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Abstract Due to complexity and intractability reasons, most of the ana-
lytical studies on the reliability of communication paths in mobile ad hoc
networks are based on the assumption of link independence. In this paper,
an analytical framework is developed to characterize the random behavior
of a multihop path and derive path metrics to characterize the reliability
of paths. This is achieved through the modeling of a multihop path as a
PDMP (piecewise deterministic Markov process). Two path based metrics
are obtained as expectations of functionals of the process: the mean path
duration and the path persistence. We show that these metrics are the
unique solution of a set of integro-differential equations and provide a re-
cursive scheme for their computation. Finally, numerical results illustrate the
computation of the metrics; these results are compared with independent link
approximation results.

1 Introduction

Mobile ad hoc networks (MANETs) nodes can dynamically form a network
in a self-organizing manner without the need of an existing fixed infrastruc-
ture. An inherent property of these networks is that communication between
nodes usually occurs over a multihop path. Therefore, the functionality of
the network depends on the reliability of communication paths. On the other
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hand, these are dependent on the stability of the links along the path and
their dependence structure. In the case of a link failure, the path needs to be
either repaired, by finding another link, or replaced with a newly found path.
The rerouting operations affect the quality of service and degrade network
performance.

Modeling the random movement of nodes in a multihop path plays an im-
portant role in examining the statistical properties of link and path reliability.
In the general case, the evolution of a multihop path in an ad hoc network,
requires a systematic formulation of the geometrical relations governing the
complex problem of random movement of the nodes along the multihop path,
with the state of its links limited by power constraints and channel effects.
A link shares a common node with each of its neighboor links. These depen-
dences on the mobility of the shared nodes between links, may be extended to
other links in the case of group mobility models where the mobility of nodes is
correlated. The multihop path model should be used to predict the evolution
of a path through the derivation of path metrics characterizing its reliability.
These metrics can then be used in the design and performance evaluation of
routing strategies. Given that a path is set-up (or already active) at time 0,
the path duration refers to the amount of time the path remains available
until one of its links fails for the first time. The path persistence is defined
as the probability that the path is continuously in existence until time t0
provided the path is set-up (or already active) at time 0.

This paper proposes an analytical framework to fully describe the random
behavior of a multihop path in ad hoc networks and obtain path based met-
rics for computing its reliability. The path is characterized through a Picewise
Deterministic Markov Processes (PDMP, see Davis [3]) where, for simplicity,
the mobility of each node along the path is given by the random walk model
(other models [2], including group mobility models, admit a PDMP descrip-
tion of a multihop path; this fact will be explored in future work). A PDMP
is a Markov process that follows deterministic trajectories between random
jumps, which occur either spontaneously, in a Poisson-like fashion, or when
the process hits the boundary of its state space. We consider two main expec-
tations of functionals of the multihop process: the mean path duration and
the path persistence for different initial conditions. We establish that these
path metrics are the unique solution of a set of integro-differential equations.
Since direct methods to solve them are problematic, we introduce a recursive
method by which numerical solutions of the metrics can be obtained. Our
work creatively applies the power of the PDMP formalism and the methods
presented in [3] (Chapters 2 and 3) to study the reliability of multihops paths
in ad hoc networks. Finally, we compute numerical results for the metrics and
compare them with those obtained when assuming independent links.

An exact analysis of the reliability of multihop paths appears to be un-
available in the literature. Most analytical studies that focus on link stability
extend the analysis for multihop paths assuming independent link failures
(e.g., [4, 7, 8, 9]). In [7], the path availability has been analyzed when nodes



An Analytical Framework to Infer Multihop Path Reliability in MANETs 3

move according to the random walk mobility model. [8] investigates the path
duration assuming that nodes do not change direction. Xu et al. [9] used a
Markov chain mobility model to derive several path metrics. Han et al. [4]
proved that when the link count is large, the distribution of path duration
converges to an exponential distribution. La and Han [6] relax the indepen-
dence assumption for the links in [4] requiring that the dependence between
links goes away asymptotically with increasing link count. Bai et al. [1] inves-
tigate path durations under different mobility models and routing protocols
based on simulations.

The paper is organized as follows. Section 2 describes the multihop path
model. Section 3 shows that the mean path duration and the path persistence
are the unique solution of a set of integro-differential equations. Section 4
gives a recursive method to apply in the computation of the path metrics.
Numerical results are presented in Section 5. Finally, Section 6 concludes the
paper and gives some research directions.

