several problems
such as: representation of concurrent and complex action; reasoning on a continuous
ontology; easy reference to dates; etc.

Defeasible Temporal Reasoning

In a broad sense one can say that argumentation systems allow us to reason about a
changing world where the available information is incomplete or unreliable. There are
several examples of argumentation system that embed temporal reasoning based on
intervals, on instants or both (see [Aug01] for an overview).

2.6 Conclusions

We started this section by describing the notions of model of time and of temporal
quali�cation. We then reviewed several constraint-based and modal approaches to
temporal reasoning, with a stronger emphasis on the former since the temporal repre-
sentation and reasoning followed throughout this work is constraint-based. Although,
on a �rst look, �rst-order and modal approaches can be regarded as radically di�erent,
Galton noted that they rely on the common use of a �rst�order language: the former
uses it as the proper representation language and the later as a model theory. Finally,
we brie�y sketched the foundational theories for reasoning about actions and change.

The research on temporal representation and reasoning, even restricted to the one that
��ts� under the domain of arti�cial intelligence is so vast that a chapter such as this one
can only lightly brush over some aspects. For a more systematic and comprehensive
approach we suggest [FGV05].

Chapter 3

Temporal Databases

This chapter reviews the main concepts concerning temporal databases, namely

temporal data semantics, models and languages. Moreover, besides some considera-

tions about the design of these databases it also describes several temporal database

products.

3.1 Introduction

In a broad sense we can de�ne a temporal database as a repository of temporal informa-
tion [Cho94] therefore one can say that most database applications are supported by
temporal databases. SQL [fS03] is often the language chosen for interacting with such
databases. Although it is a very powerful language for writing queries, modi�cations or
constraints in the current state, it does not provide adequate support for the temporal
counterparts: for instance, expressing the temporal equivalent of an ordinary query
can be a very challenging task in SQL. To overcome such di�culties, several temporal
data models, algebras and languages have been proposed.

McKenzie and Snodgrass [LEMS91] have shown that the design space for temporal
algebras has in some sense been explored in that all combinations of basic design
decisions have at least one representative algebra.

In this section we present a brief overview of the temporal data semantics (Sect. 3.2)
together with the models and languages (Sect. 3.3) that we consider more signi�cant.
For a more in depth study on this subject the reader may refer to [TCG+93, DD02].
Since the practical aspects of databases are highly important, we also review several
products that extend regular database management system in order to include temporal
capabilities (Sect. 3.5). Although most of these products only consider the time between
the insertion and the removal of a fact from the database some applications already

21

22 CHAPTER 3. TEMPORAL DATABASES

suport the time when the fact is true in the modeled reality.

3.2 Temporal Data Semantics

According to [Jen00] a database models and records information about a part of reality
(modeled reality) where the di�erent aspects of this reality are represented by database
entities. In temporal databases, the facts recorded by the database entities can have
an associated time and this is usually de�ned as valid time or as transaction time:

De�nition 2 (Valid Time) The valid time of a fact is the collected times - possibly

spanning the past, present, and future - when the fact is true in the modeled reality.

De�nition 3 (Transaction Time) The transaction time of a database fact is the

time spanning between when it was inserted into the database and when it was logically

removed from the database.

Unlike the valid time, the transaction time may be associated with any database entity
(not only with facts) and captures the time-varying states of the database. Applications
that demand accountability or �traceability� rely on databases that record transaction
time. Moreover, data consistency is ensured since the transaction timestamps are
maintained automatically by the DBMS.

There is no single answer on how to perceive time in reality and how to represent time
in a database. As mentioned in Sect. 2.2, to de�ne a model of time we need to consider
not only the time ontology but also the time topology. In databases, a �nite and discrete
time domain is typically assumed. Most often, time is assumed to be totally ordered,
but various partial orders have also been used.

3.3 Temporal Data Models and Languages

According to [Dat99] a data model is an abstract, self-contained, logical de�nition of
the objects, operators, and so forth, that together constitute the abstract machine
with which users interact. In the relational data model, the relations are the objects
and data is operated on by means of a relational calculus or algebra, with equivalent
expressive power.

Several proposals for extending the relational data model to incorporate the temporal
dimension of data have appeared in the literature. These proposals have di�ered

3.3. TEMPORAL DATA MODELS AND LANGUAGES 23

considerably in the way that the temporal dimension has been incorporated both into
the structure of the extended relations of these temporal models and into the extended
relational algebra or calculus that they de�ne.

Since there several dozen temporal data models, instead of providing a detailed descrip-
tion of each one we present a list with their names, main properties and references. A
similar approach will be followed in overviewing the temporal languages in Sect. 3.3.2.
The only exception is the language TSQL2 [IABC+95] and its temporal data model
(Bitemporal Conceptual Data Model), since this language is regarded as a consensual
temporal extension of SQL-92.

3.3.1 Temporal Data Model

A useful taxonomy for temporal data models was introduced by Cli�ord et. al. [CCT94,
CCGT95] who classi�ed them into two main categories: temporally ungrouped (tuple
time stamping) and temporally grouped (attribute time stamping) data models. To
illustrate these two categories please consider tables 3.1 and 3.2 taken from [CCT94],
to represent a temporal ungrouped and grouped, respectively, version of an employee

relation (in this modeled reality, employee Tom changes his name to Thomas at time
3).

EMPLOYEE
NAME DEPT SALARY time
Tom Sales 20K 0
Tom Finance 20K 1
Tom Finance 20K 2
Thomas MIS 27K 3
Jim Finance 20K 1
Jim MIS 30K 2
Jim MIS 40K 3
Scott Finance 20K 1
Scott Sales 20K 2

Table 3.1: Prototypical temporally ungrouped employee relation

EMPLOYEE
NAME DEPT SALARY lifespan
0 → Tom 0 → Sales 0 → 20K

continued on next page

24 CHAPTER 3. TEMPORAL DATABASES

continued from previous page

NAME DEPT SALARY lifespan
1 → Tom 1 → Finance 1 → 20K
2 → Tom 2 → Finance 2 → 20K
3 → Thomas 3 → MIS 3 → 27K {0, 1, 2, 3}
1 → Jim 1 → Finance 1 → 20K
2 → Jim 2 → MIS 2 → 30K
3 → Jim 3 → MIS 3 → 10K {1, 2, 3}
1 → Scott 1 → Finance 1 → 20K
2 → Scott 2 → Sales 2 → 20K {1, 2}

Table 3.2: Prototypical temporally grouped employee relation

These authors also show that, although the temporally ungrouped models are less
expressive than the grouped ones, there is a grouping mechanism for capturing the
additional semantic power of temporal grouping. Moreover, they propose a metric of
historical relational completeness as a basic for determining the expressive power of
the query languages over these models.

Several data models use intervals in timestamps but that doesn't mean that such
models are interval-based: sometimes intervals are used as shorthands for time points.
In [BBJ98] the authors emphasise that the notions of point- and interval-based times-
tamps must be de�ned at the semantical level. Moreover, besides presenting a formal
de�nition for these notions they also evaluate several temporal data models.

Table 3.3 (taken from [JSS95]) lists several in�uential temporal data models. For a
concise description of these models, together with their comparison, the interested
reader is referred to [JSS95].

Data Model Identi�er Time Dimensions Reference
Temporally Oriented Data Model valid Ariav [Ari86]
Time Relational Model both Ben-Zvi [BZ82]
- valid Brooks [Bro56]
Historical Relational Data Model valid Cli�ord [CC87]
Homogeneous Relational Model valid Gadia [Gad88]
Heterogeneous Relational Model valid Yeung [GY88]
DM/T transaction Jensen [JMR91]
Legol 2.0 valid Jones [JMS79]
Data transaction Kimball [Kim78]

continued on next page

3.3. TEMPORAL DATA MODELS AND LANGUAGES 25

continued from previous page

Data Model Identi�er Time Dimensions Reference
Temporal Relational Model valid Lorentzos [Lor88]
Temporal Relational Model valid Navathe [NA89]
HQL valid Sadeghi [Sad87]
HSQL valid Sarda [Sar90b]
Temporal Data Model valid Segev [SS87]
TQuel both Snodgrass [Sno87]
Postgres transaction Stonebraker [SK91]
HQuel valid Tansel [TA86]
Accounting Data Model both Thompson [Tho91]
Time Oriented Data Base Model valid Wiederhold [GWW75]

Table 3.3: Temporal data models

Bitemporal Conceptual Data Model

The Bitemporal Conceptual Data Model (BCDM) [JS96] tries to maintain the simplic-
ity of the relational model and capture the temporal aspects of the facts stored in a
database. One possible de�nition of the BCDM according to [Jen00] is:

De�nition 4 (Bitemporal Conceptual Data Model) both valid and transaction

times are supported and the relations are coalesced.1 Moreover, the value now and

until changed are introduced for valid time and transaction time, respectively.

This is a conceptual model where no two tuples with mutually identical explicit at-
tribute values are allowed, i.e. the full history of a fact is contained in exactly one tuple.
To illustrate this model, please consider a relation recording employee/department
information, taken from [JSS95]: employee Jake was hired by the company in the
shipping department for the interval from time 10 to time 15, and this fact became
current in the database at time 5. Afterwards, the personnel department discovers
that Jake had really been hired from time 5 to time 20, and the database is corrected
beginning at time 10. Table 3.4 shows the corresponding bitemporal element.

Emp Dept T
Jake Ship {(5, 10), . . . , (5, 15), . . . , (9, 10),

. . . ,(9, 15), (10, 5), . . . , (10, 20), . . . }

Table 3.4: BCDM tuple

1Value equivalent tuples with the same non-timestamp attributes and adjacent or overlapping time

intervals are merged.

26 CHAPTER 3. TEMPORAL DATABASES

3.3.2 Temporal Languages

McKenzie and Snodgrass [LEMS91] provided a set of 26 criteria for evaluating temporal
algebras. Moreover, they also show that, out of these 26 criteria, seven criteria are
con�icting, i.e. no algebra can satisfy all 26 criteria. Finally, the authors evalu-
ate 12 algebras (Jones [JMS79], Ben-Zvi [BZ82], Navathe [NA89], Sadeghi [Sad87],
Sarda [Sar90a], Cli�ord [CC87], Tansel [TA86], Gadia [Gad88], Yeung [GY88], Lorent-
zos [LJ88], McKenzie [LEM88], Tuzhilin [TC90]) that extend the snapshot algebra
to support valid and/or transaction time. The result of such evaluation is depicted
in Tables 3.5 and 3.6. The possible table entries are: Y - satis�es criterion, P -
partial compliance, N - criterion not satis�ed, NA - applicable, ? - not speci�ed,
O - see [LEMS91].

Ben-Zvi Cli�ord Gadia Yeung Jones Lorentzos

Con�icting Criteria
1 All attributes in a tuple are

de�ned for same interval(s)
Y N Y N Y N

5 Each set of legal tuples is a
legal relation

Y N Y N Y Y

15 Restricts relations to �rst
normal form

Y N N N Y Y

16 Supports a 3-D view of
historical state and opera-
tions

N N N ? N N

17 Supports basic algebraic
equivalences

Y P Y ? P Y

23 Tuples are time-stamped Y P N N Y N
24 Unique representation for

each temporal relation
N N N Y N N

Compatible Criteria
2 Consistent extension of the

snapshot algebra
Y Y Y ? Y Y

3 Data periodicity is sup-
ported

N N N N N Y

4 Each collection of legal at-
tribute values is a legal tu-
ple

N N N Y N N

continued on next page

3.3. TEMPORAL DATA MODELS AND LANGUAGES 27

continued from previous page

Ben-Zvi Cli�ord Gadia Yeung Jones Lorentzos

6 Formal semantics are well
de�ned

P Y Y P N Y

7 Has the expressive power
of a temporal calculus

P ? Y P ? ?

8 Includes aggregates Y N P P P Y
9 Incremental semantics de-

�ned
N N N N N N

10 Intersection, Θ-join, natu-
ral join, and quotient are
de�ned

P P P N N N

11 Is, in fact, an algebra Y N Y N Y Y
12 Model doesn't require null

attribute values
Y N Y Y Y Y

13 Multidimensional time-
stamps are supported

N N N Y N N

14 Reduces to the snapshot
algebra

Y P Y P Y P

18 Supports relations of all
four classes

P P P Y P P

19 Supports rollback opera-
tions

P N N Y N N

20 Supports multiple stored
schemas

N N N N N N

21 Supports static attributes N N N Y N Y
22 Treats valid time

and transaction time
orthogonally

Y ? ? Y ? ?

25 Unisorted (not
multisorted)

N N N Y Y Y

26 Update semantics are
speci�ed

P N N N N N

Table 3.5: Evaluation of algebras against criteria

28 CHAPTER 3. TEMPORAL DATABASES

McKenzie Navathe Sadeghi Sarda Tansel Tuzhilin

Con�icting Criteria
1 All attributes in a tuple are

de�ned for same interval(s)
N Y Y Y N O

5 Each set of legal tuples is a
legal relation

N N N Y Y NA

15 Restricts relations to �rst
normal form

N Y Y N N N

16 Supports a 3-D view of his-
torical state and operations

Y N N N ? N

17 Supports basic algebraic
equivalences

P ? Y ? P Y

23 Tuples are time-stamped N Y Y Y N NA
24 Unique representation for

each temporal relation
Y Y Y N N NA

Compatible Criteria
2 Consistent extension of the

snapshot algebra
Y ? Y ? ? Y

3 Data periodicity is sup-
ported

N N N N N N

4 Each collection of legal at-
tribute values is a legal tu-
ple

N N N Y Y NA

6 Formal semantics are well
de�ned

Y P P P P Y

7 Has the expressive power of
a temporal calculus

Y P P P Y Y

8 Includes aggregates Y N N N Y N
9 Incremental semantics de-

�ned
Y N N N N N

10 Intersection, Θ-join, natu-
ral join, and quotient are
de�ned

Y P N N N Y

11 Is, in fact, an algebra Y P ? ? Y Y
12 Model doesn't require null

attribute values
Y Y Y Y Y Y

continued on next page

3.3. TEMPORAL DATA MODELS AND LANGUAGES 29

continued from previous page

McKenzie Navathe Sadeghi Sarda Tansel Tuzhilin

13 Multidimensional time-
stamps are supported

N N N N N NA

14 Reduces to the snapshot al-
gebra

P Y Y Y P Y

18 Supports relations of all
four classes

Y P P P P P

19 Supports rollback opera-
tions

Y N N N N N

20 Supports multiple stored
schemas

Y N N N N N

21 Supports static attributes Y Y Y N Y Y
22 Treats valid time and trans-

action time orthogonally
P ? ? ? ? ?

25 Unisorted (not
multisorted)

N N Y N Y Y

26 Update semantics are spec-
i�ed

Y N N N N N

Table 3.6: Table 3.5 (continued)

TSQL2 and SQL/Temporal

TSQL2 [IABC+95] is a consensual temporal extension to the SQL-92 language stan-
dard [Int92]. The relations are similar to TQuel [Sno87] except that facts are times-
tamped not with (maximal) intervals but with �nite unions of maximal intervals. A
TSQL2 fact has exactly one timestamp and there is a temporal algebra to give special
meaning to those timestamps. It was one of the design goals to make the format of
timestamps irrelevant, i. e. there is no commitment to a speci�c temporal domain and
consequently it does not allow testing for equality of time instants. TSQL2 is a point-
based data model. [IABC+95] presents an extensive discussion of the design decisions,
including an in-depth comparison with the other temporal query languages.

In 1994 the speci�cation of TSQL2 was published which later result in proposals
for an extension to SQL3 called SQL3/Temporal (see [Sno]). The formulation of
SQL/Temporal has three very important requirements:

• upward compatibility;

• temporal upward compatibility;

30 CHAPTER 3. TEMPORAL DATABASES

• sequenced valid semantics.

Upward compatibility guarantees that (non-historical) legacy application code will
continue to work without change when migrating, and temporal upward compatibility
in addition allows legacy code to coexist with new temporal applications following
the migration. A logical consequence of the temporal upward compatibility is that
timestamps are implemented as hidden columns. Therefore one can conceptualise
temporal tables as being special �views� on conventional tables which include explicit
timestamp columns.

Sequenced valid semantics de�nes that SQL/Temporal must o�er, for each query in
SQL3, a temporal query that �naturally� generalises the initial query.

Finally, the full temporal functionality normally associated with a temporal language
is added, speci�cally, non-sequenced temporal queries, assertions, constraints, views,
and modi�cations. These additions include temporal queries and modi�cations that
have no syntactic counterpart in SQL3.

SQL/Temporal has three di�erent semantics for the queries, namely:

• temporally upward compatible: the query is evaluated only on the current state;

• sequenced: the query is e�ectively evaluated on each state independently2;

• non-sequenced: the query is evaluated at the speci�ed state.

The semantics above apply orthogonally to valid time and transaction time.

For a better understanding of the proposed language we use a motivational example
from [Sno07]. Consider the following table schema:

Employees SSN FirstName LastName Birthdate

Positions PCN Jobtitle

Incumbents SSN PCN FromDate ToDate

Salary SSN Amount FromDate ToDate

With the schema above, consider a SQL-92 sequenced query to provide the salary and
position history for all employees:

SELECT S.SSN , Amount , PCN , S.FromDate , S.ToDate

2Intuitively, a sequenced query is the temporal analogue of a query on the current state.

3.3. TEMPORAL DATA MODELS AND LANGUAGES 31

FROM Salary S, Incumbents I

WHERE S.SSN = I.SSN

AND I.FromDate < S.FromDate AND S.ToDate <= I.ToDate

UNION ALL

SELECT S.SSN , Amount , PCN , S.FromDate , I.ToDate

FROM Salary S, Incumbents I

WHERE S.SSN = I.SSN

AND S.FromDate >= I.FromDate

AND S.FromDate < I.ToDate AND I.ToDate < S.ToDate

UNION ALL

SELECT S.SSN , Amount , PCN , I.FromDate , S.ToDate

FROM Salary S, Incumbents I

WHERE S.SSN = I.SSN

AND I.FromDate >= S.FromDate

AND I.FromDate < S.ToDate AND S.ToDate < I.ToDate

UNION ALL

SELECT S.SSN , Amount , PCN , I.FromDate , I.ToDate

FROM Salary S, Incumbents I

WHERE S.SSN = I.SSN

AND I.FromDate > S.FromDate AND I.ToDate < S.ToDate

The size and complexity of the query above has to due with the di�erent possible rela-
tions between the intervals ([FromDate, ToDate]) of tables Salary and Incumbents.
In SQL/Temporal and assuming that Incumbents and Salary are valid time tables,
this query reduces to:

VALIDTIME SELECT S.SSN , Amount , PCN

FROM Incumbents I, Salary S

WHERE S.SSN = I.SSN

Nevertheless, although this language was accepted by the ANSI committee, from the
ISO committee point of view the SQL/Temporal is in limbo, at the time of this
writing. This is mainly because of criticisms that appeared during its ISO discussion:
in [DD05] the authors take a brief look at TSQL2 and compare this language with
the one proposed in [Dat99, DD02]. According to the authors the major �aw is that
TSQL2 involves �hidden attributes�3 therefore leading to a major departure from The

Information Principle which states that all information in the database should be
represented in one and only one way, namely, by means of relations. This uniformity
carries with it uniformity of access mode (all data in a table is accessed by reference
to its columns names) and uniformity of description (to study the structure of a table,
one needs only to examine the description).

3TSQL2 valid and transaction time columns are always hidden by de�nition.

32 CHAPTER 3. TEMPORAL DATABASES

Moreover, the authors also consider that the concept of statement modi�ers to be
logically �awed. Finally, regarding temporal upward compatibility of TSQL2, these
authors reject the very idea that the goal might be desirable, let alone achievable.

In [DD02] Date et. al. deal with the problems of data representing beliefs that hold
throughout given intervals and propose a foundation for the inclusion of support for
temporal data in a truly relational database management system where additional oper-
ators on relations and relation variables having interval-valued attributes are de�nable
in terms of existing operators and constructs.

3.4 Temporal Databases Design

With respect to their logical design, temporal databases have higher needs for design
guidelines nevertheless concepts such as normalisation are not directly applicable to
temporal data modelling. One approach considered applying the concepts to all the
snapshots of a temporal relation, but this isn't truly temporal as it applies to each
snapshot in isolation.

Semantic modelling is traditionally done through a high-level conceptual design model
such as the Entity-Relationship model. Although these models are quite understand-
able and natural, the introduction of temporal issues make them cluttered (for a survey
on this subject the reader is referred to [GJ99]).

3.5 Temporal Database Products

In this section we present a brief overview of all the products (at least to our knowledge)
that allow some sort of temporal support in the context of databases. As we will see,
most of the products provide only (some sort of) transaction time support. Oracle
Workspace Manager and TimeDB are the only ones with valid time support. The
reviews about Log Explorer, Time Navigator, Data Propagator and FlashBack Queries
follow closely [Sno].

3.5.1 Log Explorer

Log Explorer [Lum] is a product from Lumigent that allows the analysis of SQL Server
logs. Log Explorer gives the ability to view the evolution of rows over time and then
selectively recover modi�ed, deleted, dropped, or truncated data, exporting data for
follow-up analysis and reporting (on both the relational data and the schema).

3.5. TEMPORAL DATABASE PRODUCTS 33

3.5.2 Time Navigator

Time Navigator [Ate] from Atempo is a high performance online backup and recovery
solution for heterogeneous environments, including several major DBMS such as Oracle,
Microsoft SQL Server, DB2, Sybase and MySQL. It builds a sliced repository of a
database, thereby enabling image-based restoration of a past slice.

3.5.3 Data Propagator

DataPropagator [IBM] from IBM can use data replication of a DB2 log to create both
before and after images of every row modi�cation to create a transaction-time database
that can be later queried.

3.5.4 SQL:2003

SQL:2003 [EMK+04], is at the time of writing, the most recent revision of the SQL
standard. The full length de�nition of this language can be obtained from the ISO
documents [fS03], but since we are interested in the temporal aspects, below we present
a brief overview of them.

In SQL:2003 there are three datetime types, each of which speci�es values comprising
datetime �elds:

• TIME comprises values of the datetime �elds HOUR, MINUTE and SECOND
(possibly WITH TIME ZONE). TIME is a valid time of day.

• DATE comprises values of the datetime �elds YEAR (between 0001 and 9999),
MONTH, and DAY. DATE is a valid Gregorian date.

• TIMESTAMP comprises values of the datetime �elds YEAR (between 0001 and
9999), MONTH, DAY, HOUR, MINUTE and SECOND (possibly WITH TIME
ZONE).

For the data types above there are several comparison predicates. Besides these
elementary types SQL:2003 also has an interval type to represent the duration of a
period of time. Moreover, we can consider two classes of intervals. One class, called
year-month intervals, has a datetime precision that includes a YEAR �eld or a MONTH
�eld, or both. The other class, called day-time intervals, has an express or implied
interval precision that can include any set of contiguous �elds other than YEAR or
MONTH.

34 CHAPTER 3. TEMPORAL DATABASES

Besides intervals and datetime arithmetic there is an explicit CAST between datetime
types and character string type. Finally, there are several time-varying system vari-
ables such as CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
LOCALTIME, LOCALTIMESTAMP.

Although SQL:2003 isn't really a temporal database language, in fact almost all the fea-
tures above are legacy from previous SQL versions, we decided to include a description
of this language due to its widespread.

3.5.5 Oracle

Oracle DBMS support for temporal data goes far beyond the one we saw in the previous
section (SQL:2003). Among the features/tools related with temporal information,
below we describe the ones that we consider more relevant for this work.

FlashBack Queries

Oracle 9i �ashback queries allows the application to access prior transaction time states
of the database. Oracle 10g extends these queries to retrieve all the versions of a row
between two transaction times and allows tables and databases to be rolled back to a
previous transaction time, discarding all changes after that time.

Workspace Manager

Workspace manager appeared on Oracle database 10g and according to [Cor05] allows
current, proposed and historical values for data in the same database using workspaces.
A workspace4 is a virtual environment that logically groups collections of changes that
are physically contained in one or more version-enable tables. Version-enabled tables
are tables where all rows can support multiple versions of the data. Since this versioning
is invisible to the users of the database, DML statements continue to work in the usual
way. Moreover, version-enabled tables have the history option, adding a transaction
time timestamp every time the row is changed and allowing users in a workspace to go
back to any point in time and view the entire database from a perspective of changes
made in that workspace.

Finally, its possible to associate a valid time to stored data. To use such valid time,
the user sets a valid time in his session context before executing a query. Afterwards,
all queries only return versions stamped with a valid time that falls within the valid
time set for the session context.

4Unless speci�ed, the default user workspace is the current one.

3.6. CONCLUSIONS AND FUTURE POINTERS 35

3.5.6 TimeDB

Instead of being integrated with the internal modules of a DBMS, TimeDB [Ste05]
provides a software layer between the user-applications and a conventional (atemporal)
DBMS. TimeDB supports a temporal version of SQL called ATSQL2 [SBJS97] by
translating temporal SQL statements into standard SQL statements which are then
evaluated using a regular database management system. The language supports valid
and transaction time, along with temporal queries, insert, update and delete state-
ments. Finally, it has temporal tables (along with temporal constraints and assertions)
and views.

3.6 Conclusions and Future Pointers

It is an acknowledged fact that most (if not all) database applications have temporal
issues. In this chapter we saw that the research community has provided several
temporal data models and languages. Therefore one question arises: why do most
DBMS only have basic temporal support?

One possible answer to this question comes from the fact that even the more elementary
notions of temporal databases (valid and transaction time) are quite complex leading to
a departure from one of the reasons that made the relational model so widely accepted:
its simplicity.

Another possible answer has to do with legacy issues. Most applications deal with
the temporal issues in an ad-hoc way. When migrating to a temporal DBMS, some
applications should also change in order to bene�t from the new temporal mechanisms,
but legacy applications are not very likely to change.

Wang et. al. [WZZ05] advocated that SQL:2003 and the XML/XQuery standards have
actually enhanced our ability to support temporal applications in commercial database
systems. To this end, they showed that the integration of SQL and XML allowed the
management of transaction time information and stated that this approach could be
extended to valid time and bitemporal databases.

The area of spatiotemporal databases is becoming increasingly important (see [AR99,
SN04]). There is a strong need to support objects with extents in space and in time,
therefore a whole new �eld of (database) applications will be available which require
support for these features.

Multimedia presentations and virtual reality scenarios are in fact special breeds of
spatiotemporal databases. Also the new area of temporal data mining is emerging.

36 CHAPTER 3. TEMPORAL DATABASES

As a concluding remark one would like to say that temporal databases do require a
new way of thinking about information and there are still several directions for future
developments.

Chapter 4

Modular Logic Programming

This chapter provides an overview of the di�erent logic programming approaches

to modularity, namely the algebraic, the logical and the syntactic approach.

Afterwards, the relations between logic and objects are brie�y described.

