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A B S T R A C T

Soiling stands as a major problem for solar energy conversion technologies, causing unwanted transmittance,
reflectance and absorbance losses. In this paper, a TraCS (Tracking Cleanliness Sensor) is used to quantify soiling
effect in a flat mirror and to calculate soiling rates between periods without rain. Environmental parameters such
as vertical wind speed, air temperature, relative humidity and particulate matter in the atmosphere are used as
predictors to model soiling. Relations and trends between input and output are analyzed using a simple linear
regression model and also through an interaction model. Further investigation is performed with a neural
network approach to assess its viability for this type of problem and also for comparison with the previous
models.

1. Introduction

Soiling, the process of atmospheric particle settling on surfaces, is a
general problem and leads to the need of cleaning, e.g. glass windows of
skyscrapers, house cleaning, and nonetheless it is an obstacle for solar
conversion technologies [1–7]. It is known that soiling is mostly a local
phenomenon, which depends on with the amount of particles sus-
pended in the atmosphere, as well as on environmental conditions. The
rural region of Évora, Alentejo, Portugal (Southern Europe), has been
under study regarding the effect of soiling in PV technology. The most
severe seasons for soiling were identified [7], as well as occasional non-
local effects [6]. However, there is a lack of studies regarding the effect
of soiling in CSP compared to PV and none for this region or other
similar rural areas, which provides a unique research opportunity. The
direct effect of soiling in PV production is easier to investigate than in
any CSP technology, due to it intrinsic simplicity. This is one of the
reasons why CSP soiling studies are more scarce. It should be noted that
measurements of mass accumulation and transmittance/reflectance
losses on glass/mirror samples (in a static position, which is usual) can
be used as in PV technology related results. However, a more realistic
CSP study, might require samples to move throughout the day, to si-
mulate the tracking associated with such systems. Despite this, there are
already interesting studies about CSP soiling [8–11]. Additionally, a
higher soiling impact is expected in CSP than PV, due to the fact that
light goes twice through the soiling layer, which can lead to more
scatter and therefore less useful irradiance (given the small acceptance
angles of the concentrators). In fact, soiling will modify the light path,
not only when it reaches the mirrors, but also as it exits them and also

increase the internal reflections within the glass. Overall, this process
will result in a soiling effect which is 5–10 times worst than in PV [12].

It is the goal of this paper to develop soiling prediction models using
three different methods: (i) linear, (ii) linear with interaction terms and
(iii) a neural networks type. The prediction of soiling has been shown to
be very difficult, mainly because it is essentially an atmospheric pro-
cess, which usually needs to take into account many environmental
parameters, which makes the problem complex. The analysis will start
with a linear relationship to assess variable's trends. A linear regression
will also be tested with interaction terms to check if there is any relation
between the output and interlinked predictors. However, since the
process may be very complicated to solve explicitly, a neural network
with 1 hidden layer was designed and the optimum number of neurons
calculated through a similar process as in [13]. The objective is not only
to try to find different models that fit the data well and can serve as
prediction models, but also to evaluate possible trends and relations
between the variables, which can be explained from a physical point of
view.

2. Soiling effect and environmental measurements

2.1. Measurements setup

Measurements of soiling effect on mirror reflectance were per-
formed using a TraCS from CSP Services (Germany) mounted on a
SOLYS 2 sun tracker, from Kipp & Zonen (Holland, uncertainty≤ 2% for
pyrheliometer hourly values); vertical wind speed was retrieved using a
WindMaster Pro 3-Axis Anemometer from Gill Instruments (UK,
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uncertainty ≤ 1.5% RMS); particulate matter measurements were taken
with a DC1100 Pro from Dylos Corporation (USA, uncertainty ≤ 10%);
temperature, relative humidity and precipitation were measured at a
nearby meteorological station (≈ 750m) with a Thermo-Hygrometer
(Thies Clima, Germany, with uncertainty ≤ 3% for relative humidity
and 0.5 °C for temperature) and a Tipping Bucket Rain gauge from RM
Young (USA, uncertainty ≤ 2%), respectively. Below, in Fig. 1, are
presented the instruments referred before:

