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Fatores que influenciam a comunidade de morcegos em vinhas: 

o papel das caraterísticas da paisagem, estruturas naturais e 

gestão 

 

Resumo 

As vinhas são um sistema agrícola muito representado na Europa. Essas 

áreas apresentam baixos níveis de biodiversidade devido à simplificação da 

paisagem e ao elevado uso de pesticidas, o que reduz a disponibilidade de 

insetos e as torna pouco atrativas para morcegos. Nós investigámos o efeito da 

gestão, do tipo de uso do solo e das estruturas naturais na atividade e riqueza 

de morcegos em vinhas a duas escalas espaciais: 500 m (escala de vinha) e 

1500 m (escala de paisagem). Os resultados demonstraram que as estruturas e 

os habitats naturais foram mais importantes para os morcegos do que a gestão 

da vinha. Nós sugerimos que as prioridades de conservação devem ser criar ou 

manter vegetação ripária e áreas de montado. Essas estruturas naturais são uma 

componente chave na gestão para promover o uso das vinhas por morcegos, 

aumentando o seu potencial como reguladores de pragas agrícolas.  

 

Palavras-chave: Escalas espaciais, Habitats ripários, Montado; GLM 
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Factors influencing the bat community in vineyards: the role of 

landscape characteristics, natural structures and management 

 

Abstract 

Vineyards are one of most represented agricultural systems in European 

landscape. These areas can present low biodiversity levels due to simplification 

of landscape and the high input of pesticides, which reduce insect availability and 

makes them unattractive for bats. We assessed the effect of farming 

management, land use type and natural structures on bat activity and species 

richness in vineyards at two spatial scales: 500 m (vineyard scale) and 1500 m 

(landscape scale). Our results demonstrate that natural structures and habitats 

were more important to the bat community than vineyard management. We 

suggest that conservation priorities should be to create or maintain riparian 

vegetation – near streams or small dams - and areas of “montados”. These 

natural structures are important for bat populations within or near vineyards, and 

a key component of agricultural management to promote bat use of vineyards, 

enhancing their role as pest regulators. 

 

Keywords: Spatial scales, Riparian habitats, “Montado”, GLM 
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Framework 

The conversion of natural ecosystems to agriculture, along with the 

intensification of management practices, which includes the use of pesticides, 

affects ecosystems and biodiversity worldwide (Tilman et al., 2001; Foley et al., 

2005; Tscharntke et al., 2005).  

In the north hemisphere (Europe and United States), landscapes are 

dominated by agricultural areas and the decline of biodiversity is mainly related 

to intensification of management practices (Donald et al., 2001; Tscharntke et al., 

2005; Norris, 2008). Particularly in Europe, intensification of land use and 

extension of agricultural fields in the last century have caused drastic changes in 

the landscape matrix (Andrén, 1994; Stoate et al., 2001), and several habitats 

have been lost (Hutson et al., 2001). In this region, the permanent crops 

represent the third most predominant agricultural system (Iglesias et al., 2012) 

and within these cultures the vineyards are one of the most common, occupying 

in the European Union (EU), approximately, 45% of world’s total area (Eurostat, 

2017). In 2015, Spain, France, Italy and Portugal were the principal wine-grower 

Member State with 80.2% of the total EU area occupied by vineyards (Eurostat, 

2017). Specifically, Portugal is a country rich in agriculture, mainly traditional 

agriculture (Altieri and Nicholls, 2002) and vineyards are one of the most 

represented agricultural systems, occupying 178.844 ha of the territory in 2017 

(PORDATA, 2018).  Although the area under vines in the EU (Eurostat, 2017) 

and in Portugal (PORDATA, 2018) has decreased over time, these agricultural 

landscapes represent a potential threat to the local biodiversity caused by the 

replacement of native habitats and simplification of the surrounding landscape 

structure and composition (Benton et al., 2003; Viers et al., 2013; Rodríguez-San 

Pedro et al., 2018). Indeed, these agricultural areas exhibit low levels of 

biodiversity (Altieri and Nicholls, 2002), and are among the least preferred 

habitats for vertebrate species (Pithon et al., 2016; Di Salvo et al., 2009). 

Furthermore, vineyards present a simplified structure which does not make them 

attractive for bats (Altieri and Nicholls, 2002), mainly because of the declines in 

insect abundance and diversity associated with these areas. Additionally, the loss 

of adjacent vegetation likely has important implications for bat foraging and roost 

availability (Di Salvo et al., 2009; Rodríguez-San Pedro et al., 2018). In fact, bats 
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are a group species affected by agricultural intensification through of degradation 

and/or destruction of foraging habitats, as well roost availability limitation 

(Mickleburgh et al., 2002; Rodríguez-San Pedro et al., 2018). Other problems 

associated to the intensification of agriculture is the increased use of 

agrochemicals, namely pesticides, which cause insect biodiversity declines 

(McLaughlin and Mineau, 1995; Geiger et al., 2010). Specifically, and with 

regards to bats, pesticides reduce the number and diversity of insects-prey which 

consequently can affect the bat population (Hutson et al., 2001; Williams-Guillén 

et al., 2016). 

From the point of view of conservation, bats are a relevant group because 

several species are threatened (Mickleburgh et al., 2002). In mainland Portugal 

25 bat species are known, belonging to four distinct families: Molossidae, 

Miniopteridae, Vespertilionidae e Rhinolophidae. All bat species are protected by 

the Bern Convention and the Born Convention. Furthermore, all bat species are 

included in Annex IV of "Habitats Directive” (92/42/CEE) and ten in Annex II. 

According to the Vertebrates Red Book of Portugal (Cabral et al., 2005), nine of 

the bat species are classified as Critically Endangered (CR), Endangered (EN) 

or Vulnerable (VU). In Europe there is The Agreement on the Conservation of 

Populations of European Bats – EUROBATS – that aims to protect all 53 

European bat species.  

Bats have been considered as suitable ecological and environmental 

indicators because they are distributed worldwide, positioned at high trophic 

levels, easily identifiable and monitored, functional and taxonomically diverse, 

and sensitive to several environmental factors (Jones et al., 2009). Additionally, 

insectivorous bats play critical roles as primary predators in many ecosystems. 

Since bats are the most important natural controllers of night flying insects, they 

contribute to the suppression of insect populations, such as agricultural pest 

species, in both natural and human-altered landscapes, and therefore contribute 

to the maintenance of ecosystem stability (Hutson et al., 2001; Kunz et al., 2011). 

Furthermore, bats potentially provide economic value by being agents of pest-

control services, i.e. reduced the pesticide application and avoid crop from 

damage by insect-pests (Boyles et al., 2011). 



  

10 
 

It is recognized that many insectivorous bats use agricultural landscapes 

as foraging areas and are affected by changes in their management system 

(Wickramasinghe et al., 2003; 2004). So, it is important to understand how we 

can improve the landscape to increase the abundance and species richness of 

bats in vineyards. It is recognized that bats benefit from agricultural landscape 

heterogeneity and the presence of landscape elements particularly those contain 

water and/or vegetation (Park, 2015). It is known that in intensely managed 

agricultural habitats, landscape elements such as forest patches, linear 

vegetation structures (i.e. hedgerows and tree lines) and water bodies, are 

important for wildlife (Heim et al., 2018). Moreover, vegetation structures (i.e. 

forest edges and linear structures) are important for many species of bats, since 

they provide foraging habitats, are used as flyways and provide protection against 

predators and/or wind (Limpens and Kapteyn, 1991; Verboom and Huitema, 

1997; Mickleburgh et al., 2002; Fukui et al., 2006). So, a landscape approach is 

thus required to preserve and improve those features which may play a main role 

in sustaining bat richness and activity. Furthermore, it is also essential to evaluate 

the importance of different scales analysis because organisms select habitat at 

different spatial scales (McGarigal et al., 2016).  

Our study evaluates the importance of management, the different land use 

and the natural structures in activity and richness of bats in Mediterranean 

vineyards at two spatial scales: vineyard scale (500 m) and landscape scale 

(1500 m). This article also intends to find ways to enhance agricultural 

landscapes for increase crop pest reduction by bats in vineyards. 

 

The results of our investigation are presented in the scientific article that 

follows. 
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Research paper 

Factors influencing bat community in vineyards: the role of landscape 

characteristics, natural structures and management 

 

Abstract 

Vineyards are one of most represented agricultural systems in European 

landscape. These areas can present low biodiversity levels due to simplification 

of landscape and the high input of pesticides, which reduce insect availability and 

makes them unattractive for bats. We assessed the effect of farming 

management, land use type and natural structures on bat activity and species 

richness in vineyards at two spatial scales: 500 m (vineyard scale) and 1500 m 

(landscape scale). Our results demonstrate that natural structures and habitats 

were more important to the bat community than vineyard management. We 

suggest that conservation priorities should be to create or maintain riparian 

vegetation – near streams or small dams - and areas of “montados”. These 

natural structures are important for bat populations within or near vineyards, and 

a key component of agricultural management to promote bat use of vineyards, 

enhancing their role as pest regulators. 