2 Multihop Path

We consider that a multihop path is set-up (or already active) at time 0 with
N − 1 links and extends from node 1 along nodes 2, 3, . . . , until it reaches
node N . Each node in the path moves across the plane independently of other
nodes according to a variation of the random walk mobility model [2] next
described.

2.1 Random Walk Mobility Model

A node alternates between two phases: pause (0) and move (1). If at a tran-
sition instant a node goes into phase i, the amount of time it stays in phase
i is drawn independently of the past according to a continuous distribution
function Fi with support on the set R+. We assume that the hazard rate
function of Fi, denoted by λi(t) = dFi(t)/(1 − Fi(t)), is bounded on the
positive reals. When the phase of a node changes to move, the node picks a
mobility vector according to a distribution function FM on an open set SM .
Choosing a mobility vector m corresponds to choosing independently a direc-
tion θ and a velocity v through m = (v cos θ, v sin θ). The node travels from
the current location in the direction and with the velocity drawn from the
mobility vector during the entire phase duration, with distribution F1. Once
this time expires, independently of the past, the node pauses for a random
time period with distribution F0 before starting to move again.
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2.2 Link Duration

We consider a transmission range R equal for all nodes in the multihop path.
Given two consecutive nodes in the path, i − 1 and i with locations in the
plane li−1 and li, respectively, they can communicate if ‖li−1 − li‖ < R.

In cellular networks, the characterization of the handoff metrics is based
on the analysis of the movement of a node with respect to a fixed base station
[5]. In ad hoc networks, the link duration can be transformed into the handoff
problem by considering the relative movement between the two link nodes.
Let pj denote the phase of node j and mj its mobility vector if pj = 1 (i.e
the node is in the move phase). The relative location and relative mobility
vector of node i with respect to node i− 1 are defined, respectively, by

lir = li − li−1, mi
r = mi −mi−1

where mi (resp. mi−1) is omitted in the expression if pi = 0 (resp. pi−1 =
0), and if both nodes are in pause phases mi

r = 0 with 0 = (0, 0). Let
x→ (‖x‖, θ(x)) denote the one-to-one correspondence between the cartesian
coordinates in the plane and the polar coordinates on {0} ∪ R+ × [0, 2π[
with 0 being the polar coordinates of the cartesian origin. From the relative
mobility vector mi

r, the direction and velocity of node i with respect to node
i− 1 are, respectively, θ(mi

r) and ‖mi
r‖. In Figure ??, it is shown the relative

motion of node i, within the transmission region SL = {x ∈ R2 : ‖x‖ < R}
with respect to node i− 1. After traveling a distance

Z(lir,m
i
r) =

√
R2 − (‖lir‖ sin θ′)2 − ‖lir‖ cos θ′

where θ′ = |θ(mi
r)− θ(lir)|, node i moves out of the range of node i− 1. The

duration of the link i is

dlink(lir,m
i
r) = Z(lir,m

i
r)/‖mi

r‖

for mi
r 6= 0. Case mi

r = 0, the duration of the link is infinity and we set
dlink(lir,m

i
r) =∞.

2.3 Multihop path model

To characterize the multihop path as a PDMP we need to incorporate for each
node in the path, ‘the phase’, ‘the elapsed time since last phase transition’,
‘the mobility vector’ and ‘the relative location with respect to the previous
node’. Thus, we obtain a process X = (P,A) with P = (P i)1≤i≤N where P i

is the phase process of node i, and A = (E,M,Lr) where E = (Ei)1≤i≤N ,
M = (M i)1≤i≤N and Lr = (Lir)2≤i≤N . The process Ei gives the elapsed time
since the last phase transition of node i, M i is the mobility vector process of
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node i if P i(t) = 1 (and is omitted if P i(t) = 0), and finally, Lir is the process
of the relative location of node i with respect to node i − 1. The process X
is a PDMP characterized as follows.

The Deterministic Motion and State Space

Constructing a PDMP as a path model requires a description of the determin-
istic trajectory of the process between random jumps along with the explicit
definition of the boundary of its state space where jumps occur.