4.1 Introduction

Module systems are an essential feature of programming languages, namely because be-
sides structuring programs they also allow the development of general purpose libraries,
therefore code re-use.

A modular extension to logic programming has been subject of research over the last
decades. In a broad sense one can distinguish three di�erent approaches to modularity:
the algebraic, the logical and the syntactic. The algebraic approach started with work
by O'Keefe [O'K85] and considers logic programs as elements of an algebra, whose
operators are the operators for composing programs. The logical approach is based on
a work of Miller [Mil86, Mil89a], and extends the Horn language with logic connectives
for building and composing modules. Finally, the syntactic approach (see [HF06] for a
recent overview and proposal of such approach) addresses the issue of the global and
�at name space, dealing with the alphabet of symbols as a means to partition large
programs.

In this chapter, and for completeness reasons, we present a brief overview of these
approaches where the algebraic (Sect. 4.2) and logical (Sect. 4.3) overview follows
closely [LM94, BLM94]. Although Contextual Logic Programming �ts into the log-
ical category, due to the relevance to this work we decided to present a very brief
presentation here and dedicate an entire chapter (5) to its description.

This chapter is organised as follows: in Sect(s). 4.2, 4.3 and 4.4 we review the algebraic,

37

38 CHAPTER 4. MODULAR LOGIC PROGRAMMING

the logical and the syntactic approach, respectively. In Sect. 4.5 we relate with Object-
Oriented concepts and frameworks. Finally, in Sect. 4.6 we state some conclusions.

4.2 Algebraic Approach

The algebraic approach started with the work of O'Keefe [O'K85] and the main idea
behind this proposal is that a logic program should always be understood as part of
a system of programs. He provided an algebraic approach where a logic program was
viewed as an element of an algebra and composition operators over that algebra. This
program composition approach has several bene�ts, namely:

• it is a powerful tool for structuring programs without any need to extend the
theory of Horn clauses;

• it supports the re-use of the same program within di�erent composite programs;

• it is highly �exible since new composition mechanisms can be achieved by in-
serting the corresponding operator in the algebra or by combining the existing
ones;

• it allows one to model powerful forms of encapsulation and information hiding
when coupled with mechanisms for specifying the interfaces between components.

4.2.1 The Algebra of Programs and Its Operators

The programs of the algebra are regular de�nite logic programs and we will consider
three algebraic operators: union (∪), closure (∗) and overriding-union (C). The union
of two programs stands for taking the set-theoretic union of their clauses; the closure
of a program makes the resulting program visible to others only in terms of its logi-
cal consequences (encapsulating the program's intensional knowledge); the overriding
union of P and Q (P CQ) restricts the union of those programs to the case where the
de�nitions in P override the corresponding de�nitions provided in Q.

These operators composition will be denoted with the extension formulas de�ned by
the following productions:

E ::= P | E ∪ E | E∗ | E C E

where P stands for the name of a logic program.

4.3. LOGICAL APPROACH 39

The immediate consequence operator can be taken as the denotation of a program in
order to provide the semantics for the programs and for the composition operators
(see [BLM94] for the detailed de�nition).

Since the notion of program equivalence induced by the immediate consequence op-
erator is essentially operational, other more abstract semantics can also be provided
(see [BLM94]).

Finally, operators can be composed in order to obtain more complex scope policies.
Typical examples are the operators for nested composition and static or dynamic
inheritance-based compositions.

4.3 Logical Approach

One criticism made to the algebraic approach is that the modular composition chosen
for a top-level goal is used for all its sub-goals, i.e. it's not possible to dynamically
modify the structure of modules and evaluate a sub-goal in a collection of modules dif-
ferent from the one associated with the top-level goal. The logical approach overcomes
this restriction by enriching the language with operators for building and composing
modules that modify the language's evaluation procedure.

Following [BLM94] the operational semantics of the logical extensions proposed in
this section are de�ned proof theoretically where the associated proof-relation will be
presented in terms of the corresponding inference system in the sequent calculus. Each
sequent is denoted as pairs of the form ∆ ` Γ where the antecedent ∆ and the succedent
Γ stand for sets of formulas and such sequent states that there exists a proof from the
antecedent ∆ to some of the formulas in the succedent Γ.

Proofs are de�ned constructively by composing inference �gures of the form:

upper sequent(s)

lower sequent

4.3.1 Embedded Implications

The seminal work of Miller [Mil86] proposed a notion of modular programming based
on the use of embedded implications D ⊃ G where D and G stand respectively for
de�nite clauses and goals. The Horn clauses extended with implication goals can be
de�ned as:

40 CHAPTER 4. MODULAR LOGIC PROGRAMMING

D ::= A | D ∧D| ∀xD | G ⊃ A

G ::= > | A | G ∧G | ∃xG | D ⊃ G

where > and A denote, respectively, the distinguished formula true and an atomic
formula. The intuition behind implication goal is that querying a program P with
the goal D ⊃ G amounts to requesting that the proof of G to be drawn from P
by assuming D as further hypothesis. This mechanism is similar to the program
composition presented in Sect. 4.2.1, nevertheless the main di�erence between them is
that in the former the program structure is static during the evaluation of a goal and
in the latter it is dynamic, as intended.

The implication goal can be formalised by the following inference rule:

(AUGMENT)
P ∪D ` G
P ` D ⊃ G

The inference rules for the remaining goals are the usual ones:

(SUCCESS)
P ` > (AND)

P ` G1 P ` G2

P ` G1 ∧G2

(INSTANCE)
P ` G[x/t]

P ` ∃xG
(BACKCHAIN)

P ` G
P ` A

with the condition G ⊃ A ∈ [P]Σ for backchain.

In this approach, modules can be introduced as named collection of clauses and pro-
grams can be regarded as collections of modules.

Encapsulation and Scope

Embedded implications also allow us to model forms of encapsulation and scope. To
illustrate it let us consider the list-reverse predicate taken from [BLM94]:

4.3. LOGICAL APPROACH 41

Example 1 List-reverse predicate with embedded implications:

∀x, y rev(x, y) ← {∀l rev1([], l, l).

∀x, l1, l2, k rev1([x|l1], l2, k)← rev1(l1, l2, [x|k]).

} ⊃ rev1(x, y, [])

In this example the de�nition of the auxiliary predicate (rev1) is encapsulated in the
embedded implications. Therefore, the clauses of rev1 are local to the de�nition of the
rev predicate.

Parametric Modules

Using embedded implications with free variables one can also account for the notion
of parametric modules. As an illustration, consider a module named A that contains
the clause ∃x (D(x) ⊃ G(x)). Since the variable x is free, we can refer to this module
by MA(x), i.e. the arguments for the module name designate the parameters of this
module.

Variable Inheritance

Embedded implications with free variables can also be employed to model forms of
variable inheritance between nested scopes:

Example 2 List-reverse predicate with free variables:

∀x, y rev(x, y) ← {rev2([], y).

∀x, l1, l2 rev2([x|l1], l2)← rev2(l1, [x|l2]).

} ⊃ rev2(x, [])

In this example, the binding of the variable y is propagated from the nested de�nition
to the outer de�nition. Moreover, variable x of the rule in the nested de�nition is
di�erent from variable x in the outer de�nition.

4.3.2 Lexical Scoping

Giordano et al. [GMR88] provide a notion of lexical scope that allows one to determine
the set of formulas for reducing each goal by looking at the syntactic structure of a pro-

42 CHAPTER 4. MODULAR LOGIC PROGRAMMING

gram. These authors consider a di�erent interpretation for the embedded implications:
assume that P∗ is the set of atomic consequences of P , i.e.

P∗ = {A | A is atomic and P ` A}

the following rule formalises their proposal:

P∗ ∪D ` G
P ` D ⊃ G

The main di�erence w.r.t. the (AUGMENT) (see page 40) rule is that the body of
D depends on P but not vice-versa. Therefore all the references to a predicate in the
outer scope P can be bound lexically to the de�nitions occurring in that scope.

Finally, in order to avoid the (potentially expensive) computation of P∗, Giordano et
al. provided an equivalent proof system with a more complex structure for sequents
and where the antecedents of a sequent forms a stack (as opposed to set) of clauses.

(ANDstk) S`stkG1 S`stkG2

S`stkG1∧G2
(INSTANCEstk) S`stkG[x/t]

S`stk∃xG

(BACKCHAINstk) Pi |···| P1`stkG
Pn |···| P1`stkA

(AUGMENTstk) D | S`stkG
S`stkD⊃G

The conditional stipulation of (BACKCHAINstk) is that the clause G ⊃ A used to
backchain on A belongs to Pi, the top of the stack in the antecedent of the upper
sequent. Moreover, one notices that if i < n, this inference rule shrinks the program
stack therefore reducing the de�nitions available for subsequent backchaining steps (in
the same nesting level). On the opposite side, the (AUGMENTstk) rule increases the
stack size by pushing the new scope D on top of the current stack.

As we shall see, a similar approach is used for the proof system of Contextual Logic
Programming (see Sect. 4.3.4).

4.3.3 Closed Scope Mechanisms

Here we provide an even stronger notion of scope where the meaning of the nested
scope D doesn't depend on the meaning of the outer scope associated with D ⊃ G

(as it happens in all the previous proposals). The following inference rule accounts for
such a notion of scope:

D ` G
P ` D ⊃ G

The semantics of this rule is the same as that of the demo predicate de�ned by Bowen
and Kowalski in [BK82].

4.3. LOGICAL APPROACH 43

4.3.4 Contextual Logic Programming

Although we provide a very thorough description of Contextual Logic Programming
(CxLP) in Chap. 5, for completeness of the comparison with other logical approaches,
we present a brief description of this language. The interpretation of the implication
goal in CxLP also models a lexical notion of scope, nevertheless the di�erence of the
evaluation of the implication goal D ⊃ G (or D � G in the CxLP notation) is that
the extension of the search space is non-monotonic, i.e. the de�nitions coming from
the nested scope D override the corresponding de�nitions provided by the outer scope.
To model this behaviour we can consider the following inference rule:1

(AUGMENT�)
D C P∗ ` G
P ` D � G

From the interpretation of this rule we can state that the nested scope D depends on
the outer scope P only for those de�nitions which are not local to D.

Using proof rules similar to the ones we saw for `stk (see Sect. 4.3.2) we can describe
the provability relation for CxLP (denoted by `�) by:

(BACKCHAIN�)
Pi | · · · | P1 `� G

Pn | · · · | P1 `� A

imposing that Pi be the top-most component of Pn | · · · | P1 which contains a de�nition
(G ⊃ A) for the predicate symbol of A (in `stk the choice of Pi was non-deterministic).

Returning to the list-reverse given in Example 2, consider the CxLP version:

Example 3 List-reverse in Contextual Logic Programming

∀x, y rev(x, y) ← {rev([], y).

∀x, l1, l2 rev([x|l1], l2)← rev(l1, [x|l2]).

} � rev(x, [])

The program of the example above is very similar with the one that we saw with in
Example 2 (see page 41). The di�erence is that now there is no need to rename the
nested predicate since the override semantics ensures that the inner de�nition of rev/2
is the one that is used to solve rev(x, []).

1The overriding-union operator (C) was de�ned in Sect. 4.2.1.

44 CHAPTER 4. MODULAR LOGIC PROGRAMMING

Overriding and Dynamic Scope

Mello et al. [MNR89] proposed an alternative semantics for extension goals that com-
bines the overriding semantics of CxLP with dynamic scope. This semantics can be
described by the following proof rule:

D C P ` G
P ` D � G

In the rule above P stands for a set (as opposed to a stack) of clauses, where the
dependency between D and P is again bi-directional but constrained by virtue of the
restricted form of union provided by the overriding-union operator (C).

4.3.5 Lexical Scoping as Universal Quanti�cation

In [NM88] the authors propose an extension of the language presented in Sect. 4.3.1 in
order to incorporate universal quanti�cation of goals, i.e.

D ::= A | D ∧D | ∀xD | G ⊃ A

G ::= > | A | G ∧G | ∃xG | D ⊃ G | ∀xG

The formulas built according to the rules above are called Hereditary Harrop Formulas.

Due to the universal quanti�cation, the sequent proofs for this language need to
represent the domain, i.e. are of the form Σ;P ` G where Σ is the signature of
the current domain. Additionally to the sequents we need to add the following rule to
the proof system:

(GENERIC∀)
Σ + {c};P `∀ G[x/c]

Σ;P `∀ ∀xG

where c 6∈ Σ, i.e. (GENERIC∀) extends the current signature with a new constant
(c). Therefore, universally quanti�ed embedded implications provide a mechanism to
introduce constants with local scope.

Finally, Miller and Nadathur [NM88, Mil89b] also propose an extension called Higher-

Order Hereditary Harrop Formulas that allows universal quanti�ers over the predicate
symbols that occur in the embedded implications. This predicate quanti�cation en-
compasses an overriding mechanism similar to the one that we saw with the operator
� of Contextual Logic Programming.

4.4. SYNTACTIC APPROACH 45

The λProlog Module System

Higher-Order Hereditary Harrop Formulas is the underlying logical foundation of the
declarative language λProlog [NM88]. Each module system of this language [Mil93]
contains three parts: header, preamble and declarations and clauses. The header stated
the module name being de�ned, the preamble (optional) declares the other modules
that can be accumulated or imported and the remaining part of the module can contain
signatures declarations and program clauses. Modules can accumulate or import other
modules. If a module mod1 contains the line

accumulate mod2 mod3.

the intended meaning is that the clauses in mod2 and mod3 are made available at the
end of the clauses in mod1.

If a module mod1 contains the line

import mod2 mod3.

modules mod2 and mod3 are made available (via implications) during the search for
proofs of the body of clauses listed in mod1. To better grasp the dynamic semantics of
import vs accumulate see [Mil93].

There are multiple implementations of this language, Teyjus2 being the most actively
supported.

4.4 Syntactic Approach

Initially Prolog systems had a global and �at predicate name space, leading to several
di�culties specially when developping large applications. Modules in current Prolog
systems address this issue. Paradoxically, although there is a standard for Prolog
modules [fS00] almost each Prolog system has its own and incompatible module spec-
i�cation.

There are two types of modules systems: name-based and predicate-based. In the
former each atom is tagged with the module name, with the exception of those atoms
that are de�ned as public. In the latter, each module has its own independent predicate
name space.

One great disadvantage of the name-based approach is that all data is local to a module,
therefore atom foo from module m1 is di�erent from atom foo in module m2. Of course

2See http://teyjus.cs.umn.edu/.

http://teyjus.cs.umn.edu/

46 CHAPTER 4. MODULAR LOGIC PROGRAMMING

that this feature poses several di�culties, even for developping simple programs based
on modules.

One well known problem of an independent name space for each module (predicate-
based approach) is related to meta�predicates such as call(Goal) that have to know
in which module the Goal must be resolved. Moreover, the call predicate interferes
with the protection of the code, an essential task of a module system. In [HF06]
the authors take a further step down and distinguish between the called module code

protection (only the visible predicates of a module can be called from the outside) from
the calling module code protection (the called module does not call any predicate of
the calling module, as they are not visible3). Furthermore, they classify several Prolog
systems in terms of called/calling module code protection and propose a formal module
system with both forms of code protection.

In this section besides the ISO standard for modules we also present a brief overview
of several Prolog systems that address the issue of modularity. As we shall see, almost
all these systems are predicate-based,4 i.e. they prefer to have global data and deal
in some way with the problem of meta-predicates. Wielemaker [Wie97] points out a
justi�cation for this (almost) unanimous preference: it is much more frequent to pass
data across modules in program than writing meta-predicates that have to be used
across modules.

4.4.1 Prolog Modules: the ISO Standard

According to the ISO standard proposal for Prolog modules [fS00], a module is a named
collection of procedures and directives together with provisions to export some of the
procedures and to import and re-export procedures from other modules. A module
name M can be used to qualify terms T, leading to a term whose principal functor is
(:)/2, i.e. M:T.

Since this is a predicate-based approach a special attention is given to meta-predicates.
Namely, it de�nes the calling context as the name of the module from where a call is
made together with the notion of meta-procedure and meta-variable where the former is
a procedure whose actions depend on the calling context and the latter is a variable used
as argument of a meta-procedure which will be subject to module name quali�cation
when the meta-procedure is activated.

The standard also de�nes that procedures can be (re-)exported and, of course, imported
by modules. Moreover, such actions can be selective meaning that only speci�ed

3Nevertheless one must consider the exception where calling a non-exported predicate is indeed

the intended behaviour as it happens for instance in the implementation of the predicate forall/2.
4The exception to the rule is the name-based XSB.

4.4. SYNTACTIC APPROACH 47

procedures are exported/imported.

Moreover, two important notions are de�ned in this standard: accessibility and visibility
of procedures. A procedure is visible in a module M if it can be activated from M without
using quali�cation. A procedure is accessible if it can be activated with module name
quali�cation.

Finally, ISO doesn't provide any sort of module code protection although it allows an
extension that hides certain procedures de�ned in a module M so that they cannot be
activated, inspected or modi�ed except from within a body of the module M.

4.4.2 Implementations

Ciao Prolog

The Ciao Prolog System [BCC+97] is a predicate-based Prolog where the predicates
visible in a module are those de�ned in that module, plus the predicates imported
from other modules (these predicates must always be referred with the module name
as pre�x, i.e. Module:Predicate). The default module of a given predicate name is
the local one if the predicate is de�ned locally, else it is the last module from which the
predicate is imported. Finally, only predicates exported by a module can be imported
into other modules. All predicates de�ned in �les with no module declaration belong to
a special module called user, and all are implicitly exported. Every user or module �le
implicitly imports all the builtin modules. These aspects accommodate compatibility
with traditional module-less Prolog.

Before calling meta-predicates, Ciao Prolog translates the meta-arguments into an
internal representation containing the goal and the context in which the goal must be
called, therefore correctly selecting the context in which the meta-data must be called.
Ciao observes both forms of module code protection, i.e. called and calling module
code protection.

ECLiPSe

According to [Aea07] ECLiPSe (ECLiPSe Common Logic Programming System) is
a Prolog based system whose aim is to serve as a platform for integrating various
Logic Programming extensions, in particular CLP. It provides a module system that
follows most of the ISO directives, namely it supports (re)exporting and importing
predicates. An exported predicate is accessible everywhere although it may require
explicit module name quali�cation via :/2. Meta-predicates are declared by means of
the :- tool directive. Besides the usual quali�cation, the system also provides the

48 CHAPTER 4. MODULAR LOGIC PROGRAMMING

construct call(Goal)@Module that (in some situations) can be used to access non-
exported predicates. Nevertheless, once a module implementation is stable its possible
to lock it and after that not even call(Goal)@Module can access to the hidden parts
of the module, i.e. locked modules provide both forms of code protection.

Mercury

Mercury [F. 06] is an e�cient, purely declarative logic programming language. It is
touted by its proponents as a successor of Prolog that is a syntax for �rst-order logic
augmented with types and modes. Mercury supports programming-in-the-large: the
module system is �at and loosely based on the module system of imperative languages
such as Modula-2. A module:

• starts with a module declaration directive,

• is followed by an interface section where the exported items are declared,

• ends with an implementation section that contains the de�nitions of the exported
entities and the declarations and de�nitions of entities used only within the
module.

Mercury protects module code: a module cannot get access in any way to the entities
private to another.

SICStus Prolog

The module module system of SICStus Prolog [The07] is modeled after the Quintus
Prolog module [Lab03] and is described as:

• procedure based;

• �at, i.e. all modules are visible to one another;

• non-strict, i.e. the normal visibility rules can be overridden by special syntax
(M:P).

Due to non-strictness there is no called module code protection: the special syntax
allows calling non-exported predicates of a given module. Although it is possible to
declare meta-predicates and corresponding meta-arguments that must be module name
expanded, one can use a similar expansion to access any predicate of the calling module,
therefore there is no calling module code protection in SICStus.

4.4. SYNTACTIC APPROACH 49

SWI-Prolog

SWI-Prolog [Wie97] has a module system where predicates can be exported (using
the module directive) and imported (by means of predicates use_module/[1,2] or
import/1). It has two special modules: system and user. The �rst module contains all
built-in predicates and the second forms the initial workspace of the user. Moreover, to
avoid explicitly importing predicates such as system predicates, it is assigned a default
module to every module: the default module of user is system and all other modules
import from user.

In order to work with meta-predicates in modules, SWI-Prolog introduces the notion
of context module for active goals: by default is the de�nition module5 of the pred-
icate running the goal; for meta-predicates is the context module of the goal that
invoked them. This mechanism is called module transparent and di�ers from the
meta_predicate/1 of SICStus (see [Wie97] for a comparison). This module system
doesn't ensure any kind of module code protection.

XSB

XSB's [SSW+07] module system is �at (no module nesting), �le based (one module
per �le) and name-based where any symbol in a module can be imported, exported
or be a local symbol. Moreover, all non-predicate symbols are assumed to be global
whereas predicate symbols are assumed local to that model unless declared otherwise.
Nevertheless, symbols cannot be re-exported.

A �le is treated as a module if it has one or more export declarations. Since there is no
module directive, the module name is equal to the base �le name.

Finally, XSB fully satis�es the code protection property: the meta-call of a term
corresponds to the call of the predicate of the same symbol and arity as the module
where the term has been created.

YAP

YAP [YAP06] is a high-performance Prolog compiler that implements a module system
compatible with the Quintus Prolog [Lab03] modules. Like SICStus, the module system
is predicate-based, �at and non-strict. Therefore, YAP has no module code protection.
There are two special modules: default module user to where new predicates belong
and primitive module to where system predicates belong. Besides module/{1,2,3}

declaration, YAP has also meta_predicate/1 directive to state that some arguments

5Module in which the predicate was originally de�ned.

50 CHAPTER 4. MODULAR LOGIC PROGRAMMING

of a procedure are goals, clauses or clauses heads, and that these arguments must be
expanded to receive the current source module.

4.5 Logic and Objects

Modularity provides concepts that are similar to some of the core ideas in Object-
Oriented programming: for instance, [AD03b] shows how contexts (see Sect. 4.3.4) can
be used as objects.

Due to this proximity between Object-Oriented and Modularity, for completeness
reasons we decided to include a description of how embedded implications can be used
to model Object-Oriented concepts such as inheritance. Finally, in order to provide a
practical point view, we brie�y describe an object-oriented extension of Prolog called
Logtalk.

4.5.1 Object-Oriented Programming and Embedded Implica-

tions

According to [BLM94]6 the integration of OO and logic programming paradigms can
be considered from two di�erent approaches:

1. one approach started with the work of Aït-Kaci and Nasr on LOGIN [AKN86].
This language can be described as a logic language with inheritance where classes
and objects are represented as compound terms whose arguments designate the
objects attributes.

2. the other approach started with McCabe's Class Template Language [McC92]
and is based on the idea of representing an object as a �rst-order logic theory.

Following the second approach, classes can be introduced as parametric modules whose
parameters act as (stateless) instance variables in conventional OO languages. More-
over, a message O : G requesting that G be evaluated in object O can be modeled
as:

O `oo G

O `oo O : G

6This subsection follows closely this reference.

4.5. LOGIC AND OBJECTS 51

Inheritance

Considering the approach that represents an object as a �rst-order logic theory, Mon-
teiro and Porto in [MP90] divide inheritance into two kinds: semantic and syntactic.
In order to better de�ne these types of inheritance consider two units u and v such that
u isa v. With the semantic (also called relational or predicate) we can consider that
the compositionality is at the semantic level by using relations from the model of v in
order to construct the model of u. If the inheritance is syntactic, one must compose
syntactic de�nitions of v and u in order to build the model of u.

Another orthogonal concept also related to inheritance presented in [MP90] was the
mode of inheritance: extension or overriding. These concepts are similar to the
algebraic operators union (∪) and overriding-union (C) presented in Sect. 4.2.1.

One can also use embedded implications to model inheritance, where the message-sent
O : G causes the evaluation of G to take place not simply in O but in the program
obtained by the composition of O with all of its ancestors in the object hierarchy.
Consider the hierarchy On isa On−1 . . . O2 isa O1 and the message-sent OJ : G. A
system with syntactic overriding inheritance is modeled by means of the following proof
rule:

Oj COj−1 C . . .CO1 `oo G

H `oo Oj : G

where H is the current object hierarchy.

A system with semantic overriding inheritance can be modeled by the rule:

(Oj C (Oj−1 C (. . .CO∗1) . . .)∗)∗ `oo G

H `oo Oj : G

4.5.2 Logtalk

Logtalk [Mou03] is an object-oriented extension of Prolog. As expected, this language
allows the de�nition of several namespaces. It supports both prototype and class-based
system and objects can have multiple independent hierarchies. Inheritance and object
predicates can be private, protected or public. Objects can have parameters [Mou00],
nevertheless the access to parameter values is through a built-in method.7 Although
private predicates enable calling module code protection, meta-predicates can access
the private predicates of the calling object, therefore there is no calling module code
protection.

7Instead of making the parameters scope global over the whole object.

52 CHAPTER 4. MODULAR LOGIC PROGRAMMING

4.6 Conclusions

In this chapter we presented an overview of the main approaches to modularity in
Logic Programming. Namely, we described the algebraic approach that considers logic
programs as elements of an algebra whose operators are operators for composing pro-
grams; the logical approach that enriches the language with operators for building and
composing modules that modify the language evaluation procedure and the syntactical
approach that addresses the issue of the global and �at name space, dealing with the
alphabet of symbols as a mean to partitionate large programs. To further perspec-
tive this issue we also included the Object-Oriented approaches in LP, since OO and
modularity intersect in several ways. Finally, although most implementations/systems
herein described follow the syntactic approach, there are also examples of systems that
use the OO or the logical approach.

Chapter 5

Contextual Logic Programming

This chapter presents a detailed overview of Contextual Logic Programming, namely

its language, operational and declarative/�x-point semantics. It also describes

several extensions to the base language and an optimisation through abstract

interpretation. Finally, the virtual-machine-based implementations CSM (Contexts

as SICStus Modules) and GNU Prolog/CX are reviewed.

5.1 Introduction

Contextual Logic Programming (CxLP) is a modular extension of Horn clause logic
proposed by Monteiro and Porto [MP89, MP93]. The CxLP �extension goal� can be
regarded as a non-monotonic version of Miller's �implication goal� [Mil86, Mil89a].1

The extension goal is denoted with the � operator and D � G (pronounced extend
with D for goal G) is derivable from a program P if G is derivable from A ∪ D and
A is derivable from P , for some �nite set A of atoms for predicates not de�ned in D.
Therefore� provides a sort of lexical scoping for predicates: predicates in G which are
de�ned inD are bound to those de�nitions, the others can be obtained from program P .
Besides lexical scoping, CxLP also accounts for contextual reasoning that is widely used
for several Arti�cial Intelligence tasks such as natural language processing, planning,
temporal reasoning, etc.

Work by Abreu and Diaz [AD03a] presented a revised speci�cation of CxLP together
with a new implementation for it and explained how this language could be seen as a
shift into the Object-Oriented Programming paradigm.

