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Abstract—This paper concerns the estimation of multiple
dynamical models from a set of observed trajectories. It proposes
vector valued gaussian random fields, representing dynamical
models and their vector fields, combined with a modified k-
means clustering algorithm to assign observed trajectories to
models. The assignment is done according to a likelihood function
obtained from applying the random field associated to a cluster,
to the data. The algorithm is shown to have several advantages
when compared with others: 1) it does not depend on a grid,
region of interest, grid resolution or interpolation method; 2)
the estimated vector fields has an associated uncertainty which
is given by the algorithm and taken into account. The paper
presents results obtained on synthetic trajectories that illustrate
the performance of the proposed algorithm.

I. INTRODUCTION

In many practical problems one is interested in finding
models describing some observed data that enable some form
of generalization and predictions to be done. One such ex-
ample is in traffic surveillance where cars move in particular
patterns determined by road geometry, traffic rules and driving
behavior. In these kind of problems, one objective is to check
if something abnormal is happening. This can be achieved by
having models describing normal behavior, and then check
observations against these models to measure how predictable
or unpredictable the behavior is. Models can be parameterized
by hand, but that involves a high labour cost and any change in
the road or in traffic rules would require human intervention to
re-parameterize the models. A better alternative is use machine
learning to automatically discover the models from the data
with minimum human intervention. The latter approach is
pursued here.

As input data, it is assumed that a set of trajectories are read-
ily available, one for each vehicle, represented as sequences
of points in a 2-dimensional space. The generation of these
trajectories is not considered here. It could, e.g., be a pre-
existing video processing system converting image sequences
to trajectories or have GPS equipped vehicles recording their
locations at regular time intervals.

The main objective is to learn a set of dynamical models,
in the form of vector fields, that best describe the observed
trajectories. Several works in the literature have considered

this or similar problems and have proposed different kinds of
solutions.

One approach is to learn a small set of vector fields
and allow switching among them so that several kinds of
trajectories can be described by fewer models with switching
in appropriate places. This technique has been used in [Nasci-
mento et al., 2013], [Nascimento et al., 2014], [Nascimento
et al., 2015]. In the aforementioned works, the switching
mechanism is space dependent and described by a field of
Markov matrices, where each matrix provides the transition
probabilities between the models at a particular point in space.
Since the active models are not observed (only the trajectory
points), these are considered hidden states. The problem is then
formulated as an Hidden Markov Model (HMM) where the
switching probabilities are estimated using the Expectation-
Maximization (EM) algorithm. The algorithms are further
complicated since in each step of the EM, the expectation step
requires a forward-backward algorithm to assign trajectory
points to models and the maximization step requires a full
iterative optimization problem on a probability space to be
solved.

A different approach, which aims to lower computational
complexity, is to consider a set of dynamical models where
each trajectory is to be described by exactly one model, as
in [Ferreira et al., 2013]. In that work, a new modified k-
means clustering algorithm is proposed so that each cluster
is represented by the trajectories that belong to the cluster,
instead of using a “centroid trajectory”. The usual euclidean
distance between a data point and the centroid of a cluster is
replaced by a similar measure between the trajectory velocities
and the velocities of the vector field estimated by the cluster.
The algorithms obtained are purely deterministic and solutions
are found by iteratively assigning trajectories and solving least-
squares problems.

In this paper, a new solution based on random vector fields
is proposed. Other works have also used random fields with
success for the purpose of obtaining vector fields from data,
e.g., [Kim et al., 2011] and [Barão and Marques, 2017]. The
idea here is to estimate multiple vector fields that best describe
the data, without switching between fields, as done in [Ferreira
et al., 2013], but taking advantage of the stochastic nature of
the random field methodology. As a result of this approach, the978-1-5386-5346-3/18/$31.00 c⃝ 2018 IEEE



solution yields several advantages over the other methods: 1)
the random field approach can be seen as a bayesian approach
where a prior random field is conditioned on the data to
provide a resulting field; 2) the predicted velocity vectors
are multivariable gaussians where the mean vectors provide
the expected velocity field and covariance matrices provide
the associated uncertainty; 3) it does not require a grid, so
that there are no grid resolution issues or artifacts due to
the interpolation method used. The method is illustrated in
synthetic trajectories similar to ones used for benchmarking
in other works.