From the definition of X, a state will be denoted by x = (p,a) where a =
(e,m, lr) with the vector p = (p1, . . . , pN ) containing the phases of nodes,
e = (e1, . . . , eN ) the elapsed times of the nodes in their current phases, m =
(m1, . . . ,mN ) including the mobility vectors of the nodes, having dimension
N when all pj = 1 and with mj omitted if pj = 0, and lr = (l2r , . . . , l

N
r )

the relative locations of nodes 2, 3, . . . , N relative to nodes 1, 2, . . . , N − 1,
respectively. From a state x, the deterministic trajectory of X until the next
jump is characterized by φ(t,x) = (p, φp(t,a)) with

φp(t,a) = (e + t1,m, lr + tmr), t ∈ R

representing the evolution of the component a over time, where 1 denotes a
vector of 1′s with dimension N and the vector mr = (m2

r, . . . ,m
N
r ) con-

tains the relative mobility vectors of nodes 2, 3, . . . , N relative to nodes
1, 2, . . . , N − 1, respectively.

Consider the set

Sp =]0,∞[N×SM
P
pi × SLN−1

where we recall that SM and SL are open sets, and let ∂Sp denote the bound-
ary of the set Sp. Now, define

∂+Sp = {a′ ∈ ∂Sp : a′ = φp(t,a) for some a ∈ Sp, t > 0}

given by the set of boundary points at which the multihop path process exits
from Sp and

∂−Sp = {a′ ∈ ∂Sp : a′ = φp(−t,a) for some a ∈ Sp, t > 0}

the set of boundary points that take the process into Sp. The disjoint union
of the sets ∂+Sp is

B =
∐

p∈{0,1}n
∂+Sp = {(p,a) : p ∈ {0, 1}n,a ∈ ∂+Sp}
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which represents the set of states through which the multihop path discon-
nects. When the process hits a state in the boundary B, it means that the
path breaks and X jumps to an absorbing state which we denote by ∆. There-
fore, the state space of X becomes S∆X = SX ∪ {∆}, where SX denotes the
disjoint union of the sets S−p = Sp ∪ ∂−Sp,

SX =
∐

p∈{0,1}n
S−p = {(p,a) : p ∈ {0, 1}n,a ∈ S−p }.

For x ∈ SX, define dpath(x) as the path duration (i.e. the time to hit a
state in B) constrained to no phase transitions of the nodes taking place
when starting from state x,

dpath(x) = inf{t > 0 : φ(t,x) ∈ B}
= inf{dlink(lir,m

i
r) : i = 2, . . . , N}.

This time is equal to infinity if all nodes are in pause phase or all nodes have
the same mobility vector.

The Jump Rate

The function λ : S∆X → R+
0 characterizes the jump rate in each state of the

process. For x ∈ SX the jump rate depends only on the phase and the time
since last phase transition of each node, and is given by the sum of the hazard
rate functions λi(t) = dFi(t)/(1 − Fi(t)) of the phase duration distributions
Fi,

λ(x) =
n∑
i=1

λpi(ei)

while at the absorbing state λ(∆) = 0.

The Transition Measure

Before introducing its definition, first a note about notation. For a vector
y = (y1, . . . , yn), let y′ = [y]jz denote a vector that differs from y only on
the component j, taking the value z on that component (i.e., y′ is given by
y′j = z and y′i = yi, i 6= j). In addition, we let y\j denote the vector obtained
from y by omitting yj and retaining yi for all i 6= j. The interpretation of
P and A makes it clear that from any x = (p,a) ∈ SX it is only possible
to jump to a state where a node changes its phase characteristics (phase,
elapsed time in the phase, and mobility vector) and all the other values of
the components remain the same, i.e. for some j, we make the transition
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x −→ x(j) =
{

([p]j0, [e]j0,m\j , lr) pj = 1
([p]j1, [e]j0, [m]jm, lr) p

j = 0

with m ∈ SM . The transition measure Q : (SX ∪ B) × E → [0, 1], with
E denoting the event space of SX, is such that for x ∈ SX, Q(x, ·) is a
probability measure defined by

Q(x, {x(j)}) = λpj (ej)/λ(x) pj = 1
Q(x,dx(j)) = λpj (ej)/λ(x)FM (dm) pj = 0

(1)

and for x ∈ B we have Q(x, {∆}) = 1.

The Motion of the Multihop Path Process

Putting all the above together, the evolution of X starting from state x ∈ SX

can be constructed as follows. The survivor function of the first jump time
T1 is defined by

Gx(t) =

{
exp

(
−
∫ t
0

λ(φ(s,x))ds
)
t < dpath(x)

0 t ≥ dpath(x)
(2)

and the state at an instant of time before the first jump is

X(t) = φ(t,x), t < T1.