In this chapter we start by de�ning the syntax of the language (Sect. 5.2), afterwards
we present its operational (Sect. 5.3) and corresponding �x-point semantics (Sect. 5.4).

1See Sect. 4.3 for an overview of logical approaches to modularity.

53

54 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

Next a possible optimisation through abstract interpretation is given (Sect. 5.6). Fi-
nally, we brie�y review two proposed systems for CxLP (Sect. 5.7), namely CSM

(Contexts as Sicstus Modules) [NO93, NO] and GNU Prolog/CX [AD03a].

5.2 The CxLP Language

The vocabulary of Contextual Logic Programming, besides the usual sets of variables,
constants, functions and predicates symbols also contains a set of unit names. Although
we are going to see a formal de�nition of unit for now assume that it stands for a �nite
set of Horn clauses, i.e. the unit represents the concept of �module�.

De�nition 5 (Vocabulary of CxLP) The vocabulary of Contextual Logic Program-

ming contains the following �nite and pairwise disjoint sets:

• V ar of variables

• Fun of functions

• Pred of predicates

• Un of unit names

Terms, atomic formulas and clauses are de�ned in the usual way, with the only di�er-
ence that clauses can have extension formulas in their bodies:

De�nition 6 (Extension Formula) An extension formula is a formula u� G where

u is a unit name (u ∈ Un) and G is a �nite conjunction of atomic or extension formulas.

Using the de�nitions above we are now in position to provide a more formal de�nition
of units:

De�nition 7 (Unit) A unit is a formula of the form u : U , where u ∈ Un and U is

a �nite set of clauses. We call u the name of the unit and U its body (also denoted by

|u|). Moreover, the set of predicates de�ned in U is denoted by ||u|| (the sort of u).

Finally, a system of units is a set U of units such that no two distinct units in U have
the same name.

5.3. OPERATIONAL SEMANTICS 55

5.3 Operational Semantics

The system of units that we saw above is a static concept of a program. The dynamic
view of a program is the derivation of formulas in contexts. Context names are arbitrary
sequences of unit names (Cn = Un

∗). The empty context is represented by λ and the
context that results from extending the context C ∈ Cn with unit u ∈ Un is represented
by uC.

The operational semantics is presented by means of derivations. For self-containment
reasons, we explain brie�y what is a derivation and this description follows closely the
one presented in [MP93].

Derivations are de�ned in a a declarative style, by considering a derivation relation and
introducing a set of inference rules for it. A tuple in the derivation relation is written
as:

U , C ` G[θ]

where U is a system of units, C a context name, G a goal and θ a substitution. Since
the system of units remains the same for a derivation, we will omit U in the de�nition
of the inference rules. Each inference rule has the following structure:

Antecedents

Consequent
{Conditions

The Consequent is a derivation tuple, the Antecedents are zero, one or two derivation
tuples and Conditions are a set of arbitrary conditions.

The inference rules can be interpreted in a declarative or operational way. In the
declarative reading we say that the Consequent holds if the Conditions are true and
the Antecedents hold. From a operational reading we get that if the Conditions are
true, to obtain the Consequent we must establish the Antecedents. A derivation is a
tree such that:

1. any node is a derivation tuple;

2. in all leaves the goal is null;

3. the relation between any node and its children is that between the consequent
and the antecedents of an instance of an inference rule;

4. all clause variants mentioned in these rule instances introduce new variables
di�erent from each other and from those in the root.

56 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

The operation of the contextual logic system is as follows: given a context C and a
goal G the system will try to construct a derivation whose root is C ` G [θ], giving
θ as the result substitution, if it succeeds. The substitution θ is called the computed
answer substitution.

We may now enumerate the inference rules which specify computations. These rules
are based on the ones presented in [MP89], that can be regarded as the base for the ones
in [MP93]. Together with each rule we will also present its name and a corresponding
number. Moreover, the paragraph after each rule gives an informal explanation of how
it works.

Null goal

C ` ∆[ε]
(5.1)

The null goal is derivable in any context, with the empty substitution ε.

Conjunction of goals

C ` G1[θ] C ` G2θ [σ]

C ` G1, G2[θσ]
(5.2)

To derive the conjunction derive one conjunct �rst, and then the other in the
same context with the given substitutions.

Reduction

uC ` (G1, G2 · · ·Gn)θ[σ]

uC ` G[θσ]

{
H ← G1, G2 · · ·Gn ∈ |u|
θ = mgu(G,H)

(5.3)

If the unit at the top of the context (u) de�nes the predicate of the atomic formula
G, reduce such formula in the unit and derive the body of the clause used in the
reduction.

Extension Formula:

uC ` G[θ]

C ` u� G[θ]
(5.4)

To derive an extension formula, derive the �inner� formula in the context obtained
by extending the current one with the unit name in the extension formula.

5.4. DECLARATIVE/FIX-POINT SEMANTICS 57

Context traversal:

C ` G[θ]

uC ` G[θ]

{
name(G) 6∈ ||u|| (5.5)

When none of the previous rules applies remove the top element of the context,
i.e. resolve goal G in the supercontext, i.e. the context that results from removing
the top unit from the current context.

5.3.1 Application of the Rules

It is rather straightforward to check that the inference rules are mutually exclusive,
leading to the fact that given a derivation tuple C ` G[θ] only one rule can be applied.
Moreover, the operational semantics of a goal G is the set of all substitutions θ such
that λ ` G[θ].

Finally, in [MP89] besides the top-down derivation above there is also a bottom-up
one. Since both approaches were proven equivalent and the bottom-up is similar to the
declarative reading of the inference rules presented, we considered the inference rules
above to be su�cient.

5.4 Declarative/Fix-Point Semantics

Similarly to the Herbrand interpretation of a �rst-order language, in CxLP the domain
of an interpretation is the Herbrand universe H, each function of arity n is interpreted
as a function from Hn to H. Nevertheless, instead of considering an interpretation as
an assignment of a subset of the Herbrand base B (set of all ground atomic formulas)
to every predicate symbol, CxLP interpretations associate unit names with functions
from ℘(B)2 to ℘(B). For instance, u� G is true in a subset S of the Herbrand base,
from here on called situation, if every formula in G is true in the situation obtained
from S by the transformation associated with u.

More formally, and considering P ⊆ Pred, S ⊆ B, SP the restriction of S to P , i.e.
the set of all p(t1, . . . , tn) ∈ S such that p ∈ P . Considering also S−P = SPred−P , an
interpretation I is an assignment, for each u ∈ Un, of a continuous function:

uI : ℘(B−||u||)→ ℘(B||u||)

2℘(B) is the powerset of B.

58 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

Moreover, the update of S ⊆ B by u ∈ Un is:

S[uI] = S−||u|| ∪ uI(S−||u||)

Denoting S |=I f by the fact that f is true in S with respect to I, the relation |=I is
de�ned by:

• S |=I u : U if and only if S[uI] |=I U

• S |=I H ← B, where H ← B is ground, if and only if S |=I H whenever S |=I B

• S |=I u� G if and only if S[uI] |=I G

• S |=I g where g is a ground atomic formula, if and only if g ∈ S

Similarly, an interpretation I is a model of a system of units U if every unit in U is true
in every situation with respect to I. Monteiro and Porto also proved that any system
of units has a minimal model and this model could also be obtained by means of a
�x-point operator (for the description of this operator see [MP89]). Finally, they also
showed that the operational semantics (see Sect. 5.3) and the declarative presented
herein are equivalent.

5.5 Extensions

Several extensions were proposed to the basic theory above. In this section we present
a brief description of the extensions that are relevant for this work and that were the
subject of a recent revision of CxLP [AD03a]. A more formal and complete description
of all the extensions (including extensions for predicate hiding, two-level contexts, etc)
can be found in [MP89] and [MP93].

Parametrised Units
Unit parameters act as �global variables� for units and these parameters are
encoded as arguments of a term whose main functor is the unit name. Therefore
instead of referring to a unit with an atom we can use terms whose main function
is the unit name, such terms are called unit descriptor. To account for this
extension, several inference rules of Sect. 5.3 need an extra uni�cation since now
unit descriptors (and therefore contexts) can have variables. For instance, the
rule for conjunction of goals becomes:

C ` G1[θ] Cθ ` G2θ [σ]

C ` G1, G2[θσ]
(5.6)

5.6. OPTIMISATIONS 59

Since C may contain variables in unit descriptors that may be bound by the
substitution θ obtained from the derivation of G1, we have that θ must also be
applied to C in order to obtain the updated context in which to derive G2θ.

Context switch

C ′ ` G[θ]

C ` C ′ :< G[θ]
(5.7)

The purpose of this rule is to allow execution of a goal in an arbitrary context,
independently of the current context. This rule causes goal G to be executed in
context C ′.

Context inquiry

C ` :< X[θ]

{
θ = mgu(X,C) (5.8)

To complement the context switch operation, there is an operation which fetches
the current context. This rule recovers the current context C as a term and
uni�es it with term X, so that it may be used elsewhere in the program.

5.6 Optimisations

One way to classify modular languages, according to [BCLM98] concerns the way in
which the set of clauses that de�ne a goal are found. Considering the evaluation of a
goal g in a context C = [un, . . . , u1], we have:

• Dynamic scope rules: is a system in which the de�nition associated with each
predicate call is given by the clauses for g contained in the whole context C,
regardless of the unit where the call occurs.

• Static scope rules: is a system in which the de�nition associated with predicate
call g occurring in the unit ui, is given by the clauses for g contained in the sub-
context [ui, . . . , u1]. The de�nitions visible from a unit u are therefore those found
in u and its ancestors in the context.

CxLP is a system with static scope rules, and a useful optimisation for these systems is
partial deduction or partial evaluation. One possible approach can be found in [BLM93]
where the authors assume that each goal goal is evaluated in a context and therefore
propose a transformation that's not only a function of the goal, but also of the initial

60 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

context where this goal has to be evaluated. This program transformation leads to a
new, still modular program where some of (possibly all) the modules occurring in the
initial context are replaced by the specialised version.

Nevertheless, to make use of a partial evaluation based approach, one has to know
beforehand what the initial context and goal will be. If this knowledge is absent, this
optimisation cannot be applied.

For dynamic scope rules systems the optimisation proposed in [CLM96] is based on a
bottom�up abstract interpretation [CC92]. In that proposal an abstract transformation
function is presented, which returns sets of pairs 〈c, p〉 where c is a minimal context for
predicate p, i.e. any successfull derivation for an atom whose predicate is p must must
contain (at least) one of those minimal contexts. Moreover, this condition is necessary
but not su�cient since the computation with a minimal context may still fail, just not
because of unde�ned predicates.

5.6.1 Abstract Interpretation for Static Scope Systems

Although the proposal of [CLM96] was designed for dynamic scope rules systems like
the language of embedded implications (see Sect. 4.3.1), in this section we are going
show that it can be applied to a static scope system such as CxLP. Before formally
developing our proposal, we start with the following motivating modular program:

:- unit(u1).

p :- q.

:- unit(u2).

q :- r.

:- unit(u3).

r.

From the abstract analysis of [CLM96] we get pairs 〈c, p〉 where c stands for the minimal
context for predicate p. In this case we have:

〈{u1, u2, u3}, p〉 ∪ 〈{u2, u3}, q〉 ∪ 〈{u3}, r〉

Although in CxLP the order in which the units appears in the context is important,
we can state that the computation for p in a context without units u1, u2 and u3 will
certainly lead to a failure. Therefore, we claim that this method is also suitable for
optimising CxLP. Nevertheless, as the reader might have noticed, this way we also
allow the evaluation of p in contexts like [u2, u1, u3] or [u3, u1, u2] and this
ought to be avoided with a �ner pruning mechanism.

To prove that this method can be applied to a static scope language we rely upon the
unifying formalisation presented in Sect. 4.3 (page 39) for embedded implications and
CxLP. Returning to the formalisation of that chapter can be misleading since there the

5.6. OPTIMISATIONS 61

provability relation for embedded implications and CxLP was ` and `�, respectively,
and in this chapter ` stands for the provability of CxLP. The reason for that has
to do with the fact that in Sect. 4.3 there were several logical approaches (embedded
implications being the �rst); in this chapter, CxLP is the only language described.
Nevertheless, since we need the unifying framework of Sect. 4.3 we will return to that
notation.

Proposition 1 Given a goal G, a stack of clauses P and the set P ′ that results from
the union of all the clauses in the stack P, we have

P `� G ⇒ P ′ ` G

Proof: P `� G is true if there is a tree of derivation tuples that starts with P `� G,
the relation between two consecutive tuples is that between the antecedents and the
consequent of the inference rules above and where the goal of the last tuple is null.

The basic idea for this proof is to construct a derivation tree for P ′ ` G using the
existing (by hypothesis) derivation for P `� G. More speci�cally, we are going to
replace each inference rule used in the CxLP derivation by the equivalent embedded
implications rule.

Therefore the tree for P ′ ` G has P ′ ` G as its root and to build the children of any
node consider the inference rule that was applied in the tree for P `� G.

The rules for (SUCCESS�), (AND�) and (INSTANCE�) can be trivially replaced by
the identical counterparts (SUCCESS), (AND) and (INSTANCE).

Both versions of the Augment have no conditions, therefore instead of (AUGMENT�)
we can use (AUGMENT), with the proper substitutions, i.e. if P ′ ` D ⊃ G is the
parent, then its child is P ′ ∪D ` G (instead of D | P ` G).

It remains to verify we can replace (BACKCHAIN�) by (BACKCHAIN). For that, one
must notice that the set of rules in the embedded implications increases continuously.
If (BACKCHAIN�) was used then there is a component in the stack that contains
a rule G ⊃ A, therefore from the monotony of embedded implications set of clauses,
we have that that G ⊃ A also belongs to the set that results from that stack, i.e.
(AUGMENT) condition is veri�ed and therefore it can be used. �

In Table 5.1 we �nd a CxLP derivation and the corresponding embedded implications
one that illustrates the proof procedure considered above.

62 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

CxLP Embedded implications
λ `� {r} � ({q : −r} � q) λ ` {r} ⊃ ({q : −r} ⊃ q)

{r} | λ `� {q : −r} � q {r} ∪ λ ` {q : −r} ⊃ q

{q : −r} | {r} | λ `� q {q : −r} ∪ {r} ∪ λ ` q

{q : −r} | {r} | λ `� r {q : −r} ∪ {r} ∪ λ ` r

{r} | λ `� > {q : −r} ∪ {r} ∪ λ ` >
{r} | λ `� {q : −r} ∪ {r} ∪ λ `

Table 5.1: Derivation: CxLP and embedded implications

It follows from Proposition 1 that P ′ 6` G⇒ P 6`� G. Therefore, consider that we want
to verify if atomic goal G is true in the stack (context) P , i.e. P `� G and that p is
the predicate of G. Furthermore, suppose also that P ′ is the (embedded implications)
program that results from the union of all the clauses in the P . If P ′ doesn't contains
any minimal context for p, them P ′ 6` G and therefore P 6`� G.

5.7 Implementations

There are two main approaches to implement CxLP in a logic programming framework:

• Prolog-based

• Virtual-machine-based

Meta-interpretation and translation to Prolog are two widely used techniques in Prolog-
based approaches. Although these systems are rather simple to implement, due to
e�ciency reasons they aren't used to build real-world applications. Virtual-machine-
based implementations although more elaborate in development, are more e�cient.
For a comparison between the approaches see for instance [DLM+92].

In this section we present a brief overview of the more relevant, at least to our
knowledge, virtual-machine-based implementations.

5.7.1 CSM (Contexts as SICStus Modules)

The Contexts as SICStus Modules (CSM) system [DNO92] can be regarded as an
enhanced virtual-machine that exploits the program representation and the predicate
addressing mechanism of a modular Prolog programming system. As the name states
the modular Prolog system chosen was SICStus (see Sect. 4.4.2) and in this implementa-
tion, contexts are �rst-class objects which can be referred to by logic variables. Besides

5.7. IMPLEMENTATIONS 63

the basic CxLP theory, CSM also implements two-level contexts, context enquiry and
context switch.

In [NO, NO93] the authors extend the implementation above in order to include
object-oriented abstractions and mechanisms such as state modi�cation. In order to
incorporate the notion of update they make a clear distinction between deductive and
updating phases: the deductive activity isn't a�ect by the update actions it produces;
updates are backtrackable and just take place when the corresponding demonstrations
ends.

5.7.2 GNU Prolog/CX

GNU Prolog/CX [AD03a] is a WAM-based approach, i.e. extends the standard Warren
Abstract Machine (WAM) [War83] with a minimal set of instructions and new data
structures in order to provide the CxLP characteristics. For a prior WAM-based
approach to CxLP see [LMN92].

Besides the basic CxLP theory, GNU Prolog/CX presents several extensions such as
units arguments, two-level contexts, context enquiry and context switch. A full detailed
tutorial (A.1) together with its reference manual (A.2) can be found in Appendix A.

In [AD03a] the authors show that this compiler incurs a low overhead when compared
to regular GNU Prolog when the CxLP extensions are not being used. Moreover, they
also compare it to CSM (see Sect. 5.7.1) and state that the relative performance is
much better, allowing GNU Prolog/CX to have deeper contexts.

Finally, this system was used to represent and query ontologies [LFA07], to develop
University Information Systems [ADN04] and applied for temporal representation and
reasoning (see Sect(s). 6.5 and 7.5, respectively).

University Employees

Using the syntax of GNU Prolog/CX consider a unit named employee to represent some
basic facts about university employees, using ta and ap as an abbreviation of teaching
assistant and associate professor, respectively:

:-unit(employee(NAME , POSITION)).

name(NAME).

position(POSITION).

item :- employee(NAME , POSITION).

64 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

employee(bill , ta).

employee(joe , ap).

The main di�erence between the example above and a plain logic program is the
�rst line that declares the unit name (employee) along with the unit arguments
(NAME, POSITION). Unit arguments help avoid the annoying proliferation of predicate
arguments, which occur whenever a global structure needs to be passed around. A unit
argument can be interpreted as a �unit global� variable, i.e. one which is shared by all
clauses de�ned in the unit. Therefore, as soon as a unit argument gets instantiated,
all the occurrences of that variable in the unit are replaced accordingly.

For instance if the variable NAME gets instantiated with bill, it is as if the following
changes had occurred:

:-unit(employee(bill , POSITION)).

name(bill).

position(POSITION).

item :- employee(bill , POSITION).

employee(bill , ta).

employee(joe , ap).

Suppose also that each employee's position has an associated index (integer) that will
be used to calculate the salary. Such a relation can be easily expressed by the following
unit index:

:- unit(index(POSITION , INDEX)).

position(POSITION).

index(INDEX).

item :-

index(POSITION , INDEX).

index(ta, 12).

index(ap, 20).

With the units above we can build the program P = {employee, index}.

Given that in the same program we can have two or more units with the same name
but di�erent arities, to be more precise besides the unit name we should also refer its
arity i.e. the number of arguments. Nevertheless, since most of the times there is no
ambiguity, we omit the arity of the units, without loss of generality. If we consider that

5.7. IMPLEMENTATIONS 65

employee and index designate sets of clauses, then the resulting program is given by
the union of these sets.

Contexts are implemented as lists of unit descriptors and each computation has a notion
of its current context. The program denoted by a particular context is the union of the
predicates that are de�ned in each unit. Moreover, we resort to the override semantics
to deal with multiple occurrences of a given predicate: only the topmost de�nition is
visible.

To construct contexts, we have the context extension operation denoted by :> . The
goal U :> G extends the current context with unit U and resolves goal G in the new
context. For instance to obtain Bill's position we could do:

?- employee(bill , P) :> item.

P = ta

In this query we extend the initial empty context []3 with unit employee obtaining
context [employee(bill, P)] and then resolve query item. This leads to P being
instantiated with ta.

Suppose also that the employee's salary is obtained by multiplying the index of his
position by the base salary. To implement this rule consider the unit salary:

:-unit(salary(SALARY)).

item :-

position(P),

[index(P, I)] :< item ,

base_salary(B),

SALARY is I*B.

base_salary (100).

The unit above introduces a new operator (:<) called context switch: goal [index(P,
I)] :< item invokes item in context [index(P, I)]. To better grasp the de�nition
of this unit consider the goal:

?- employee(bill , P) :> (item , salary(S) :> item).

Since we already explained the beginning of this goal, lets see the remaining part. After
salary/1 is added, we are left with the context [salary(S), employee(bill,ta)].

3In the GNU Prolog/CX implementation the empty context its not entirely empty since it contains

all the standard Prolog built-in predicates such as =/2.

66 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

The second item is evaluated and the �rst matching de�nition is found in unit salary.
Goal position(P) is called and because there is no rule for this goal in the current
unit (salary), a search in the context is performed. Since employee is the topmost
unit that has a rule for position(P), this goal is resolved in the (reduced) context
[employee(bill, ta)]. In an informal way, we queried the context for the position
of whom we want to calculate the salary, obtaining ta. Next, the index corresponding to
such position is computed, i.e. [index(ta, I)] :< item obtaining I = 12. Finally,
to calculate the salary, we just need to multiply the index by the base salary, getting S

= 1200 as answer and [salary(1200), employee(bill, ta)] as the �nal context.

5.8 Conclusions

In this chapter we reviewed the modular logic language called Contextual Logic Pro-
gramming, namely its syntax and semantics (not only the operational but also the
declarative/�x-point semantics). This thorough overview is motivated by the fact that
CxLP is the modular logic language used as a basis for this work.

We showed one possible optimisation of CxLP by means of abstract interpretation. It
is our opinion that implementing this optimisation (see [CLM96]) would incur a low
overhead and allow any implementation to avoid resolving goals bound to fail because
of unde�ned predicates.

Finally, we reviewed the implementations CSM and GNU Prolog/CX. A much deeper
description of GNU Prolog/CX is given (including a tutorial and reference manual in
Appendix A) because this system encompasses more features of CxLP and has better
performance than CSM.

Chapter 6

Temporal Reasoning in a Modular

Language

This chapter merges the languages Contextual Logic Programming and Temporal

Annotated Constraint Logic Programming. It presents the constraint theory of this

combination together with its operational semantics. Afterwards, an interpreter

together with a compilation scheme are described. Finally, some comparisons

with the related approach Multi-theory Temporal Annotated Constraint Logic

Programming are brought forward.

6.1 Introduction

It is our belief that not only is modularity a mechanism essential for real world appli-
cations, but also that the ability to represent and reason about temporal information
is obligatory for the vast majority of domains. Therefore the combination of these two
paradigms comes as a natural requisite for any language suitable for designing and
implementing Organisational Information Systems.

In this chapter we propose we propose to merge consolidated proposals for temporal
reasoning and modularity into a common language. More speci�cally, we combine
Temporal Annotated Constraint Logic Programming (an overview of TACLP was
presented in Sect. 2.3.4) with Contextual Logic Programming (an overview of CxLP
was presented in Chap. 5).

The choice for the modular logic language CxLP was motivated by the recent work of
Abreu and Diaz [AD03b] that presented a revised speci�cation of CxLP, together with
a native-code compiler for it, GNU Prolog/CX, itself based on GNU Prolog [DC01].
Besides providing a usable initial performance, this proposal introduces an enhance-
ment over the original Contextual Logic Programming of Monteiro and Porto which

67

68 CHAPTER 6. TEMPORAL REASONING IN A MODULAR LANGUAGE

has far-reaching consequences: the parametrisation of units and the use of unit-wide
logic variables.

TACLP was chosen because the annotations make time explicit but avoid the prolifer-
ation of temporal variables and quanti�ers of the �rst-order approach [BMRT01]. Also
of great importance was the fact that, besides an interpreter, there is also a compiler
from TACLP to CLP, allowing its use in real world applications. Finally, the language
Multi-theory Temporal Annotated Constraint Logic Programming (MuTACLP) (see
Sect. 6.6.1) is one of the few languages that combines temporal reasoning (TACLP
also) with a mechanism for structuring programs and combining di�erent knowledge
source in the style of Brogi et al. [BMPT94]. Therefore, taking preference for TACLP
makes the comparisons with similar approaches more clear.

This chapter is organised as follows: we start by building in a incremental way the
language that extends CxLP with temporal annotations. We also present several
illustrative examples (Sect. 6.2). Afterwards, we deal with the semantics of this pro-
posal, more speci�cally, the constraint theory (Sect. 6.3) and the operational semantics
(Sect. 6.4). An implementation with an instantiation for the time point domain follows
in Sect. 6.5. Then we give some comparisons between our framework and related work
(Sect. 6.6) and �nally, we present some conclusions in Sect. 6.7.

6.2 CxLP with Temporal Annotations

As mentioned, Temporal Annotated Constraint Logic Programming is an instance of
annotated constraint logic (ACL), designed for temporal reasoning. The inference rules
for annotated formulas were given in Sect. 2.3.4 (page 13).

Following an incremental approach, in order to combine temporal annotations with
Contextual Logic Programming we start by adding constraints to CxLP turning into
what can be designated as CCxLP (Constraint Context Logic Programming), i.e. we
add a distinguished class of predicates called relational constraints and a distinguished
class of of interpreted functions called functional constraints. Afterwards, we allow
formulas to be annotated with a distinguished class of constraint terms called anno-

tation terms obtaining what will be called Annotated Constraint Contextual Logic
Programming. In this phase, as in ACL, we have the partial ordering v as a relational
constraint and the least upper bound t as a functional constraint, along with a
constraint theory (see [Frü94b]) as well as inference rules for annotations (already
presented in Sect. 2.3.4). Instantiating to the temporal case, we consider the annotated
formulas A at t as meaning that the formula A is true at time point t1 and relate

1�Indivisible, duration-less instant or moment in time� [Frü94b]

6.2. CXLP WITH TEMPORAL ANNOTATIONS 69

periods to convex sets of points by the annotations A th I and A in I, meaning that
A holds throughout the set I (i.e. at every time point in I) and that A holds at
some time point(s) in I, respectively. The resulting formalism will be called Temporal

Annotated Constraint Contextual Logic Programming (or TACCxLP for short).

Leaving aside the (general) constraints and focusing only on the temporal aspects,
from a syntactical point of view we add the possibility of CxLP atoms having one
of the following temporal annotations: {at t, th I, in I}. As an illustration of
this extension consider one possible temporal version of the unit employee from the
example presented in Sect. 5.7.2 (page 63):

:- unit(employee).

employee(bill , ta) th [2004, inf].

employee(joe , ta) th [2002, 2006].

employee(joe , ap) th [2007, inf].

The main di�erence is that now each basic fact has one temporal annotation. For
instance the last fact of employee states that joe is an ap (associate professor) since
2007 (the inf stands for∞, i. e. a time point that is later than any other). Moreover,
in this case there is no use for unit arguments. In a similar way we can de�ne unit
index to account for the temporal evolution of the careers salary index (which could
be updated to keep up with in�ation):

:- unit(index).

index(ta, 10) th [2000, 2005].

index(ta, 12) th [2006, inf].

index(ap, 19) th [2000, 2005].

index(ap, 20) th [2006, inf].

