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Abstract. In this paper it is considered a fourth order problem composed
of a fully nonlinear differential equation and functional boundary conditions
satisfying some monotone conditions.This functional dependence on u, u′ and
u′′and generalizes several types of boundary conditions such as Sturm-Liouville,
multipoint, maximum and/or minimum arguments, or nonlocal. The main
theorem is an existence and location result as it provides not only the existence,
but also some qualitative information about the solution.

1. Introduction. In this work we consider the problem composed of the fully
nonlinear fourth order equation

u(iv) (x) = f (x, u (x) , u′ (x) , u′′ (x) , u′′′ (x)) (1)

with x ∈ I := [0, 1] , where f : I × R4 → R is a continuous function, and the
functional boundary conditions

L0(u, u′, u′′, u(0)) = 0,
L1(u, u′, u′′, u′(0)) = 0,

L2(u, u′, u′′, u′′(0), u′′′(0)) = 0,
L3(u, u′, u′′, u′′(1), u′′′(1)) = 0,

(2)

where L0, L1 : C(I)3×R→ R and L2, L3 : C(I)3×R2 → R are continuous functions
satisfying some monotonicity assumptions to be defined in the sequel.

These type of fourth order problems have been studied by several authors with
different boundary conditions and several methods, see [4, 5, 7, 10, 11] and the
references therein. The functional dependence covers several types of boundary
conditions, such as separated, multi-point, nonlocal,...Therefore, the current result
improves, somehow, the papers referred to above.
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The method used was suggested by [3], applied to third order problems and by [1]
to fourth order, now improved with the functional dependence on every boundary
conditions, L0, L1, L2 and L3. In this sense, this paper improves also [2].

In short, the keypoints of the arguments are: a priori estimates on the third
derivative provided by a Nagumo-type condition ([10, 12]); an auxiliary and trun-
cated problem, where the corresponding linear and homogeneous problem has only
the trivial solution; an open and bounded set where the Leray-Schauder degree is
well defined ([9]).

Lower and upper solutions technique allows us to obtain not only the existence
of solutions but also to locate the solution and its first and second derivatives. In
fact, this location part can be useful to get some information about the existent
solution. Two examples: if lower and upper solutions are ordered and the lower
function is nonnegative or strictly positive, the solution is nonnegative or strictly
positive, respectively; if the second derivatives of lower and upper solutions have
the same sign, the solution is not trivial and, moreover, it can not be a straight line
(see Example 2 at last section).

2. Definitions and auxiliary results. In this section we define a Nagumo-type
growth condition on the nonlinear part of the differential equation that will be an
important tool to prove an a priori bound for the third derivative of the correspon-
ding solutions.

In the following, Ck([0, 1]) denotes the space of real valued functions with con-
tinuous i-derivative in [0, 1], for i = 1, ..., k, equipped with the norm

‖y‖Ck = max
0≤i≤k

{∣∣∣y(i)(x)
∣∣∣ : x ∈ [0, 1]

}
.

By C([0, 1]) we denote the space of continuous functions with the norm

‖y‖ = max
x∈[0,1]

|y(x)| .

Definition 2.1. Given a subset E ⊂ [0, 1] × R4, a continuos function f : E → R
is said to satisfy a Nagumo-type condition in E if there exists a real continuous
function hE : R+

0 → [k, +∞[, for some k > 0, such that

|f(x, y0, y1, y2, y3)| ≤ hE (|y3|) ∀ (x, y0, y1, y2, y3) ∈ E, (3)

with ∫ +∞

0

t

hE (t)
dt = +∞. (4)

Lemma 2.2. [[10], Lemma 1 ] Let f : [0, 1] × R4 → R be a continuous function
satisfying Nagumo-type conditions (3) and (4) in

E =
{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : γi (x) ≤ yi ≤ Γi (x) , i = 0, 1, 2

}
,

where γi (x) and Γi (x) are continuous functions such that, for i = 0, 1, 2,

γi (x) ≤ Γi (x) , ∀x ∈ [0, 1] .