 

1. Introduction  

 The current global biodiversity crisis is caused by global changes, which 

include converting natural habitats into agricultural areas and intensifying 

agriculture practices (Tilman et al., 2001; Foley et al., 2005). Both processes 

occur across the globe and result in losses or degradation of ecosystems leading 

to biodiversity losses worldwide (Tilman et al., 2001; Tscharntke et al., 2005). In 

Europe, the conversion of large areas into agricultural fields and pastures have 

caused drastic landscape changes in recent decades, resulting in the widespread 

loss of natural habitats (Andrén, 1994; Hutson et al., 2001; Stoate et al., 2001). 

As a consequence, in European landscapes, almost half of the land surface is 

dedicated to agriculture (Stoate et al., 2009). Field crops and grazing livestock 

are the most important farming systems, followed by permanent crops (Iglesias 
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et al., 2012), which include vineyards. European vineyards account for 

approximately 45% of world’s total area (Eurostat, 2017) making the continent 

the most relevant for this agricultural product. Within Europe, the distribution of 

vineyards is highly concentrated in the southern countries. Spain, France, Italy 

and Portugal were the main wine-grower member states representing 80.2% of 

the total area occupied in Europe by vineyards in 2015 (Eurostat, 2017). 

Vineyards may pose a threat to biodiversity because of the conversion of 

native habitats and simplification of the surrounding landscape structure (Benton 

et al., 2003; Viers et al., 2013; Rodríguez-San Pedro et al., 2018). Both the 

simplified ecological structure and homogeneous landscape support low levels of 

biodiversity (Altieri and Nicholls, 2002) and can make vineyards one of the least 

preferred habitats for several groups of vertebrate species (Pithon et al., 2016; Di 

Salvo et al., 2009).  

Although many insectivorous bat species use agricultural landscapes for 

foraging (Wickramasinghe et al., 2003), vineyards are among the less used, 

probably because of their simplified structure (Altieri and Nicholls, 2002). Most 

vineyards are also intensively managed with high inputs of agrochemicals and 

pesticides, which cause severe declines in insect abundance and diversity, 

decreasing the availability of insect-prey (McLaughlin and Mineau, 1995; Geiger 

et al., 2010). Commonly, near these areas natural vegetation is also lost resulting 

in a reduced tree cover and roost availability (Mickleburgh et al., 2002; Di Salvo 

et al., 2009; Rodríguez-San Pedro et al., 2018). As a result, bat activity is limited 

in these areas and bat populations can be severely affected (Hutson et al., 2001; 

Williams-Guillén et al., 2016). 

One of the main strategies to reduce the input of agrochemicals in 

agricultural landscapes is to use biological controllers. Natural pest regulation is 

an important ecosystem service in these areas provided by several organisms: 

pathogens, parasitoids or predators. For example, fungal entomopathogens can 

infect insect pests (Shahid et al., 2012); wasps parasitize insects also contributing 

to pest control (Zhang et al., 2007); and spiders and Coccinellids consume large 

numbers of insect pests being widely used in biological control (Obrycki and 

Kring, 1998; Chatterjee et al., 2012). Vertebrate species, such as insectivorous 
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bats and birds, can also contribute decisively to natural pest regulation (Maas et 

al., 2016; Puig-Montserrat et al., 2015; Barbaro et al., 2016). 

In fact, insectivorous bats are important insect predators in many 

ecosystems (Hutson et al., 2001). Since bats are one of the most important 

natural controllers of night flying insects, they can contribute to the suppression 

of insect populations, such as agricultural pests, in both natural and human-

altered landscapes, and to the maintenance of ecosystem stability (Hutson et al., 

2001; Kunz et al., 2011). So, bats can deliver economic value of pest-control 

services, i.e. reduced the pesticide application and avoid crop from damage by 

insect-pest (Boyles et al., 2011). All species of insectivorous bats are potentially 

important as insect prey consumers (Hutson et al., 2001) but common bat species 

are more likely to exert a significant reduction of insect pest populations (Lindell 

et al., 2018) because of the large number of individuals. The combined high 

biomass of common species within the overall community, and their flexible use 

of the landscape will enable these bats to be more relevant in the provisioning of 

the pest regulation ecosystem service, even in agricultural areas. 

Thus, it is important understand how we can improve the landscape 

features to increase the abundance and species richness of bats in vineyards. It 

is known that in intensely management agricultural habitats landscape elements, 

such as forest patches, linear vegetation structures (i.e. hedgerows and tree 

lines) and water bodies, are important for wildlife (Heim et al., 2018). Moreover, 

vegetation structures (i.e. forest edges and linear structures) are important for 

many species of bats, since they provide foraging habitats, are used as flyways 

and can provide protection against predators and/or wind (Limpens and Kapteyn, 

1991; Verboom and Huitema, 1997; Mickleburgh et al., 2002; Fukui et al., 2006). 

Therefore, a landscape approach is thus required to preserve those features 

which may play a main role in sustaining bat richness and activity. Although 

several studies describe the importance of tree cover and natural structures for 

bats in intensely management agricultural habitats (Heim et al., 2015; Kalda et 

al., 2015; Toffoli, 2016; Heim et al., 2018), little is known about these structural 

features in vineyards (Froidevaux et al., 2017; Rodríguez-San Pedro et al., 2018). 

But this information is key to promote bat use of vineyards and to potentially 

increase pest reduction by these flying vertebrates. 
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So, our aim was assess the importance of the management of vineyards, 

of different land uses and of natural structures adjacent and within these 

agricultural areas for bat activity and richness.   

Our specific aims were to (i) determine which bat species use vineyards; 

and (ii) infer which of the land uses, of natural structures and vineyard 

management types most influence bat activity and richness. We also investigated 

this topic for the most abundant species in vineyards, which may have a higher 

potential of providing pest regulation services. We did these analyses at two 

spatial scales - vineyard scale (500 m) and landscape scale (1500 m) - in these 

agricultural lands.  

 

2. Materials and methods  

2.1. Study area 

The study area was located in southern Portugal, Évora district (38°34N, 

7°54W) (Figure 1). This area has a Mediterranean climate with characteristic mild 

winters and long summers with hot and dry conditions (Rivas-Martinez and 

Loidoi, 1999) from June to September. It has a low annual rainfall (609 mm) and 

average annual temperatures range from 9.3 to 23.3º C (IPMA, 2018). In this 

area, the topography is plain with altitude ranging from 100 to 400 m.    

The landscape is dominated by a Mediterranean agro-silvo-pastoral 

system, the “montado”. This system consisting of tree stands of evergreen cork 

(Quercus suber) and/or holm (Q. rotundifolia) oaks intermixed with extensive 

agricultural areas. Other less represented land uses include meadows, pastures 

and fallows, olive groves, eucalyptus plantations, vineyards, pine groves, shrubs 

and small villages (Galantinho and Mira, 2009; Rainho and Palmeirim, 2011; 

Medinas et al., 2013).  

In this study, we selected 29 sampling sites in 10 large vineyards, but three 

were excluded from further analysis due to sampling problems. Mean distance 

between 26 sampling sites was 1157.36 ± 496.81 m (mean ± SD). 
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Figure 1: Map of study area in south of Portugal (Évora district) and location of sampling sites in 

vineyards (n=26) (obtained using QGIS 2.18.14). 

 

2.2. Bat echolocation call recording and identification 

Bat call sampling occurred in 2017, from July to August. Each site was 

sampled during six consecutive nights, taking into account weather conditions 

favorable to bats: mild, calm and rainless nights (Erickson and West, 2002; 

Battersby, 2010). On each night sampling started 30 minutes before sunset and 

lasted until sunrise. Bat echolocation calls were recorded using automatic 

stationary bat detector systems. We used Pettersson D500x detectors (sampling 

frequency: 300 kHz). An auto-recording mode setting for 2 seconds was used.  

We manually identified each bat pass to species level when possible or 

assigned to single or multi–genus complexes using Audacity 2.1.2 and a semi-

automatic classification system prototype developed by Plecotus – Estudos 

Ambientais Unip. Lda (Silva et al., 2014). This system identifies and measures 

19 spectral and temporal parameters of bat echolocation calls through a custom 

built R script. Call classification is done by using assemblages of neural networks 

built based on a reference database that includes 16 000 individual calls from 

more than 1 400 bats of 24 species captured and recorded in mainland Portugal. 
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This classification system is able to identify bat species or assemblages of 

species with 95% mean sensitivity and a 4% mean error. The results from the 

semi-automatic system were reviewed using the "Chave de identificação acústica 

de morcegos de Portugal continental" (Rainho et al., 2011) and other 

bibliographic references (for example, Russo and Jones, 1999; Russo and Jones, 

2002; Obristh et al., 2004; Russo and Papadatou, 2014). 

A bat pass was defined as a sequence of two or more echolocation calls 

made as a bat flew past the detector (Thomas and West, 1989). Echolocation 

calls sequences were used to determine species richness and assess the activity 

of bats. Bat species richness was defined as the minimum number of possible 

bat species, because it was not always possible to identify bats to species level. 

Thus, a higher taxonomical level than species, i.e. genus, or phonic group, was 

counted only when none of the species belonging to this group were previously 

identified individually. In addition, bat activity was measured as the number of 

recorded bat passes during the sampling period, six nights. 