The temporal version of unit salary has the following structure:

:- unit(salary).

salary(N, S) th J :-

[employee] :< employee(N, P) th J,

[index] :< index(P, I) th J,

base_salary(B), S is B*I.

base_salary (100).

and states that the rule to calculate the salary is time dependent: the salary through
a given interval J is calculated by querying the employee position and corresponding
index during such interval. Then, the salary is obtained by multiplying this index by

70 CHAPTER 6. TEMPORAL REASONING IN A MODULAR LANGUAGE

the base salary.2 As an illustration consider the following goal to discover joe's salary
in [2005, 2007]:

?- salary :> salary(joe , S) in [2005 , 2007].

S = 1000; S = 1200; S = 2000

The reader should notice that the salary of a teaching assistant (ta) was raised in 2006

(S = 1000 and S = 1200) and that joe achieved the position of associate professor

(ap) in 2007 (S = 2200).

6.3 Constraint Theory

The constraint theory is identical to the one of TACLP [BMRT02], i.e. a constraint
domain for time points includes suitable constants for time points, function symbols for
operations on time points (e.g., +,-, ...) and the predicate symbol ≤, modelling the
total order relation on time points. This constraint domain is extended to a constraint
domain A for handling annotations, by enriching the signature with function symbols
[., .], at, th, in, t and the predicate symbol v. Moreover, assuming r1 ≤ s1,
s1 ≤ s2 and s2 ≤ r2, the axioms for the predicate symbol v can be summarised as:

in[r1, r2] v in[s1, s2] v in[s1, s1] = at s1 = th[s1, s1] v th[s1, s2] v th[r1, r2]

Finally, the axioms of the least upper bound t (function symbol) can be restricted to:3

th[s1, s2] t th[r1, r2] = th[s1, r2]⇔ s1 < r1, r1 ≤ s2, s2 < r2

6.4 Operational Semantics

To obtain the operational semantics of this language one needs to replace the inference
rules (v) and (t) of Sect. 2.3.4 by their contextual versions, i.e. instead of annotated
atoms Aα we must have C ` Aα.

C ` Aα γ v α

C ` Aγ
rule (vC)

C ` Aα C ` Aβ γ = α t β
C ` Aγ

rule (tC)

2Of course that it would be reasonable to annotate the base salary. However, doing so wouldn't

bring any novelty to the problem.
3The least upper bound only has to be computed for overlapping th�annotations.

6.5. INTERPRETER AND COMPILER 71

Moreover, the inference rules of CxLP must be adapted to the case where literals can
be annotated. These rules can be obtained in a rather straightforward manner from the
ones for CxLP (see Sect. 5.3 on page 55) by substituting each goal G by its annotated
version Gα.

6.5 Interpreter and Compiler

Meta-interpretation and compilation are two widely used techniques to implement
logic languages. Frühwirth [Frü96] provides both an interpreter and a compiler for
TACLP where the compiler transforms TACLP into CLP. Moreover, the same author
in [Frü94b] presents an e�cient optimised interpreter for TACLP were only atomic
formulas can be annotated.

An obvious implementation of the proposed language can be obtained with a slight
modi�cation of the compiler (interpreter) for TACLP in order to handle context oper-
ations (leaving them unchanged). Therefore, to get a full blown implementation it is
su�cient to de�ne the constraint domain C for the TACLP, i.e. one has to de�ne the
time point domain.

6.5.1 Time Point Domain

The main motivation behind our temporal data model was to be able to represent a
wide variety of notions of time, not only common ones such as the 24�Hour timekeeping
system or the Gregorian calendar but also more specialised ones such as time in digital
circuits. As we will see in this section, Constraint Logic Programming [JL87] specialised
to Finite Domains (CLP(FD)) and rei�ed Booleans (CLP(B)) turns out to be a very
suitable framework: the size of the temporal variables domain admits an e�cient
implementation with Finite Domains and the rei�ed Booleans allows us to express
elaborated temporal constraints. Moreover, since CLP(X) is so pervasive to this work,
an overview of the main characteristics of this paradigm can be found in Appendix B.

Although constraints are widely used for temporal reasoning, their application in
temporal information representation is rare. One of the exceptions is the work of
Kabanza et. al [KSW90] with in�nite temporal information. Here we present another
way of using constraints to represent temporal data: by interpreting a Constraint
Satisfaction Problem as an intensional way of specifying a set of time points, i.e. as a
time point domain:

De�nition 8 (Time Point Domain) A time point domain is a Constraint Satisfac-

tion Problem on �nite domains.

72 CHAPTER 6. TEMPORAL REASONING IN A MODULAR LANGUAGE

If n is the number of variables of the CSP we say that the domain is n-dimensional. A
time point is a tuple that is solution of the CSP:

De�nition 9 (Time Point) Given a time point domain D on variables {X1, . . . , Xn}
we say that the tuple X = (x1, . . . , xn) is a time point of D if the assignment {X1 =

x1, . . . , Xn = xn} satis�es all the constraints of D.

With this representation the domain D24 can be formulated as:

Example 4 (24�Hour) The CSP D24 = H ∈ [0, 23] ∧ M ∈ [0, 59] on variables

{H,M} is a time point domain representing the 24�Hour system. The tuples x =

(10, 30) and y = (13, 20) are examples of time points of this domain.

Finally it is rather straightforward, although not as trivial as the 24�Hour, to use a
CSP to represent a calendar (Gregorian, Julian, etc).

Considering there are bene�ts in dealing with each of the tuple members instead of the
tuple as a whole, we modi�ed the temporal variables to accommodate this:

De�nition 10 (Time Variable) We say that X is a time variable of the n-dimensional

time point domain D i� X is a n-tuple of D variables.

For instance X1 = (H1,M1) and X2 = (H2,M2) are variables of D24. With this
representation for variables it is easy to express constraints that correspond to the
equal, before and after relations. For instance, X1 < X2 corresponds to the constraint
H1 < H2 ∨ (H1 = H2 ∧M1 < M2). Note that this constraint may be expressed using
CLP(FD, B).

Finally, since GNU Prolog/CX, besides providing the CxLP primitives, also has a
constraint solver over �nite domains and rei�ed booleans (CLP(FD, B)), making the
implementation of this language relatively straightforward.

Relations Between Di�erent Time Point Domains

Applications such as Heterogeneous Information Systems have to deal with temporal
data described in di�erent domains. There are several reasons for this state of things
such as:

• information relative to di�erent timezones or calendars (Julian, Gregorian and
Chinese lunar calendar);

6.6. RELATED WORK 73

• information from di�erent domains that share temporal units. For instance a
newspaper is characterised by {Y ear,Month,Day} and a speci�c news can be
further described by Hour and Minute.

Therefore there is a strong need to establish (whenever possible) temporal relations
between these di�erent time domains. To have this capability in our framework we
just need to add a function that converts a time point from one domain to another.

A simple illustration of such function is the one that relates the 24�Hour domain with
seconds (denoted by D24s) and the D24:

f : D24s −→ D24

(h,m, s) −→ (h,m)

Another basic example is the one derived from the problem of conversion of timezones.
For that consider the domain D+1 on variables {Y,Mo,D,H,Mi} for time in the
timezone GMT+1 and a similar D+2 to express time in the timezone GMT+2. The
following function converts time points from D+1 to D+2:

g : D+1 −→ D+2

(y,mo, d, h,mi) −→


(y,mo, d, h+ 1,mi) if h < 23

(y,mo, d+ 1, 0,mi) if d < max_day(y,mo)

. . .

Please notice that, although the inverse of g is still a function, this doesn't happen for f
because, to each time point ofD24 corresponds a set of time points ofD24s : for instance,
to the point (14, 20) corresponds the set of points {(14, 20, 0), . . . , (14, 20, 59)}.

If there is at least one conversion function between two domains, it is easy to relate
(=, < or >) points on these domains. The procedure its quite simple and can be
described in two steps: convert the points to the same domain and apply the corre-
sponding domain relation.

As an illustration, consider the point (16, 20) of D24 and (15, 30, 12) from D24s . The
relation (15, 30, 12) < (16, 20) its valid because f(15, 30, 12) = (15, 30) and (15, 30) <

(16, 20) in the domain D24.

6.6 Related Work

In this section we describe other formalisms that combine temporal reasoning with
modularity. Since Multi-theory Temporal Annotated Constraint Logic Programming

74 CHAPTER 6. TEMPORAL REASONING IN A MODULAR LANGUAGE

(MuTACLP) is the language that is nearer to our proposal, a more indepth comparison
with this language is presented.

6.6.1 MuTACLP

MuTACLP [BMRT02] is a language for modelling and handling temporal information
together with some basic operators for combining di�erent temporal knowledge bases.
In this language, temporal information can be naturally represented and handled and,
at the same time, knowledge can be separated and combined by means of meta-
level composition operators. For a more comprehensive reading see [MRT97, MRT99,
MRT99, Raf00, MNRT00, BMRT01].

The operators for combining theories follows the work of Brogi et al. [BMPT94]. The
language of program expressions Exp is de�ned by the following abstract syntax:

Exp ::= Pname | Exp ∪ Exp |Exp ∩ Exp

where Pname is the syntactic category of constant names for plain programs.

The main di�erence towards our proposal is that, instead of the programming-in-the-
large approach for modularity followed by MuTACLP, we resort to the programming-in-
the-small of CxLP. In the following section, and for a better comparison, we illustrate
both languages proposals for a speci�c legal reasoning problem.

Example: the British Nationality Act

The following example was taken from the British Nationality Act and was presented
in [BMRT02] to exemplify the language MuTACLP. The reason to use an existing
example is twofold: not only do we consider it to be a simple and concise sample of
legal reasoning but also because this way we can give a more thorough comparison with
MuTACLP. The textual description of this law can be given as a person X obtains the
British Nationality at time T if all the conditions below are true:

• X is born in the UK at the time T

• T is after the commencement

• Y is a parent of X

• Y is a British citizen or resident at time T.

6.6. RELATED WORK 75

Assuming that Jan 1 1955 is the commencement date of the law, the MuTACLP
program for this problem is:

BNA:

get_citizenship(X) at T <- T >= Jan 1 1955,

born(X, uk) at T,

parent(Y, X) at T,

british_citizen(Y) at T.

get_citizenship(X) at T <- T >= Jan 1 1955,

born(X, uk) at T,

parent(Y, X) at T,

british_resident(Y) at T.

Moreover, those authors also assume a separate program to encode the data for a given
person John whose parent Bob is a British citizen since Sep 6 1940 :

JOHN:

born(john , uk) at Aug 10 1969.

parent(bob , john) th [T, inf] <- born(john , _) at T.

british_citizen(bob) th [Sep 6 1940, inf].

Finally, the citizenship of John can be queried as:

demo(BNA ∪ JOHN , get_citizenship(john) at T)

and the result is T = Aug 10 1969.

Our proposal to solve this problem is a more modular way since we will opt to de�ne
one unit for each predicate. More speci�cally, unit born/2 represents the name and
country where a person was born:

:- unit(born(Name , Country)).

born(john , uk) at 'Aug 10 1969 '.

item at T :- born(Name , Country) at T.

It this unit (and in the subsequent one) we present dates as atoms such as 'Aug 10

1969', this is only for the reader's confort since, as mentioned in Sect. 6.5 we resort
to CLP(FD, B) to implement the temporal elements. Moreover, in order to provide
an implementation coherent with the current CxLP proposal we also de�ne predicate
item to instantiate the units arguments.

The unit british_citizen/14 states when a person started to be a British citizen:

4In a similar way we could have de�ned an analogous unit british_resident/1.

76 CHAPTER 6. TEMPORAL REASONING IN A MODULAR LANGUAGE

:- unit(british_citizen(Name)).

british_citizen(bob) th ['Sep 6 1940', inf].

item th T :- british_citizen(Name) th T.

and unit parent(Parent, Son) expresses the parent/child relationship:

:- unit(parent(Parent , Son)).

parent(bob , john).

item :- parent(Parent , Son).

Remembering that Jan 1 1955 is the commencement date of the law and that a person
X obtains the British Nationality at time T if all the conditions below are true:

• X is born in the UK at the time T

• T is after the commencement

• Y is a parent of X

• Y is a British citizen or resident at time T.

one formalisation of this law in our language is:

:- unit(bna).

get_citizenship(X) at T :-

born(X, uk) :> item at T,

'Jan 1 1955' #=< T,

parent(Y, X) :> item ,

(british_citizen(Y) :> item at T

;

british_resident(Y) :> item at T).

The explanation of this rule is quite simple because each line of the clause body
corresponds to and is presented in the same order as in the textual description of
the law.

Finally, the goal bna :> get_citizenship(john) at T also yields T = Aug 10 1969.

6.6.2 Other Approaches

This combination of modularity and temporal reasoning is not frequent on logical tem-
poral languages. Two exceptions are the language Temporal Datalog by Orgun [Org96]

6.7. CONCLUDING REMARKS 77

and the work on amalgamating knowledge bases by Subrahmanian [Sub94]. Temporal
Datalog introduces the concept of module which, however, seems to be used as a means
for de�ning new non-standard algebraic operators, rather than as a knowledge tools.
On the other hand, the work on amalgamating knowledge bases o�ers a multi-theory
framework, based on annotated logics, where temporal information can be handled, but
only a limited interaction among the di�erent knowledge sources is allowed: essentially
a kind of message passing mechanism allows one to delegate the resolution of an atom
to other databases.

6.7 Concluding Remarks

In this chapter we added temporal reasoning capabilities to a modular logic language.
More speci�cally, we joined the Temporal Annotated Constraint Logic Programming
with Contextual Logic Programming. The aim of this proposal is to have both for-
malisms in the same language, without de�ning any sort of relation between temporal
reasoning and modularity.

Besides de�ning the language, we also provided an operational semantics. Moreover, we
sketched a compiler for the proposed language and speci�ed a possible implementation
for a speci�c time point domain. Finally, we reviewed related work on this subject, in
particular, the MuTACLP language that also combines the chosen temporal formalism
with another modular logic language.

Chapter 7

Temporal Contextual Logic

Programming

This chapter presents a temporal extension of CxLP, called Temporal Contextual

Logic Programming (TCxLP). It describes the language syntax, operational

semantics and a procedure that computes the last upper bound of the temporal

annotations. Afterwards, an interpreter and a compilation scheme are given. Finally,

this language is applied to several domains and compared with similar approaches.

7.1 Introduction

One possible way of devising a language with modularity and temporal reasoning is
to consider that these two characteristics can co-exist without any direct relationship.
This was the approach followed in Chap. 6. Nevertheless we can also conceive a scenario
where those concepts are more integrated or more related. In this chapter we take the
interaction between modularity and time to the next level by considering that the usage
of a module is in�uenced by temporal conditions. The intuition for this proposal came
from common sense reasoning where it is usual to consider that the usage of (part of)
knowledge (law, criteria) can be time dependent.

Contextual Logic Programming structure is very suitable for integrating with temporal
reasoning since, as we shall see, it is quite straightforward to add the notion of time of
the context and let that time help in deciding if a certain module is eligible or not to
solve a goal. Regarding the temporal paradigm we shall continue to use TACLP, not
only because of the reasons enumerated in Sect. 6.1, but also because, this way, the
original contribution stands out.

This chapter is organised as follows: we start incrementally building a language that
extends CxLP with temporal annotations (Sect. 7.2). An algorithm to compute the

79

80 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

least upper bound of annotations is described in Sect. 7.3. Afterwards, we deal
with the semantics of this proposal, more speci�cally, the constraint theory and the
operational semantics (Sect. 7.4). An implementation with an instantiation for the
time point domain (see page 71) follows in Sect. 7.5. Applications to several domains
is presented in Sect. 7.6 and comparisons between our framework and related work
follows (Sect. 7.7). Finally, we provide some conclusions in Sect. 7.8.

7.2 Language of TCxLP

The basic mechanism of CxLP is called context search and can be described as follows:
to solve a goal G in a context C, a search is performed until the topmost unit of C that
contains clauses for the predicate of G is found. We propose to incorporate temporal
reasoning into this mechanism. To accomplish this we add temporal annotations to
not only the dynamic part of CxLP (contexts) but also to the static one (units) and
it will be the relation between those two types of annotations that will determine if a
given unit is eligible to match a goal during a context search.

7.2.1 Annotating Units

Considering the initial unit de�nition (i.e. without parameters), adding temporal
annotations to these units could be done simply by annotating the unit name. Using
an extended GNU Prolog/CX syntax, an annotated unit could be de�ned as:

:- unit(foo) th [1,4].

Nevertheless, units with arguments ought to allow for a re�nement of the temporal
quali�cation, i.e. we can have several quali�cations, one for each possible argument
instantiation. As an illustration consider the following example:

Example 5 Temporal annotated unit bar/1:

:- unit(bar(X)).

bar(a) th [1,2].

bar(b) th [3,4].

where the annotated facts state that unit bar with its argument instantiated to a has
the annotation th [1,2] and with its argument instantiated to b has the annotation
th [3,4], respectively. Moreover, it should be clear that this is more expressive than
the proposal at the beginning of this section since it is still possible to annotate the

7.2. LANGUAGE OF TCXLP 81

unit most general descriptor (for the de�nition of unit descriptors see Parametrised

Units in Sect. 5.5) :

:- unit(foo).

foo th [1 ,4].

As we saw in the example above, the unit descriptor is the same as the annotated
predicate, foo. Such overloading is intentional and makes it easier to express whether a
given unit (descriptor) in a context satis�es a temporal condition (annotated predicate).
This relation will be made precise when we present the operational semantics (see
inference rule 7.5 in page 88).

Therefore we propose to temporally annotate the unit descriptors and those annotated
facts are designated as the unit temporal conditions.

7.2.2 Temporal Annotated Contexts

The addition of time to a context is rather simple and intuitive: instead of a sequence
of unit descriptors C we now have a temporally annotated sequence of units descriptors
C∆, where ∆ is a temporal annotation of the type at t, th I or in I (see page 13).
This annotation ∆ is called the time of the context and by default contexts are implicitly
annotated with the current time. As the name implies, the time of the context speci�es
the time when a given context should be considered, making all the computations
relative to that time.

Recall that in GNU Prolog/CX a context is implemented as list of units descriptors
such as [u1(X), u2(Y,Z)]: a temporal annotated context can be for instance [u1(X),
u2(Y,Z)] th [1,4].

7.2.3 Relating Temporal Contexts with Temporal Units

Although the relation between temporal annotated contexts and units will be made
precise when we present the semantics (Sect. 7.4), in this section we illustrate what we
mean when we say that the relation between those two types of annotations (context
and units) determines if a given unit is eligible to match a goal during a context search.

Contexts for a Simple Temporal Unit

Consider the unit bar/1 of Example 5 (page 80). Roughly speaking, this unit will be
eligible to match a goal in a context like:

82 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

[..., bar(a), ...] in [1,4]

if �bar(a) in [1,4]� can be proved.

Since one of the unit temporal conditions is �bar(a) th [1,2]� and we known that
in [1,4] v th [1,2], then by the inference rule (v) (see page 14) one can derive
�bar(a) in [1,4]�. In a similar way we say that this unit its not eligible in the
following context (recall that th [3,6] 6v th [3,4]):

[..., bar(b), ...] th [3,6]

Conversely, suppose that unit bar/1 has some de�nition for the predicate of an atomic
goal G, then in order to use this de�nition in a goal like:

?- [bar(X), ...] in [1,4] :< G

besides the instantiations for the variables of G, one also obtains bindings for the unit
arguments:

X = a or X = b.

University Employees Example: Temporal Version

Revisiting the University employees example (already seen in page 63 to illustrate
CxLP and in page 68 to exemplify CxLP with temporal annotations), unit employee
with temporal information can be written as:

:- unit(employee(NAME , POSITION)).

name(NAME).

position(POSITION).

item.

employee(bill , ta) th [2004, inf].

employee(joe , ta) th [2002, 2006].

employee(joe , ap) th [2007, inf].

This way it is possible to represent the history of the employees positions: joe was
a teaching assistant (ta) between 2002 and 2006. The same person is a associate
professor (ap) since 2007. Moreover, in this case the rule for predicate item/0 doesn't
need to be �item :- employee(NAME, POSITION).� because the goal item is true only
if the unit is (temporally) eligible and, for that to happen, the unit arguments must be

7.2. LANGUAGE OF TCXLP 83

instantiated. To better understand this example, consider the goal that queries joe's
position throughout [2005,2006]:

?- [employee(joe , P)] th [2005 ,2006] :< item.

the evaluation of item is true as long as the unit is eligible in the current context, and
this happens when P is instantiated with ta (teaching assistant), therefore we get the
answer P = ta.

In a similar way we can de�ne a temporal version of unit index/2 as:

:- unit(index(POSITION , INDEX)).

position(POSITION).

index(INDEX).

item.

index(ta, 10) th [2000, 2005].

index(ta, 12) th [2006, inf].

index(ap, 19) th [2000, 2005].

index(ap, 20) th [2006, inf].

to express the evolving index associated with each position. Unit salary can be de�ned
as:

:- unit(salary(SALARY)).

item :-

position(P),

index(P, I) :> item ,

base_salary(B),

SALARY is B*I.

base_salary (100).

There is no need to annotate the goals position(P) or index(P, I) :> item since
these are evaluated in a context which already has the same temporal annotation. To
�nd out joe's salary in 2005 we can say:

?- [salary(S), employee(joe , P)] at 2005 :< item.

which yields the bindings:

P = ta

S = 1000

84 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Since salary is the topmost unit that de�nes a rule for item/0, the body of the
rule for this predicate is evaluated. In order to use the unit employee(joe, P) to
solve position(P), the unit must satisfy the temporal conditions �at 2005�, that in
this case means instantiating P with ta, therefore we obtain position(ta). A similar
reasoning applies for goal �index(ta, I) :> item�, i.e. this item is resolved in context
�[index(ta, 10), salary(S), employee(joe, ta)] at 2005�. The remainder of
the rule body is straightforward, leading to the answer substitution P = ta and S =

1000.

7.3 Computing the Least Upper Bound

One obvious drawback stemming from incorporating temporal reasoning into context
search is the extra computation that results from processing the units/contexts tempo-
ral annotations. Moreover, since context search is a basic mechanism, extra care must
be taken to minimise this overhead.

In order to lighten the process, we propose to calculate, at compile time, the least
upper bound (t) of the units descriptors temporal annotations. This way context only
needs to verify the satisfaction of the relation between annotations of the context and
that of the units, i.e. only relation v is left for runtime.

According to [BMRT02] it su�ces to consider the least upper bound (or lub for
short) for time periods that produce another di�erent meaningful time period, i.e.
one may consider only overlapping time periods that do not include one another (see
Sect. 6.3). In this section we present a procedure that iterates over the set of each unit
th-annotated descriptors, calculating the lub of uni�able atoms with th-overlapping
intervals, inserting the output of the computation and (possibly) removing (some of)
the inputs. This procedure is presented in an incremental way, starting with ground
annotated unit descriptors and afterwards we handle the non ground case.

7.3.1 Ground Temporal Conditions

In this case the set of temporally annotated unit descriptors is not only �nite (by
de�nition) but also ground. Before giving a formal description let us consider an
example that provides the general intuition behind this procedure. To that purpose,
consider the unit baz/1:

:- unit(baz(X)).

baz(a) th [1,4].

baz(a) th [3,7].

7.3. COMPUTING THE LEAST UPPER BOUND 85

...

Since th [1,4] and th [3,7] are two overlapping th-annotations for the same unit
descriptor (baz(a)), we compute their lub, obtaining th [1,7]. Therefore, we can
replace these two temporal conditions by a more general one:

:- unit(baz(X)).

baz(a) th [1 ,7].

...

A formal description of this procedure is given in Algorithm 1 (page 85). Basically,
the algorithm iterates over the set of units of a given program and for each pair of th-
annotated temporal conditions that have the same unit descriptor (u) and overlapping
intervals (I1 overlaps I2), remove that pair from the unit temporal conditions and insert
one with the same unit descriptor and the annotation that results from the computing
the lub of those annotations, i.e. insert a new temporal condition that subsumes the
previous two.

One can easily see that this procedure terminates not only because the set of units is
�nite (for loop) but also due to the fact that each iteration of the while loop decreases
the size of the said set, the set of th-annotated temporal conditions of a unit.

Algorithm 1 Computing the least upper bound of ground th-annotations
Let {u1, . . . , un} be the set of units of a given program P and Thui

the set of th-
annotated temporal conditions of unit ui (that, by hypothesis, are all ground):

1. For each unit ui ∈ P

(a) while (∃ u th I1, u th I2 ∈ Thui
: I1 overlaps I2)

i. remove u th I1 and u th I2 from Thui

ii. insert u th (I1 t I2) into Thui

7.3.2 Non Ground Temporal Conditions

In this section we provide a generalisation of Algorithm 1 to non ground th-annotated
temporal conditions. As a simple illustration consider unit foo/2:

1 :- unit(foo(X, Y)).

2 foo(_, b) th [1, 3].

3 foo(a, _) th [4, 6].

4 foo(a, b) th [5, 8].

86 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Previously, a unit u with parameter variables −→p was a set of clauses, for which all
variables in −→p are implicitly existentially quanti�ed over all clauses of the unit. The
same existential quanti�cation also applies to the unit temporal conditions. Therefore,
in the example above there is no need to name the variables in the temporal conditions
(lines 2 and 3) since the �rst argument of foo already coincides with X and the second
with Y, i.e. the unit arguments.

Before describing the procedure for the non ground case, we have yet to de�ne what
we mean by an annotated atom being subsumed by a set of the same elements:

De�nition 11 (`v) Consider that S is a set of temporal annotated atoms. We say

that A th I is subsumed by the set S and denote by S `v A th I if and only if there is

a B th J ∈ S and a substitution θ such that A = Bθ and I v J , i.e. if there is an

annotated atom in S that is at least as informative as A th I.

The procedure for this case is formally presented as Algorithm 2 (page 86) and can be
described as: for every unit, �nd two th-annotated temporal conditions that overlap
(I1 overlaps I2) and whose unit descriptors are uni�able (θ =mgu(U1, U2)). Them
(possibly) remove those temporal conditions and insert a new one with the annotation
that results from computing the lub (I1 t I2) and uni�ed descriptor (U1θ). Moreover,
the body of the while loop is executed if the temporal condition that can be generated
isn't already subsumed by the set of th-annotated temporal conditions (Thui

6`v
(U1θ) th(I1 t I2)).

Algorithm 2 Computing the least upper bound th-annotations
Let {u1, . . . , un} be the set of units of a given program P and Thui

the set of th-
annotated temporal conditions of unit ui:

1. For each unit ui

(a) while (∃ U1 th I1, U2 th I2 ∈ Thui
, θ = mgu(U1, U2): I1 overlaps I2 and

Thui
6`v (U1θ) th(I1 t I2)

i. if U1 (U2) is ground, remove U1 th I1 (U2 th I2) from Thui
.

ii. insert U1θ th (I1 t I2) into Thui
.