Then for every ρ > 0 there is R > 0 such that every solution u (x) of equation
(1) satisfying

γi (x) ≤ u(i) (x) ≤ Γi (x) , ∀x ∈ [0, 1], (5)
for i = 0, 1, 2, satisfies ‖u′′′‖ < R.
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Remark 1. Observe that R depends only on the functions hE , γ2 and Γ2 and not
on the boundary conditions.

The following monotonicity assumptions on the boundary conditions will be con-
sidered:

(H1) L0, L1 : C([0, 1])3 × R → R are nondecreasing in all variables except
the fourth one.

(H2) L2 : C([0, 1])3 × R2 → R is nondecreasing in all variables, except the
fourth one.

(H3) L3 : C([0, 1])3×R2 → R is nondecreasing in the first, second and third
variables and nonincreasing in the fifth one.

Definition 2.3. A function α ∈ C4 ([0, 1]) is a lower solution of problem (1)-(2) if:

α(iv) (x) ≥ f (x, α (x) , α′ (x) , α′′ (x) , α′′′ (x)) , (6)

and
L0 (α, α′, α′′, α (0)) ≥ 0,
L1 (α, α′, α′′, α′ (0)) ≥ 0,

L2 (α, α′, α′′, α′′ (0) , α′′′ (0)) ≥ 0,
L3 (α, α′, α′′, α′′ (1) , α′′′ (1)) ≥ 0.

(7)

The function β ∈ C4 ([0, 1]) is an upper solution of the problem (1)-(2) if the
reversed inequalities hold.

3. Existence and location result. The main theorem can be said to be an ex-
istence and location result as it provides the existence of a solution but also some
strips where the solution and its first and second derivatives are located.

Theorem 3.1. Let f : [0, 1]×R4 → R be a continuous function. Suppose that there
are lower and upper solutions of the problem (1)-(2), α (x) and β (x), respectively,
such that,

α (0) ≤ β (0) , α′ (0) ≤ β′ (0) , α′′ (x) ≤ β′′ (x) , ∀x ∈ [0, 1] , (8)

f satisfies Nagumo conditions (3) and (4) in

E∗ =
{

(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : α (x) ≤ y0 ≤ β (x) ,
α′ (x) ≤ y1 ≤ β′ (x) , α′′ (x) ≤ y2 ≤ β′′ (x)

}

and
f (x, α, α′, y2, y3) ≥ f (x, y0, y1, y2, y3) ≥ f (x, β, β′, y2, y3) , (9)

for α (x) ≤ y0 ≤ β (x), α′ (x) ≤ y1 ≤ β′ (x), in [0, 1] , and fixed (x, y2, y3) ∈
[0, 1]× R2.

If conditions (H1) − (H3) hold, then problem (1)-(2) has at least one solution
u (x) ∈ C4 ([0, 1]), such that

α(i) (x) ≤ u(i) (x) ≤ β(i) (x) , ∀x ∈ [0, 1] , for i = 0, 1, 2.

Proof. Let us consider the continuous functions δi given by

δi (x, yi) =





α(i) (x) if yi < α(i) (x) ,
y(i) if α(i) (x) ≤ y(i) ≤ β(i) (x)

β(i) (x) if y(i) > β(i) (x) .

, i = 0, 1, 2, (10)
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For λ ∈ [0, 1], consider the homotopic equation

u(iv) (x) = λ (f (x, δ0 (x, u (x)) , δ1 (x, u′ (x)) , δ2 (x, u′′ (x)) , u′′′ (x))) (11)
+u′′ (x)− λδ2 (x, u′′ (x)) ,

and the boundary conditions

u (0) = λδ0 (0, u (0) + L0 (u, u′, u′′, u (0))) ,
u′ (0) = λδ1 (0, u′ (0) + L1 (u, u′, u′′, u′ (0))) ,

u′′ (0) = λδ2 (0, u′′ (0) + L2 (u, u′, u′′, u′′ (0) , u′′′ (0))) ,
u′′ (1) = λδ2 (1, u′′ (1) + L3 (u, u′, u′′, u′′ (1) , u′′′ (1))) .

(12)

Let r2 > 0 be large enough, such that, for every x ∈ [0, 1] ,

−r2 < α′′ (x) ≤ β′′ (x) < r2,
f (x, β (x) , β′ (x) , β′′ (x) , 0) + r2 − β′′ (x) > 0,
f (x, α (x) , α′ (x) , α′′ (x) , 0)− r2 − α′′ (x) < 0.