It should be noted that soiling effect is calculated through com-
parison between the direct normal irradiance, Ib, and the irradiance
measured by a second pyrheliometer, Ib

r, reflected by the TraCS's mirror
[14,15]. This mirror is rotating and performs a full revolution every
10min and due to the fact that sun spectrum is variable throughout the
day, daily means were calculated using data around solar noon. This
process will be explained afterwards.

2.2. Soiling index

The measurement campaign started in June 2017 and lasted until
the end of that year. The mirror was cleaned at the beginning of every
month from June to August and then left untouched, due to the start of
the raining season. During Summer, cleaning was performed to avoid
soiling saturation, above which no measurements could be done.

The soiling index, λ, here defined as the normalized ratio between
the reflected direct normal irradiance, Ib

r, from the mirror and measured
direct normal irradiance, Ib. The soiling index is represented in Fig. 2a
and given by:

= −λ
ρ
ρ

1 ,
0 (1)

where =ρ
I
I
b
r

b
. The parameter ρ0 corresponds to the maximum weighted

reflectance measured with the mirror cleaned. This value was calcu-
lated by the manufacturer after a series of tests and represents the clean
scenario mean reflectance.

The outcome of Eq. (1) is a null value in the absence of soiling, and
as the particle deposition increases the soiling index also increases.

The effect of manual cleaning done to the mirror until September
can be observed. It should be noted that the results derived from
cleaning are not always the same, probably due to improper cleaning,

as well as slight changes in mirror positioning, which can influence the
irradiance that strikes the pyrheliometer. However, for this study, re-
lative values are more important than absolute ones, since the soiling of
the next day will be compared to the previous one.

Regarding the data, it is seen that Summer is indeed the worst
season for soiling; perhaps an exception should be made for Spring (the
sensor was not working yet), when high soiling values were detected for
PV technology [7]. Later, in November and December, after rain and
dew formation has been detected regularly (more than during
Summer), λ recovered to low values.

2.3. Environmental parameters and methodology

Daily means were calculated following the schematic in Fig. 3. Two
different days are represented, where the yellow curve corresponds to
typical TraCS measurements. The mean of the soiling index of the day
before is represented by λi, while for the next day it is given by +λi 1 and
it is calculate around solar noon, represented by the black lines. The
difference between the previous day and the next day is represented by

λΔ , see Eq. (2).

= −+λ λ λΔ i i1 (2)

This parameter represents an increase of soiling from one day to the
following, if it is positive, and a reduction of soiling, if it is negative.
Particulate matter values, −PM0.5 2.5, correspond to a 24-h mean, from
14 h of the previous day to the next day, as well as vertical wind speed,
VWS. Temperature, T, and relative humidity, RH , are a result of the
mean from 9 h of the previous day until 6 h of the next day, see Fig. 3.
Since −PM0.5 2.5 measurements have no RH compensation, all −PM0.5 2.5
values (minutely scale) corresponding to RH above 65% were removed,
which implies that for some nights there are possibly no data for a few
hours. To characterize the night period, both T and RH were used,
which are also important for dew formation phenomenon, as well as
hygroscopic growth [16]. Periods with precipitation were removed,
since it is seen that is has a cleaning effect and the interest here is to
study other environmental parameters that are possible interlinked
with soiling effect.