 

2.3. Landscape variables 

The surrounding landscape of vineyards may have a strong influence on 

the bat community of these agricultural areas (Froidevaux et al., 2017). Hence, 

we analyzed the effect of land use near vineyards on bat presence and 

abundance. In this way, we created buffers with radii of 50, 100, 150, 300, 500, 

750, 1000 and 1500 m around the center point of each sampling sites to extract 

landscape characteristics using the open source geographical information 

system QGIS Desktop 2.18.14. The smallest of these scales (50 m) represents 

site-specific characteristics of vineyard, whereas the larger scale (1500 m) 

represents the landscape scale around the vineyards. Within each buffer, we 

calculated the proportion of land cover categories (i.e., urban area, olive groves, 

semi-natural habitat or “montado”, waterline and wetland, unproductive area, 

waterline with trees, tree line, water body, pasture and vineyard – Table 1A in 

Appendix A) from information available on Land Cover (COS, 2007) and 

agricultural areas (IFAP, 2016). Although we used detailed land cover data, 

agricultural areas can be highly dynamic with marked changes on vegetation 

structure that may impact the bat community. Thus, we further assessed the 
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accuracy of the land cover classification and delimitation using recent aerial 

photographs (visualized with Bing maps).  

We used LecoS (Landscape Ecology Statistics – QGIS-Plugin; Jung, 

2016) to analyze the composition and configuration of the 10 land cover 

categories mentioned above. Specifically, we calculated four landscape metrics: 

landscape proportion (Lp) - the proportion of the cells from a specific class of the 

total number of cells of the classified raster; edge length (E_length) - the total 

length of all patches from a specific class; number of patches (Npatch) - the 

number of patches identified for each class; and patch density (P_density) - the 

total density of patches in the landscape across all patch types. In addition, we 

obtained three landscape indexes: Shannon’s Diversity index (DIV_SH) - the 

proportional abundance of every patch of a certain type, multiplied by that 

proportion; Shannon’s equitability (DIV_EV) - the distribution of the patches within 

the total area; and Simpson’s Diversity index (DIV_SI) - the diversity of the 

landscape mosaic in terms of the combination of number of patches and extent 

of each patch type. Finally, we calculated for each sampling site the distance to 

three known important habitats for bats: (i) semi-natural habitat or “montado”, (ii) 

water bodies, and (iii) waterlines with trees. The description of each variable is 

present in Table 1.  

 

Table 1: Description of explanatory variables used in models of 500 and 1500 m and the 

corresponding transformation. 

Variable code Description 
Transformation 

500 m 1500 m 

Dist_snatural_habitat 
Distance to semi-
natural habitats 

square root square root 

Dist_water_bodies 
Distance to water 
bodies 

square root square root 

Dist_waterline_trees 
Distance to waterlines 
with trees 

square root square root 

E_length_olive 
Edge length of olive 
groves and fruit crops 

square root square root 
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E_length_snatural_habitat 
Edge length of semi-
natural habitats 

- square root 

E_length_urban_area 
Edge length of urban 
areas 

square root - 

E_length_vineyard 
Edge length of 
vineyards 

  - 

Lp_olive 
Landscape proportion 
of olive groves and 
fruit crops 

arcsin of 
square root 

- 

Lp_pasture 
Landscape proportion 
of pastures 

arcsin of 
square root 

- 

Lp_snatural_habitat 
Landscape proportion 
of semi-natural 
habitats 

arcsin of 
square root 

arcsin of 
square root 

Lp_treeline 
Landscape proportion 
of tree lines 

arcsin of 
square root 

arcsin of 
square root 

Lp_urban_area 
Landscape proportion 
of urban areas 

- 
arcsin of 

square root 

Lp_vineyard 
Landscape proportion 
of vineyards 

  - 

Lp_water_bodies 
Landscape proportion 
of water bodies 

arcsin of 
square root 

- 

Lp_waterline_trees 
Landscape proportion 
of waterlines with trees 

arcsin of 
square root 

arcsin of 
square root 

Npatch_pasture 
Number of patches of 
pastures 

- square root 

Npatch_snatural_habitat 
Number of patches of 
semi-natural habitats 

- square root 

Npatch_urban_area 
Number of patches of 
urban areas 

square root - 

Npatch_water_bodies 
Number of patches of 
water bodies 

square root square root 

Npatch_waterline_trees 
Number of patch of 
waterlines with trees 

- square root 

Pdensity_olive 
Patch density of olive 
groves and fruit crops 

square root - 



  

23 
 

Pdensity_pasture 
Patch density of 
pastures 

square root square root 

Pdensity_snatural_habitat 
Patch density of semi-
natural habitats 

square root square root 

Pdensity_urban_area 
Patch density of urban 
areas 

square root square root 

Pdensity_vineyard 
Patch density of 
vineyards 

  - 

Pdensity_water_bodies 
Patch density of water 
bodies 

square root logarithm 

Pdensity_waterline_trees 
Patch density of 
waterlines with trees 

- logarithm 

Note:  ✔: variable not transformed; – : variable was not used in final models. 

 

During the exploratory analysis of the landscape variables we found that 

the buffers of the smaller spatial scales (50, 100, 150 and 300 m) were composed 

mainly of vineyards, while the other land use categories were absent or occurred 

infrequently. Therefore, we excluded the spatial scales lower than 500 m from 

further analysis. From the remaining spatial scales we assessed only the smaller 

(500 m – vineyard scale) and the larger (1500 m – landscape scale) scales for 

the sake of simplicity.  

 

2.4. Statistical analysis  

To understand the influence of landscape heterogeneity and the natural 

structures in vineyards on activity and richness of the bat community, we 

performed several statistical analyses. All statistical analyses were performed 

with “R” software (Version 3.3.0) based on the methods described by Zuur et al. 

(2009). We used Generalized Linear Models (GLM) which consist of three steps: 

(i) choosing a distribution for the response variable, (ii) defining the systematic 

part in terms of covariates, and (iii) specifying the relationship/link between the 

expected value of the response variable and the systematic part.  

Firstly, we did exploratory analysis to detect possible non-linear 

relationships between the response variables - bat activity, species richness and 
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activity of four common species: Pipistrellus kuhlii, Pipistrellus pygmaeus, 

Pipistrellus pipistrellus, and Nyctalus leisleri - and landscape variables. We 

performed correlations graphics to assess the strength of these relationships and 

select the best candidate variables for the models. We then created a correlation 

matrix of all candidate explanatory variables to check for possible collinearity. For 

each pair of independent variables showing high collinearity (|r|>0,7), we only 

selected the most biologically meaningful variable for further analysis. The 

explanatory variables to be included in the model building process were either 

square root, arcsin of square root or log transformed to approach a normal 

distribution and reduce the effect of potential outliers (Zuur et al., 2007) (Table 

1). Because the management of the vineyard most likely has strong implications 

in the activity and species richness of bats in these areas we included this 

variable in all models. Using information from surveys applied to the managers 

and wine producers we coded each sampling site as Integrated Farm 

Management (IFM – farming system aimed to production sustainability by using 

agrochemical inputs under a set of rules and application safety periods) or 

organic (farming system that excludes the use of synthetic fertilizers and 

pesticides aiming to optimize the productivity and suitability of the 

agroecosystem).  

Because some sampling sites were located in the same large vineyard 

area we compared two types of models for each response variable (for example:  

bat activity) to assess the need to incorporate this information in our analyses 

(Zuur et al., 2009). First, we built a Generalized Least Squares model (GLS) and 

then a Linear Mixed Model (LMM) that included the random factor vineyard area 

(~ 1 | vineyard) using the nlme package (Pinheiro et al., 2016). We then used the 

Akaike’s Information Criterion (AIC) value to identify the best model (model with 

the lower AIC value). After selecting the model type, we did a variable selection 

of the fixed components to obtain the final model with command step in case of 

GLS model. For LMM, we excluded variables until we have a final model with 

only significant variables. In these cases, we used summary command to inspect 

the significance of the variables and the anova command to apply sequential 

testing. We plotted the response curve against the predicted values for all final 

model variables with significant relations. Finally, we assessed the model 
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assumptions by visual examination of residuals’ plots (residuals vs fitted values, 

normal Q-Q, scale-location, and residuals vs leverage).  

 

3. Results 

In total, we recorded 3432 bat passes during the sampling season, which 

corresponded to an average bat activity of 22 passes/night/site. Of these, 2580 

(75.17%) were identified to species level while 850 (24.77%) were assigned to 

single or multi–genus complexes. Only two bat passes were not identified.  

We detected 19 species or groups of species (7 species and 12 groups of 

species) but more than 90% of the bat activity was concentrated on the genus 

Pipistrellus (Table 2). Specifically, the most common species were P. kuhlii 

(33.19%), P. pygmaeus (23.75%), P. pipistrellus/P. pygmaeus (13%), P. 

pipistrellus (11.13%), the phonic group Eptesicus serotinus/E. isabellinus (3.55%) 

and Nyctalus leisleri (3.32%). 