For a better understanding, let us consider unit foo/2 above. According to this
algorithm one possible evolution of the set Thfoo/2 is:

1. {foo(_, b) th [1, 3], foo(a, _) th [4, 6], foo(a, b) th [5, 8]}.

2. {foo(_, b) th [1, 3], foo(a, _) th [4, 6], foo(a, b) th [1, 6],

foo(a, b) th [5, 8]}.

7.4. OPERATIONAL SEMANTICS 87

3. {foo(_, b) th [1, 3], foo(a, _) th [4, 6], foo(a, b) th [1, 8]}.

The �rst iteration computes the lub of the {foo(_, b) th [1, 3]} and {foo(a, _)

th [4, 6]}, yielding {foo(a, b) th [1, 6]}. In the next iteration, the lub of the
inserted annotation ({foo(a, b) th [1, 6]}) and {foo(a, b) th [5, 8]} is com-
puted, yielding {foo(a, b) th [1, 8]}.

Like the algorithm for the ground case, we also iterate over a �nite set of units (for loop),
nevertheless showing the termination of the while loop requires more explanation since
now the set of th-annotated temporal conditions may not decrease. In fact, as we saw in
the example above, the �rst iteration increases the set and the second decreases. Before
explaining the termination the reader should keep in mind that the unit descriptor is
a �nite term and the set of temporal conditions is also �nite. Moreover, the temporal
periods of the th-annotations are of the form [T1, T2] where T1 and T21 are integers,
greater or equal than 0, with T2 ≥ T1. Therefore, the number of temporal conditions
that can result from combining overlapping intervals or by specialising descriptors is
�nite. Since each iteration of the while loop introduces a new temporal condition (not
subsumed by the others) of a �nite set, the loop terminates.

7.4 Operational Semantics

Similar to the operational semantics of Contextual Logic Programming (see Sect. 5.3)
and as usual in logic programming, we present the operational semantics by means of
derivations. We will name and enumerate the inference rules which specify computa-
tions. Finally, the paragraph after each rule gives an informal explanation of how it
works.

7.4.1 Inference Rules

To de�ne the operational semantics we consider the following notation: C and C ′ are
contexts; Tu is the set of temporal conditions of unit u; θ, σ and ε are substitutions; ∆

and Λ are temporal annotations and ∅ and G are goals. Moreover, we also assume that
Algorithm 2 (page 86) has been applied to the subset of th-annotated atoms of Tu.

Null goal

C∆ ` ∅ [ε]
(7.1)

1With the possible exception of T2 = inf.

88 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

The null goal is derivable in any temporal annotated context, with the empty

substitution ε as result.

Conjunction of goals

C∆ ` G1 [θ] C∆θ ` G2θ [σ]

C∆ ` G1, G2 [θσdvars(G1, G2)]
(7.2)

To derive the conjunction, derive one conjunct �rst and then the other, in the
same context with the given substitutions.2

Since C may contain variables in unit descriptors that may be bound by the
substitution θ obtained from the derivation of G1, we have that θ must also be
applied to C∆ to obtain the updated context in which to derive G2θ.

Context inquiry

C∆ ` :< C ′Λ [θ]

{
θ = mgu(C,C ′)

Λ v ∆
(7.3)

In order to make the context switch operation (inference rule 7.4) useful, there
needs to be an operation which fetches the context. This rule recovers the current
context C as a term and uni�es it with term C ′, so that it may be used elsewhere
in the program. Moreover, the annotation Λ must be equal to or less informative
than the annotation ∆ (Λ v ∆).

Context switch

C ′Λ ` G [θ]

C∆ ` C ′Λ :< G [θ]
(7.4)

The purpose of this rule is to allow execution of a goal in an arbitrary temporal
annotated context, independently of the current annotated context. This rule
causes goal G to be executed in context C ′Λ.

Reduction

(uC∆)θ ` (G1, G2 . . . Gn)θ [σ]

uC∆ ` G [θσdvars(G)]


H ← G1, G2 . . . Gn ∈ |u|
θ = mgu(G,H)

Tu `v u∆

(7.5)

This rule expresses the in�uence of temporal reasoning in the context search
mechanism and can be regarded as the temporal version of rule 5.3 (page 56).

2The notation δdV stands for the restriction of the substitution δ to the variables in V .

7.5. TCXLP COMPILER AND INTERPRETER 89

Informally it can be described as: when a goal (G) has a de�nition (H ←
G1, G2, . . . Gn ∈ |u| and θ = mgu(G,H)) in the topmost unit (u) of the an-
notated context (uC∆) and the unit temporal conditions subsume the �time of
the context� (Tu `v u∆), to derive the goal we must call the body of the matching
clause, after uni�cation. The main di�erence towards the non-temporal version
is that we now also check whether the unit is �temporally eligible�.

Context traversal:

C∆ ` G[θ]

uC∆ ` G[θ]

{
pred(G) 6∈ ||u|| (7.6)

When none of the previous rules apply and, in particular, when the predicate
of G isn't de�ned in the predicates of u (||u||), remove the top element of the
context and proceed, i.e. resolve goal G in the supercontext.

Application of the Rules

It is straightforward to verify that the inference rules are mutually exclusive, leading
to the fact that, given a derivation tuple C∆ ` G[θ], only one rule can be applied.

7.5 TCxLP Compiler and Interpreter

In this section we propose a source-to-source program transformation that allows us
to convert from Temporal Contextual Logic Programming into CxLP where the unit
descriptors can have temporal annotations. Since after this transformation we obtain
(a subset of) the language proposed in Chap. 6 we can use the compiler (or interpreter)
described in Sect. 6.5 on the resulting program. This way we obtain a compiler (or
interpreter) for TCxLP.

7.5.1 From TCxLP to CxLP+TACLP

Our goal is to convert a TCxLP program into CxLP (with annotations), such that this
last program expresses the behaviour of context search being in�uenced by temporal
reasoning. Informally, we add to every unit a sort of �frontend� that makes the unit
body (the �backend�) accessible only if the unit temporal conditions are satis�ed by
the time of the context, otherwise context search must continue, bypassing the unit.

In the �rst step of Algorithm 3, throughout renaming the predicates we de�ne the
�backend�. The access to the renamed predicate (p') is controlled by means of the

90 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Algorithm 3 Program transformation: from TCxLP to CxLP+TACLP
Let P = {u1, . . . , un} be a TCxLP program and ||P|| =

⋃n
i=1 ||ui||, i.e. ||P|| is the set

of predicates de�ned in all units. Consider also the set of predicates S such that:

• #S = #||P||

• S ∩ ||P|| = ∅

• for each predicate p ∈ ||P|| there is a p' ∈ S

For each unit ui and predicate p de�ned in this unit:

1. replace each occurrence of p by p';

2. insert into ui a new clause

pd :- :< [ud|C] ∆, (ud ∆ -> p'd ; C ∆ :< pd)

where pd (p'd) and ud are the predicate p (p') and unit u descriptors,
respectively.

clause introduced in the second step: to resolve a goal (pd) whose main functor is p,
query the current temporal context (:< [ud|C] ∆) and if the unit satis�es the temporal
conditions (ud ∆) then access the �backend� predicate (p'd), otherwise continue the
context search for the given goal (C ∆ :< pd).

As an illustration of the procedure above, the following unit

:- unit(foo(A,B)).

p(X) :- q(X).

q(a).

is transformed into

:- unit(foo(A,B)).

p'(X) :- q'(X).

q'(a).

p(X) :- :< [foo(Y, Z)|C] T,

(foo(Y, Z) T -> p'(X) ; C T :< p(X)).

q(X) :- :< [foo(Y, Z)|C] T,

(foo(Y, Z) T -> q'(X) ; C T :< q(X)).

7.6. APPLICATION EXAMPLES 91

For reading purposes, in the program above we used an abstract version of the generated
code, since C T or :< [foo(Y, Z)|C] T isn't valid CxLP code.3

7.6 Application Examples

We now present a few examples which will sustain the adequacy of TCxLP. To ease
the reading, in this section we present dates by atoms such as 'Aug 10 1969'. Nev-
ertheless, as mentioned in Sect. 6.5 (page 71), we resort to CLP(FD, B) to implement
the temporal elements. Moreover, unless stated otherwise, we assume that all temporal
units implement the fact item.

7.6.1 Management of Work�ow Systems

Work�ow management systems (WfMS) are software systems that support the au-
tomatic execution of work�ows. Although time is an important resource here, the
time management o�ered by most of these systems must be handled explicitly and is
rather limited. Therefore, automatic management of temporal aspects of information
is an interesting and growing �eld of research [CP03, CP04, CP06, MMZ06]. Such
management can be de�ned not only at the conceptual level (for instance changes
de�ned over a schema) but also at run time (for instance workload balancing among
agents).

The example used to illustrate the application of our language to WfMS is based on
the one given in [CP04] and can be described as the process of enrolment of graduate
students applying for PhD candidate positions. In the �rst proposal of the process
model, from September 1st, 2008, any received application leads to an interview of the
applicant (see work�ow on the left of Fig. 7.1). After September 30th, 2008, the process
model was re�ned and the applicants CVs must be analysed �rst: only applicants with
an acceptable CV will be interviewed (see work�ow on the right of Fig 7.1).

One of the functionalities performed by the work�ow engine is selecting the successor
task. Combi and Pozzi in [CP04] implemented their functionality by means of a trigger
FindSuccessor. Since the active features of this trigger are outside the scope of this
work, we are going to illustrate in our language the temporal aspects, recurring to the
units: task_history, case_history, work_task and next_task. Below, for each
unit we present a short explanation together with its implementation.

Unit task_history has the case identi�er, the name of the tasks that were e�ectively

3In the actual implementation we use special units to represent the temporal information of the

context.

92 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Figure 7.1: The student enrolment process model: initial proposal (left) and re�nement
(right)

executed for that case along with the executing agent.

:- unit(task_history(CaseID , Task , FinalState , Agent)).

task_history (27, receiveApplication , completed , r01)

th ['Sep 9 2008', 'Sep 9 2008 '].

task_history (89, receiveApplication , completed , b01)

th ['Oct 3 2008', 'Oct 3 2008 '].

Unit case_history has the unique identi�er for every case together with the respon-
sible agent.

:- unit(case_history(CaseId , Schema , Responsible)).

case_history (27, studentEnrollment , r01)

th ['Sep 9 2008', 'Sep 27 2008 '].

case_history (89, studentEnrollment , b01)

th ['Oct 3 2008', 'Oct 31 2008 '].

Unit work_task has the name of the task and the role required by the agent for the
execution.

:- unit(work_task(Schema , Task , Role)).

work_task(studentEnrollment , receiveApplication ,

secretary) th ['Sep 1 2008', inf].

work_task(studentEnrollment , interview ,

committeeMember) th ['Sep 1 2008', inf].

7.6. APPLICATION EXAMPLES 93

Unit next_task provides a simpli�ed version4 of the integration of tables RoutingTask,
Next and AfterFork [CP04]. This unit, besides the successor for every task, also has a
condition that must be satis�ed in order to allow such a transition to take place. The
�rst temporal quali�cation states that for the student enrolment, the next task after
receiving an application is doing an interview, but this is only valid between 'Sep 1

2008' and 'Sep 30 2008'.

:- unit(next_task(Schema , Task , NextTask , Condition)).

next_task(studentEnrollment , receiveApplication ,

interview , _) th ['Sep 1 2008', 'Sep 30 2008 '].

next_task(studentEnrollment , receiveApplication ,

analyzeCV , _) th ['Oct 1 2008', inf].

next_task(studentEnrollment , analyzeCV ,

interview , cvresult(ok)) th ['Oct 1 2008', inf].

Recalling that all the above units implement the fact item, consider the goal:

?- ([] at 'Sep 4 2008') :>

next_task(studentEnrollment ,

receiveApplication , N, _) :> item.

N = interview

i.e., at 'Sep 4 2008', the next task after receiving an application is an interview. The
same query could be done without the explicit time:

?- next_task(studentEnrollment , receiveApplication ,

N, _) :> item.

N = analyzeCV

Recall that, if nothing is said about time, we assume we are in the present time (after
'Sep 30 2008') and, according to the re�ned work�ow, the next task must be to
analyse the CV.

Finally, using the units above, we can simulate the behaviour of the FindSuccessor

trigger in the following way:

1 [case_history(CaseId , Schema , _)] th[L, _] :<

2 item , fd_min(L, Lmin),

3 [] at Lmin :>

4 next_task(Schema , Task , NextTask , Conditions)

4To obtain the full representation we just need to handle the task conditions.

94 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

5 :> (item ,

6 work_task(Schema , NextTask , Role) :> item)

The �rst two lines query when the case started, allowing us to know which version of
the work�ow must be applied.5 Then the context time is set to the lower bound and
the next task, along with the conditions for this transition to take place are speci�ed
in lines 4 and 5. In the last line, the role of the employee which will execute this task
is given.

7.6.2 Legal Reasoning

Legal reasoning is a very proli�c �eld in which to illustrate the application of temporal
languages. Not only is a modular approach very suitable for reasoning about laws
but also time is pervasive in their de�nition. To illustrate the use of TCxLP in the
legal reasoning domain, we return to the British Nationality Act already exploited in
Sect. 6.6.1 (page 74).

The solution below presents several similarities with the CxLP with temporal annota-
tions. The intention of focus on the di�erences between the proposals.

The TCxLP solution also has a unit born/2:

:- unit(born(Name , Country)).

born(john , uk) at 'Aug 10 1969'.

Although it might seem that this unit is almost identical, in the case of TCxLP (and
remembering that all temporal units implement the fact item), now we can ask when
John was born as:

?- [born(john , uk)] at T :< item.

in this case the context has the temporal informations, as opposed to the CxLP with
annotations query:

?- [born(john , uk)] :< item at T.

Before presenting the rule for the nationality act we still need to state some facts about
who is a British citizen along with who is parent of whom:

:- unit(british_citizen(Name)).

british_citizen(bob)

th ['Sep 9 1940', inf].

5fd_min(L, Lmin) succeeds if Lmin is the minimal value of the current domain of L.

7.6. APPLICATION EXAMPLES 95

:- unit(parent(Parent , Son)).

parent(bob , john)

th ['Aug 10 1969', inf].

To declare that the commencement date is 'Jan 1 1955', consider the following unit:

:- unit(bna).

bna th ['Jan 1 1955', inf].

Now we can give a formulation of this law in our language:

1 [] at T :< (born(X, uk) :> item ,

2 parent(Y, X) :> item ,

3 bna :> item ,

4 (british_citizen(Y) :> item;

5 british_resident(Y) :> item)).

Notice that, by making use of the time of the context (T), there is no need to explicitly
mention this anywhere else. This is the main di�erence w.r.t. CxLP with temporal
annotations versions. As an informal description of this rule, we can say that we
start by de�ning the time of the context as the time when the person was born (1).
Afterwards, we query the name of the parent (2) and if the bna law can be applied (3)
in this temporal context. Finally, we ask whether the parent is a British citizen (4) or
a British resident (5).

7.6.3 Vaccination Program

Vaccinations programs are a very proli�c domain for temporal reasoning. Not only
is the inoculation of a given vaccine (doses) time dependent, but also the vaccination
plans evolve throughout time. In this section we illustrate the use of TCxLP to reason
about changes that occurred in a vaccination program. Although we are going to report
our example to the Portuguese case, we do so without loss of generality.

In Portugal, a new National Vaccination Program was introduced in the year 2006.
Several changes regarding the previous program (that started in 2000) were made,
namely the introduction of the Meningococcal C vaccine. In Table 7.1 we can see a
(partial) representation of this vaccination program.

96 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Age
Vaccine against 0 (birth) 2 months 3 months 4 months
Tuberculosis BCG
Poliomyelitis VIP 1 VIP 2
Diphteria-Tetanus-Whooping cough DTPa 1 DTPa 2
Haemophilus in�uenza b Hib 1 Hib 2
Hepatitis B VHB 1 VHB 2
Meningococcal C MenC 1

Table 7.1: Vaccination recommended scheme

One can regard it as set of facts that specify when one given vaccine should be
inoculated, for instance the vaccines against Tuberculosis and Hepatitis B (�rst doses)
should be inoculated at birth, Poliomyelitis (�rst doses), Diphtheria-Tetanus-Whooping
cough (�rst doses), Haemophilus in�uenza b (�rst doses) and Hepatitis B (second doses)
should be inoculated at the age of 2 months, etc.

Regarding vaccines, the most common questions made by a health care professional
are:

• when was the last one?

• when should the next one be performed?

The answer to the former its quite straightforward whereas the latter entails know-
ing the vaccination program. To represent the scheme of Table 7.1 let us consider
unit vaccination_plan where the temporal quali�cation of the facts represents their
validity :

:- unit(vaccination_plan(Age , Vaccine)).

vaccination_plan(age(0,0), [bcg ,

vhb (1)]) th [2000 , inf].

vaccination_plan(age(0,2), [vip(1), dtpa(1), hib(1),

vhb (2)]) th [2000 , inf].

vaccination_plan(age(0,3), [menC (1)]) th [2006, inf].

vaccination_plan(age(0,4), [vip(2), dtpa(2), hib (2)])

th [2000 , inf].

As we can see, the inoculation of menC is valid only in temporal contexts after 2006
while the remaining ones are valid after 2000. To query about the next vaccine consider
unit next_vaccine/1:

1 :- unit(next_vaccine(Vaccine)).

7.7. RELATED WORK 97

2 item :-

3 age(Person_Year , Person_Month),

4 vaccination_plan(age(Vac_Year , Vac_Month), Vaccine) :>

5 (item , (Vac_Year #> Person_Year #\/

6 (Vac_Year #= Person_Year #/\

7 Vac_Month #>= Person_Month))).

Predicate item/0 queries the (temporal) context about the age of the person for
whom it wants to compute the next vaccine (2), then it extends the context with
unit vaccination_plan (3) and iterates over all (eligible) vaccines until it �nds one
that must be inoculated at or immediately after (4-7) (recall that the facts of this unit
are ordered).

Finally, to illustrate, consider that unit person(Name, Birth_Date) implements pred-
icate age/2:

?- [] at 'Aug 10 2006' :>

person(john , 'May 1 2006') :>

(item , next(Vaccine) :> item).

Vaccine = [menC (1)]

and if we replace all the occurrences of the year 2006 by 2000 in the query above, then
the answer would be Vaccine = [vip(2), dtpa(2), hib(2)].

7.7 Related Work

To the best of our knowledge, a temporal modular language where the usage of modules
is in�uenced by temporal conditions is a novelty. The related work known on this
subject is closer to the proposal of Chap. 6 where we already did a comparison with
other approaches, in Sect. 6.6 (page 73).

Nevertheless, for completeness reasons, we discuss some (possible) relations with the
language MuTACLP and the temporal architecture of Combi and Pozzi. Both com-
parisons have a similar structure: an applicational example is used to illustrate it.

In Sect. 7.6.2 (page 94) we provided the TCxLP version of the British Nationality Act

example of Sect. 6.6.1 (page 74). As we can see, the use of contexts allows for a more
compact writing where some of the annotations of the MuTACLP version are subsumed
by the annotation of the context. For instance, the rules of the MuTACLP version for
get_citizenship are far more verbose.

98 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

A similar reasoning applies when comparing the TCxLP solution for work�ow man-
agement systems (see Sect. 7.6.1) with relational frameworks such as the one proposed
by Combi and Pozzi in [CP04] where relational queries contained far more explicit
references to time that the contextual version.

7.8 Conclusions

In this chapter we presented a temporal extension of CxLP where time in�uences the
eligibility of a module to be used in solving a goal. We consider that such interaction
between modularity and temporal reasoning comes naturally and, as far as we know,
is original.

Besides the operational semantics for this language we proposed a procedure that
computes the least upper bound of the units annotation at runtime.

An interpreter together with a compiler for this language were presented, forming the
basis of a prototype implementation.

Several domains of applications were illustrated, namely legal reasoning, work�ow
management systems and medicine.

Chapter 8

Language for Temporal Organisational

Information Systems

In this chapter we start with a revised and stripped-down version of the logical

framework ISCO (Information System COnstruction language). We then describe a

temporal extension together with a compilation scheme for this language.

8.1 Introduction

Organisational Information Systems (OIS) have a lot to bene�t from Logic Program-
ming (LP) characteristics such as a rapid prototyping ability, the relative simplicity
of program development and maintenance, the declarative reading which facilitates
both development and the understanding of existing code, the built-in solution-space
search mechanism, the close semantic link with relational databases, just to name a
few. In [Por03, ADN04] we �nd examples of LP languages that were used to develop
and maintain OIS.

ISCO (Information System COnstruction language) [Abr01] is a logical framework for
constructing Organisational Information Systems. ISCO is an evolution of the previous
language DL [Abr00] and is based on a Constraint Logic Programming framework to
de�ne the schema, represent data, access heterogeneous data sources and perform ar-
bitrary computations. In ISCO, processes and data are structured as classes which are
represented as typed1 Prolog predicates. An ISCO class may map to an external data
source or sink like a table or view in a relational database, or be entirely implemented
as a regular Prolog predicate. Operations pertaining to ISCO classes include a query

which is similar to a Prolog call as well as three forms of update, i.e. ISCO implements
Create, Read, Update and Delete (CRUD) access to Relational Database Management

1The type system applies to class members, which are viewed as Prolog predicate arguments.

99

100 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

System.

In this chapter we propose to extend ISCO with an expressive means of representing
and implicitly using temporal information. As it should be expected, this evolution
relies upon the frameworks proposed in Chap(s). 6 and 7. Moreover, having simplicity
(syntactic, semantic, etc) as a guideline we present a revised and stripped-down version
of ISCO, keeping just some of the core features that we consider indispensable in a
language for Temporal OIS. Leaving out aspects such as access control [Abr02] does
not mean they are deprecated, only not essential for the purpose at hand. The main
motivation of this chapter is to provide a language suited to construct and maintain
Temporal OIS where contexts aren't explicit but implicit (they are obtained throughout
the compilation of this language).

This chapter is organised as follows: in Sect. 8.2 we review the ISCO language and in
Sect. 8.3 we present its temporal extension ISTO. Section 8.4 discusses a compilation
scheme for this language and Sect. 8.5 compares it with other approaches. Finally, in
Sect. 8.6 we draw some conclusions.

8.2 Revising the ISCO Programming Language

In this section we present a revised and stripped-down version of ISCO focusing on what
we consider the required features in a language to construct and maintain (Temporal)
Organisational Information Systems.

8.2.1 Classes

When dealing with large amounts of data, one must be able to organise information in
a modular way. The ISCO proposal for this point are classes. Although ISCO classes
can be regarded as equivalent to Prolog predicates, they provide the homonymous OO
concept, along with the related data encapsulation capability.

Before presenting a formal description of classes, let us see an ISCO class that handles
data about persons, namely its name and social security number:

Example 6 Class Person

class person.

name: text.

ssn: int.

8.2. REVISING THE ISCO PROGRAMMING LANGUAGE 101

In this example after de�ning the class name to be person, we state its arguments and
types: ssn (Social Security Number) type int(eger) and name type text.

Using a De�nite Clause Grammar, the ISCO class syntax can be de�ned in the following
way:

De�nition 12 Simple class syntax

class --> class_head , arguments.

class_head --> [class NAME].

arguments --> [].

arguments --> argument , arguments.

argument --> [NAME : type].

type --> [int].

type --> [float].

type --> [bool].

type --> [text].

type --> [date].

From the de�nition above, we can see that a class is formed by a head and a (possibly
empty) set of arguments. The class head starts with the keyword class and is followed
by a descriptor. An argument de�nition its composed by its name concatenated with
":" and an argument type (int, �oat, bool, text or date). This is the basic de�nition
of a class that we will enrich it as long as we add other features.

8.2.2 Methods

By de�ning class arguments we are also implicitly setting class methods for access-
ing those arguments. For instance, in class person we have the predicates ssn/1

and name/1. Therefore to query John's ssn, besides the (positional) Prolog goal ?-
person(john, S). we can also state:

Example 7 John's social security number

?- person(name(john), ssn(N)).

N = 123

102 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

Besides these implicit methods, there can also be explicit ones de�ned by means of
regular Horn clauses. To allow for class methods, we enrich the rule for class as
follows:

class --> class_head , arguments , horn_clauses.

As an illustration of an Horn clause, consider that argument name of class person is an
atom with the syntactical structure 'SURNAME FIRST_NAME'. Therefore, to obtain
the surname we add the following clause to the class de�nition:

surname(Surname) :-

name(Name),

atom_chars(Name , Name_Chars),

append(Surname_Chars , [' '|_], Name_Chars),

atom_chars(Surname , Surname_Chars).

8.2.3 Inheritance

Inheritance is another Object Oriented feature of ISCO that we would like to retain
in our language. The reasons for that are quite natural since it allow us to share not
only methods, but also data among di�erent classes. The ISCO inheritance syntax is
obtained by replacing the class_head of De�nition 12 by:

class_head --> [class NAME], superclass.

superclass --> [].

superclass --> [: NAME].

Consider class person of Example 6 (page 100) and that we want to represent some facts
(name, social security number and salary) about the employees of a given company.
Therefore, we de�ne employee to be a subclass of person with the argument salary:

Example 8 Class employee

class employee: person.

salary: int.

8.2.4 Composition

As we already saw, we have �ve basic types: int, float, bool, text and date. In
order to have the OO feature of composition, we include ISCO possibility to re�use the
class de�nitions as a data type. Therefore, the type syntactical de�nition becomes:

8.2. REVISING THE ISCO PROGRAMMING LANGUAGE 103

type --> basic_type.

type --> class_type.

basic_type --> [int].

basic_type --> [float].

basic_type --> [bool].

basic_type --> [text].

basic_type --> [date].

class_type --> [NAME].

Suppose that we want to deal with the employees home address and have the possibility
of using the address schema in other places (suppliers, etc). For that we de�ne a new
class address and re�de�ne the employee class adding a new argument (home) whose
type is address:

Example 9 Class employee with home address

class address.

street: text.

number: int.

class employee: person.

home: address.

salary: int.

The access to compound types its quite natural, for instance suppose that we want to
know John's street name:

Example 10 John's home address

?- employee(name(john), home(address(street(S)))).

S = upstreet

Actually, as the reader might see, there is no real need for the basic types since we
could develop one class for each. Nevertheless, because they are quite intuitive to use,
we decided to keep them.

8.2.5 Persistence

Having persistence in a Logic Programming language is a required feature to construct
actual OIS; this could conceivably be provided by Prolog's internal database but is best

104 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

accounted for by software designed to handle large quantities of factual information
e�ciently, as is the case in relational database management systems. The semantic
proximity between relational database query languages and logic programming lan-
guages have made the former privileged candidates to provide Prolog with persistence.