(13)

Step 1For every solution u (x) of the problem (11)-(12) we have

|u′′ (x)| < r2 |u′ (x)| < r1 |u (x)| < r0, ∀x ∈ [0, 1] ,

with r1 := r2 +max {|α′ (0)| , |β′ (0)|} and r0 := r1 +max {|α (0)| , |β (0)|}, indepen-
dentely of λ ∈ [0, 1] .

By contradiction assume that first condition does not hold. Then, there is λ ∈
[0, 1] , x ∈ [0, 1] and a solution u (x) of (11)-(12) such that |u′′ (x)| ≥ r2. In the case
u′′ (x) ≤ −r2 define

min
x∈[0,1]

u′′ (x) := u′′ (x0) ≤ −r2 < 0.

If x0 ∈ ]0, 1[ then u′′′ (x0) = 0 and u(iv) (x0) ≥ 0. Therefore by (9) and (13), for
λ ∈ [0, 1] , we obtain the following contradiction

0 ≤ u(iv) (x0) =
= λ (f (x0, δ0 (x0, u (x0)) , δ1 (x0, u

′ (x0)) , δ2 (x0, u
′′(x0)) , u′′(x0)))

+ u′′ (x0)− λδ2 (x0, u
′′(x0))

= λ (f (x0, δ0 (x0, u (x0)) , δ1 (x0, u
′ (x0)) , α′′(x0), 0)) + u′′ (x0)− α′′ (x0)

≤ λ (f (x0, α (x0) , α′ (x0) , α′′(x0), 0)) + r2 − α′′ (x0) < 0

If x0 = 0 then

min
x∈[0,1]

u′′ (x) := u′′ (0) ≤ −r2 < 0.

For λ ∈ ]0, 1] , by (12) and (10), the following contradiction is obtained

−r2 ≥ u′′ (0) = λδ2 (0, u′′ (0) + L2(u, u′, u′′, u′′(0), u′′′(0)))
≥ λα′′ (0) > −r2.

The arguments for x0 = 1, are similar and therefore u′′ (x) < r2, ∀x ∈ [0, 1] ,
∀λ ∈ [0, 1] .

The case u′′ (x) ≥ r2 is analogous and so

|u′′ (x)| < r2, ∀x ∈ [0, 1] ,∀λ ∈ [0, 1] .
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Integrating in [0, x] ,

u′(x) =
∫ x

0

u′′(s)ds + u′ (0)

=
∫ x

0

u′′(s)ds + λδ1 (0, u′ (0) + L1 (u, u′, u′′, u′(0))) .

Therefore,

|u′(x)| ≤
∫ x

0

|u′′(s)| ds + |λδ1 (0, u′ (0) + L1 (u, u′, u′′, u′(0)))|
< r2 + max {|α′ (0)| , |β′ (0)|} .

Similarly,

u(x) =
∫ x

0

u′(s)ds + u (0)

=
∫ x

0

u′(s)ds + λδ0 (0, u (0) + L0 (u, u′, u′′, u (0))) .

Therefore,

|u(x)| < r1 + max {|α (0)| , |β (0)|} , ∀x ∈ [0, 1] .

Step 2 - There is R > 0 such that, every solution u (x) of problem (11)-(12)
satisfies

|u′′′ (x)| < R, ∀x ∈ [0, 1] ,
independently of λ ∈ [0, 1] .

In order to apply Lemma 2.2, define the set

ER =
{
(x, y0, y1, y2, y3) ∈ [a, b]× R4 : −ri ≤ yi ≤ ri, i = 0, 1, 2

}
,

with ri, i = 0, 1, 2, given by Step 1, and, for λ ∈ [0, 1], the function Fλ : ER → R is
given by

Fλ (x, y0, y1, y2, y3) = λf (x, δ0 (x, y0) , δ1 (x, y1) , δ2 (x, y2) , y3) + y2 − λδ2 (x, y2) .

Since f satisfies (3) in ER,

|Fλ (x, y0, y1, y2, y3)| = |λf (x, δ0 (x, y0) , δ1 (x, y1) , δ2 (x, y2) , y3) + y2 − λδ2 (x, y2)|
≤ |λhER

(|y3|)|+ r2 + |λα′′(x)|
≤ hER

(|y3|) + 2r2.