As referred above, the most common species was P. kuhlii, which was 

detected in 25 of the 26 sampling sites surveyed (96.15%). We recorded the two 

other Pipistrellus species, P. pygmaeus and P. pipistrellus, in 21 of 26 sampling 

sites (80.77%). Other common bat species were N. leisleri, which was present in 

18 of 26 sampling sites (69.23%) and Miniopterus schreibersii, recorded in 13 

sampling sites (50%). We also detected rare bat species or groups of species, 

such as Barbastella barbastellus, Nyctalus lasiopterus/N. noctula, Plecotus 

auritus/P. austriacus and Rhinolophus mehelyi/R. euryale. These species were 

recorded in a low number and in different sampling sites: B. barbastellus was 

present in 2 sampling sites – (7.69% - VIN26 and VIN27), and N. lasiopterus/N. 

noctula, P. auritus/P. austriacus and R. mehelyi/R. euryale were present in only 

1 site (3.85% - VIN20, VIN28 and VIN3, respectively).  

Species richness peaked in sites VIN26 and VIN27, where we recorded 

eight bat species, and had the lowest value in VIN2, where we only detected one 

species. 
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Table 2: Bat species detected, number of bat passes and number of sampling sites where each 

bat species was detected. 

SPECIES BAT PASSES 

OCCURENCE 
IN SAMPLING 

SITES  

(N sites=26) 

Barbastella barbastellus 3 2 

Eptesicus serotinus/E. isabellinus 122 15 

Myotis daubentonii 11 7 

Myotis myotis/M. blythii 10 5 

Miniopterus schreibersii 115 13 

Myotis sp. 2 2 

Nyctalus lasiopterus/N. noctula 1 1 

Nyctalus leisleri 114 18 

N. leisleri/E. serorinus/E. isabellinus 75 17 

N. leisleri/N. lasiopterus/N. noctula 54 14 

Plecotus auritus/P. austriacus 1 1 

Pipistrellus kuhlii 1139 25 

Pipistrellus pipistrellus 382 21 

P. pipistrellus/P. kuhlii 85 8 

P. pipistrellus/P. pygmaeus 446 22 

P. pipistrellus/P. pygmaeus/M. 
schreibersii 

10 4 

Pipistrellus pygmaeus 815 21 

P. pygmaeus/M. schreibersii 44 6 

Rhinolophus mehelyi/R. euryale 1 1 

Unidentified 2 1 
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3.1. Bat activity and species richness in vineyards 

Total bat activity showed a strong relation with two distinct freshwater 

habitats, waterlines and small ponds. Our results suggest that bats are more 

active near waterlines with trees and on sites with a higher proportion of water 

bodies, within a buffer of 500 m (Table 3). The response curve of distance to 

waterlines with trees shows that estimated bat activity decreases from this habitat 

until 1000 m away. Further than this distance the predicted bat activity is close to 

0 and there is no relation with distance to waterline with trees (Figure 2a). 

According to our model, the proportion of water bodies in a 500 m buffer also 

influences directly the activity of bats (Figure 2b). We estimate that sites with only 

10% of water body cover (proportion of) have an activity level of 200 bat passes 

during six nights. And the only site with 30% proportion of water bodies is 

predicted to have approximately 800 bat passes. Two other variables were 

included in this model, but had no significant effect, distance to water bodies 

(positive relation) and patch density of urban areas (negative relation).  

  

Table 3: Model of bat activity at 500 m scale; model adjusted R2 = 52.48%; model p-value = 

0.0005. Variable p-value codes: ‘***’ p ≤ 0.001, ‘**’ p ≤ 0.01. 

Variable Estimate Std. Error t value p-value 

Intercept 141.228 166.851 0.846 0.4069 

Dist_water_bodies 10.137 5.022 2.019 0.0565 

Dist_waterline_trees -9.601 2.805 -3.423 0.0026 ** 

Lp_water_bodies 1334.581 284.607 4.689 0.0001 *** 

Pdensity_urban_area -50695.616 37569.930 -1.349 0.1916 
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a) 

  

b) 

 

 

 

 

Our results revealed that bat species richness also increases with 

increasing proportion of waterlines with trees (Table 4). The maximum species 

richness (eight bat species) occurs in sites where the proportion of waterlines 

with trees also has the highest value (approximately 3%) (Figure 3). Two other 

landscape variables were included in this model, proportion of water bodies 

(positive effect) and patch density of vineyards (negative effect), although the 

relationship with species richness in vineyards was not significant. 

 

Table 4: Model of bat species richness at 500 m scale; model adjusted R2 = 39.56%; model p-

value = 0.0027. Variable p-value codes: ‘***’ p ≤ 0.001. 

  

Variable Estimate Std. Error t value p-value  

Intercept 5.114 0.691    7.401   < 0.0001 *** 

Lp_water_bodies 3.979 2.078 1.915 0.0686 

Lp_waterline_trees 21.820 5.508 3.962 0.0007 *** 

Pdensity_vineyard -253300 145700 -1.738 0.0962 

 

Figure 2: Relationships between bat activity model (500 m scale) and distance to waterline with 

trees (a) and to proportion of water bodies (b). 
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Figure 3: Relationship between fitted values of bat species richness model (500 m scale) and 

landscape proportion of waterline with trees. 

 

 

3.2. Activity of common bat species in vineyards 

The activity of P. kuhlii, the most common bat species in our data set, 

decreased with distance to the waterlines with trees, while it increased with patch 

density of water bodies or small dams. However, both these variables had a non-

significant relation with the activity of this species (Table 5). 

 

Table 5: Model of P. kuhlii activity at 500 m scale; model adjusted R2 = 11%; model p-value = 

0.1003. 

Variable Estimate Std. Error t value p-value 

Intercept 65.137      52.391    1.243    0.2263   

Dist_waterline_trees -2.643 1.670 -1.582 0.1272 

Pdensity_water_bodies 51135.271 28304.496 1.807 0.0839 
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The model of P. pygmaeus activity had a large number of variables, but 

none had a significant effect. Landscape proportion of tree line, distance to 

waterline with trees, landscape proportion of olive groves and semi-natural 

habitats and number of patches of urban area appear to have a negative effect 

on the activity of this bat species. On the other hand, patch density of pasture 

was the only variable which had a positive effect (Table 6). 

 

Table 6: Model of P. pygmaeus activity at 500 m scale; model adjusted R2 = 15.46%; model p-

value = 0.1611. 

Variable Estimate Std. Error t value p-value 

Intercept 148.353      73.650    2.014    0.0584 

Dist_waterline_trees -2.670 1.452 -1.839 0.0816 

Lp_olive -121.275 67.746 -1.790 0.0894 

Lp_snatural_habitat -72.991 40.805 -1.789 0.0896 

Lp_treeline -1011.010 517.072 -1.955 0.0654 

Npatch_urban_area -33.573 22.494 -1.493 0.1520 

Pdensity_pasture 44168.254 23652.984 1.867 0.0774 

 

 

In case of P. pipistrellus, the increasing distance to waterline with trees 

had a negative effect on the activity. Also the higher proportion of vineyards had 

a negative effect on the activity of this bat species (Table 7).  Figure 4a shows 

that there is a high activity of P. pipistrellus near waterlines and a marked decline 

in areas further away from this habitat; at 500 m from waterlines we estimate that 

the activity of this species is halved. Simultaneously, the highest activity levels 

occur when the proportion of vineyards is less than 15% of the 500 m radius 

buffer (Figure 4b). Other agricultural areas, such as pastures and olive groves, 

had a negative effect on P. pipistrellus activity, but both these relationships did 

not reach significance. 
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Table 7: Model of P. pipistrellus activity at 500 m scale; model adjusted R2 = 39.42%; model p-

value = 0.0051. Variable p-value codes: ‘***’ p ≤ 0.001, ‘*’ p ≤ 0.05. 

Variable Estimate Std. Error t value p-value 

Intercept 69.789     13.094 5.330 < 0.0001 *** 

Dist_waterline_trees -0.920 0.405 -2.271 0.0338 * 

Lp_pasture -27.868 18.833 -1.480 0.1538 

Lp_vineyard -34.564 15.472 -2.234 0.0365 * 

Pdensity_olive -6631.705 4368.590 -1.518 0.1439 

 

 

a) b) 

  
Figure 4: Relationships between fitted values of P. pipistrellus model (500 m scale) and 

distance to waterline with trees (a) and landscape proportion of vineyard (b). 

  

The activity of N. leisleri was related to a high number of landscape 

variables (Table 8). Our model suggests that activity of this species is higher in 

areas with higher proportion of waterline with trees, which corresponds to 

approximately 2.8% of the 500 m buffer (Figure 5a). In contrast, the distance to 

waterlines with trees appears to have a positive influence on the activity, until 

approximately 500-1000 m the distance of this habitat had a negative effect on 

the activity of this bat species (Figure 5b). Additionally, the N. leisleri activity was 

higher when edge length of vineyard decreases, and the highest value of activity 

of this bat species is observed when this variable presents values <2500 m 
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(Figure 5c).  N. leisleri activity was also higher when density of patches of pasture 

and urban area increases. The higher values occur when patch density of 

pastures or of urban areas is approximately 0.00001 (Figure 5d, Figure 5e). The 

distance to water bodies appears to positively influence the activity of N. leisleri, 

but this relationship did not reach significance.  

 

Table 8: Model of N. leisleri activity at 500 m scale; model adjusted R2 = 83.72%; model p-value 

< 0.0001. Variable p-value codes: ‘***’ p ≤ 0.001, ‘**’ p ≤ 0.01, ‘*’ p ≤ 0.05. 