Environmental parameters are presented in Fig. 4. It can be seen
that the particulate matter, in Fig. 4a, which represents particulate

Fig. 1. Measuring instrumentation: (a) TraCS and SOLYS2; (b) Dylos DC1100 Pro; (c) WindMaster Pro; (d) Meteorological station.
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matter between 0.5 and 2.5 µm, is rather constant throughout the
campaign, excluding peaks towards Fall, which are due to agricultural
activities (more intensive during that season). The parameter VWS,
present in Fig. 4b, is mostly negative, pointing downwards, and with
higher intensity during Summer compared to Fall, which likely in-
dicates higher strong and dry convection [17]. It should be noted that
VWS corresponds to the vertical component of the air direction, which
means that its positive velocity means pointing upwards while a ne-
gative value means pointing downwards. During Summer, T, presented
in Fig. 4c, is higher compared to other seasons, as expected, while RH ,
presented in Fig. 4d, has high values during the whole campaign,
however what is observed from Summer to Fall is the fact that these
tend to increase in frequency, which is understandable, since Summer
days are dryer.

3. Soiling modeling and prediction

3.1. Multiple linear regression model

The data for this model and the subsequent models is always the
same. The mean of the environmental parameters that will be related
with λΔ , for the different models, is derived as referred before.

A stepwise regression method was used, which is based in adding/
removing terms in a relation between predictors in order to achieve to
maximize some criterion. The criterion used for adding or removing
terms is the Adjusted R-Squared, adjr2, since the r2 will always increase
if more related terms are added.

The inputs, for all models, are: −PM0.5 2.5, PM0.5 (which stands for
particulate matter above 0.5 µm), VWS, T and RH . The output λΔ of the
multiple linear regression (MLR) model is given by:

= + + + …λ β β X β X β XΔ n n0 1 1 2 2 (3)

The stepwise method begins with only a constant term (intercept)

and follows towards a linear model, testing combinations of variables
and finalizes with the one that maximizes the adjr2. For this particular
model, only four inputs provide such combination: −PM0.5 2.5, VWS, T,
and RH . Such model has the following statistical parameters:
r2=0.150, adjr2=0.121 and RMSE=0.0045. The corresponding
equation for these predictors is shown in Eq. (4). The fact that PM0.5 is
not chosen as a variable that contributes to the model, has two causes:
the mutual correlation of PM0.5 and −PM0.5 2.5, which excludes one of
these variables from the relation; smaller particles have a higher scat-
tering effect than large ones [8].

= + + + +−λ β β PM β RH β T β VWSΔ MLR 0 1 0.5 2.5 2 3 4 (4)

Increased relative humidity has a positive impact on the output,
which was also detected in [18]. This can be explained by the fact that
hygroscopic growth starts to take place for high values of relative hu-
midity [16,19], which increases the water contend of some aerosol
species, making them more prone to settling [20]. Two different rea-
sons may also exist which are: if the relative humidity is high enough
there can be dew formation, which can trap particles more easily
through capillary forces [21], however if the amount of dew formed is
very high, it is more likely to clean the surface; if there is no dew for-
mation but there is an excess of water molecules aggregated to parti-
cles, that may enhance the electrostatic adhesion to surface since water
molecules are bipolar.

Higher air temperatures are also connected to more soiling. In this
context, higher air temperatures are connected to Summer days, while
lower values are connected to Fall. As seen in Fig. 2a, soiling is higher
during Summer and so are temperatures, which means that this output
and input are seasonally connected. This matter will be deepened
afterwards. Vertical wind speed has a positive effect on soiling, which
means that enhances it when pointing downwards, increasing particle
deposition.

As expected, such linear model is not complex enough to explain
how these variables may be related with the loss/gain of soiling from
one day to the other. Such model has been studied by others [18,22],
with a r2=0.167, which is a similar value to the one found here.
However, it should be noted that Guo and co-workers obtained this
value using 10 variables, which means that using only 4 would certainly
lead to a lower r2.

3.2. Multiple linear regression of interaction terms model

Previous analysis shows that using a simple linear model is not
enough to explain λΔ and most likely the predictors are connected to
each other, since dust deposition and re-suspension are processes that
may depend on such combinations. A multiple linear regression model
of interaction terms, MLRIT, is now considered as follows:

Fig. 2. (a) Soiling index; (b) Precipitation.