The paper is divided in four main sections. Section II
provides background so that the paper is more self-contained:
basic random field theory is provided in section II-A and
the k-means algorithm is explained in section II-B. Section
section III formulates the main problem and proposes the
algorithm based on mixing the k-means and the random field.
Section III-A shows how random fields are used to predict
velocity fields and section III-B shows how the clustering
algorithm works. Finally, section IV provides simulation ex-
amples using synthetic data and section V presents concluding
remarks.

II. BACKGROUND

A. Gaussian random fields

Suppose that a regular grid of N × N points is available
and that a random variable Xij is placed at each node. In
general, the set of random variables is described by their
joint probability distribution p(X11, X12, . . . , XNN ). Now,
assuming that two variables at positions (n,m) and (r, s) are
observed to be xnm and xrs, then the probability distribution
for the remaining ones can updated to p(X11, . . . , XNN |
Xnm = xnm, Xrs = xrs), where the observed variables are
removed from the variables on the left. This very basic fact
is at the core of many learning algorithms. In particular, if
the variables are jointly gaussian, conditioning on observed
variables yields a closed form solution for the mean and
covariance of the remaining ones.

Now suppose that instead of a grid of points, a region with
uncountable many points is considered. In this case, there
are uncountable many random variables, one at each point
of the 2-dimensional space. It is no longer possible to write
a probability distribution, as done above for the grid, and a
new construction is required. This is where random fields
enter the scene. A random field is a generalization that allows
uncountable many points in some manifold M instead of a
finite number of points. A particular case of a random field is a
stochastic process, where the set of points (manifold) is usually
the real line, used for the time parameter. See [Rasmussen and
Williams, 2006] for an introduction to random fields.

This work will be dealing with 2-dimensional image spaces
where, at each point of the space, a random velocity vector is
assigned. Furthermore, it shall be assumed that for any set
of points in the image, the corresponding random velocity
vectors are jointly gaussian and satisfy the conditions of the
Kolmogorov extension theorem [Billingsley, 1995]. This kind

of formulation is usually called a vector valued gaussian
random field.

The gaussian random field is defined by a mean function
m(·) and a cross-covariance function K(·, ·) also known as
kernel. The mean function assigns a velocity vector m(x) to
each point x in the image, while the kernel K(x, x′) provides
the cross-covariance matrix between the velocity vectors at
points x and x′. In what follows, T (x) denotes the random
velocity vector at the point x.

Considering a selection of two distinct points x1 and x2,
their respective random vectors T1 ≜T (x1) and T2 ≜T (x2)
are jointly characterized by the multivariable gaussian distri-
bution [

T1

T2

]
∼ N

([
m1

m2

]
,

[
K11 K12

K21 K22

])
, (1)

where the more compact notation mi ≜m(xi) and
Kij ≜K(xi, xj) was used.

When an observation T1 = V is done, where V is a concrete
velocity, the random vector T2 at x2 is updated to a new
gaussian distribution

p(T2 | T1 = V ) = N (m∗
2,K

∗
22), (2)

with a new mean m∗
2 and covariance matrix K∗

22 given by

m∗
2 = m2 +K21K

−1
11 (V −m1), (3)

K∗
22 = K22 −K21K

−1
11 K12. (4)

The application of this result in a more general setting
is straightforward. Replace T1 = V by the training set
encompassing all the observed data, and x2 by the set of points
of interest for prediction. The resulting formula has the exact
same structure as (3)-(4), the only diference being the higher
dimensionality of the matrices and vectors involved.

B. k-means algorithm

The k-means algorithm aims to partition a dataset into k
non-overlapping clusters so that similar data is assigned to the
same cluster.

The algorithm starts by an initial assignment of data points
to clusters, e.g., random assignment, and then proceeds by
alternating the following two steps:

1) Compute the “centroids” of the clusters;
2) Assign data points to the clusters.

The centroid of a cluster represents the cluster itself and is
usually computed as the center of mass of the data points
assigned to that cluster. The assignment of data points to
clusters is done so that the distance between the point and
the chosen centroid is minimum among all centroids.

While many variants of the algorithm exist, the basic
algorithm described above works reasonably well in practice.
It converges to a local minimum when the Euclidean distance
is used, but can fail to converge when other distance functions
are used. Since it does not guarantee a global optimum,
many implementations resort to running it multiple times from
different initial cluster configurations and then select the best
one.



The version implemented in this paper differs in several
respects from the basic version above and is described next.