Variable Estimate Std. Error t value p-value 

Intercept -6.814 3.646 -1.869 0.0772 

Dist_water_bodies 0.122 0.075 1.605 0.1249 

Dist_waterline_trees 0.203 0.078 2.613 0.0171 * 

E_length_vineyard -0.002 < 0.001 -4.152 0.0005 *** 

Lp_waterline_trees 74.360 20.620 3.605 0.0019 ** 

Pdensity_pasture 3702 864.600 4.282 0.0004 *** 

Pdensity_urban_area 1909 845.600 2.257 0.0359 * 

 

 

a) b) 
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c) d) 

   

e) 

 

 

 

  

Figure 5: Relationships between fitted values 

of N. leisleri model (500 m scale) and 

landscape proportion of waterline with trees 

(a), distance to waterline with trees (b), edge 

length of vineyard (c), patch density of pasture 

(d) and urban area (e). 
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3.3. Bat activity and species richness at landscape scale 

In 1500 m scale, the total bat activity was related to the distance and 

availability of water, more specifically with the distance to water bodies (negative 

effect) and number of patches of waterline with trees (positive effect) (Table 9). 

Bat activity peaked next to water bodies and decreased until 750 m away (Figure 

6a). The number of waterline with trees patches had a marked effect: vineyard 

sites with five patches had between 150 and 400 bat passes compared to almost 

no bat activity in sites without patches of riparian vegetation (Figure 6b). Another 

variable included in this model was the proportion of urban area, which had a 

negative effect on bat activity. Higher activity of bats occur when proportion of 

urban area is close to 0%, while it decreased markedly when urban areas cover  

10% or more (Figure 6c).  

 

Table 9: Model of bat activity at 1500 m scale; model adjusted R2 = 48.52%; model p-value = 

0.0005. Variable p-value codes: ‘***’ p ≤ 0.001, ‘*’ p ≤ 0.05. 

 

Variable Estimate Std. Error t value p-value 

Intercept 276.025 105.572    2.615 0.0158 * 

Dist_water_bodies      -11.409       4.545   -2.510 0.0199 *   

Lp_urban_area -819.165     195.884   -4.182 0.0004 *** 

Npatch_waterline_tree 157.948      33.577    4.704 0.0001 *** 

 

a) b) 
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c) 

 

 

 

At the landscape scale, the proportion of waterline with trees had a positive 

effect in bat species richness (Table 10). We recorded a higher species richness 

in sites with higher proportion of waterline with trees; they had approximately 

1.5% of this habitat (Figure 7). Two other variables were included in final model: 

number of patches of pasture (negative effect) and patch density of water bodies 

(negative effect). However, both showed a non-significant relation with bat 

species richness.  

 

Table 10: Model of bat species richness at 1500 m scale; model adjusted R2 = 41.15%; model 

p_value = 0.0020. Variable p-value codes: ‘*’ p ≤ 0.05. 

Variable Estimate Std. Error t value p-value 

Intercept -15.627     11.890   -1.314    0.2023   

Lp_waterline_trees 19.153 7.526 2.545 0.0185 * 

Npatch_pasture -0.341 0.245 -1.393 0.1775 

Pdensity_water_bodies -1.539 0.817 -1.884 0.0728 

 

 

Figure 6: Relationships between fitted 

values of bat activity model (1500 m 

scale) and distance to water bodies (a), 

number of patches of waterline with trees 

(b) and landscape proportion of urban 

area (c). 
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Figure 7: Relationship between fitted values of bat species richness model (1500 m scale) and 

landscape proportion of waterline with trees. 

 

 

3.4. Activity of common bat species at landscape scale 

The activity of P. kuhlii decreased with higher proportion of urban area 

(Figure 8a), whereas it increased when the density of semi-natural habitats 

increases (Table 11). The higher activity values occur in sites with relatively high 

density of semi-natural habitats or “montados” (0.003%) (Figure 8b). 

 

Table 11: Model of P. kuhlii activity at 1500 m scale; model adjusted R2 = 24.15%; model p-value 

= 0.01596. Variable p-value codes: ‘*’ p ≤ 0.05. 

Variable Estimate Std. Error t value p-value 

Intercept -69.860       60.27 0  -1.159    0.2583   

Lp_urban_area -206.730 93.690 -2.206 0.0376 * 

Pdensity_snatural_habitat 145471.300 51849.700 2.806 0.0100 * 
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a) b) 

  

Figure 8: Relationships between fitted values of P. kuhlii model (1500 m scale) and landscape 

proportion of urban area (a) and patch density of semi-natural habitat (b). 

 

 

The activity of P. pygmaeus was higher when the number of semi-natural 

habitat patches increased, and peaked when there were approximately 20 

patches of “montado” (Figure 9). Patch density of urban area (negative effect) 

was also included in the final model, but had a non-significant relation with the 

activity of this species (Table 12). 

 

Table 12: Model of P. pygmaeus activity at 1500 m scale; model adjusted R2 = 15.21%; model 

p_value = 0.05745. Variable p-value codes: ‘*’ p ≤ 0.05 

Variable Estimate Std. Error t value p-value 

Intercept -6.302      54.190   -0.116    0.9084   

Npatch_snatural_habitat 45.588 18.513 2.462 0.0217 * 

Pdensity_urban_area -91743.210 45646.338 -2.010 0.0563 
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Figure 9: Relationship between fitted values of P. pygmaeus model (1500 m scale) and number 

of patches of semi-natural habitat. 

 

 

P. pipistrellus activity was higher in sites with higher proportion of waterline 

with trees and semi-natural habitats (Table 13). The highest values occur when 

the proportion of waterline with trees is 1.5% (Figure 10a) and in areas with more 

than 75% of “montados” surrounding the vineyard (Figure 10b). 

 

Table 13: Model of P. pipistrellus activity at 1500 m scale; model adjusted R2 = 47.62%; model 

p-value = 0.0002259. Variable p-value codes: ‘*’ p ≤ 0.05.  

  Variable Estimate Std. Error t value p-value 

Intercept -16.310      7.330 -2.226    0.0361 * 

Lp_snatural_habitat 26.290 11.560    2.274    0.0326 * 

Lp_waterline_trees 340.240 123.530    2.754    0.0113 * 
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a) b) 

  

Figure 10: Relationships between fitted values of P. pipistrellus model (1500 m scale) and 

landscape proportion of semi-natural habitat (a) and landscape proportion of waterline with trees 

(b). 

 

The model of N. leisleri activity was the only which included the random 

factor vineyard, hence we used the mixed model approach. In this case, the 

distance to semi-natural habitat had a positive effect in activity of N. leisleri and 

distance to water bodies had a negative effect (Table 14). The slope for distance 

to semi-natural habitat was -0.279, which means that activity of N. leisleri in 

proximity of semi-natural habitats is higher than away of this habitat. The higher 

value of activity of N. leisleri occurs when distance to semi-natural habitats is 

approximately 80 m (Figure 11a). The slope for distance to water bodies was 

0.300, indicating that activity of N. leisleri was lower in proximity of water bodies. 

The higher activity of N. leisleri (> 20 bat passes) occur when distance to water 

bodies is approximately 825 m (Figure 10b). 
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Table 14: Model of N. leisleri activity at 1500 m scale. Variable p-value codes: ‘*’ p ≤ 0.05. 

Variable Value Std. Error t-value p-value 

Intercept 4.108  3.266 1.256 0.2290 

Dist_snatural_habitat -0.279 0.134 -2.081 0.0563 

Dist_water_bodies 0.300 0.123 2.435 0.0289 * 

 

 

a) b)  

  

Figure 11: Relationships between fitted values of N. leisleri model (1500 m scale) and distance 

to semi-natural habitat (a) and distance to water bodies (b). 

 

In Table 15 it is possible observe the summary of the final models at 

vineyard (500 m) and landscape scale (1500 m).  
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Table 15: Summary table of the final models for the two spatial scales (500 and 1500 m). Variable 

p-value codes: ‘***’ p ≤ 0.001, ‘**’ p ≤ 0.01, ‘*’ p ≤ 0.05. 