If T1 < dpath(x) one of the nodes in the path changes phase and the next
state of the multihop process X(T1) has distribution Q(φ(T1,x), ·) given by
(1). Otherwise, T1 = dpath(x) which means that the path breaks since the
process hits a state in B and the next state X(T1) is ∆ with probability 1;
the process then stays in ∆ forever since the jump rate out of ∆ is zero. The
process restarts from X(T1) in a similar way if T1 < dpath(x) with survivor
function of the next inter jump time T2 − T1 given by GX(T1) and so on ....

Remark

An inspection in the definition of the PDMP shows that technical problems
will arise if mobility vectors can assume values from a closed set SM . We
can relax this assumption when the velocities or directions that describe the
mobility vectors are discrete sets. This includes the case of one dimensional
ad hoc network with directions on a straight line. All that needs to be done
is to consider the discrete quantities (velocities or directions) in the first
component of X, along with the node phases, and to redefine the PDMP
properly according to these changes. In the rest of the paper, we shall focus
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only on the assumptions defined in Subsection 2.1 but similar results can be
derived.

2.4 Multihop path set up

We assume that at time t = 0 the state of a multihop path with N nodes is
drawn according to some specified initial distribution (see Section 5 for an
initialization rule).

3 Path based metrics

In this section we derive two of the main path metrics to characterize the
reliability of a multihop path as the expectation of a functional of the process
X.

3.1 Mean path duration

Given the state of the multihop path process x ∈ S∆X , the mean path duration
is denoted by

D(x) = Ex

(∫ ∞
0

ISX
(X(s))ds

)
(3)

where IA is the indicator function of a set A. Let f : S∆X ∪ B → R+ be a
bounded measurable function and for x ∈ B define f(x) ≡ limt↓0 f(φ(−t,x)).
Let Q be an operator mapping the set of bounded measurable functions SX∪
B into itself such that Qf is a function defined by Qf(x) =

∫
S∆X

f(y)Q(x,dy)
and therefore for x ∈ SX,

Qf(x) =
∑

{j:pj=0}

∫
{m:m∈SM}

Q(x,dx(j))f(x(j))

+
∑

{j:pj=1}

Q(x, {x(j)})f(x(j))

and for x ∈ B, Qf(x) = f(∆).
For x ∈ SX, the state of X after a short time t is, roughly, φ(t,x) with

probability (1 − λ(x)t), while with probability λ(x)t the process jumps to
another state X(t) with transition measure Q and all other events have prob-
ability o(t). Thus, we have
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Ex(f(X(t))) = (1− λ(x)t)f(φ(t,x)) + λ(x)tQf(φ(t,x)) + o(t)

so that

1
t
Ex(f(X(t))− f(x)) =

1
t
(f(φ(t,x))− f(x))

+ λ(x) (Qf(φ(t,x))− f(φ(t,x))) + o(1). (4)

Let A denote an operator acting on the domain of bounded measurable real-
valued functions on S∆X ∪B defined by

Af(x) = lim
t→0

1
t
Ex(f(X(t))− f(x)).

In order to define the derivative of f with respect to the flow φ(t,x) in a
rigorous way, we need to define its phase function by fp : S−p → R+ such that
fp(a) = f(x). If for a state x the function t → fp(φp(t,a)) is differentiable
almost everywhere on [0, dpath(x)[ then

d
dt
fp(φp(t,a)) = Vpfp(φp(t,a)), φp(0,a) = a (5)

holds for almost all t, and where Vp is a vector field and φp(t,a) is the unique
integral curve of Vp such that (5) is satisfied.

Therefore, as t→ 0 in equation (4) we obtain

Af(x) = Vf(x) + λ(x)(Qf(x)− f(x)),

for x ∈ SX, where to simplify the notation we write Vf(x) instead of the more
accurate Vpfp(a). Also any reference to a function t → f(φ(t,x)) should be
read as t→ fp(φp(t,a)).

The next result follows from Theorems 32.2 and 32.10 of Davis [3] conve-
niently applied to the expectation functional D of the PDMP X with finite
time horizon and taking into account the specific boundary conditions.

Proposition 1. For each x ∈ SX, t → D(φ(t,x)) is absolutely continuous
on [0, dpath(x)[ and D is the unique bounded solution of the equations

Af(x) = −1, x ∈ SX, (6)

and at a boundary state x ∈ B, f(x) = f(∆) = 0.