So Fλ satisfies (3) with hE replaced by h̄ER
(x) := hER

(x) + 2r2 in ER. For the
integral condition, we have

∫ +∞

0

t

h̄ER (t)
dt =

∫ +∞

0

t

hER
(t) + 2r2

dt ≥

≥ 1
1 + 2r2

k

∫ +∞

0

t

hER (t)
dt = +∞,

and therefore (4) holds.
Applying Lemma 2.2 with γi (x) = −ri, Γi (x) = ri, i = 0, 1, 2, there exists R > 0

such that
|u′′′ (x)| < R, ∀x ∈ [a, b] .
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Observe that as r2 and hER
do not depend on λ, so R does not depend on λ.

Step 3 - Problem (11)-(12)has at least a solution u1 (x) for λ = 1.

Define the operators

L : C4 ([0, 1]) ⊂ C3 ([0, 1]) → C ([0, 1])× R4.

given by

Lu =
(
u(iv) − u′′, u (0) , u′ (0) , u′′ (0) , u′′ (1)

)
,

and Nλ : C3 ([a, b]) → C ([a, b])× R4, given by

Nλ =
(

λf (x, δ0 (x, u (x)) , δ1 (x, u′ (x)) , δ2 (x, u′′ (x)) , u′′′ (x))− λδ2 (x, u′′ (x)) ,
A0λ, A1λ, A2λ, A3λ

)
,

where

A0λ : = λδ0 (0, u (0) + L0 (u, u′, u′′, u (0))) ,

A1λ : = λδ1 (0, u′ (0) + L1 (u, u′, u′′, u′ (0))) ,

A2λ : = λδ2 (0, u′′ (0) + L2 (u, u′, u′′, u′′ (0) , u′′′ (0))) ,

A3λ : = λδ2 (1, u′′ (1) + L3 (u, u′, u′′, u′′ (1) , u′′′ (1))) .

As L−1 is compact it can be used to define completely continuous operator

Tλ :
(
C4 ([0, 1]) ,R

) → (
C4 ([0, 1]) ,R

)

given by
Tλ (u) = L−1Nλ (u) .

For ri, i = 0, 1, 2 and R given by Steps 1 and 2, we consider the set

Ω =
{

y ∈ C3 ([0, 1]) :
∥∥∥y(i)

∥∥∥ < ri, i = 0, 1, 2, ‖y′′′‖ < R
}

.

Therefore, the degree d (Tλ, Ω, 0) is well defined for every λ ∈ [0, 1] , and by the
invariance under homotopy, d (T0, Ω, 0) = d (T1, Ω, 0) .

The equation T0 (u) = u is equivalent to the homogeneous problem
{

u(iv)(x)− u′′ (x) = 0,
u (0) = u′ (0) = u′′ (0) = u′′ (1) = 0,

which admits only the trivial solution. Then, by degree theory, d (T0, Ω, 0) = ±1,
and so the equation u = T1 (u) has at least one solution. That is, the problem
consisting of the equation

u(iv) (x) = f (x, δ0 (x, u (x)) , δ1 (x, u′ (x)) , δ2 (x, u′′ (x)) , u′′′ (x)) (14)
+u′′ (x)− δ2 (x, u′′ (x))

and the boundary conditions

u(0) = δ0(0, u(0) + L0(u, u′, u′′, u(0))),
u′(0) = δ1(0, u′(0) + L1(u, u′, u′′, u′(0))),
u′′(0) = δ2(0, u′′(0) + L2(u, u′, u′′, u′′(0), u′′′(0))),
u′′(1) = δ2(1, u′′(1) + L3(u, u′, u′′, u′′(1), u′′′(1))),

has at least one solution u1 (x) in Ω.