Variables 500m 1500m 

ACTIVITY Coefficient Std. Error p-value Coefficient Std. Error p-value 

Dist_water_bodies 10.137 5.022 0.0565 -11.409 4.545 0.0199 * 

Dist_waterline_trees -9.601 2.805 0.0026 ** - - - 

Lp_urban_area - - - -819.165 195.884 0.0004 *** 

Lp_water_bodies 1334.581 284.607 0.0001 *** - - - 

Npatch_waterline_trees - - - 157.948 33.577 0.0001 *** 

Pdensity_urban_area -50695.616 37569.930 0.1916 - - - 

SPECIES RICHNESS Coefficient Std. Error p-value Coefficient Std. Error p-value 

Lp_water_bodies 3.979 2.078 0.0686 - - - 

Lp_waterline_trees 21.820 5.508 0.0007 *** 19.153 7.526 0.0185 * 

Npatch_pasture - - - -0.341 0.245 0.1775 

Pdensity_vineyard -253300 145700 0.0962 - - - 

Pdensity_water_bodies - - - -1.539 0.817 0.0728 

P. KUHLII Coefficient Std. Error p-value Coefficient Std. Error p-value 

Dist_waterline_trees -2.643 1.670 0.1272 - - - 

Lp_urban_area - - - -206.730 93.690 0.0376 * 

Pdensity_snatural_habitat - - - 145471.300 51849.700 0.0100 * 

Pdensity_water_bodies 51135.271 28304.496 0.0839 - - - 

P. PYGMAEUS Coefficient Std. Error p-value Coefficient Std. Error p-value 

Dist_waterline_trees -2.670 1.452 0.0816 - - - 

Lp_snatural_habitat -72.991 40.805 0.0896 - - - 

Lp_treeline -1011.010 517.072 0.0654 - - - 

Lp_olive -121.275 67.746 0.0894 - - - 

Npatch_snatural_habitat - - - 45.588 18.513 0.0217 * 

Npatch_urban_area -33.573 22.494 0.1520 - - - 
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Pdensity_pasture 44168.254 23652.984 0.0774 - - - 

Pdensity_urban_area - - - -91743.210 45646.338 0.0563 

P. PIPISTRELLUS Coefficient Std. Error p-value Coefficient Std. Error p-value 

Dist_waterline_trees -0.920 0.405 0.0338 * - - - 

Lp_snatural_habitat - - - 26.290 11.560 0.0326 * 

Lp_waterline_trees - - - 340.240 123.530 0.0113 * 

Lp_pasture -27.868 18.833 0.1538 - - - 

Lp_vineyard -34.564 15.472 0.0365 * - - - 

Pdensity_olive -6631.705 4368.590 0.1439 - - - 

N. LEISLERI Coefficient Std. Error p-value Coefficient Std. Error p-value 

Dist_snatural_habitat - - - -0.279 0.134 0.0563 

Dist_waterline_trees 0.203 0.078 0.0019 * - - - 

Dist_water_bodies 0.122 0.075 0.1249 0.300 0.123 0.0289 * 

Lp_waterline_trees 74.360 20.620 0.0019 ** - - - 

E_length_vineyard -0.002 < 0.001 0.0005 *** - - - 

Pdensity_pasture 3702 864.600 0.0004 *** - - - 

Pdensity_urban_area 1909 845.600 0.0359 * - - - 
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4. Discussion  

We aimed to investigate how the management and the natural structures, 

within and adjacent to vineyards, influence the bat community of these 

agricultural areas. We focused on bat activity, species richness and activity of the 

four most common species at two spatial scales: vineyard and landscape. 

 

4.1. Bat activity and species richness in vineyards 

Bat activity in vineyards was higher near to waterlines with trees and in 

sites with a high proportion of water bodies. Moreover, the positive effect of this 

habitat on bat activity extends into the adjacent areas of vineyards; bat activity 

peaks next to riparian vegetation and decreases until 500 m from it. Bat species 

richness also increased in sites with higher area covered by waterlines with trees. 

This strong link is evident even when there is a small area occupied by this 

habitat. Bat species richness peaked in vineyards with only 2% of riparian 

vegetation, where we recorded seven or eight species, compared to an average 

of four species in sites with no riparian vegetation. Water-related habitats are very 

important in Mediterranean regions because of the scarcity of water resources 

across the landscape (Carmel and Safriel, 1998; Russo and Jones, 2003; Rainho, 

2007). Specifically, riparian habitats are important for many insectivorous bats 

because they fulfill several ecological functions: they are highly used for foraging 

due to the high abundance of insect prey (Hutson et al., 2001; Fukui et al., 2006; 

Russo and Jones, 2003; Korine et al., 2016), and for commuting between roosts 

and feeding areas (Limpens and Kapteyn, 1991; Mickleburgh et al., 2002; Heim 

et al., 2018). Riparian habitats also provide shelter from wind and predators 

(Limpens and Kapteyn, 1991; Verboom and Huitema, 1997; Fukui et al., 2006) 

and an abundant source of fresh water for bats (Rainho and Palmeirim, 2011; 

Korine et al., 2016). This important relationship between bats and riparian 

vegetation that we observed in vineyards, has also been documented across 

several natural (Russo and Jones, 2003, Amorim et al. 2018) and urbanized 

landscapes (Boughey et al., 2011; Heim et al., 2015).  

Other types of wetlands – small dams and ponds - are also important for 

bat activity, as revealed in our analyses. The activity of bats increased linearly 
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and peaked at 30% cover of water bodies, although this was a noisy relationship. 

Similarly to waterlines these wetlands provide numerous foraging opportunities 

and high water availability (Stahlschmidt et al., 2012; Sirami et al., 2013, Korine 

et al., 2016, Heim et al., 2018).  

 

4.2. Activity of common bat species in vineyards 

Two of the four bat species that we analysed yielded overall significant 

models at the vineyard scale: P. pipistrellus and N. leisleri. The activity of P. 

pipistrellus was higher in proximity to waterlines with trees and in sites with low 

proportion of vineyard. These bats’ preference for tree lines has been reported 

by several authors (Downs and Racey, 2006; Dietz et al., 2009). P. pipistrellus 

bats prefer to fly along tree lines than in open farmland fields, presumably 

because of the high abundance of Diptera that congregate near these windbreaks 

(Pocock and Jennings, 2008). Riparian vegetation provides a much higher 

abundance of insect-prey than tree lines because it adds the numerous 

individuals emerging from the water surface (Fukui et al., 2006). In contrast, low 

P. pipistrellus activity was observed in sites of high vineyard cover. This 

agricultural system consists of a homogeneous, simplified structure (Altieri and 

Nicholls, 2002), which does not make it attractive for bats (Di Salvo et al., 2009). 

Moreover, the use of pesticides in vineyards decreases the overall insect-prey 

availability by reducing their abundance and diversity (Rodríguez-San Pedro et 

al., 2018). Additionally, sites with high cover of vineyards tend to be placed in 

central areas of the farms, further from the farm edges and from semi-natural 

habitats. Eight sites had more than 60% cover of vineyards within a 500 m radius, 

including three sites that had more than 90% cover. Conversely, sites near the 

edges of vineyards, which include other semi-natural habitat areas and their 

edges, seem to be preferred by these bats. Rodríguez-San Pedro et al. (2018) 

report a high bat feeding activity in vineyard edges, demonstrating the importance 

of these interfaces even when adjacent to homogeneous areas. This pattern was 

also observed in other intensively managed agricultural landscapes, where P. 

pipistrellus bats usually commute and feed along natural edges (Downs and 

Racey, 2006; Pocock and Jennings, 2008).  



  

45 
 

The waterlines with trees influences the activity of N. leisleri in contrasting 

ways. On the one hand, it was higher when the proportion of waterlines with trees 

increases in vineyards. But, the activity of N. leisleri was also lower near 

waterlines with trees. So, these bats prefer areas with riparian vegetation 

although they might not use these waterlines for foraging or follow them closely 

for commuting. Surprisingly, the activity of this bat species was higher in sites 

with higher density of urban areas. The response of bats to urbanization is 

species-specific: most species are negatively affected but open space foragers 

and bats with flexible roosting requirements can tolerate urban areas (Russo and 

Ancillotto, 2015; Jung and Threlfall, 2018). N. leisleri usually forages above the 

tree canopy, in the medium and high air space, and can also roost in buildings 

(Waters et al., 1999). These traits clearly indicate that although described as a 

mainly forest species (Dietz et al., 2009; Marques, 2013) it can also use urban 

areas. Additionally, the activity of this species also increases in locations with 

high density of pastures, which is one of its preferred foraging habitats (Dietz et 

al., 2009; Marques, 2013). Finally, the edge length of vineyards can be negative 

to N. leisleri activity. This may due to the fact of edge length of vineyards can 

decrease the edge length of highly used foraging habitats such as forest edges 

(Dietz et al., 2009).  

The activity two most common bat species in our data set - P. kuhlii and 

P. pygmaeus - increased near riverine habitats, which agrees with the habitat 

preferences of both (e. g. Rainho, 2007). Despite the abundant data, the two final 

models were uninformative and these results should be carefully evaluated. 

 

4.3. Bat activity and species richness at landscape scale  

In the scale of 1500 m, hereafter termed landscape scale, the overall bat 

activity was higher in the vicinity of water bodies and in locations with high number 

of patches of waterline with trees, but lower in areas with high proportion of urban 

area. Species richness also increased markedly in areas with high proportion of 

waterlines with trees. Therefore, both distance to and the availability of water 

sources are of utmost importance for bats (e. g. Salvarina, 2016), also for this 

spatial scale. We found evidence that waterlines with trees, although covering 

very small areas, are used by a large number of bat species of the community. 
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Therefore, the same factors that influence at the landscape scale, the ecological 

factors concerning bat foraging, commuting and water drinking, also influence the 

number of bat species using vineyards. Finally, our results indicate that vineyards 

with urban areas occupying more than 10% of the surrounding area have lower 

bat activity compared to those that have no urban areas nearby. This pattern is 

probably a result of the negative effect of urbanization on bat activity (Jung and 

Threlfall, 2018). It is likely that this negative effect spills over into the adjacent 

vineyards.  

 

4.4. Activity of common bat species at landscape scale  

At the landscape scale, all the four most common bat species had 

meaningful models. P. kuhlii, had lower activity in sites with high proportion of 

urban areas, while it was higher in vineyard sites with high density of “montados”. 