ISCO's approach for interfacing to existing RDBMS2 involves providing declarations for
an external database together with de�ning equivalences between classes and database
relations. As an illustration, consider that the employee facts are stored in a homony-
mous table of a PostgreSQL [SK91] database named db running in the localhost:

Example 11 External Databases

external(db_link , postgres(db , localhost)).

external(db_link , employee) class employee: person.

home: address.

salary: int.

Since the database table has the same name as the class, the employee inside the
external term above is optional. Finally, we can specify the full class de�nition:

De�nition 13 ISCO class syntax with external DB references

class --> class_head , arguments , horn_clauses.

class_head --> external , [class NAME], superclass.

external --> [].

external --> [external(DB_LINK)].

external --> [external(DB_LINK , RELATION_NAME)].

superclass --> [].

superclass --> [: NAME].

arguments --> [].

arguments --> argument , arguments.

argument --> [NAME : type].

2ISCO access to frameworks beyond relational databases, such as LDAP directory services or web

services is out of scope for the present work. We shall stick to RDMBS only.

8.2. REVISING THE ISCO PROGRAMMING LANGUAGE 105

type --> basic_type.

type --> class_type.

basic_type --> [int].

basic_type --> [float].

basic_type --> [bool].

basic_type --> [text].

basic_type --> [date].

class_type --> [NAME].

8.2.6 Data Manipulation Goals

Under the data manipulation operations we include not only insertion, removal and
update but also query operations, i.e. Create, Read, Update and Delete access to
RDBMS. The (simpli�ed) formal syntax of these operations can be described as:

De�nition 14 Goal De�nition

goal --> prolog_goal.

goal --> modification_goal.

modification_goal --> prolog_goal , [+].

modification_goal --> prolog_goal , [-].

modification_goal --> prolog_goal , [#], prolog_goal.

From the de�nition above, we have that a goal is either a Prolog goal or a modi�cation
goal. For illustrations of the �rst type of goals see Examples 7 and 10.

The modi�cation goals (insert, delete and update) are based on simple queries, non
backtrackable and all follow the tuple-at-a-time approach, which is more consistent
with the usual Prolog operational semantics. As an example, suppose that we want to
insert the employee Smith, update his address and then remove this employee:

Example 12 Modi�cation Goals

?- employee(name(smith), ssn(111), salary (20),

home(address(street(up), number (1)))) +.

?- employee(name(smith)) #

(home(address(street(down), number (2)))).

106 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

?- employee(name(smith)) -.

This concludes our overview of the simpli�ed ISCO language. In the next section we'll
deal with temporal concerns.

8.3 The ISTO Language

In this section we provide a revised ISCO language with the ability to represent and
implicitly use temporal information. This temporal evolution of the ISCO language
will be called ISTO (Information System Tools for Organisations). The capability of
representing temporal information will be achieved by extending ISCO classes to their
temporal counterpart. As expected, in order to handle such temporal information
ISTO includes temporal data manipulation operations.

8.3.1 Temporal Classes

In pursuing our goal of simplicity, temporal classes are given by introducing the keyword
temporal before the keyword class. Therefore the class head syntax becomes:

class_head --> external , temporal , [class NAME],

superclass.

temporal --> [].

temporal --> [temporal].

Facts of a temporal class have a temporal dimension, i.e. all tuples have associated
a temporal stamp. In line with the other temporal languages proposed in this work,
these stamps will stand for instants or intervals (their precise de�nition is given in
Sect. 8.3.2).

As an illustration, class employee can be temporal (Example 9), since it makes sense
that the salary and home address of a given employee evolves throughout time. On the
other hand class person should continue atemporal since the facts it stores shouldn't
evolve over time.

Example 13 Temporal class employee

temporal class employee: person.

home:address.

salary: int.

8.4. COMPILATION SCHEME FOR ISTO 107

8.3.2 Temporal Data Manipulation

Here we present the temporal equivalent of the data manipulation goals described in
Sect. 8.2.6 (page 105), i.e. we provide a temporal query, insertion, removal and update
goals.

Again trying to keep the syntax as simple as possible we shall distinguish temporal
operations from regular ones by adding the operator �@� followed by a temporal de-
scriptor annotation. The interval representation is the standard one [T1, T2] and
stands for all time points between T1 and T2 (where T2 ≥ T1). Moreover, in order to
be able to handle in-annotated information (see page 13), we also allow another type
of intervals [T1; T2] to represent some time points (not necessarily all) between T1

and T2, i.e. [T1; T2] is a subset of [T1, T2]. The ISTO temporal operations will be:

goal --> prolog_goal , temporal_condition.

goal --> modification_goal , temporal_condition.

temporal_condition --> [].

temporal_condition --> [@ [Point , Point]]

temporal_condition --> [@ [Point ; Point]]

Although an instant T can be represented by the interval [T, T], to ease the reading
we use just T. As an illustration consider that we want to know John's street name in
the year 2007:

Example 14 John's street name in the year 2007

?- employee(name(john), home(address(street(S)))) @ 2007

S = upstreet

The goal above is a temporal version of the one we saw in Example 10 (page 103).

8.4 Compilation Scheme for ISTO

The ISTO compilation scheme is describe along the same incremental line that we saw
in the language presentation. As expected, the compilation of the non-temporal part
yields CxLP and from the temporal extension we target TCxLP.

108 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

8.4.1 Classes

The translation from an ISTO class to CxLP can be roughly described as: every
class becomes a corresponding unit, with the class arguments transformed into unit
arguments and predicates for accessing these arguments. For instance, class person of
Example 6 (page 100) is compiled into the CxLP unit:

:- unit(person(OID , NAME , SSN)).

oid(OID).

name(NAME).

ssn(SSN).

item :- person(OID , NAME , SSN).

The unit argument OID stands for Object Identi�er and as the name implies, is used to
discriminate a given tuple in a class (and throughout the database in the corresponding
superclass as we will see). The predicate item/0 simply fetches facts from the internal
database and binds the unit arguments. In the Sect. 8.4.5 (page 110) we see how to
access external databases.

8.4.2 Methods

The compilation of Horn clauses is trivial since they remain unaltered. Regarding
the implicit methods resulting from the class arguments, we already saw them in the
previous section.

8.4.3 Inheritance

Since CxLP already has dynamic inheritance, it is rather simple to simulate the single
static inheritance of ISTO. Take for instance the class employee of Example 8 (see
page 102), subclass of person. Since person is a toplevel class, to use it we can simply
do:

[person(OID , NAME , SSN)] :< (item , ...)

whereas to use employee we do:

[employee(OID , SALARY), person(OID , NAME , SSN)]

:< (item , ...)

8.4. COMPILATION SCHEME FOR ISTO 109

As mentioned previously, OID is used to join a class with its superclass. Finally, class
employee of Example 8 is compiled as:

:- unit(employee(OID , SALARY)).

oid(OID).

salary(SALARY).

item :- employee(OID , SALARY),

:^ item.

As we can see predicate item/0 �rst invokes the local database and then calls item in
the superclass, this way building the whole tuple. This de�nition requires the context
to include the unit(s) corresponding to the superclass(es).

8.4.4 Composition

For the compound types the idea is similar to the one we saw with inheritance, i.e.
we use an identi�er to relate an argument to its compound type. In this case instead
instead of using this identi�er to perform a join operation, we use it as a pointer. To
better understand let us see the compilation of the employee class with home argument
(see Example 9 in page 103):

Example 15 Compilation of employee with home address.

:- unit(employee(OID , HOME_OID , SALARY)).

2

oid(OID).

4

home(address(GOAL)) :-

6 [address(HOME_OID , STREET , NUMBER)] :< (item , GOAL).

8 salary(SALARY).

10 item :- employee(OID , HOME_OID , SALARY),

:^ item.

In Example 10 (page 103) we saw that a query to an employee address has the
structure home(address(GOAL)). The unit above explain how this query is handled:
GOAL is resolved in a context with unit address. Moreover, the unit arguments

110 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

are obtained by binding the address object identi�er with the employee argument
HOME_OID, i.e. HOME_OID can be regarded as a pointer for the home address.

8.4.5 Persistence

Due to the possibility of having di�erent backends, persistence related compilation can
be more elaborate than what we are going to present. Nevertheless we consider the
explanation below su�cient to grasp how it's done. Returning to the employee class,
its modi�cation into an external class presented in Example 11 (page 104) modi�es the
item predicate to:

item :- [isto_backend(db_link, employee)] :<

query(employee(OID, HOME_OID, SALARY)),

:^ item.

8.4.6 Data Manipulation Goals

The compilation of the manipulation goals is quite simple, in fact we already saw how
the query translation could be obtained when we presented the Persistence. Knowing
that unit isto_backend also implements insert/1, delete/1 and update/2 it is
simple to determine the compilation of the modi�cation goals. For instance, the removal
of employee Smith that we saw in Example 12 (page 105) is translated into:

1 ?- [employee(OID , HOME_OID , SALARY),

person(OID , NAME , SSN)] :< (item , name(smith)),

3

[isto_backend(db_link , employee)] :<

5 delete(employee(OID , HOME_OID , SALARY)),

7 [isto_backend(db_link , person)] :<

delete(person(OID , NAME , SSN)).

In the goal above we start by querying the whole tuple of the employee Smith (lines
1 and 2) and them we remove it from the employee backend (lines 4 and 5) and from
the person backend (lines 7 and 8).

8.4.7 Temporal Classes

Before presenting the compilation of temporal classes and goals one must observe that
non-temporal classes must behave as if they were valid throughout the entire time line.

8.4. COMPILATION SCHEME FOR ISTO 111

Such behaviour can be obtained simply by adding a fact to each nontemporal unit. For
instance, to the unit person above it is su�cient to add the fact:

person(_, _, _) th [0, inf].

Let us now see the result of compiling the temporal class employee from Example 13
(page 106):

:- unit(employee(OID , HOME_OID , SALARY)).

oid(OID).

home(address(GOAL)) :-

[address(HOME_OID , STREET , NUMBER)] :< (item , GOAL).

salary(SALARY).

item :- :^ item.

The di�erence from the compilation of the nontemporal version (see Example 15 in
page 109) is that there is no need for predicate item to instantiate the unit arguments,
since temporal context search will do that implicitly.

8.4.8 Temporal Data Manipulation Goals

The translation of a temporal query will result in a goal in a temporal context. The
ISTO query of John's street name in 2007 (see Example 14 in page 107) is translated
into:

?- [employee(OID , HOME_OID , SALARY),

person(OID , NAME , SSN)] (at 2007) :<

(item , name(john), home(address(street(S)))).

Introducing temporal modi�cation goals needs further considerations. First of all, as
mentioned, these goals are extra-logical. Moreover, since now the th-annotated facts
can change at runtime, to use the (simpli�ed) semantics of TCxLP one must ensure that
the backend of a temporal class always stores the least upper bound of th-annotated
unit temporal conditions. In order to guarantee that, every insertion of a th-annotated
temporal condition must induce a recomputation of the least upper bound. As an
illustration consider that John's OID is 1 and that is salary was 15000 between 2001

and 2006 and 20000 between 2007 and 2008:3

3For simplicity reasons in this illustration we ignore the home address argument.

112 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

employee(1, 15000) th [2001, 2006].

employee(1, 20000) th [2007, 2008].

Suppose the following ISTO goal to remove this employee information between 2005

and 2006:

?- (employee(name(john)) -) @ [2005 , 2006].

it changes the temporal conditions in the following way:

employee(1, 15000) th [2001, 2004].

employee(1, 20000) th [2007, 2008].

Finally, if we add the information that John's salary between 2005 and 2006 was 20000:

?- (employee(name(john), salary (20000)) +) @ [2005 , 2006].

then the least upper bound must be recomputed, leading to:

employee(1, 15000) th [2001, 2004].

employee(1, 20000) th [2005, 2008].

8.5 Comparison with Other Approaches

The temporal timestamp of ISTO can regarded as the counterpart of the valid time that
we saw in temporal databases (see Chap. 3). Although ISTO has no concept similar to
the transaction time, we consider that one could implement this notion integrating a
log in the isto_backend unit. However this capability is beyond the scope of the ISTO
initial concerns. On the other hand, ISTO contextual time enables an expressivity that
lacks in most database products with temporal support. Only in the Oracle Workspace
Manager (see page 34) we �nd a concept (workspace) that is similar to our temporal
context.

In this work we overviewed several logical languages that have modularity/OO, others
that provide temporal reasoning or even persistence. ISTO is the only one that
encompasses all those features.

8.6 Conclusions

In this chapter we presented a revision of a state-of-the-art logical framework for
constructing OIS called ISCO. We proceeded to introduce an extension to this lan-
guage called ISTO, that includes the expressive means of representing and implicitly

8.6. CONCLUSIONS 113

using temporal information. Together with a syntactical de�nition of ISTO we also
presented a compilation scheme from this language into Temporal Contextual Logic
Programming.

ISTO can take advantage of the experience gained from several real-world application
developed in ISCO in order to act as backbone for constructing and maintaining
Temporal OIS.

Chapter 9

Conclusions and Future Work

This short chapter presents the main conclusions of this work along with several

pointers for future work.

9.1 Conclusions

In this work we started with a modular logic programming language called Contextual
Logic Programming (CxLP) and presented a possible optimisation for it throughout
abstract interpretation. Moreover, we coupled it with a consolidated temporal rea-
soning language called Temporal Annotated Constraint Logic Programming, for which
two di�erent paths were considered:

• one where those languages were (almost) independent, i.e. there was no implicit
relation between Time and Modularity;

• another where Time is integrated with and a�ects Modularity, more speci�cally,
it is the time of the context that helps decide if a given module is eligible or not
for a computation.

For both approaches we described the language syntax and semantics (operational),
provided an interpreter, a compilation scheme and illustrated its usage in various
applicational domains.

It was not our goal to develop another temporal or modular theory, but to choose the
ones that could have a natural integration within a logical framework. Although several
criteria were used as a foundation for our choice, we would like to highlight pragmatics :
the languages should be expressive enough to conveniently represent common or usual
reasoning tasks in a temporal modular logic environment. Morever, the languages had
to have a practical implementation.

115

116 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Finally, and relying upon these formal languages, we extended a high level language
for OIS with an expressive means of representing and implicitly using temporal infor-
mation.

9.2 Future Work

The possibilities for future work are so vast that we must restrain a little and present
just the ones that we would like to tackle in the near future:

• we would like to apply the ISTO language to real world problems. Perhaps,
starting with University Information Systems, since this was the main application
domain of its nontemporal predecessor.

• There are very promising developments in the �elds of business intelligence and
information retrieval which would stand to gain from the integration of temporal
information.

• ISTO would also bene�t from a logical semantics to the modi�cation goals, by
recurring to frameworks such as Transaction Logic [BK94].

• A declarative semantics for Temporal Contextual Logic Programming would
provide a more solid theoretical foundation.

• The relation with other frameworks such as temporal XML [WZZ05] or Con-
straint Handling Rules [Frü94a] could be of great interest.

• Another appealing direction is looking into ways of integrating Logic Program-
ming based tools like as ISTO into Content-Management Systems such as Plone
or Mambo. It is our belief that these CMS will bene�t from having plug-ins
with the expressiveness provided by Constraint Contextual Logic Programming,
namely uni�cation and constraint solving.

• The decision of whether a given module is eligible or not for a computation could
be extended in order to incorporate other concepts such as Space, etc.

Finally, we also consider that it would be interesting to use the logical frameworks
described in this work to model OS-level applications such as the Mac OSX backup
system, Time Machine.

Appendix A

GNU Prolog/CX

A.1 Tutorial

A.1.1 Unit Directive

A unit is program where the �rst term is the unit/1 directive. The argument of this
directive is a term, that in its simple form is just an atom that speci�es the unit name.
As an illustration consider the following unit de�ning the predicate factorial :

Example 16 Unit factorial

:- unit(factorial).

factorial(N, F) :-

aux(N, 1, F).

aux(0, F, F).

aux(N, T, F) :-

N > 0,

T1 is T*N,

N1 is N-1,

aux(N1 , T1 , F).

The only di�erence between the program above and a regular Prolog program is the
unit/1 directive in the �rst line that declares the unit name to be factorial. The
remaining code should be familiar to any Prolog programmer. Moreover, since we

117

118 APPENDIX A. GNU PROLOG/CX

have a predicate�based approach, other units can also de�ne predicate factorial/2

or aux/3 that no collision will occur.

A.1.2 Unit Arguments

In Prolog its normal to �nd a proliferation of predicates arguments whenever a global
structure is to be passed around. In the tail recursive version of factorial that we saw
in Example 16, variable F is passed around over and over in aux/3, until it gets instan-
tiated in the end. Moreover, this is a standard programming practice in iterative/tail

recursive approaches to other predicates such as reverse/2, sum_list/2.

In Contextual Logic Programming we can avoid this proliferation, by considering some
variables to be global. These variables are called units arguments and [AD03a] claims
that they are an essential addition to this programming model. A unit argument can
be interpreted as a sort of unit global variable, i.e., that is shared by all clauses de�ned
in the unit. For that consider another version of unit factorial using unit arguments:

Example 17 Unit factorial with arguments

:- unit(factorial(N, F)).

item :-

aux(N, 1).

aux(0, F).

aux(N1 , Acc1) :-

N1 > 0,

Acc2 is Acc1* N1,

N2 is N1 -1,

aux(N2 , Acc2).

The reader should notice that in the unit directive, besides the unit name we also have
unit arguments: variables N and F. These arguments are unit global variables (all the
occurrences of N and F refer to the same variable), therefore we can avoid passing the
(uninstantiated) result over and over again in the recursive call of aux/2: when the �rst
argument of aux/2 reaches 0, we instantiate the unit argument F. Moreover, predicate
item/0 assumes unit argument N is instantiated when the unit is invoked (we will see
how to do this in the next section).

A.1. TUTORIAL 119

Finally, both units can be part of the same CxLP program because although they have
the same name (factorial) they have di�erent arities (factorial/0 and factorial/2).

A.1.3 Context Extension

This section illustrates the usage of the units developed above. Let us start by obtaining
the factorial of 6 recurring to the �rst unit:

?- factorial :> factorial(6, N).

N = 720

In an informal way we can read this goal as: reduce factorial(6, F) in the enriched
environment with the de�nitions of the unit factorial.

In a similar way, we can use the unit factorial/2 (with arguments) to solve the same
problem:

?- factorial (6, N) :> item.

N = 720

In this case we can read it as reduce the goal item in the enriched environment with
the de�nitions of factorial/2, instantiating the unit �rst argument to 6. In this case,
this would mean that the rule for item was item :- aux(6, 1).

The operator :> is called context extension, and for now consider consider that as
extending the GNU Prolog base predicates with the ones stated in the unit. This
operator will become more clear below.

A.1.4 Current Context

Given a CxLP program we can combine at run-time its units leading to the notion
of context. The compiler GNU Prolog/CX uses lists of units for representing contexts,
where the empty list stands for the empty context.

To explicitly handle contexts, there is an operator :< called current context, where
:< C uni�es C with the current context. As a simple demonstration of this operator,
consider a modi�ed version of the query for the factorial of 6:

?- :< C_start ,

factorial :> (factorial (6, _F), :< C_fact),

:< C_end.

120 APPENDIX A. GNU PROLOG/CX

C_end = []

C_fact = [factorial]

C_start = []

In this example we decided to use variable _F because we are only interested in the
instantiation of the contexts. Let us start with the empty contexts C_start and C_end.
They are empty because the place where they occur is not under the scope of any unit.
The context C_fact on the contrary, is inside the environment of the unit factorial,
therefore it should be no surprise that C_fact = [factorial].

Moreover, and remembering that the empty list is a member of all the lists, it should
be clear why :> is a context extension: we extended the empty context [] with the
unit factorial, yielding the context [factorial | []], i.e. [factorial].

A similar modi�cation can be done to obtain the contexts for the case of factorial/2:

?- :< C_start ,

factorial(6, _F) :> (item , :< C_fact),

:< C_end.

C_end = []

C_fact = [factorial (6, 720)]

C_start = []

The di�erence from the previous example is the context C_fact = [factorial(6,

720)], i.e. from a simple context inspection we know that the factorial of 6 is 720.
Therefore, it should be clear why we state that units arguments make contexts more
transparent.

A.1.5 Context Traversal

Until now we just saw simple contexts, namely empty or single contexts. Nevertheless,
contexts can be more elaborated and as we are going to see, they are a natural way
to represent dynamic inheritance. Dynamic inheritance allows objects to change and
evolve over time. Since base classes provide properties and attributes for objects,
changing base classes changes the properties and attributes of a class. More speci�cally,
dynamic inheritance refers to the ability to add, delete or change parents from objects
(or classes) at runtime.

To illustrate this feature we are going to build an example based on the cd (change
working d irectory) of the Unix system V shell. Since this command is strongly con-
nected not only to the directory tree but also to the user that is issuing it, we also

A.1. TUTORIAL 121

decided to represent these concepts.1 Regarding the unit user we represented just the
user name and its home directory inode:

Example 18 Unit user

:- unit(user(NAME , HOME)).

item :- user(NAME , HOME).

user(foo , 4).

user(bar , 5).

user(baz , 6).

name(NAME).

home(HOME).

pwd(HOME).

In this unit besides the user/2 facts, we have one predicate to access each unit
argument and another called item to instantiate the unit arguments using the facts
retrieved from the database. Moreover, instead of the full path to the user home
directory we decided to represent just the inode number of that directory. Using this
number�based approach for directories, we represented a typical Unix �lesystem as:

Example 19 Unit fs (�lesystem)

:- unit(fs).

fs(1, /, nil).

fs(2, bin , 1).

fs(3, home , 1).

fs(4, foo , 3).

fs(5, bar , 3).

fs(6, work , 4).

fs(7, papers , 6).

In the unit above, each directory is represented by a triple: inode number, name and
inode of its parent directory. This example represents the �le system of Figure A.1.

1Since directory permissions didn't bring any advantage to illustrate concepts of CxLP we decided

to omit them.

122 APPENDIX A. GNU PROLOG/CX

Figure A.1: File system

For instance, directory number 4 is /home/foo: 3 (home) is the parent of 4 (foo) and
1 (/) is the parent of 3.

Let us see a goal to �nd out if the name of the user home directory is the same as the
user name. This can be achieved by a simple join between unit fs and unit user:

?- user(U, I) :> item , fs :> fs(I, U, _).

I = 4

U = foo ? ;

I = 5

U = bar

Having de�ned these two units we can now see the intended behaviour of the cd

command. Suppose that user foo logs into the system and issues the command cd

work, i.e. this command is executed in the context of user(foo,_) and in the �lesystem
seen above (fs). Using CxLP we can expect something like:

?- fs :> user(foo , _) :> (item , cd(work) :> check).

Therefore predicate check/0 of unit cd must ask the context the working directory
and then check if work is a subdirectory2 of it. Therefore unit cd could be something
like:

:- unit(cd(ARG)).

check :- pwd(WD),

fs(_, ARG , WD).

Since predicate pwd/1 isn't de�ned in this unit, is performed a search in the context
for the topmost unit that de�nes this predicate. Thefore, although pwd(WD) was called

2We are just going to consider arguments that specify a direct subdirectory of the current one.

A.1. TUTORIAL 123

in the context [cd(work), user(foo, 4), fs] it is going to be solved in the reduced
context [user(foo, 4), fs], making variable WD = 4.

We are going to explain in detail these di�erent types of contexts in section A.1.9 but
for now imagine that the context is shortened until the topmost unit as a rule for the
goal (of course that if none is found, the goal fails).

A similar reasoning applies to the other goal of this rule, i.e. fs(_, work, 4) is called
in context [cd(work), user(foo, 4), fs] but since only unit fs has a rule for it, it
is going to be solved in the context [fs].

A.1.6 Context Switch

But what happens if another cd command follows as in:

?- fs :> user(foo , _) :> (item , cd(work) :>

(check , cd(papers) :>

check)).

The last check/0 is solved in the context [cd(papers), cd(work), user(foo, 4),

fs], but this goal is going to fail because when it asks for pwd(WD) its going to obtain
WD = 4 (/home/foo) instead of WD = 7 (/home/foo/work). This is because only unit
user has a rule for pwd/1. Therefore, since cd changes the working directory it is
reasonable to add a rule for pwd/1. Unit cd could then be:

:- unit(cd(ARG , NEW_WD)).

check :- pwd(WD),

fs(NEW_WD , ARG , WD).

pwd(NEW_WD).

Nevertheless this formulation is still incorrect. To see why, consider again the example
above adapted to the new formulation of cd command:

?- fs :> user(foo , _) :> (item , cd(work , _) :> check).

Again, when solving check/0, the goal pwd(WD) is invoked in context [cd(work,_),
user(foo, 4), fs] and since now unit cd/2 is the topmost unit with a rule for this
goal, it is this unit that is going to resolve it instead of unit user. In fact, what we
would want to do is call pwd/1 in the context obtained from the current, ignoring its
head.

124 APPENDIX A. GNU PROLOG/CX

To solve this problem another operator called context switch is presented C :< G and
stands for solving goal G in context C. This leads to the correct formulation of unit cd:

:- unit(cd(ARG , NEW_WD)).

check :- :< [_|C],

C :< pwd(WD),

fs(NEW_WD , ARG , WD).

pwd(NEW_WD).

Now check/0 �rst queries for the current context (operator :<) and then solves pwd/1
in the subcontext obtained from ignoring the head of the current context.

A.1.7 Supercontext

Using the immediate subcontext to solve a goal is so recurrent that an operator was
proposed for that purpose. This operator is denoted by :� G is called supercontext
and behaves as if de�ned by the Prolog clause:

:^ G :- :< [_| C], C :< G.

Using this operator, the unit cd becomes:

:- unit(cd(ARG , NEW_WD)).

check :- :^ pwd(WD),

fs(NEW_WD , ARG , WD).

pwd(NEW_WD).

A.1.8 Guided Context Traversal

Until now we just considered paths that were immediate subdirectories of the current
one. But there is a variation of the command cd where no arguments are given. In
this case it must change to the home directory of the user currently logged. How can
we do this in our framework? If the argument of cd is empty (or nil as we are going to
represent), then pwd(WD) must be solved in the greatest subcontext of the current one
that contains unit user in its head.

Of course that we could do this by considering the su�x of the current context that
contains unit user in his head and then, by a context switch, solve pwd(WD) in this

A.1. TUTORIAL 125

su�x. Again, since this technique is so widely used, there is an operator U::G called
guided context traversal, for that.

Therefore, we could add the following rule in unit cd:

check :- ARG = nil ,

!,

user(_, _) :: pwd(NEW_WD).

This operator behaves as if de�ned by the Prolog clause:

U :: G :- :< C, GC = [U|_], suffixchk(GC, C), GC :< G.

Where suffixchk(SUFFIX, LIST) is a deterministic predicate that succeeds if SUFFIX
is a su�x of LIST.