III. PROBLEM FORMULATION AND SOLUTION

In this paper, it is assumed that a set of trajectories x(t)
were generated by a set of N unknown velocity fields Tn(x),
n = 1, . . . , N . Our aim is to learn each of these fields from the
observed trajectories. Since it is unknown the field to which
a trajectory belongs, a clustering process is simultaneously
employed that makes a hard assignment of trajectories to
clusters based on a likelihood function. Then, a random field
corresponding to each cluster is re-estimated whenever the
trajectories assigned to a cluster change.

It is assumed that S continuous trajectories are sampled to
yield multiple sequences (x0, x1, . . . , xLs

) of Ls + 1 points,
s = 1, . . . , S. The time index is normalized here to whole
numbers. The normalized velocities can then be computed by
the differences vt = xt+1 − xt, so that there are Ls velocities
(v0, . . . , vLs−1) based at the points (x0, . . . , xLs−1).

A. Gaussian random field prediction

Let X and V be two L×2 matrices containing the observed
positions and corresponding velocities, organized so that each
row corresponds to a point of the trajectory. Then, it is possible
to predict the velocities at arbitrary points using equations (3)
and (4). The following assumptions are made to the gaussian
random field:

1) The random vector field has zero mean everywhere,
m(x) =

[
0 0

]
, so that the mean at a number of selected

points yields a matrix

m =

0 0
...

...
0 0

 . (5)

2) Given any two points xi and xj , the covariance matrix
between their respective random velocity vectors Ti and
Tj is isotropic and therefore the covariance matrix can
be written as Kij = kijI2×2, where kij ≜ k(xi, xj)
is a scalar function that depends only on the distance
between the two chosen points xi and xj , and I2×2 is
the identity matrix.
The isotropic assumption allows the representation of
cross-covariances to be greatly simplified by using the
reduced covariance matrix

K =

k11 · · · k1r
...

...
kr1 · · · krr

 . (6)

The full matrix would then given by the Kronecker
product

K⊗ I2×2 =

K11 · · · K1r

...
...

Kr1 · · · Krr

 . (7)

3) The kernel function k(·, ·) is a positive decreasing func-
tion depending only on the euclidean distance ∥x1−x2∥
between the two points. Common examples of kernel
functions are of the form

k(x1, x2)≜ exp(−α∥x1 − x2∥β), (8)

where the parameter α adjusts the decay rate. When the
exponent β = 1, the kernel is known as the Ornstein-
Uhlenbeck kernel function, and when β = 2 it is known
as the squared exponential function and produces more
smooth predictions.

These three assumptions imply a condition of strong sta-
tionarity in space, which makes practical sense since there are
no particular regions of interest.

Given the observed trajectory points, collected in a matrix
X, and the coordinates of interest for prediction X∗, the
covariance matrix can be computed using (8) which, when
written in partitioned form, is given by

K =

[
Kxx Kx∗
K∗x K∗∗

]
, (9)

where the subscripts x and ∗ denote respectively the part of
the observed data and the points where prediction is to take
place.

The velocity vectors can now be predicted using (3)-(4):

m∗ = K∗xK
−1
xxV (10)

K∗
∗∗ = K∗∗ −K∗xK

−1
xxKx∗ (11)

where the zero matrix m was dropped from equation (10).

B. Modified k-means clustering

While the standard k-means algorithm has an explicit rep-
resentation of clusters by a parameter vector — its centroid —
in this work each cluster is implicitly represented by the set of
trajectories assigned to it. This idea, also explored in [Ferreira
et al., 2013] in a different setting, is that the set of trajectories
in a cluster defines a corresponding gaussian random vector
field. Then, an arbitrary trajectory can be compared against
this random field to measure its “cost”.

Let Xn and Vn denote the points and velocities of all
trajectories assigned to cluster n, appropriately concatenated
into single matrices, and let (Xs,Vs) denote an arbitrary
trajectory. Then, using the random field generated by the
cluster, a prediction can be performed at the points Xs of
the trajectory using equations (10) and (11) to yield predicted
velocities T∗

s as random vectors. The predicted velocities are
Gaussian with mean m∗

s and covariance matrix K∗
ss.

The cost function basically measures how well the trajectory
(Xs,Vs) is predicted by the field and is defined by the log-
likelihood

Ln(Xs,Vs) = Tr
(
(Vs −m∗

s)(K
∗
ss)

−1(Vs −m∗
s)

T
)

(12)

of the cluster given the trajectory. This function effectively
replaces the usual euclidean distance from a data point to the
centroid of a cluster. The clustering algorithm then works by



iteratively assigning trajectories to the clusters having lower
cost.