The result above states that for x ∈ SX the function t → D(φ(t,x)) is
differentiable almost everywhere on [0, dpath(x)[ with derivative denoted by
VD(x′) at x′ = φ(t,x), when it exists. The value of the derivative at such
points is equal to

−1− λ(x′)(QD(x′)−D(x′)).
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Because (6) includes an integral term, the equations are systems of integro-
differential equations. Solving them provides a way of computing the mean
path duration for different initial conditions.

Proof. By definition D(∆) = 0. We assume that x ∈ SX and t ∈]0, dpath(x)[.
By the strong Markov property, the function D satisfies

D(x) =Ex((T1 ∧ t) +D(φ(T1 ∧ t,x)))
=Gx(t)(t+D(φ(t,x)))

+ Ex

(
(T1 +QD(φ(T1,x)))I]0,t](T1)

)
. (7)

Using the density function of first phase transition time T1 on [0, t], given by
λ(φ(s,x))Gx(s), the second term on the right hand side of (7) is

Ex

(
(T1 +QD(φ(T1,x)))I]0,t](T1)

)
=
∫ t

0

λ(φ(s,x))Gx(s)
(∫ s

0

1 dv +QD(φ(s,x))
)

ds

=
∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x))) ds−Gx(t)t.

where the last equality is obtained by changing the order of integration. Then
(7) becomes

D(φ(t,x)) = Gx(t)−1
(
D(x)

−
∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x))) ds
)

=Gx(t)−1D(x)−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x))) ds

−
∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x)))

× (Gx(t)−1 −Gx(s)−1) ds

and since∫ t

s

λ(φ(v,x))Gx(v)−1 dv = Gx(t)−1 −Gx(s)−1, 0 ≤ s ≤ t,

we have
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D(φ(t,x)) =
(∫ t

0

λ(φ(s,x))Gx(s)−1ds+ 1
)
D(x)

−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x))) ds

−
∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x)))

×
∫ t

s

λ(φ(v,x))Gx(v)−1 dv ds

=D(x)−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x)))ds

+
∫ t

0

λ(φ(v,x))Gx(v)−1

×
(
D(x)−

∫ v

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x)))ds
)

dv.

Thus,

D(φ(t,x)) = D(x) +
∫ t

0

g(s) ds

where
g(s) = −1− λ(φ(s,x))(QD(φ(s,x))−D(φ(s,x))).

In the appendix we prove an auxiliary result which states that D is a bounded
function for all x ∈ S∆X , and Ex(D(X(t))) goes to zero as t tends to infinity.
Then QD is also bounded and

∫ t
0
|g(s)|ds is finite. Therefore, by the funda-

mental theorem of calculus t → D(φ(t,x)) is absolutely continuous on [0, t]
with derivative g(t) and equation (6) is satisfied. Now, let x′ ∈ B and t > 0
such that the initial state is x = φ(−t,x′). By the strong Markov property,
we have

D(x) =Gx(t)(t+QD(x′))

+
∫ t

0

λ(φ(s,x))Gx(s)(1 +QD(φ(s,x))) ds.

Thus, as t ↓ 0 the function D possesses a limit as a boundary state is ap-
proached and D(x′) = 0.

Under the conditions that for x∈SX, t → f(φ(t,x)) is an absolutely con-
tinuous function on [0, dpath(x)[ and f is a bounded function, from [Davis [3],
Theorem 31.3, p. 83] conveniently applied, the process (Mf (t)) defined by

Mf (t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds, t ≥ 0
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is a martingale and Af(X(s)) = limt→0
1
tEX(s)(f(X(s + t)) − f(X(s)).

Since (Mf (t)) is a martingale then taking conditional expectation we have
Ex(Mf (t)) = Mf (0) = 0, which implies that the Dynkin formula holds in
the form

f(x) = Ex(f(X(t)))− Ex

(∫ t

0

Af(X(s))ds
)
.