As referred above, bats are usually affected negatively by urban areas (Jung and 

Threlfall, 2018), however, P. kuhlii is often found in built up areas (Rainho, 2007; 

Dietz et al., 2009; Líson and Calvo, 2013), where it feeds on abundant insect-

prey in gardens, parks and around streetlamps. This concentration of activity in 

the urban areas may induce the low level of activity in the nearby vineyards. Also, 

vineyards surrounded by areas with high density of “montados” were most used 

by P. kuhlii. This generalist species is also often found in forested areas of the 

Iberian Peninsula (Líson and Calvo, 2013), including oak woodlands (Rainho, 

2007). “Montados” provide a high availability of tree roosts to bats, either tree 

holes or the spaces between the cork and the trunk. It also provides abundant 

insect prey particularly in areas with understory shrubs (Rainho, 2007). The good 

conditions of these mediterranean woodlands for bat species is reflected on the 

positive relationship with the other three species of bats, P. pygmaeus, P. 

pipistrellus and N. leisleri.  

Additionally, the higher P. pipistrellus activity in sites with great proportion 

of waterlines with trees may be related with its foraging strategy: this bat species 

patrols along linear structures to capture prey (Dietz et al., 2009). Moreover, our 

results are in agreement with other studies which demonstrated that P. 

pipistrellus foraged mostly above riparian vegetation (Carmel and Safriel, 1998) 

and shows a great preference for linear aquatic habitats (Líson and Calvo, 2013). 
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In the case of N. leisleri, the activity decreased in the vicinity of water bodies, 

demonstrating that distance to water is not important for this bat species. It is 

surprising, since in Europe bats have a clear affinity for aquatic habitats, even in 

areas with great proportion of water sources (Downs and Racey, 2006; Boughey 

et al., 2011).  

 

4.5. Comparing vineyard and landscape scales 

Our results suggest that the activity of bats is influenced by different 

structures and habitats at 500 or 1500 m however, the distance to water sources 

– waterlines with trees, and water bodies – was selected for the two spatial 

scales. Bat species richness had a similar pattern, which reinforces that the 

availability of water or freshwater habitats is very important for bats both at the 

vineyard and landscape scale. For P. kuhlii and P. pygmaeus, the two most 

common species, only the models at the landscape scale – larger scale of study 

- were informative. In contrast, the activity of P. pipistrellus was influenced by the 

presence of the same habitat – riparian vegetation – at both spatial scales.  

Finally, N. leisleri activity was related to different sets of variables at the two 

spatial scales, and often had contrasting relationships. This bat usually forages 

over large areas (7.4 - 18.4 km2, Waters et al., 1999), flying over the canopy in 

the medium layer of the airspace. Therefore, both the 500 m and 1500 m scales 

may be suboptimal to model this species (Jackson and Fahrig, 2015).  

In conclusion, although bat activity and species richness had similar 

patterns over the two analysed scales, the two most common bat species only 

had good models at the landscape scale. So, it is likely that there is a mismatch 

between the scale at which bats respond to the changes of the landscape and 

the scale at which managers may act. This potential gap can be filled with the 

coordination of groups of vineyard farmers or with the strong involvement of the 

regional planning authorities. 
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4.6. The relative contribution of vineyard practices and natural 

structures for bat communities 

In our study the type of vineyard management was included in only a few 

final models but none of the relationships yielded significant results (Appendix B), 

suggesting there are no differences of bat activity, species richness and the 

activity of the four most common bat species between vineyards under Integrated 

Farm Management (IFM) or organic management. Bat activity and species 

richness are presumably higher in organic compared to conventional farms 

because of the lack of synthetic pesticides in the organic areas (e. g. 

Wickramasinghe et al. 2003). So, our results may be related with the period of 

the bat surveys, which took place between the end of July and end August. When 

we started the surveys several weeks had passed since farmers last sprayed 

pesticides in the vineyards. Hence, the potential differences between the insect 

prey availability of two types of vineyards may have been reduced, abating the 

impact of the vineyard management system on the whole bat community.  

However, the reports of higher bat activity and species richness in organic 

farms has been subject to debate; several authors have reported this pattern 

(Wickramasinghe et al. 2003; Rodríguez-San Pedro et al., 2018), but others did 

not find it (Froidevaux et al., 2017; Olimpi and Philpott, 2018). An explanation for 

these apparently contrasting results is that the landscape features may play a 

decisive role on the bat activity and richness in agricultural areas. Our results also 

support this conclusion; we showed that there is an interaction between vineyard 

management and natural structures, but that the latter are more important for 

bats. Froidevaux et al. (2017) also found that bat activity and species richness 

was mainly influenced by landscape features regardless of the vineyard 

management, organic or conventional. Moreover, in a study encompassing 

several farming systems the authors did not find differences either in bat activity 

or diversity between conventional and organic farms (Olimpi and Philpott, 2018).  

It is noteworthy that organic farms show a higher availability of insects 

compared to conventional farms (e. g. Wickramasinghe et al., 2004) and as a 

consequence, these are apparently contrasting results. One likely explanation is 

the link between species mobility and higher influence of landscape features 

compared to the management. An example of this probable link within bats is 
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reported by Fuentes-Montemayor et al. (2013) and Pocock and Jennings (2008) 

but there is scant information in the literature. However, we can test this argument 

by assessing which factor, agricultural management or landscape features, 

influences most the abundance and species richness of animal groups with 

different mobility levels. Weibull and Ostman (2003) demonstrated that plants and 

carabids were most affected by farm management comparatively to landscape 

features. Additionally, Froidevaux et al. (2017) reported the same pattern for 

arachnids, which were more abundant in organic vineyards. In contrast, for 

butterflies, one of the invertebrate groups with higher mobility, the landscape 

structure and landscape features seemed to be more important than the farming 

system for high species diversity and composition (Weibull et al., 2000; Weibull 

and Ostman, 2003). Together with the examples of bats referred above, the 

higher influence of landscape features and heterogeneity over that of farm 

management is also observed in highly mobile vertebrate species, such as 

insectivorous birds (Piha et al., 2007; Smith et al., 2010). In conclusion, less 

mobile species, such plants, carabids, and arachnids, are less affected by 

landscape features and more influenced by farm management, while the effect 

of landscape features is stronger for the mobile invertebrate and vertebrate 

species, including bats.  

 

4.7. The potential contribution of common and rare bat species for pest 

regulation services 

Insectivorous bats play critical roles as primary predators in many 

ecosystems. They are the most important natural controllers of night flying 

insects, contributing to the suppression of insect populations, including 

agricultural pest species, in both natural and human-altered landscapes (Hutson 

et al., 2001; Kunz et al., 2011). Therefore, bats may provide economic value of 

pest-control services, i. e. reduce the pesticide application and avoid crop 

damage by insect-pests, contributing to ecosystem stability (Boyles et al., 2011; 

Kunz et al., 2011). Lindell et al. (2018) refer that common predator species are 

more likely to reduce pest populations than less common groups, probably due 

to their large combined biomass. Because of the very high numbers of individuals 

of common predator species, they are able to reduce pest populations even when 
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their individual consumption is low. However, rare or threatened bat species 

increase functional diversity (Mouillot et al., 2013) and can contribute decisively 

to natural pest regulation. Several agricultural pests are moths and some rare or 

threatened bat species feed mostly on these insects, such as horseshoe bats 

(Rhinolophus spp.) and Barbastelles (Barbastella barbastellus).  

 

4.8. Management implications 

Considering the decline of bat populations and their potential role in the 

regulation of insect pests in agricultural ecosystems, it is necessary to provide 

effective management recommendations that attract bats to and promote their 

use of vineyards. So, for land owners, managers and conservationists it is very 

important to understand which landscape elements are relevant and efficient to 

enhance species richness and thus vital ecosystem function in agricultural areas. 

Our results suggest that conservation actions to benefit bats should be to 

create or maintain linear features with trees, mainly those linked to water, either 

riparian vegetation or small agricultural dams. These landscape structures are 

important for bat populations within or near vineyards, and the small areas 

covered by them can increase markedly the suitability of landscapes for bats. 

Therefore, the restoration of riparian habitats should be a key component of 

agricultural management to promote bat conservation and increase their potential 

role as pest consumers. Patches of semi-natural habitats, such as “montados”, 

were also important for the activity of the most common bat species. Thus, 

keeping a landscape mosaic of vineyards and semi-natural habitats will also 

increase the suitability of these for bats. Heterogeneous landscapes that combine 

vineyards, riparian vegetation lines and patches of “montados” will be able to 

support large populations of bats and host a high species richness.   
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6. Appendix A 

 

Table 1A: Description of each land cover categories. 

Land cover categories Description 

Urban area 
Settlements, cities, roads, houses, and other 

human infrastructures  

Olive groves Olive groves, fruit crops, and orchards 

Semi-natural habitat 
“Montado”, forestry agricultural systems, and 

forests 

Unproductive area Quarries, and mines 

Waterline and wetland Runoff lines, and wetlands 

Waterline with tree 
Riparian habitats, and areas along rivers and 

stream corridors with vegetation  

Tree line Lines of trees 

Water body Water courses, rivers, lakes, and damns 

Pasture 
Pastures and non-cultivated open agricultural 

areas 

Vineyard Vine crops 
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7. Appendix B 
 

a)  b) 

  
Figure 1B: Plot (a) and boxplot (b) of relationship of bat activity and vineyard management: IFM 

(Integrated Farm Management) and Organic. 