Let τ : {1, . . . , S} → {1, . . . , N} denote a cluster assign-
ment function, which assigns trajectories to clusters, and its
inverse τ−1(n) gives the set of trajectories that belong to a
particular cluster n. The algorithm then iterates the following
two steps:

1) Compute a N×S log-likelihood matrix L. This process
uses the current assignment function τ so that, for each
trajectory s and cluster n, the log-likelihood matrix
components Lns ≜Ln(Xs,Vs) are given by:

m∗
s = KsnK

−1
nnVs, (13)

K∗
ss = Kss −KsnK

−1
nnK

T
sn, (14)

Lns = Tr
(
(Vs −m∗

s)(K
∗
ss)

−1(Vs −m∗
s)

T
)
. (15)

The matrix Knn is the cross-covariance matrix between
trajectories in τ−1(n) and Ksn is the cross-covariance
matrix between trajectory s and the ones in τ−1(n).

2) Update clusters. The assignment function τ is updated
according to

τ(s)≜ argmin
n

Ln(Xs,Vs), (16)

where the log-likelihood function Ln uses the assign-
ment function τ from the previous iteration.

The two steps are repeated until the cluster assignment
function τ converges. Since the assignment function τ only has
a finite number of possibilities, either the algorithm converges
or enters into a cycle. In either case it is interrupted.

IV. EXAMPLES

To illustrate the algorithm several sets of trajectories were
generated, moving horizontally/vertically, and moving cir-
cularly in clockwise and counter-clockwise directions. The
algorithm was applied to this set of trajectories with a squared-
exponential kernel with parameter α = 3.

Although not required by the algorithm, a grid of 11 ×
11 nodes was generated and prediction performed at those
points for illustrative purposes only. The images show, at each
node, the mean vector as a yellow arrow and the uncertainty,
measured by the log-trace of the covariance matrix, as gray
scale in background. Whiter areas mean lower uncertainty and
are associated with larger amounts of data in those regions.

Figure 1 illustrates the application of the algorithm when
the number of clusters corresponds exactly to the number of
models used to generate the data. In this case, a global optimal
solution was found with all the trajectories correctly assigned
to clusters, and the fields well estimated. This is not always
the case, as the algorithm can became stuck in local minima.

Figure 2 illustrates a different situation when, for the same
data, the number of clusters allowed is inferior to the number
of models generating the data. In this case, the algorithm
assigned trajectories to their closest match, so that linear
trajectories are aligned with the rotational direction of the
circular trajectories in their neighborhood.

V. CONCLUSIONS

In this paper, a new combination of gaussian random fields
and a k-means clustering algorithm was proposed. The aim
was to build dynamical models describing a set of trajectories
observed in a 2-dimensional space. The observed trajectories
can be though as describing the movement of vehicles, but the
same principle applies to moving people, animals or any other
object. The output of the algorithm is a set of models obtained
by first clustering the trajectories and then model each cluster
by a vector valued gaussian random field that represents its
own velocity field.

Using random fields shows some advantages over other
methods. It does not depend on an ad-hoc selection of grid
and interpolation method for the generation of a vector field,
as done in other works, and is sufficiently flexible to represent
many nonlinear systems. It also includes in a natural way the
description of all the uncertainties involved.

A modified k-means algorithm was also proposed to take
care of the assignment of trajectories to fields. While the
original algorithm uses a distance function and the notion
of centroid to represent a cluster, here a modification of the
algorithm was used where no centroid was explicitly used and
the distance was replaced by a cost function related to the
likelihood of the assignments. This way, clusters were defined
implicitly by the trajectories that make part of the cluster itself.

The combined use of gaussian processes and the k-means
algorithm raised some difficulties related to the high flexibility
with which the gaussian random field can explain data and the
fact that the k-means may not converge to a global optimum.
This drawback was somewhat mitigated by selecting a high
correlation function (kernel) even for distant points in space
which proved to be enough for the algorithm to work on most
situations.

The main drawback of the proposed algorithm is that the
random fields depend on all the observed data collected, as
opposed to just grid nodes as in other methods. This limits
the possibility of the algorithm to be used online without
implementing some form of forgetting in order to keep the
complexity constant.
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Fig. 1. Clustering of trajectories generated by 4 different models into 4 clusters.
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Fig. 2. Clustering of trajectories generated by 4 different models into just 2 clusters.
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