In view of (6) and f(∆) = 0, we have that Af(X(s)) = −ISX
(X(s)); there-

fore, if limt→∞ Ex(f(X(t))) = 0, by monotone converge theorem we get

f(x) = Ex

(∫ ∞
0

ISX
(X(s))ds

)
and the solution is unique. ut

3.2 Path persistence

We can derive the probability that path is continuously in existence until
time t0 ∈]0, t∗] (where t∗ > 0 is fixed) provided that the path is alive at
time 0 as the expectation of a functional of X. For that, we need to include
explicitely the time variation in the state of the PDMP X. We denote the
extended multihop path process by X̂ with state space S∆bX = SbX∪{∆} where

SbX = SX×]0, t∗],

and the set of the boundary states is represented by

B̂ = (B × [0, t∗]) ∪ B̂0

with B̂0 = SX × {0}. From the definition of X̂, a state in SbX ∪ B̂ is denoted
by x̂ = (x, t0) where t0 is the time variation component and x = (p,a) is
defined as before. The deterministic evolution of the process from a state x̂
is given by φ̂(t, x̂) = (p, φ̂p(t, (a, t0))) with

φ̂p(t, (a, t0)) = (φp(t,a), t0 − t), t ∈ R.

Let d̂path(x̂) be the time to hit a state in B̂ constrained to no phase transition
of nodes in path when starting from state x̂,

d̂path(x̂)

= inf{t > 0 : φ̂p(t, (a, t0)) ∈ ∂+Sp × [0, t∗] ∪ S−p × {0}}
= inf{dpath(x), t0}.
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When the extended multihop path process hits the boundary B̂, it means
that the path breaks or the time variation component has reached zero, and
X̂ jumps to the absorbing state ∆. The remaining parameters of X̂ are the
jump rate λ̂ : S∆bX → R+ defined by

λ̂(x̂) = λ(x), x̂ ∈ SbX
and λ̂(∆) = 0; the transition measure Q̂ : (SbX ∪ B̂) × Ê → [0, 1], where Ê
denotes the event space of SbX, is such that for x̂ ∈ SbX we have

Q̂(x̂,dx(j) × {t0}) = Q(x,dx(j))

where Q is defined in (1) and Q̂(x̂, {∆}) = 1 for x̂ ∈ B̂. The extended process
X̂ has the same behavior as X until it hits a state in boundary B̂. Starting
from state x̂ ∈ SbX, the survivor function of first jump time T̂1 of the process
X̂ is given by

Ĝbx(t) = I[0,bdpath(bx)[(t)Gx(t), t ≥ 0, (8)

and
X̂(t) = φ̂(t, x̂), t < T̂1.

The next state X̂(T̂1) has distribution Q̂(φ̂(T̂1, x̂), ·). If X̂(T̂1) = ∆ the pro-
cess stays there forever since the jump rate out of ∆ is zero. Otherwise, the
process restarts from X̂(T̂1) in a similar way if T̂1 < d̂path(x̂) with survivor
function of the next inter jump time T̂2 − T̂1 given by ĜbX( bT1)

and so on ....
The path persistence at time t0 ∈]0, t∗] starting from x ∈ SX can be

written as expectation of a functional of X̂ by

U(x, t0) = E(x,t0)

(
I bB0(X̂(T̂−∗ ))

)
where T̂∗ = {T̂i : X̂(T̂−i ) ∈ B̂} is the time to reach the absorbing state ∆
and, by convention, U(∆) = 0.

Let f : S∆bX ∪ B̂ → R+ denote any bounded measurable function and

at the boundary state x̂ ∈ B̂ we define f(x̂) ≡ limt↓0 f(φ̂(−t, x̂)). Let Q̂
denote an operator mapping the set of bounded measurable functions on
SbX ∪ B̂ into itself. The operation of Q̂ on f is a function defined by Q̂f(x̂) =∫
S∆bX f(ŷ)Q̂(x̂,dŷ) and for x̂ ∈ SbX we have

Q̂f(x̂) =
∑

{j:pj=0}

∫
{m:m∈SM}

Q(x,dx(j))f(x(j), t0)

+
∑

{j:pj=1}

Q(x, {x(j)})f(x(j), t0)
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and for x̂ ∈ B̂, Q̂f(x̂) = f(∆). Using the same heuristics arguments as in
Subsection 3.1 for x̂ ∈ SbX we obtain

1
t
Ebx(f(X̂(t))− f(x̂)) =

1
t
(f(φ̂(t, x̂))− f(x̂))

+ λ(x)
(
Q̂f(φ̂(t, x̂))− f(φ̂(t, x̂))

)
+ o(1). (9)

In addition, let Â be an operator acting on the domain of bounded measurable
real-valued functions on S∆bX ∪ B̂ such that Âf is a function defined by

Âf(x̂) ≡ lim
t→0

1
t
Ebx(f(X̂(t))− f(x̂)).