As an illustration, consider the following sequence of cd commands:

?- fs :> user(foo , _) :> (item , cd(work , _) :>

(check , cd(nil , NEW_WD) :> check)).

NEW_WD = 4

as expected, 4 is the inode of foo home directory.

A.1.9 Calling Context

Suppose that besides regular user logins we also want to have ftp anonymous login. In
this case just a subtree of the current �lesystem is visible, i.e. the root of the �lesystem
is changed. To incorporate the chroot (change root) command to our framework
consider a new unit chroot de�ned as follows:

:- unit(chroot(INODE)).

root(INODE).

where INODE is the inode of the new root.

Of course that unit fs must re�ect these changes, i.e. when asked for fs(INODE, /,

_) it must answer according to the latest changes of root in the system. Moreover,
if no change has occurred, it must have a default root of the system. The intended
behaviour can be illustrated with the following goal:

Example 20 (Sequence of chroots)
?- fs :> (fs(I1, /, _) ,

126 APPENDIX A. GNU PROLOG/CX

chroot (3) :> (fs(I2, /, _),

chroot (4) :> fs(I3, /, _))).

I1 = 1

I2 = 3

I3 = 4

From a carefull observation of the goal above we can see that fs(I1, /, _) is called
in the context [fs] and resolved in the same context; fs(I2, /, _) is called in the
context [chroot(3), fs] but resolved in the context [fs]; fs(I3, /, _) is called in
the context [chroot(4), chroot(3), fs] but resolved in the context [fs], i.e. all
have di�erent calling context but the same current context.

Therefore, we can say that the de�nition of fs(I, /, _) depends of the content of
the calling context, i.e. from the latest root in the calling context. Since there is an
operator to obtain the calling context denoted by :> C it is rather straightforward to
de�ne fs(I, /, _):

fs(I, /, nil) :-

:> C,

C :< root(I).

In this rule we start by inspecting the calling context (:> C) and then resolve the goal
root(I) in this context, by performing a context switch.

Finally, since root/1may not be de�ned in the context (this is what happens in fs(I1,

/, _) of Example 20), there must be a default de�nition for it in unit fs (in our case
is root(1).).

A.1.10 Lazy Call

Since evaluating a goal in the calling context is done quite often, another operator
denoted by :# Goal is available. This operator behaves as if de�ned by the Prolog
clause:

:# G :- :> C, C :< G.

Thefore using this operator unit fs can be de�ned by:

:- unit(fs).

% default root

root (1).

A.1. TUTORIAL 127

fs(INODE , /, nil) :-

:# root(INODE).

fs(2, bin , 1).

fs(3, home , 1).

fs(4, foo , 3).

fs(5, bar , 3).

fs(6, baz , 3).

fs(7, work , 4).

fs(8, papers , 6).

128 APPENDIX A. GNU PROLOG/CX

A.2 Reference Manual

A.2.1 Introduction

In this section we present the Contextual Logic Programming directives, operators and
predicates that are part of the GNU Prolog/CX implementation.

A.2.2 Directives

unit/1

Templates

unit(+unit_descriptor)

Description

unit(Name) declares unit Name if the argument is an atom, otherwise declares a unit
whose name is the principal functor of Name and whose arguments are the arguments
of Name.

The type unit_descriptor is either an atom or a compound term with the struc-
ture functor(Var_1, ..., Var_n) where Var_1, ..., Var_n are di�erent variable
names.

Errors

None.

Portability

CxLP directive.

A.2.3 Operators

Context Switch - :</2

Templates

:< (+unit_descriptor_list, +callable_term)

A.2. REFERENCE MANUAL 129

Description

Context :< Goal evaluates Goal in context Context, ie. totally bypassing the current
context.

Errors

None.

Portability

CxLP operator.

Current Context - :</1

Templates

:< (-unit_descriptor_list)

Description

:< Context uni�es Context with the current context.

Errors

None.

Portability

CxLP operator.

Calling Context - :>/1

Templates

:> (-unit_descriptor_list)

Description

:> Context uni�es Context with the calling context.

Errors

None.

130 APPENDIX A. GNU PROLOG/CX

Portability

CxLP operator.

Context Extension - :>/2

Templates

:> (+unit_descriptor, +callable_term)

Description

Unit :> Goal extends the current context with unit Unit before attempting to reduce
goal Goal. This operator behaves as if de�ned by the Prolog clause:

U :> G :- :< C, [U|C] :< G.

Errors

None.

Portability

CxLP operator.

Guided Context Traversal - ::/2

Templates

::(+unit_descriptor, +callable_term)

Description

Unit :: Goal behaves as if de�ned by the Prolog clause:

U :: G :- :< C, GC = [U|_], suffixchk(GC, C), GC :< G.

Where suffixchk/2 is a deterministic predicate where suffixchk(SUFFIX, LIST)

succeeds if SUFFIX is a su�x of LIST.

Errors

A.2. REFERENCE MANUAL 131

None.

Portability

CxLP operator.

Supercontext - :�/1

Templates

:�(+callable_term)

Description

� Goal evaluates Goal in the context obtained by dropping the topmost unit of the
current context. This operator behaves as if de�ned by the Prolog clause:

:^ G :- :< [_|C], C :< G.

Errors

None.

Portability

CxLP operator.

Lazy Call - :#/1

Templates

:#(+callable_term)

Description

Goal evaluates Goal in the calling context. This operator behaves as if de�ned by
the Prolog clause:

:# G :- :> C, C :< G.

132 APPENDIX A. GNU PROLOG/CX

Errors

None.

Portability

CxLP operator.

A.2.4 Utilities

current_unit/2

Templates

current_unit(?atom,?integer)

Description

current_unit(Name, Arity) succeeds if there is a unit Name with Arity arguments.
This predicate is re-executable on backtracking and can be thus used to enumerate all
the units.

Errors

None.

Portability

CxLP predicate.

Appendix B

Constraint Logic Programming

B.1 Introduction

Formally, a Constraint Satisfaction Problem (CSP) consists of a tuple 〈V,D,C〉 where
V is a set of variables, D their domains and C the set of constraints to be satis�ed,
i.e. all CSP have the following abstract structure:

• there are variables to instantiate;

• the variables range over some domain;

• the solutions must satisfy a set of constraints.

The Constraint Logic Programming (CLP) scheme CLP(X) [JL87, JM94], has been
proposed as a generalisation of Logic Programming to deal with constraints in some
arbitrary domain. In the CLP(X) scheme, the parameter X refers the specialised
domain of the constraints. More speci�cally, to the:

• domain of the variables

• language of constraints

In the following section we will brie�y overview the domain and language of the main
constraint domains.

133

134 APPENDIX B. CONSTRAINT LOGIC PROGRAMMING

B.2 Constraint Domains

B.2.1 Booleans: CLP(B)

• Domain: boolean (True/False).

• Language: equality (=) of well formed formulas on the usual boolean operators
(¬,∧,∨, . . .).

B.2.2 Pseudo�Booleans: CLP(PB)

• Domain: boolean variables (0/1).

• Language: a relation of the set {=, <,≤, >,≥} applied to pseudo�boolean terms
(i.e. arithmetic expressions with operators {+,−, .}).

B.2.3 Rationals/Reals: CLP(R)

• Domain: rational (real) variables.

• Language: a relation of the set {=, 6=, <,≤, >,≥} applied to linear terms (i.e.
arithmetic expressions built with operator {+}).

B.2.4 Finite Domains: CLP(FD)

• Domain: a �nite set of (ordered) values, possible interpreted to some numerical
domain.

• Language: quite varied.

Finite domains subsume booleans and pseudo�booleans. All CLP(B) and CLP(PB)
problems can thus be used as �nite domain problems, declaring variables to be in the
domain {0, 1}.

B.3 Constraint Solvers

There are two types of constraint solvers in CLP:

B.3. CONSTRAINT SOLVERS 135

• complete solvers: if it is guaranteed that there is an infer function that detects
contradiction;

• incomplete solvers: if it is not guaranteed that the infer function always detects
contradiction. In this case, the solver is augmented with a second constraint
store, where all the constraints whose e�ects have not been fully assessed are
maintained.

Regarding the properties of constraint solvers, they:

• must be incremental. The addition of a constraint must cause as little computa-
tion as possible. The later retraction of a constraint (upon backtracking) must
also be as e�ortless as possible.

• must be e�cient;

• must be sound;

• might not be complete.

Answers

• LP provides de�nite answers: the answers are the most general terms that make
the query consistent with the program.

• CLP also provides de�nite answers if the solvers are complete. If the solver is
incomplete, the answers are conditional: they represent terms that make the
query consistent with the program.

B.3.1 Incomplete Constraint Solvers

Incomplete solvers are used in domains where no general algebraic theory exists (or is
e�cient). Rather than guaranteeing that a set of constraints is consistent, incomplete
constraint solvers aim at reducing the possible values of the variables so as to prune the
search for solutions. These solvers are based on local propagation, that can be brie�y
described as:

if the domain of a variable is reduced by some constraint, all constraints
involving that variable are awaken to check whether the domain of other
variables can be further reduced. If that is true, the procedure recurs.
Otherwise it stops, and is ready to handle further constraints.

136 APPENDIX B. CONSTRAINT LOGIC PROGRAMMING

Local propagation is usually much more e�cient that algebraic methods, but requires
the use of a complementary enumeration procedure.

If all that is required is one solution, then incomplete solvers are usually preferably. If
one needs all solutions, then the trade�o� is uncertain.

B.4 Finite Domains

There are three types of constraints in the �nite domains:

• declaration of �nite domain variables and their domains.

• general constraints on these variables. Such constraints are used actively to
reduce the initial domains, before and during the enumeration.

• enumeration predicates. These predicates are used to �nd solutions. The reduced
domains of some variables can contain elements that do not belong to a solution.
If these values are assigned to the variables, other domains are eventually reduced
to the empty set, this way detecting unsatis�ability.

B.4.1 Finite Domain Solvers

The �nite domain solvers are based on local propagation and can be formalised as
constraint networks where:

• variables are the nodes of the network;

• constraints are the arcs of the network.

B.4.2 Network Consistency

There are three types of network consistency:

• Node consistency: any value in the domain of a variable A that is not consistent
with the constraints on that variable alone must be removed. Is quite inexpensive
to maintain, but it has limited pruning capabilities.

• Arc Consistency: any value in the domain of a variable A that is not supported
by a value in a variable B for which there is an arc A�B, must be removed. It is
more expensive to maintain and, sometimes the extra e�ort does not pay o� in
terms of increased pruning.

B.4. FINITE DOMAINS 137

• Path Consistency: any value in the domain of a variable A, which is either
not supported by a value in variable B for which there is an arc A�B, or by a
variable C for which there are arcs A�B and B�C, must be removed. It is still
more expensive to maintain and quite often it does not increase domain pruning
signi�cantly.

Since node and arc consistency can leave values in the domain of a variable that cannot
be part of a solution, they are not complete.

B.4.3 Constraint Propagation (CP) vs. Backtracking

The advantages (+) and disadvantages (-) of constraint propagations versus backtrack-
ing are:

- in the early stages of a program CP spends a large time inspecting values of the
variables domains, possibly to verify that they are X�consistent.

+ in the later stages of the programs, CP has to instantiate less values for the
variables, since their domains have been pruned by constraint propagation.

+ CP anticipates the detection of failures, and thus backtracking.

+ CP prevents irrelevant backtracking. By anticipating backtracing, it does not
backtrack to the wrong choice points.

B.4.4 Constraint Propagation and Heuristics

There are two major procedures to speed up the execution of constraint solvers:

1. reducing the number of alternatives throughout constraint propagation;

2. guessing the right alternatives recurring to heuristics (which are often problem
dependent).

Regarding �nite domains, there are two choice points in the enumeration phase:

1. the variable to instantiate next;

2. the value to instantiate the variable with.

138 APPENDIX B. CONSTRAINT LOGIC PROGRAMMING

B.4.5 Advanced Techniques

So far, choice points were only considered in the enumeration phase. A conjunction
of constraints was assumed in the constraint declaration phase to set up a unique
constraint network. However some applications require the introduction of disjunctions
in the constraint speci�cation phase. The possibilities for circumventing this problem
are:

• delay the choice as much as possible;

• derive common information.

B.4.6 Global Constraints

Constraint solvers based on local propagation do not detect global inconsistency over
larger sets of constraints in the network. Maintaining k�consistency (consistency of
all sets of k variables) is very expensive (path consistency maintains 3�consistency,
etc). However, special and important cases like alldifferent, cumulative, among,

diffn and cycle, might be handled separately.

B.4.7 Optimisation Constraints

In many applications one is interested not only in satisfying a set of constraints but
also in optimising (minimising or maximising) some objective function.

B.5 Defeasible Constraints

In several applications to keep the declarative style of programming, it is necessary to
consider soft constraints, i.e. constraints that might be relaxed to make the problem
solvable. This was the motivation of Hierarchical Constraint Logic Programming (or
HCLP for short), where constraints were assigned some preference weight.

The goal of a HCLP program is therefore to compute a solution (or solutions) that
complies with:

• optimisation, i.e. satis�es as much constraints as possible;

• satisfaction, i.e. satis�es a su�cient number of constraints.

B.6. CONCLUSIONS 139

B.6 Conclusions

• So far, �nite domains are the most successful domain of application of CLP, being
more e�cient than Operations Research approaches.

• Complete solvers, namely the ones for linear constraints over rationals, are less
e�cient than Operations Research packages for very large problems.

• Programming a CLP application is still an engineering task. One has to:

� �nd the best constraint solving technique;

� discover heuristics applicable to the problem;

� introduce redundant constraints to help the (incomplete) constraint solver;

� adapt, if possible, the solver to match the user needs.

• The need to experiment several techniques and possibly adapt the constraint
solver favours the approach of glass�box constraint solvers rather than back�box

solvers.

• There is room to improve not only the capabilities of constraint solvers, but also
to take advantage of the �exibility of the CLP approach to tackle applications
requiring mixed techniques.

• Many applications are naturally over constrained and there is much research to
be done in defeasible constraint solving.

• Constraint solving over reals (intervals) shows good potential for engineering
applications.

References

[Abr00] Salvador Abreu. A Logic-based Information System. In Enrico Pontelli
and Vitor Santos-Costa, editors, 2nd International Workshop on Practical

Aspects of Declarative Languages (PADL'2000), volume 1753 of Lecture
Notes in Computer Science, pages 141�153, Boston, MA, USA, January
2000. Springer-Verlag.

[Abr01] Salvador Abreu. Isco: A practical language for heterogeneous information
system construction. In Proceedings of INAP'01, Tokyo, Japan, October
2001. Prolog Association of Japan.

[Abr02] Salvador Abreu. Modeling Role-Based Access Control in ISCO. In
LÃ­gia Maria Ribeiro and JosÃ© Marques dos Santos, editors, The 8th

International Conference of European University Information Systems.
FEUP EdiÃ§Ãµes, June 2002. ISBN 972-752-051-0.

[AD03a] Salvador Abreu and Daniel Diaz. Objective: In minimum context. In
Catuscia Palamidessi, editor, ICLP, volume 2916 of Lecture Notes in

Computer Science, pages 128�147. Springer, 2003.

[AD03b] Salvador Abreu and Daniel Diaz. Objective: in Minimum Context.
In Catuscia Palamidessi, editor, Logic Programming, 19th International

Conference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings,
volume 2916 of Lecture Notes in Computer Science, pages 128�147.
Springer-Verlag, 2003. ISBN 3-540-20642-6.

[ADN04] Salvador Abreu, Daniel Diaz, and Vitor Nogueira. Organizational in-
formation systems design and implementation with contextual constraint
logic programming. In IT Innovation in a Changing World � The 10th

International Conference of European University Information Systems,
Ljubljana, Slovenia, June 2004.

[Aea07] A. Aggoun and et. al. Eclipse user manual release 5.10, November 2007.

141

142 REFERENCES

[AKN86] H Aït-Kaci and R Nasr. Login: A logic programming language with built-in
inheritance. J. Log. Program., 3(3):185�215, 1986.

[All83] J .F. Allen. Maintaining knowledge about temporal intervals. cacm,
26(11):832�843, nov 1983.

[AM89] Martín Abadi and Zohar Manna. Temporal logic programming. J. Symb.
Comput., 8(3):277�295, 1989.

[AN05] Salvador Abreu and Vitor Nogueira. Using a Logic Programming Language
with Persistence and Contexts. In Masanobu Umeda and Armin Wolf,
editors, Proceedings of the 16th International Conference on Applications

of Declarative Programming and Knowledge Management (INAP 2005),
Fukuoka, Japan, October 2005. Waseda University.

[AN06] Salvador Abreu and Vitor Nogueira. Towards structured contexts and
modules. In Etalle and Truszczynski [ET06], pages 436�438.

[AR99] Tamas Abraham and John F. Roddick. Survey of spatio-temporal
databases. Geoinformatica, 3(1):61�99, 1999.

[Ari86] Gad Ariav. A temporally oriented data model. ACM Trans. Database

Syst., 11(4):499�527, 1986.

[Ate] Atempo. Time navigator. http://www.atempo.com/.

[Aug01] Juan Carlos Augusto. The logical approach to temporal reasoning. Artif.
Intell. Rev., 16(4):301�333, 2001.

[BBJ98] Michael H. Böhlen, R. Busatto, and Christian S. Jensen. Point-versus
interval-based temporal data models. In ICDE '98: Proceedings of the

Fourteenth International Conference on Data Engineering, pages 192�200,
Washington, DC, USA, 1998. IEEE Computer Society.

[BCC+97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and
G. Puebla. The ciao prolog system. reference manual. Technical Report
CLIP3/97.1, School of Computer Science, Technical University of Madrid
(UPM), August 1997. Available from http://www.clip.dia.�.upm.es/.

[BCLM98] Michele Bugliesi, Anna Ciampolini, Evelina Lamma, and Paola Mello.
Optimizing modular logic languages. ACM Comput. Surv., 30(3es):10,
1998.

[BK82] K. A. Bowen and R. A. Kowalski. Amalgamating language and metalan-
guage in logic programming. In K. L. Clark and S.-A. Tärnlund, editors,
Logic Programming, pages 153�172. Academic Press, London, 1982.

http://www.atempo.com/

REFERENCES 143

[BK94] Anthony J. Bonner and Michael Kifer. An overview of transaction logic.
In Theoretical Computer Science (TCS), pages 133:205�265, 1994.

[BLM93] Michele Bugliesi, Evelina Lamma, and Paola Mello. Partial deduction for
structured logic programming. J. Log. Program., 16(1):89�122, 1993.

[BLM94] Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in logic
programming. The Journal of Logic Programming, 19 & 20:443�502, May
1994.

[BMPT94] Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco Turini. Mod-
ular logic programming. ACM Trans. Program. Lang. Syst., 16(4):1361�
1398, 1994.

[BMRT01] P. Baldan, P. Mancarella, A. Ra�aetà, and F. Turini. MuTACLP: A
language for temporal reasoning with multiple theories. Technical Report
TR-01-22, Dipartimento di Informatica, Università di Pisa, 23 2001.

[BMRT02] Paolo Baldan, Paolo Mancarella, Alessandra Ra�aetà, and Franco Turini.
Mutaclp: A language for temporal reasoning with multiple theories. In
Antonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic

Programming and Beyond, volume 2408 of Lecture Notes in Computer

Science, pages 1�40. Springer, 2002.

[Bro56] F. P. Brooks. The Analytic Design of Automatic Data Processing Systems.

PhD thesis, Harvard University, May 1956.

[Brz98] Christoph Brzoska. Programming in metric temporal logic. Theor. Comput.
Sci., 202(1-2):55�125, 1998.

[BZ82] Jacov Ben-Zvi. The time relational model. PhD thesis, 1982.

[CC87] James Cli�ord and Albert Croker. The historical relational data model
(hrdm) and algebra based on lifespans. In Proceedings of the Third In-

ternational Conference on Data Engineering, pages 528�537, Washington,
DC, USA, 1987. IEEE Computer Society.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and applica-
tion to logic programs. J. Log. Program., 13(2&3):103�179, 1992.

[CCGT95] James Cli�ord, Albert Croker, Fabio Grandi, and Alexander Tuzhilin.
On temporal grouping. In Proceedings of the International Workshop on

Temporal Databases, pages 194�213, London, UK, 1995. Springer-Verlag.

144 REFERENCES

[CCT94] James Cli�ord, Albert Croker, and Alexander Tuzhilin. On completeness
of historical relational query languages. ACM Trans. Database Syst.,
19(1):64�116, 1994.

[Che80] Brian F. Chellas. Modal Logic: An Introduction. Cambridge University
Press, Cambridge, 1980.

[Cho94] J. Chomicki. Temporal query languages: a survey. In D. M. Gabbay and
H. J. Ohlbach, editors, Temporal Logic: ICTL'94, volume 827, pages 506�
534. Springer-Verlag, 1994.

[CLM96] Anna Ciampolini, Evelina Lamma, and Paola Mello. An abstract
interpretation framework for optimizing dynamic modular logic languages.
Inf. Process. Lett., 58(4):163�170, 1996.

[CM00] Luca Chittaro and Angelo Montanari. Temporal representation and
reasoning in arti�cial intelligence: Issues and approaches. Annals of

Mathematics and Arti�cial Intelligence, 28(1-4):47�106, 2000.

[Cor05] Oracle Corportation. Oracle database 10g workspace manager overview.
Oracle White Paper, May 2005.

[CP03] Carlo Combi and Giuseppe Pozzi. Temporal conceptual modelling of
work�ows. In Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, and Peter
Scheuermann, editors, ER, volume 2813 of Lecture Notes in Computer

Science, pages 59�76. Springer, 2003.

[CP04] Carlo Combi and Giuseppe Pozzi. Architectures for a temporal work�ow
management system. In SAC '04: Proceedings of the 2004 ACM symposium

on Applied computing, pages 659�666, New York, NY, USA, 2004. ACM
Press.

[CP06] Carlo Combi and Giuseppe Pozzi. Task scheduling for a temporal work�ow
management system. Thirteenth International Symposium on Temporal

Representation and Reasoning (TIME'06), 0:61�68, 2006.

[CT98] Jan Chomicki and David Toman. Temporal logic in information systems.
In Jan Chomicki and Gunter Saake, editors, Logics for Databases and

Information Systems (the book grow out of the Dagstuhl Seminar 9529:

Role of Logics in Information Systems, 1995), pages 31�70. Kluwer, 1998.

[Dat99] C. J. Date. An introduction to database systems (7th ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

REFERENCES 145

[DBL07] 14th International Symposium on Temporal Representation and Reasoning

(TIME 2007), 28-30 June 2007, Alicante, Spain. IEEE Computer Society,
2007.

[DC01] Daniel Diaz and Philippe Codognet. Design and implementation of the
gnu prolog system. Journal of Functional and Logic Programming, 2001(6),
October 2001.

[DD02] Chris Date and Hugh Darwen. Temporal Data and the Relational Model.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[DD05] Hugh Darwen and C. J. Date. An overview and analysis of proposals
based on the tsql2 approach. http://www.dcs.warwick.ac.uk/~hugh/
TTM/OnTSQL2.pdf, March 2005.

[DLM+92] Enrico Denti, Evelina Lamma, Paola Mello, Antonio Natali, and Andrea
Omicini. Implementing contexts in Logic Programming. In Evelina Lamma
and Paola Mello, editors, 3rd International Workshop on Extensions of

Logic Programming (ELP'92), pages 145�170, Bologna, Italy, 26�28 1992.
Tecnoprint Bologna.

[DMG94] M A Reynolds DMGabbay, I M Hodkinson. Temporal Logic: Mathematical

foundations and computational aspects, volume 1. Clarendon Press, Oxford,
1994.

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.
Artif. Intell., 49(1-3):61�95, 1991.

[DNO92] Enrico Denti, Antonio Natali, and Andrea Omicini. Contexts as �rst-
class objects: An implementation based on the SICStus Prolog system. In
Stefania Costantini, editor, 7th Italian Conference on Logic Programming

(GULP'92), pages 307�320, Tremezzo, Como, Italy, 17�19 1992. Città
Studi, Milano, Italy.

[EMK+04] Andrew Eisenberg, Jim Melton, Krishna Kulkarni, Jan-Eike Michels, and
Fred Zemke. Sql:2003 has been published. SIGMOD Rec., 33(1):119�126,
2004.

[ET06] Sandro Etalle and Miroslaw Truszczynski, editors. Logic Programming,

22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-

20, 2006, Proceedings, volume 4079 of Lecture Notes in Computer Science.
Springer, 2006.

[F. 06] F. Henderson and T. Conway and Z. Somogyi and D. Je�ery and P.
Schachte and S. Taylor and C. Speirs and T. Dowd and R. Becket and

http://www.dcs.warwick.ac.uk/~hugh/TTM/OnTSQL2.pdf
http://www.dcs.warwick.ac.uk/~hugh/TTM/OnTSQL2.pdf

146 REFERENCES

M. Brown. The Mercury Language Reference Manual. The University of
Melbourne, 0.13.1 edition, 2006.

[FGV05] Michael Fisher, Dov Gabbay, and Lluis Vila. Handbook of Temporal

Reasoning in Arti�cial Intelligence (Foundations of Arti�cial Intelligence

(Elsevier)). Elsevier Science Inc., New York, NY, USA, 2005.

[Frü93] Thom W. Frühwirth. Temporal logic and annotated constraint logic
programming. In Michael Fisher and Richard Owens, editors, Executable
Modal and Temporal Logics, volume 897 of Lecture Notes in Computer

Science, pages 58�68. Springer, 1993.

[Frü94a] T. Frühwirth. Temporal reasoning with constraint handling rules. Technical
Report ECRC-94-5, European Computer-Industry Research Centre GmbH,
ECRC Munich, Germany, 1994.

[Frü94b] Thom W. Frühwirth. Annotated constraint logic programming applied to
temporal reasoning. In Manuel V. Hermenegildo and Jaan Penjam, editors,
PLILP, volume 844 of Lecture Notes in Computer Science, pages 230�243.
Springer, 1994.

[Frü96] Thom W. Frühwirth. Temporal annotated constraint logic programming.
J. Symb. Comput., 22(5/6):555�583, 1996.

[fS00] International Organization for Standardization. ISO IEC 13211-2:2000:

Information technology � Programming languages � Prolog � Part 2: Mod-

ules. International Organization for Standardization, Geneva, Switzerland,
2000.

[fS03] International Organization for Standardization. ISO/IEC 9075-*:2003.

Information technology � Database languages � SQL. International Or-
ganization for Standardization, Geneva, Switzerland, 2003.

[Gad88] Shashi K. Gadia. A homogeneous relational model and query languages
for temporal databases. ACM Trans. Database Syst., 13(4):418�448, 1988.

[Gal87] Antony Galton. The logic of occurrence. pages 169�196, 1987.

[Gal08] Antony Galton. Temporal logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2008.