Step 4 - The function u1 (x) is a solution of the problem (1)-(2)
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This function u1 (x) will be a solution of the original problem (1)-(2) if

α(i) (x) ≤ u
(i)
1 (x) ≤ β(i) (x) , i = 0, 1, 2, ∀x ∈ [0, 1] ,

and
α (0) ≤ u1 (0) + L0 (u1, u

′
1, u

′′
1 , u1 (0)) ≤ β (0)

α′ (0) ≤ u′1 (0) + L1 (u1, u
′
1, u

′′
1 , u′1 (0)) ≤ β′ (0)

α′′ (0) ≤ u′′1 (0) + L2 (u1, u
′
1, u

′′
1 , u′′1 (0) , u′′′1 (0)) ≤ β′′ (0)

α′′ (1) ≤ u′′1 (1) + L3 (u1, u
′
1, u

′′
1 , u′′1 (1) , u′′′1 (1)) ≤ β′′ (1)

hold.
Suppose, by contradiction, that there is x ∈ [0, 1] such that α′′ (x) > u′′1 (x) and

define
min

x∈[0,1]
[u′′1 (x)− α′′ (x)] := u′′1 (x2)− α′′ (x2) < 0.

If x2 ∈ ]0, 1[, then u′′′1 (x2) = α′′′ (x2) and u(iv) (x2) − α(iv) (x2) ≥ 0 and the
following contradiction is obtained, by (6)

0 ≤ u
(iv)
1 (x2)− α(iv) (x2)

= f (x2, δ0 (x2, u1 (x2)) , δ1 (x2, u
′
1 (x2)) , α′′ (x2) , α′′′ (x2))

+u′′1 (x2)− α′′ (x2)− α(iv) (x2)

< f (x2, α (x2) , α′ (x2) , α′′ (x2) , α′′′ (x2))− α(iv) (x2) ≤ 0

If x2 = 0, then

min
x∈[0,1]

[u′′1 (x)− α′′ (x)] := u′′1 (0)− α′′ (0) < 0

and

u′′1 (0) = δ2 (0, u′′1 (0) + L2 (u1, u
′
1, u

′′
1 , u′′1 (0) , u′′′1 (0)))

≥ α′′ (0) > u′′1 (0)

The case x2 = 1 follows similar arguments and, therefore α′′ (x) ≤ u′′1 (x), for
every x ∈ [0, 1] . Analogously it can be proved that u′′1 (x) ≤ β′′ (x), and so

α′′ (x) ≤ u′′1 (x) ≤ β′′ (x) , ∀x ∈ [0, 1] .

The inequalities

α′ (x) ≤ u′1 (x) ≤ β′ (x) , α (x) ≤ u1 (x) ≤ β (x) , ∀x ∈ [0, 1] ,

are easily obtained by integration.
As the boundary conditions, assume that

u1 (0) + L0 (u1, u
′
1, u

′′
1 , u1 (0)) < α (0) . (15)

By (10),
u1(0) = δ0(0, u1(0) + L0(u1, u

′
1, u

′′
1 , u1(0))) = α(0)

and, by (8), u′1(0) ≥ α′(0) and u′′1(0) ≥ α′′(0). Therefore, by (H1) and (7) this
contradiction with (15) is achieved:

u1 (0) + L0 (u1, u
′
1, u

′′
1 , u1 (0)) = α (0) + L0 (u1, u

′
1, u

′′
1 , α (0))

≥ α (0) + L0 (α, α′, α′′, α (0)) ≥ α (0) .

Analogously it is shown that u1 (0) + L0 (u1, u
′
1, u

′′
1 , u1 (0) , u′1 (0) , u′′1 (0)) ≤ β (0) .

Remaining inequalities can be proved by a similar technique.
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4. Examples. The first example deals with the fourth order equation

u(iv) (x) = −u (x)− u′ (x) + (u′′ (x))3 + |u′′′ (x) + 1|θ , (16)

where θ ∈ [0, 2] , and the functional boundary conditions

∫ 1

0
u(s)ds + max

x∈[0,1]
u′ (x) + u′′(x0)− ku (0) = 0

u(x1)− ηu′ (0) = 0

∫ 1

0
u(s)ds− u′′ (0) = 0

u′′′ (1) + u′′ (1) = 0

(17)

with k ≥ 41/6, η ≥ 2 and x0, x1 ∈ [0, 1] .
Functions α, β ∈ [0, 1] → R given by

α (x) = −x2 − x− 1 and β (x) = x2 + x + 1

are, respectively, lower and upper solutions for (16)-(17), with

f (x, y0, y1, y2, y3) = −y0 − y1 + y3
2 + |y3 + 1|θ ,

L0(z1, z2, z3, z4) =

1∫

0

z1ds + max
x∈[0,1]

z2 + z3(x0)− kz4,

L1(z1, z2, z3, z4) = z1(x1)− ηz4,

L2(z1, z2, z3, z4, z5) =

1∫

0

z1ds− z4,

L3(z1, z2, z3, z4, z5) = −z4 − z5.