For a function f define its phase function by fp : S−p ∪]0, t∗]
→ R+ such that fp(a, t0) = f(x̂). If for a state (x, t0) the function
t→ fp(φ̂p(t, (a, t0))) is differentiable almost everywhere on [0, d̂path(x̂)[ then,
if φ̂p(0, (a, t0)) = (a, t0)

d
dt
fp(φ̂p(t, (a, t0))) = V̂pfp(φ̂p(t, (a, t0))) (10)

holds for almost all t, and where V̂p is a vector field and φ̂p(0, (a, t0)) = (a, t0)
is the unique integral curve of V̂p such that (10) is satisfied. Therefore, letting
t tend to zero, equation (9) becomes

Âf(x, t0) = V̂f(x, t0) + λ(x)
(
Q̂f(x, t0)− f(x, t0)

)
where with a slight abuse of notation V̂f(x, t0) should be read as V̂fp(a, t0).
Finally, we write from now on t → f(φ̂(t, x̂)) in place of more cumbersome
t→ fp(φ̂p(t, (a, t0))).

The next result shows that the augmentation of the state space of X allows
to define U as the unique solution of a set of integro-differential equation. The
impact of this transformation will become more relevant in Section 4.

Proposition 2. For each x̂ ∈ SbX, t → U(φ̂(t, x̂)) is absolutely continuous
on [0, d̂path(x̂)[ and U is the unique solution of the equations

Âf(x̂) = 0, x̂ ∈ SbX, (11)

f(∆) = 0 and at the boundary state x̂ ∈ B̂, f(x̂) = I bB0(x̂).

Proof. By definition U(∆) = 0. We assume that x̂ = (x, t0) ∈ SX×]0, t∗] and
t ∈]0, d̂path(x̂)[. By the strong Markov property, we have

U(x̂) = Ĝbx(t)U(φ̂(t, x̂)) + Ebx (Q̂U(φ̂(T̂1, x̂)))I]0,t](T̂1)
)
.
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Now, using the density function of first transition T̂1 on [0, t] given by
λ(φ(s,x))Gx(s) and proceeding in a similar way as in proof of Proposition 1,
it follows that

U(φ̂(t, x̂)) =U(x̂)

+
∫ t

0

λ(φ(s,x))(U(φ̂(s, x̂))− Q̂U(φ̂(s, x̂))) ds.

Since Q̂U is clearly bounded (U is bounded) the by fundamental theorem of
calculus t→ U(φ̂(t, x̂)) is absolutely continuous on [0, t] and equation (11) is
satisfied. Now fix x̂

′ ∈ B̂ and t > 0 such that the initial state is x̂ = φ(−t, x̂′).
By strong Markov property we have that

U(x̂) =E
(
I bB0(x̂′)I{bT1= bdpath(bx)} + Q̂U(X̂(T̂−1 ))

)
=P(T̂1 = d̂path(x̂))(I bB0(x̂′)

+ Q̂U(x̂
′
)) +

∫ t

0

λ(s, φ(t,x))Gx(s)Q̂U(φ̂(s, x̂)) ds

Letting t ↓ 0 the function U has a limit as a boundary state is approached
and U(x̂′) = I bB0(x̂′).

If x̂ ∈ [0, t∗[×SbX, t → f(φ̂(t, x̂)) is an absolutely continuous function on
[0, d̂(x̂)[ and f is bounded, from conditions from [Davis [3], Theorem 31.3, p.
83] conveniently applied, the process (M̂f (t)) defined by

M̂f (t) = f(X̂(t))− f(X̂(0))

−
∑

{bTi≤t,bX( bT−i )∈ bB}
(Q̂f(X̂(T̂i))− f(X̂(T̂−i ))), t ≥ 0

is a martingale. Taking conditional expectations, Ebx(M̂f (t))
= M̂f (0) = 0 and therefore

f(x̂) =Ebxf(X̂(t))

− Ebx
 ∑
{bTi≤t,bX( bT−i )∈ bB}

(Q̂f(X̂(T̂i))− f(X̂(T̂−i )))

 .

In view of f(x̂) = I bB0(x̂) and Q̂f(x̂) = 0 for x̂ ∈ B̂, we have that Q̂f(X̂(T̂i))−
f(X̂(T̂−i )) = −I bB0(T̂−i ). Since X̂(t) = ∆ for all t ≥ t∗, Ebxf(X̂(t)) = 0 as t
tends to infinity. Letting t → ∞ the solution of the equation (11) is unique
and f = U . ut
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The mean path duration and the path persistence written as expectations
of functionals of the multihop path process are the unique solutions of a sys-
tem of integro-differential equations. However, any direct method to solve
them is quite problematic and depends very much on the specific characteri-
zation of the multihop path process (number of nodes, deterministic motion,
jump rate, transition measure).