[Ger01] Manolis Gergatsoulis. Temporal and modal logic programming languages.
In A. Kent and J. G. Williams, editors, Encyclopedia of Microcomputers,
volume 27,Supplement 6, pages 393�408. Marcel Dekker, Inc, New York,
2001.

REFERENCES 147

[GJ99] Heidi Gregersen and Christian S. Jensen. Temporal entity-relationship
models-a survey. IEEE Transactions on Knowledge and Data Engineering,
11(3):464�497, 1999.

[GMR88] Laura Giordano, Alberto Martelli, and Gianfranco Rossi. Local de�nitions
with static scope rules in logic programming. In FGCS, pages 389�396,
1988.

[GRP96] M. Gergatsoulis, P. Rondogiannis, and T. Panayiotopoulos. Disjunctive
chronolog, 1996.

[GWW75] J.F. Fries G. Wiederhold and S. Weyl. Structured organization of clinical
data bases. In AFIPS National Computer Conference, pages 479�485, 1975.

[GY88] Shashi K. Gadia and Chuen-Sing Yeung. A generalized model for a
relational temporal database. In SIGMOD '88: Proceedings of the 1988

ACM SIGMOD international conference on Management of data, pages
251�259, New York, NY, USA, 1988. ACM Press.

[HF06] Rémy Haemmerlé and François Fages. Modules for prolog revisited. In
Etalle and Truszczynski [ET06], pages 41�55.

[Hir97] Robin Hirsch. Expressive power and complexity in algebraic logic. Journal
of Logic and Computation, 7(3):309�351, 1997.

[HM87] S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics, and
the frame problem. pages 390�395, 1987.

[Hry93] Tomas Hrycej. A temporal extension of prolog. J. Log. Program., 15(1-
2):113�145, 1993.

[HS91] Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time
intervals. J. ACM, 38(4):935�962, 1991.

[IABC+95] Gad Ariav Ilsoo Ahn, Don Batory, James Cli�ord, Curtis E. Dyreson,
Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang Käfer, Nick
Kline, Krishna Kulkarni, T. Y. Cli� Leung, Nikos Lorentzos, John F.
Roddick, Arie Segev, Michael D. Soo, and Suryanarayana M. Sripada. The
TSQL2 Temporal Query Language. Kluwer Academic Publishers, 1995.

[IBM] IBM. Data propagator. http://www-306.ibm.com/software/data/
integration/replication/.

[Int92] International Organization for Standardization. ISO/IEC 9075:1992:

Title: Information technology � Database languages � SQL. 1992.
Available in English only.

http://www-306.ibm.com/software/data/integration/replication/
http://www-306.ibm.com/software/data/integration/replication/

148 REFERENCES

[Jen00] Christian S. Jensen. Temporal database management. Dr. Techn. Thesis,
2000.

[JK04] Peter Jonsson and Andrei Krokhin. Complexity classi�cation in qualitative
temporal constraint reasoning. Artif. Intell., 160(1):35�51, 2004.

[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In POPL '87:

Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 111�119. ACM Press, 1987.

[JM94] Joxan Ja�ar and Michael J. Maher. Constraint logic programming: A
survey. Journal of Logic Programming, 19/20:503�581, 1994.

[JMR91] C. S. Jensen, L. Mark, and N. Roussopoulos. Incremental implementation
model for relational databases with transaction time. IEEE Transactions

on Knowledge and Data Engineering, 3(4):461�473, 1991.

[JMS79] Susan Jones, Peter Mason, and Ronald K. Stamper. Legol 2.0: A relational
speci�cation language for complex rules. Inf. Syst., 4(4):293�305, 1979.

[Joh91] Johan Van Benthem. The Logic of Time: A Model-Theoretic Investigation

into the Varieties of Temporal Ontology and Temporal Discourse, volume
156 of Synthese Library. Kluwer Academic Publishers, second edition, 1991.

[JS96] Christian S. Jensen and Richard Thomas Snodgrass. Semantics of time-
varying information. Inf. Syst., 21(4):311�352, 1996.

[JSS95] Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. The tsql2
data model. In The TSQL2 Temporal Query Language, pages 153�238.
1995.

[Kim78] K. A. Kimball. The data system. Master's thesis, University of
Pennsylvania, 1978.

[KJJ03] Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about
temporal relations: The tractable subalgebras of allen's interval algebra.
J. ACM, 50(5):591�640, 2003.

[Kou95] M. Koubarakis. Databases and temporal constraints: Semantics and com-
plexity. In S. Cli�ord and A. Tuzhilin, editors, Recent Advances in Temporal
Databases, pages 93�112, Zurich, Switzerland, sep 1995. Proceedings of the
International Workshop on Temporal Databases, Springer Verlag.

[KS86] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New

Generation Computing, 4(1):67�95, 1986.

REFERENCES 149

[KS97] Robert A. Kowalski and Fariba Sadri. Reconciling the event calculus with
the situation calculus. J. Log. Program., 31(1-3):39�58, 1997.

[KSW90] F. Kabanza, J-M Stevenne, and P. Wolper. Handling in�nite temporal
data. In 9th Annual ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, Nashville, TN, apr 1990.

[Lab03] The Intelligent Systems Laboratory. Quintus Prolog User's Manual.
Swedish Institute of Computer Science, PO Box 1263, SE-164 29 Kista,
Sweden, release 3.5 edition, December 2003.

[LEM88] Jr. Leslie Edwin Mckenzie. An algebraic language for query and update of

temporal databases. PhD thesis, 1988. Director-Richard Snodgrass.

[LEMS91] Jr. L. Edwin McKenzie and Richard Thomas Snodgrass. Evaluation of
relational algebras incorporating the time dimension in databases. ACM

Comput. Surv., 23(4):501�543, 1991.

[LFA07] Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contextual Logic
Programming for Ontology Representation and Querying. In Axel Polleres,
David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, Proceedings of
the ICLP'07 Workshop on Applications of Logic Programming to the Web,

Semantic Web and Semantic Web Services (ALPSWS 2007), volume 287
of CEUR Workshop Proceedings ISSN 1613-0073, October 2007.

[LJ88] N. A. Lorentzos and R. G. Johnson. Extending relational algebra to
manipulate temporal data. Inf. Syst., 13(3):289�296, 1988.

[LM94] Evelina Lamma and Paola Mello. Modularity in logic programming. In
Pascal Van Hentenryck, editor, Logic Programming - Proceedings of the

Eleventh International Conference on Logic Programming, pages 15�17,
Massachusetts Institute of Technology, 1994. The MIT Press.

[LMN92] E. Lamma, P. Mello, and A. Natali. An Extended Warren Abstract
Machine for the Execution of Structured Logic Programs. Journal of Logic
Programming, 14(3-4):187�222, 1992.

[LO96] Chuchang Liu and Mehmet Ali Orgun. Clocked Temporal Logic Pro-
gramming. In Proceedings of The 19th Australasian Computer Science

Conference, Melbourne, Australia, January 31-February 2 1996.

[Lor88] N. A. Lorentzos. A Formal Extension of the Relational Model for the

Representation of Generic Intervals. PhD thesis, Birkbeck College, 1988.

[Lum] Lumigent. Log explorer for sql server. http://www.lumigent.com/
products/le_sql.html.

http://www.lumigent.com/products/le_sql.html
http://www.lumigent.com/products/le_sql.html

150 REFERENCES

[McC92] Francis G. McCabe. Logic and objects. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[Mei91] Itay Meiri. Combining qualitative and quantitative constraints in temporal
reasoning. In Thomas Dean and Kathleen McKeown, editors, Proceedings
of the Ninth National Conference on Arti�cial Intelligence, pages 260�267,
Menlo Park, California, 1991. AAAI Press.

[Mei96] Itay Meiri. Combining qualitative and quantitative constraints in temporal
reasoning. Artif. Intell., 87(1-2):343�385, 1996.

[MH69] John McCarthy and Patrick J. Hayes. Some philosophical problems from
the standpoint of arti�cial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463�502. Edinburgh University
Press, 1969. reprinted in McC90.

[Mil86] Dale Miller. A theory of modules for logic programming. In Symposium

on Logic Programming, pages 106�114, 1986.

[Mil89a] Dale Miller. A Logical Analysis of Modules in Logic Programming. Journal
of Logic Programming, 6(2):79�108, 1989.

[Mil89b] Dale Miller. Lexical scoping as universal quanti�cation. In Sixth Inter-

national Logic Programming Conference, pages 268�283, Lisbon, Portugal,
June 1989. MIT Press.

[Mil93] Dale Miller. A proposal for modules in lambda-prolog. In Roy Dyckho�,
editor, ELP, volume 798 of Lecture Notes in Computer Science, pages 206�
221. Springer, 1993.

[MMZ06] Elisabetta De Maria, Angelo Montanari, and Marco Zantoni. An
automaton-based approach to the veri�cation of timed work�ow schemas.
In TIME '06: Proceedings of the Thirteenth International Symposium

on Temporal Representation and Reasoning (TIME'06), pages 87�94,
Washington, DC, USA, 2006. IEEE Computer Society.

[MNR89] Paola Mello, Antonio Natali, and Cristina Ruggieri. Logic programming
in a software engineering perspective. In NACLP, pages 441�458, 1989.

[MNRT00] Paolo Mancarella, Gianluca Nerbini, Alessandra Ra�aetà, and Franco
Turini. Mutaclp: A language for declarative gis analysis. In John W.
Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau,
Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic, volume 1861 of Lecture Notes in

Computer Science, pages 1002�1016. Springer, 2000.

REFERENCES 151

[Mou00] Paulo Moura. Logtalk 2.6 Documentation. Technical Report DMI 2000/1,
University of Beira Interior, Portugal, July 2000.

[Mou03] Paulo Moura. Logtalk - Design of an Object-Oriented Logic Programming

Language. PhD thesis, Department of Computer Science, University of
Beira Interior, Portugal, September 2003.

[MP89] Luís Monteiro and António Porto. Contextual logic programming. In Mau-
rizio Levi, Giorgio; Martelli, editor, Proceedings of the 6th International

Conference on Logic Programming (ICLP '89), pages 284�302, Lisbon,
Portugal, June 1989. MIT Press.

[MP90] Luís Monteiro and António Porto. A transformational view of inheritance
in logic programming. In ICLP, pages 481�494, 1990.

[MP93] Luís Monteiro and António Porto. A Language for Contextual Logic
Programming. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors,
Logic Programming Languages: Constraints, Functions and Objects, pages
115�147. MIT Press, 1993.

[MRT97] Paolo Mancarella, Alessandra Ra�aetà, and Franco Turini. Time in a
multi-theory logical framework. In TIME, pages 62�70, 1997.

[MRT99] Paolo Mancarella, Alessandra Ra�aetà, and Franco Turini. Knowledge
representation with multiple logical theories and time. J. Exp. Theor.

Artif. Intell., 11(1):47�76, 1999.

[NA89] S. B. Navathe and R. Ahmed. A temporal relational model and a query
language. Inf. Sci., 49(1-3):147�175, 1989.

[NA06a] Vitor Nogueira and Salvador Abreu. Temporal contextual logic program-
ming. In Francisco J. López Fraguas, editor, Proceedings of the 15th

Workshop on Functional and (Constraint) Logic Programming (WFLP'06),
Madrid, Spain, November 2006. Electronic Notes in Theoretical Computer
Science.

[NA06b] Vitor Nogueira and Salvador Abreu. Towards temporal contextual logic
programming. In Etalle and Truszczynski [ET06], pages 439�441.

[NA07a] Vitor Nogueira and Salvador Abreu. Integrating temporal annotations
in a modular logic language. In Dietmar Seipel, Michael Hanus, Armin
Wolf, and Joachim Baumeister, editors, 17th International Conference

on Applications of Declarative Programming and Knowledge Management

(INAP 2007), volume Technical Report 434, Würzburg, Germany, October
2007. Bayerische Julius-Maximilians-Universität Würzburg.

152 REFERENCES

[NA07b] Vitor Nogueira and Salvador Abreu. Modularity and temporal reasoning:
a logic programming approach. In Time [DBL07].

[NA07c] Vitor Nogueira and Salvador Abreu. Temporal Annotations for a Contex-
tual Logic Programming Language. In José Neves, Manuel Santos, and
José Machado, editors, Progress in Arti�cial Intelligence, 13th Portuguese

Conference on Arti�cial Intellige nce, EPIA 2007, Universidade do Minho,
2007.

[NA07d] Vitor Nogueira and Salvador Abreu. Temporal contextual logic program-
ming. Electr. Notes Theor. Comput. Sci., 177:219�233, 2007.

[NAD03] Vitor Nogueira, Salvador Abreu, and Gabriel David. Using contextual logic
programming for temporal reasoning. In Jaime Gómez Ernesto Pimentel,
Nieves J. Brisaboa, editor, Proceedings of the VIII Jornadas de Ingeniería
del Software y Bases de Datos, pages 479�489, Alicante, Spain, November
2003.

[NAD04] Vitor Beires Nogueira, Salvador Abreu, and Gabriel David. Towards
temporal reasoning in constraint contextual logic programming. In
Proceedings of the 3rd International Workshop on Multiparadigm Constraint

Programming Languages MultiCPL'04 associated to ICLP'04, Saint�Malo,
France, September 2004.

[NB94] Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal
relations: a maximal tractable subclass of allen's interval algebra. In AAAI
'94: Proceedings of the twelfth national conference on Arti�cial intelligence

(vol. 1), pages 356�361, Menlo Park, CA, USA, 1994. American Association
for Arti�cial Intelligence.

[NM88] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In
Fifth International Logic Programming Conference, pages 810�827, Seattle,
August 1988. MIT Press.

[NO] Antonio Natali and Andrea Omicini. Objects with state in Contextual
Logic Programming. In Maurice Bruynooghe and Jaan Penjam, editors,
Programming Language Implementation and Logic Programming, volume
714 of LNCS, pages 220�234. Springer-Verlag. 5th International Sympo-
sium (PLILP'93), Tallinn, Estonia, 25�27.

[NO93] Antonio Natali and Andrea Omicini. Objects with state in CSM. In 2nd

Compulog Network Area Meeting on Programming Languages joint with

Workshop on Logic Languages, pages 1�2, Pisa, Italy, 6�7 1993.

REFERENCES 153

[O'K85] R. O'Keefe. Towards an algebra for constructing logic programs. In In J.
Cohen and J. Conery, editors, Proceedings of IEEE Symposium on Logic

Programming, pages 152�160. IEEE Computer Society Press, 1985.

[Org91] Mehmet Ali Orgun. Intensional logic programming. PhD thesis, Victoria,
B.C., Canada, Canada, 1991.

[Org96] Mehmet A. Orgun. On temporal deductive databases. Computational

Intelligence, 12:235�259, 1996.

[Pan95] M. Panayiotopoulos, T. and Gergatsoulis. A Prolog like temporal reasoning
system. In M. H. Hamza, editor, Proc. of 13th IASTED International Con-

ference on APPLIED INFORMATICS, pages 123�126, ICLS (Innsbruck),
Austria, 1995.

[Pao] Paolo Terenziani. Reasoning about Time.

[Pin94] Javier Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,
Department of Computer Science, University of Toronto, Toronto, Canada,
January 1994.

[Por03] António Porto. An integrated information system powered by prolog. In
Verónica Dahl and Philip Wadler, editors, PADL, volume 2562 of Lecture
Notes in Computer Science, pages 92�109. Springer, 2003.

[Pri57] A. N. Prior. Time and Modality. The Clarendon Press, Oxford, 1957.

[Pri67] A. N. Prior. Past, present and future. The Clarendon Press, Oxford, 1967.

[Pri68] A. N. Prior. Papers on Time and Tense. The Clarendon Press, Oxford,
1968.

[Raf00] Alessandra Ra�aetá. Spatio-temporal knowlegde bases in constraint logic

programming framework with multiple theories. PhD thesis, Universitá
Degli Studi di Pisa, Dipartamento di Informatica, Pisa, Italy, March 2000.

[Rei89] H. Reichgelt. A comparison of �rst order and modal logics of time.
In P. Jackson, H. Reichgelt, and F. van Harmelen, editors, Logic-Based
Knowledge Representation, pages 143�176. MIT Press, Cambridge, MA,
1989.

[RF00a] Alessandra Ra�aetà and Thom Frühwirth. Labelled deduction, chapter
Semantics for temporal annotated constraint logic programming, pages
215�243. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

154 REFERENCES

[RF00b] Alessandra Ra�aetà and Thom Frühwirth. Two semantics for temporal
annotated constraint logic programming. In M. Gergatsoulis and P. Ron-
dogiannis, editors, Intensional Programming II, Based on the Papers at

ISLIP'99, pages 78�92. World Scienti�c Singapore, 2000.

[RGP97] Panos Rondogiannis, Manolis Gergatsoulis, and Themis Panayiotopoulos.
Cactus: A branching-time logic programming language. In ECSQARU-

FAPR, pages 511�524, 1997.

[Rib93] Cristina Ribeiro. Representation and Inference of Temporal Knowledge.
PhD thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa, 1993.

[RN03] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A Modern

Approach. Pearson Education, 2003.

[RV05] H. Reichgelt and L. Vila. Handbook of Temporal Reasoning in Arti�cial

Intelligence (Foundations of Arti�cial Intelligence (Elsevier)), chapter
Temporal Quali�cation in Arti�cial Intelligence. In [FGV05], 2005.

[Sad87] Rubik Sadeghi. A database query language for operations on historical

data. PhD thesis, 1987.

[Sar90a] N. L. Sarda. Algebra and query language for a historical data model.
Comput. J., 33(1):11�18, 1990.

[Sar90b] N. L. Sarda. Extensions to sql for historical databases. IEEE Transactions

on Knowledge and Data Engineering, 2(2):220�230, 1990.

[SBJS97] Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and
Andreas Steiner. Transitioning temporal support in tsql2 to sql3. In
Temporal Databases, Dagstuhl, pages 150�194, 1997.

[Sch98] Eddie Schwalb. Temporal Reasoning With Constraints. PhD thesis,
University of California Irvine, June 1998.

[Sho88] Y. Shoham. Chronological ignorance: experiments in nonmonotonic
temporal reasoning. Artif. Intell., 36(3):279�331, 1988.

[SK91] Michael Stonebraker and Greg Kemnitz. The postgres next generation
database management system. Commun. ACM, 34(10):78�92, 1991.

[SKD94] Eddie Schwalb, Kalev Kask, and Rina Dechter. Temporal reasoning with
constraints on �uents and events. In Proceedings of the Twelfth National

Conference on Arti�cial Intelligence (AAAI-94), volume 2, pages 1067�
1072, Seattle, Washington, USA, 1994. AAAI Press/MIT Press.

REFERENCES 155

[SN04] Jörg Sander and Mario A. Nascimento, editors. Spatio-Temporal Database
Management, 2nd International Workshop STDBM'04, Toronto, Canada,

August 30, 2004, 2004.

[Sno] Richard Snodgrass. Tsql2 and sql3 interactions. http://www.cs.arizona.
edu/~rts/sql3.html.

[Sno87] Richard T. Snodgrass. The temporal query language tquel. ACM Trans.

Database Syst., 12(2):247�298, 1987.

[Sno07] Richard T. Snodgrass. Towards a science of temporal databases. In TIME

[DBL07], pages 6�7.

[SS87] Arie Segev and Arie Shoshani. Logical modeling of temporal data. In
SIGMOD '87: Proceedings of the 1987 ACM SIGMOD international

conference on Management of data, pages 454�466, New York, NY, USA,
1987. ACM.

[SSW+07] K. F. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui, E. Johnson,
L. de Castro, R. F. Marques, D. Saha, S. Dawnson, and M. Kifer. The XSB
System Version 3.1 Volume 1: Programmer's Manual, August 2007.

[Ste05] Andreas Steiner. Timedb. http://www.TimeConsult.com/, 2005.

[Sub94] V. S. Subrahmanian. Amalgamating knowledge bases. ACM Trans.

Database Syst., 19(2):291�331, 1994.

[SV96] E. Schwalb and L. Vila. Logic programming with temporal constraints. In
TIME '96: Proceedings of the 3rd Workshop on Temporal Representation

and Reasoning (TIME'96), page 51, Washington, DC, USA, 1996. IEEE
Computer Society.

[SV98] Eddie Schwalb and Lluis Vila. Temporal constraints: A survey. Con-

straints, 3(2/3):129�149, 1998.

[TA86] Abdullah Uz Tansel and M. Erol Arkun. Hquel, a query language for
historical relational databases. In SSDBM'86: Proceedings of the 3rd

international workshop on Statistical and scienti�c database management,
pages 135�142, Berkeley, CA, US, 1986. Lawrence Berkeley Laboratory.

[TC90] Alexander Tuzhilin and James Cli�ord. A temporal relational algebra
as a basis for temporal relational completeness. In Proceedings of the

sixteenth international conference on Very large databases, pages 13�23,
San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

http://www.cs.arizona.edu/~rts/sql3.html
http://www.cs.arizona.edu/~rts/sql3.html
http://www.TimeConsult.com/

156 REFERENCES

[TCG+93] Abdullah Uz Tansel, James Cli�ord, Shashi Gadia, Sushil Jajodia, Arie
Segev, and Richard Snodgrass, editors. Temporal databases: theory, design,
and implementation. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1993.

[The07] The Intelligent Systems Laboratory. SICStus Prolog User's Manual.
Swedish Institute of Computer Science, PO Box 1263, SE-164 29 Kista,
Sweden, release 4.0.2 edition, November 2007.

[Tho91] P. M. Thompson. A Temporal Data Model Based on Accounting Principles.
PhD thesis, Department of Computer Science, University of Calgary, Mar
1991.

[Vil82] Marc B. Vilain. A system for reasoning about time. In AAAI, pages 197�
201, 1982.

[Vil94] Lluis Vila. A survey on temporal reasoning in arti�cial intelligence. AI

Communications, 7(1):4�28, 1994.

[VK86] Marc Vilain and Henry Kautz. Constraint Propagation Algorithms for
Temporal Reasoning. In Proc. Fifth National Conference on Arti�cial

Intelligence, pages 377�382, Philadelphia, PA, USA, 1986.

[VKvB90] Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation
algorithms for temporal reasoning: a revised report. pages 373�381, 1990.

[War83] D.H.D. Warren. An abstract prolog instruction set. Technical Note 309,
Arti�cial Intelligence Center, SRI International, Menlo Park CA, 1983.

[Wie97] J. Wielemaker. Swi-prolog reference manual, 1997.

[Wik08] Wikipedia. Time � wikipedia, the free encyclopedia, 2008. [Online;
accessed 28-August-2008].

[WZZ05] Fusheng Wang, Carlo Zaniolo, and Xin Zhou. Temporal xml? sql strikes
back! In TIME '05: Proceedings of the 12th International Symposium

on Temporal Representation and Reasoning (TIME'05), pages 47�55,
Washington, DC, USA, 2005. IEEE Computer Society.

[YAP06] The YAP Prolog System. http://www.ncc.up.pt/~vsc/Yap. 2006.

http://www.ncc.up.pt/~vsc/Yap

	Acknowledgments
	Abstract
	Sumário
	List of Acronyms
	Preface
	Introduction and Motivation
	Introduction
	Time
	Modularity
	Organisational Information Systems

	Temporal (Logic-Based) OIS

	Temporal Reasoning in AI
	Introduction
	General Notions of Time
	Model of Time
	Temporal Qualification

	Constraint-Based Temporal Reasoning
	Qualitative Temporal Constraints
	Metric Point Constraints
	Hybrid Approaches
	Programming Languages

	Temporal Modal Logic
	Temporal Logic Programming

	Reasoning About Actions and Change
	The Situation Calculus
	The Event Calculus
	Temporal Nonmonotonic Reasoning

	Conclusions

	Temporal Databases
	Introduction
	Temporal Data Semantics
	Temporal Data Models and Languages
	Temporal Data Model
	Temporal Languages

	Temporal Databases Design
	Temporal Database Products
	Log Explorer
	Time Navigator
	Data Propagator
	SQL:2003
	Oracle
	TimeDB

	Conclusions and Future Pointers

	Modular Logic Programming
	Introduction
	Algebraic Approach
	The Algebra of Programs and Its Operators

	Logical Approach
	Embedded Implications
	Lexical Scoping
	Closed Scope Mechanisms
	Contextual Logic Programming
	Lexical Scoping as Universal Quantification

	Syntactic Approach
	Prolog Modules: the ISO Standard
	Implementations

	Logic and Objects
	Object-Oriented Programming and Embedded Implications
	Logtalk

	Conclusions

	Contextual Logic Programming
	Introduction
	The CxLP Language
	Operational Semantics
	Application of the Rules

	Declarative/Fix-Point Semantics
	Extensions
	Optimisations
	Abstract Interpretation for Static Scope Systems

	Implementations
	CSM (Contexts as SICStus Modules)
	GNU Prolog/CX

	Conclusions

	Temporal Reasoning in a Modular Language
	Introduction
	CxLP with Temporal Annotations
	Constraint Theory
	Operational Semantics
	Interpreter and Compiler
	Time Point Domain

	Related Work
	MuTACLP
	Other Approaches

	Concluding Remarks

	Temporal Contextual Logic Programming
	Introduction
	Language of TCxLP
	Annotating Units
	Temporal Annotated Contexts
	Relating Temporal Contexts with Temporal Units

	Computing the Least Upper Bound
	Ground Temporal Conditions
	Non Ground Temporal Conditions

	Operational Semantics
	Inference Rules

	TCxLP Compiler and Interpreter
	From TCxLP to CxLP+TACLP

	Application Examples
	Management of Workflow Systems
	Legal Reasoning
	Vaccination Program

	Related Work
	Conclusions

	Language for Temporal OIS
	Introduction
	Revising the ISCO Programming Language
	Classes
	Methods
	Inheritance
	Composition
	Persistence
	Data Manipulation Goals

	The ISTO Language
	Temporal Classes
	Temporal Data Manipulation

	Compilation Scheme for ISTO
	Classes
	Methods
	Inheritance
	Composition
	Persistence
	Data Manipulation Goals
	Temporal Classes
	Temporal Data Manipulation Goals

	Comparison with Other Approaches
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	GNU Prolog/CX
	Tutorial
	Unit Directive
	Unit Arguments
	Context Extension
	Current Context
	Context Traversal
	Context Switch
	Supercontext
	Guided Context Traversal
	Calling Context
	Lazy Call

	Reference Manual
	Introduction
	Directives
	Operators
	Utilities

	Constraint Logic Programming
	Introduction
	Constraint Domains
	Booleans: CLP(B)
	Pseudo--Booleans: CLP(PB)
	Rationals/Reals: CLP(R)
	Finite Domains: CLP(FD)

	Constraint Solvers
	Incomplete Constraint Solvers

	Finite Domains
	Finite Domain Solvers
	Network Consistency
	Constraint Propagation (CP) vs. Backtracking
	Constraint Propagation and Heuristics
	Advanced Techniques
	Global Constraints
	Optimisation Constraints

	Defeasible Constraints
	Conclusions

	References