 

 

a)  b) 

  
Figure 2B: Plot (a) and boxplot (b) of relationship of bat species richness and vineyard 

management: IFM (Integrated Farm Management) and Organic. 
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a) b) 

  
Figure 3B: Plot (a) and boxplot (b) of relationship of P. kuhlii activity and vineyard management: 

IFM (Integrated Farm Management) and Organic. 

 

 

a)  b) 

  
Figure 4B: Plot (a) and boxplot (b) of relationship of P. pygmaeus activity and vineyard 

management: IFM (Integrated Farm Management) and Organic. 
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a) b) 

  
Figure 5B: Plot (a) and boxplot (b) of relationship of P. pipistrellus activity and vineyard 

management: IFM (Integrated Farm Management) and Organic. 

 

 

a) b)  

  
Figure 6B: Plot (a) and boxplot (b) of relationship of N. leisleri activity and vineyard management: 

IFM (Integrated Farm Management) and Organic. 
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Table 1B: Model of bat activity at 500 m scale with exploratory variable 'management'; model 

adjusted R2 = 50.71% and p-value = 0.0003. Variable p-value codes: ‘***’ p ≤ 0.001, ‘**’ p ≤ 0.01, 

‘*’ p ≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept 18.491 142.462 0.130 0.8980 

Dist_water_bodies 10.614 5.102 2.080 0.0493 * 

Dist_waterline_trees -8.581 2.751 -3.119 0.0050 ** 

Lp_water_bodies 1343.326 289.792 4.635 0.0001 *** 

 

Table 2B: Model of bat species richness at 500 m scale with exploratory variable ‘management’; 

model adjusted R2 = 39.56% and p-value =0.0027. Variable p-value codes: ‘***’ p ≤ 0.001. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept 5.114 0.691 7.401 < 0.0001 *** 

Lp_water_bodies 3.979 2.078 1.915 0.0686 

Lp_waterline_trees 21.820 5.508 3.962 0.0007 *** 

Pdensity_vineyard -253300 145700 -1.738 0.0961 

 

Table 3B: Model of P. kuhlii activity at 500 m scale with exploratory variable ‘management’; model 

adjusted R2 = 11% and p-value = 0.1003. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept 65.137 52.391 1.243 0.2263 

Dist_waterline_trees -2.643 1.670 -1.582 0.1272 

Pdensity_water_bodies 51135.271 28304.496 1.807 0.0839 
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Table 4B: Model of P. pygmaeus activity at 500 m scale with exploratory variable ‘management’; 

model adjusted R2 = 15.46% and p-value = 0.1611. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept 148.353 73.650 2.014 0.0584 

Dist_waterline_trees -2.670 1.452 -1.839 0.0816 

Lp_olive_fruit -121.275 67.746 -1.790 0.0894 

Lp_snatural_habitat -72.991 40.805 -1.789 0.0896 

Lp_treeline -1011.010 517.072 -1.955 0.0654 

Npatch_urban_area -33.573 22.494 -1.493 0.1520 

Pdensity_pasture 44168.254 23652.984 1.867 0.0774 

 

Table 5B: Model of P. pipistrellus activity at 500 m scale with exploratory variable ‘management’; 

model adjusted R2 = 39.42% and p-value = 0.0051. Variable p-value codes: ‘***’ p ≤ 0.001, ‘*’ p ≤ 

0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept 69.789 13.094 5.330 < 0.0001 *** 

Dist_waterline_trees -0.920 0.405 -2.271 0.0338 * 

Lp_pasture -27.868 18.833 -1.480 0.1538 

Lp_vineyard -34.564 15.472 -2.234 0.0365 * 

Pdensity_olive_fruit -6631.705 4368.590 -1.518 0.1439 

 

Table 6B: Model of N. leisleri activity at 500 m scale with exploratory variable ‘management’; 

model adjusted R2 = 85.26% and p-value < 0.0001. Variable p-value codes: ‘***’ p ≤ 0.001, ‘**’ p 

≤ 0.01, ‘*’ p ≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept -4.871 3.236 -1.505 0.1496 

Dist_waterline_trees 0.266 0.008 3.333 0.0037 ** 

Lp_snatural_habitat -2.839 1.718 -1.653 0.1157 

Lp_waterline_trees 108.800 25.470 4.274 0.0005 *** 

E_length_vineyard 0.002 0.0004 -5.781 < 0.0001 *** 

Pdensity_pasture 2645 919.100 2.878 0.0100 ** 

Pdensity_urban_area 1804 803.800 2.244 0.0376 * 

Management 2.188 1.226 1.785 0.0910 
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Table 7B: Model of bat activity at 1500 m scale with exploratory variable ‘management’; model 

adjusted R2 = 53.99% and p-value = 0.0013. Variable p-value codes: ‘***’ p ≤ 0.001, ‘**’ p ≤ 0.01, 

‘*’ p ≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept -2087.341 1483.150 -1.407 0.1755 

Dist_snatural_habitat 7.703 5.064 1.521 0.1467 

Dist_water_bodies -13.572 4.475 -3.033 0.0068 ** 

Lp_urban_area -978.405 197.660 -4.950 < 0.0001 *** 

Npatch_waterline_trees 184.384 34.742 5.307 < 0.0001 *** 

Pdensity_water_bodies -152.416 101.981 -1.495 0.1515 

Management 116.623 63.508 1.836 0.0820 

 

Table 8B: Model of bat species richness at 1500 m scale with exploratory variable ‘management’; 

model adjusted R2 = 41.69% and p-value = 0.0018. Variable p-value codes: ‘*’ p ≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept -19.230 10.361 -1.863 0.0759 

Lp_waterline_trees 12.775 8.110 1.575 0.1295 

Pdensity_water_bodies -1.811 0.722 -2.510 0.0199 * 

Management -0.881 0.600 -1.469 0.1559 

 

Table 9B: Model of P. kuhlii activity at 1500 m scale with exploratory variable ‘management’; 

model adjusted R2 = 24.15% and p-value = 0.0160. Variable p-value codes: ‘*’ p ≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept -69.860 60.270 -1.159 0.2583 

Lp_urban_area -206.730 93.690 -2.206 0.0376 * 

Pdensity_snatural_habitat 145471.300 51849.700 2.806 0.0100 * 
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Table 10B: Model of P. pygmaeus activity at 1500 m scale with exploratory variable 

‘management’; model adjusted R2 = 11.10% and p-value = 0.0990. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept -44.840 45.940 -0.976 0.3392 

Pdensity_treeline -47090000 25320000 -1.860 0.0758 

Management 66.300 32.410 2.046 0.0524 

 

Table 11B: Model of P. pipistrellus activity at 1500 m scale with exploratory variable 

‘management’; model adjusted R2 = 47.62% and p-value = 0.0002. Variable p-value codes: ‘*’ p 

≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept -16.310 7.330 -2.226 0.0361 * 

Lp_snatural_habitat 26.290 11.560 2.274 0.0326 * 

Lp_waterline_trees 340.240 123.530 2.754 0.0113 * 

 

Table 12B: Model of N. leisleri activity at 1500 m scale with exploratory variable 'management'. 

Variable p-value codes: ‘*’ p ≤ 0.05. 

Variable Estimate Std.Error t value Pr (>|t|) 

Intercept 4.108 3.266 1.256 0.2290 

Dist_snatural_habitat -0.279 0.134 -2.081 0.0563 

Dist_water_bodies 0.300 0.123 2.435 0.0289 * 
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Final remarks 

With this study we aimed to infer which land uses types, presence of 

natural structures and management that most influence the activity and species 

richness of bats in Mediterranean vineyards. Additionally, we explored these 

relationships at two different spatial scales (500 and 1500 m).  

Relatively to natural structures, we observed that these features within and 

surrounding the vineyards are important for bats. From the studied landscape 

structures, the waterlines with trees appears to be the most important bats. 

Additionally, “montados” were the most important habitat for bat activity.  

In general, bat community appears to be influenced at the two spatial 

scales analysed (500 and 1500 m), although we observed that the 1500 m scale 

has more influence on the bat community. With exception of bat activity, all other 

models were better at the landscape scale (1500 m), demonstrating that stronger 

relationships between land use and species richness, P. kuhlii, P. pygmaeus and 

P pipistrellus activity were found at this scale. In case of N. leisleri activity, the 

final models had contrasting relationships, suggesting that both the 500 m and 

1500 m scales may be suboptimal to analyse the activity of this species. 

Contrary to our expectations, the management variable did not present 

significant results, suggesting that there was no significant differences in bat 

activity, species richness and in the activity of four most common species 

between IFM and organic vineyards. Apparently, the organic management of the 

agricultural parcels appears to be more influence in the increase of activity and 

species richness of vertebrates in homogeneous landscapes (i.e. 

Wickramasinghe et al., 2003; Rodríguez-San Pedro et al., 2018). Although our 

landscape is still somewhat heterogeneous, with different land uses, there seems 

to be an ongoing homogenization of the landscape. If this trend continues, it is 

expected that the management of agricultural areas will have a greater 

importance for the activity and species richness of bats in vineyards.  
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