As the continuous function f verifies (3) and (4) for

ϕE∗ (y3) = 14 + |y3 + 1|θ,

with θ ∈ [0, 2], in

E∗ =



(x, y0, y1, y2, y3) ∈ [0, 1]× R4 :

−x2 − x− 1 ≤ y0 ≤ x2 + x + 1
−2x− 1 ≤ y1 ≤ 2x + 1

−2 ≤ y2 ≤ 2





then, by Theorem 3.1, there is a solution u (x) for problem (16)- (17) such that

−x2 − x− 1 ≤ u (x) ≤ x2 + x + 1,

−2x− 1 ≤ u′ (x) ≤ 2x + 1,

−2 ≤ u′′(x) ≤ 2, ∀x ∈ [0, 1].
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Second example considers the fourth order multipoint problem




u(iv) (x) = −0.1(u(x))3 − 0.1|u′′0.01u′(x) + 20 3
√
|u′′′(x)|

+∞∑
n=1

a0
nu (xn) +

+∞∑
n=1

b0
nu′ (xn) +

+∞∑
n=1

c0
nu′′ (xn)− ku (0) = 0

+∞∑
n=1

a1
nu (x̂n) +

+∞∑
n=1

b1
nu′ (x̂n) +

+∞∑
n=1

c1
nu′′ (x̂n)− ηu′ (0) = 0

u′′ (0) + 2u′′′ (0) = 0
u′′ (1) = 2

, (18)

where
∑+∞

n=1 ai
n,

∑+∞
n=1 bi

n,
∑+∞

n=1 ci
n, for i = 0, 1, are positive convergent series to

ai, bi and ci, respectively, xn, x̂n ∈ [0, 1], k ≥ 7a0 + 8b0 + 8c0 and η ≥ 1
3 (7a1 + 8b1 +

8c1).
The functions α, β ∈ [0, 1] → R given by

α (x) = x2 and β (x) = −x3 + 4x2 + 3x + 1

are, respectively, lower and upper solutions of (18) with

f (x, y0, y1, y2, y3) = −0.1(y0)3 − 0.1|y2 − 2|e0.01y1 + 20 3
√
|y3|

L0(z1, z2, z3, z4) =
+∞∑
n=1

a0
nz1(xn) +

+∞∑
n=1

b0
nz2(xn) +

+∞∑
n=1

c0
nz3(xn)− kz4

L1(z1, z2, z3, z4) =
+∞∑
n=1

a1
nz1(x̂n) +

+∞∑
n=1

b1
nz2(x̂n) +

+∞∑
n=1

c1
nz3(x̂n)− ηz4

L2(z1, z2, z3, z4, z5) = z4 + 2z5

L3(z1, z2, z3, z4, z5) = z4 − 2.

As the continuous function f verifies (3) and (4) for

ϕE∗ (y3) = 34.3 + 0.6 e0.08 + 20 3
√
|y3|

in

E∗ =



(x, y0, y1, y2, y3) ∈ [0, 1]× R4 :

x2 ≤ y0 ≤ −x3 + 4x2 + 3x + 1
2x ≤ y1 ≤ −3x2 + 8x + 3

2 ≤ y2 ≤ −6x + 8





then, by Theorem 3.1, there is a solution u (x) of problem (18) such that, for every
x ∈ [0, 1],

x2 ≤ u (x) ≤ −x3 + 4x2 + 3x + 1, (19)
2x ≤ u′ (x) ≤ −3x2 + 8x + 3
2 ≤ u′′(x) ≤ −6x + 8. (20)

Remark that this solution u is nonnegative, by (19). Moreover, by (20), u is not
a trivial solution, neither can be a straight line.
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