Fig. 3. Calculation process schematic.
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= + + …
− −λ β β X β X β X β XΔ n n n n0 1 1 2 2 1 1 (5)

The stepwise method is exactly the same as for the MLR with the
same criterion, which yields the Eq. (6):

= + × + ×

+ × + ×

− −λ β β PM VWS β PM RH
β VWS RH β RH T

Δ ( ) 2( )
3( ) 4( )

MLRIT 0 1 0.5 2.5 0.5 2.5

(6)

However the variables that maximize MLRIT are the same that do so
for MLR, these no longer contribute independently to the output. Such
model has the following statistical parameters: r2=0.279,
adjr2=0.228 and RMSE=0.0042. This model has a higher r2 and adjr2

and lower RMSE than MLR model, as expected. The improvement of r2

from MLR to MLRIT, near the double, shows the importance of inter-
action terms and the failure of simple linear models. Interaction terms
have real physical meaning in the description of soiling, for instance,
the interaction between −PM0.5 2.5 and VWS highlights the enhancement
in soiling found at high levels of particulate matter and downward
moderate winds.

It should be noted that r2 value for MLRIT is close to the ones in [23]
for an artificial neural network with one hidden layer having 5 neurons.
But more on neural networks will be discussed afterwards.

Fig. 5 represents the scatter plots (colors representing intensities of
λΔ ), of the interaction variables presented in Eq. (6). It should be noted

that all circles within Fig. 5 contain more than 50% of the points cor-
responding to >Δλ 0.008, which statistically ensures that these areas
are the ones with the highest concentration of points representing si-
tuations where soiling increased from one day to the next.

It can be observed in Fig. 5a that most of the points corresponding to
a substantial increasing in soiling are connected to downwards winds
(magenta circle), however if there are more particles and the wind is
blowing upwards (at a very low velocity) there can also be deposition,

which demonstrates the importance of particle concentration. In Fig. 5b
it can been seen that higher relative humidity is related to more de-
position, as referred before, through an increased particle size and
subsequent deposition [20], due to an increased electrostatic attraction
or possible minimal dew formation, which allows for particles to be
easier retained.

From Fig. 5c, it can be seen that the combination of downwards
wind and high relative humidity may lead to higher particle deposition
and consequently performance loss. Wind blowing downwards, to-
gether with possible particle hygroscopic growth enhances particle
deposition (through increased particle adhesion). It can be seen that
even for very low downward and upward winds there is deposition.
This means that relative humidity is an extreme important factor, in this
case, for soiling enhancement.

Fig. 5d shows a very interesting combination, which is that high air
temperatures and relative humidity are somehow connected to in-
creased soiling. This situation is probably representing what happens
during Summer (when most of the times the soiling increased from day-
to- day), when there may exist moderate temperatures and relative
humidity. What can be possibly happening is during Summer there are
normally higher temperatures compared to Fall, while there are more
nights with higher relative humidity on Fall compared to Summer. This
way, dew does not form so frequently during Summer, or it forms but at
minimal amounts and dries faster, which can increase particle deposi-
tion, while during Fall, lower temperatures and possibly more fre-
quently dew formation in larger amounts will not dry that fast, allowing
surface cleaning. For higher clarity, the 3D scatter plot in Fig. 6 can be
observed.

The upward wind data points were removed from the plot for better
visualization. It is observed that most of the points related to a decrease
of λΔ are located in the bottom right corner, which corresponds to

Fig. 4. Environmental parameters: (a) −PM0.5 2.5; (b) VWS; (c) T; (d) RH .
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higher temperatures and relative humidity and moderate values of
downwards wind speed. This summarizes what as been stated before in
terms of environmental parameters.

It should be noted that MLRIT explains better the variation of the
output, however it yields a poor result. It is known that this is a very
complex problem to solve, however this study is important, because it
shows unknown trends in the data and between variables, which can
help in the future other researchers to achieve an analytical model.
Next section will treat this problem with neural networks to access their

potential in this field.

3.3. Neural Network

Artificial neural networks (ANN) have been vastly used in the last
decade with different scopes [24–26] due to its potential to deal with
highly complex problems, for which there is not yet an analytical so-
lution. This seems to be one of those problems, where only trends could
be understood on the data (which is also important). A single layer
perceptron, see Fig. 7, is tested, which is a neural network with only
one hidden layer. For more information on neural networks see [27].

The training algorithm chosen was the Levenberg-Marquardt [28].

Fig. 5. Predictors effects between: (a) −PM0.5 2.5 and VWS; (b) −PM0.5 2.5 and RH ; (c) VWS and RH ; (d) T and RH .

Fig. 6. Three dimensional scatter plot of predictors and output.

Fig. 7. ANN architecture.
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To find the optimum number of neurons in each hidden layer, the da-
taset was divided in two: one for designing purposes (90% of the data)
and the other for calculating the mean square error, MSE, of those
designs. The maximum number of neurons tested was 10, to avoid
overfitting. Each design was tested 10 times [13] and MSE (the chosen
performance index) calculated each time, using the testing dataset. The
design with the lowest MSE was selected, to improve generalization for
new data. For the hidden, layer a sigmoid function was selected, while
for the output layer a linear one was used. It should be noted that inputs
and outputs of ANN are the same as in for MLR and MLRIT. The results
comparing the targets with the output from ANN are shown in Fig. 8:

Due to the lack of more extensive data series and additional vari-
ables in the model, like turbulence and confirmation of dew formation,
it was not possible to increase the explained variability of the problem.
Nevertheless, this is a fast process and gives better results than linear
models. If there is not an analytical solution for this problem, ANN
appears to be a promising tool, although there is the need of finding all
the variables that somehow contribute to the solution Table 1.

3.4. Model comparison and discussion

It can be observed in Table 2 the statistical parameters chosen to
evaluate the goodness of the fit for the different models.

From the most simple to the more complex model, it is stated an
increase in r2 and a decrease in both RMSE and MSE is shown, as ex-
pected. The simpler models, MLR and MLRIT, besides their low ability
to explain the variability in the data, are important for a fundamental
study in terms of basic relations and trends between the predictors and

the output. MLRIT is important, because it shows how the predictors
can be interlinked with each other and the effect on the output. ANN on
the other hand do not serve to study the physical meaning behind the
data, but it is instead a tool that can be used to solve complex problems.
It was not possible to achieve higher r2 values, although they are higher
than the ones found, for instance, in [18]. Possibly more data points are
required, for instance, to increase ANN learning skill, using more ex-
amples, but also because there are more variables that need to be in-
troduced, like knowing exactly when dew and very light rain occurred,
which can be very important for both cleaning or soiling increase, while
atmospheric turbulence and convection may also play a role, as well as
other variables. The time-scale, in which the variables and output is
calculated, is related to the results, so there is a need for a deeper study
of these topics.

4. Conclusions

This study contributes to enrich knowledge on the effect of soiling in
the loss of reflectance of mirrors, which is connected to CSP technolo-
gies, and most specific to Fresnel and tower, since the reflectors are flat
or nearly so. It should be noted that many more studies have been done
regarding PV and therefore the effect of soiling in glass transmittance.
That underscores the need for more studies of this kind. It should also
be noted that this is the first paper, to the authors best knowledge,
dealing with TraCS data and relating it with environmental parameters.
It was possible to observe well defined soiling rates during Summer, as
expected, and make a comparison between them and the ones from a
PV system, as well as to detect trends between soiling increase/decrease
and environmental behaviour. Soiling prediction was also made using
artificial neural networks, however better results can be obtained if
more data, variables and different time-scales are used.
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