4 Recursive computations

In this section we give a recursive scheme which provides the basis for prac-
tical numerical techniques for computing the path metrics defined in Section
3.

4.1 Mean path duration

Let D0 be a function such that D0(x) = 0 for all x ∈ S∆X and let O be an
operator mapping the set of bounded measurable functions on S∆X ∪ B into
itself. The action of the operator O on D0 gives the function D1 ≡ OD0

defined by

D1(x) = Ex

(∫ T1

0

ISX
(X(s)) ds+D0(X(T1))

)
, x ∈ S∆X .

Iterating k(≥ 1) times the operator O on D0 results into the function Dk ≡
OkD0 given by

Dk(x) = ODk−1(x)

= Ex

(∫ T1

0

ISX
(X(s)) ds+Dk−1(X(T1))

)

for x ∈ S∆X . The metric Dk(x) denotes the mean path duration constrained
to at most k jumps of the multihop process X starting from state x. As the
number of jumps increases we obtain in the limit the mean path duration
D(x) defined by (3).

Proposition 3. For each x ∈ SX and k ≥ 1,

Dk(x) = Ex

(∫ Tk

0

ISX
(X(s)) ds+D0(X(Tk))

)
(12)

and
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lim
k→∞

Dk(x) = D(x). (13)

Proof. For k = 1, equation (12) follows from definition. Suppose that (12)
holds for a fixed k then

Dk+1(x) = Ok(OD0)(x)

= Ex

(∫ Tk

0

ISX
(X(s)) ds+D1(X(Tk))

)
.

By the strong Markov property,

Dk+1(x) = Ex

(∫ Tk

0

ISX
(X(s)) ds

)
+ Ex

(∫ Tk+1

Tk

ISX
(X(s)) ds+D0(Tk+1)

∣∣∣∣FTk
)

= Ex

(∫ Tk+1

0

ISX
(X(s)) ds+D0(Tk+1)

)
.

where FTk is the history of X until time Tk. Since Tk →∞ w.p.1 as k →∞
for all initial states x ∈ SX, equation (13) follows by monotone convergence.
ut

From the definition of Dk and proceeding as in (4), for x ∈ SX we obtain

ADk(x) = VDk(x) + λ(x)
(
QDk−1(x)−Dk(x)

)
where Q now acts on the function Dk−1. To establish the next result, we use
Proposition 32.20 in [3] conveniently adapted to the PDMP X.

Proposition 4. Suppose that the function Dk−1 is given. For each x ∈ SX,
t → Dk(φ(t,x)) is absolutely continuous function on [0, d(x)[ and Dk is the
unique bounded solution of the equations

Vf(x) + λ(x)
(
QDk−1(x)− f(x)

)
= −1, x ∈ SX, (14)

and at a boundary state x ∈ B, f(x) = f(∆) = 0.

The difference between equations (14) and (6) is that now the operator Q
acts only on the given function Dk−1 which turn it in ODE. Combining this
result with Proposition 3 provides a recursive way of computing the mean
path duration D.

Proof. To show that Dk satisfies equation (14) and t → Dk(φ(t,x)) is ab-
solutely continuous we may follow along the same lines as in the proof of
Proposition 1 with the difference that the operator Q now acts on the given
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function Dk−1. The same also holds to prove that Dk satisfies the boundary
condition.

Fix a state x ∈ SX such that dpath(x) =∞. If we write yx(t) = f(φ(t,x)),
ax(t) = λ(φ(t,x)) and bx(t) = 1 + λ(φ(t,x))QDk−1(φ(t,x)), then equation
(14) is a linear scalar ODE with general coefficients

d
dt
yx(t) = ax(t)yx(t)− bx(t), yx(0) = f(x) (15)

which has a unique solution along {φ(t,x), t < dpath(x)} given by

yx(t) = exp
(∫ t

0

ax(s) ds
)
f(x)

−
∫ t

0

exp
(∫ t

s

ax(u) du
)
bx(s) ds.

Using the distribution of T1, Dk(x) can be expressed as

Dk(x) =
∫ ∞

0

exp
(∫ s

0

−ax(u) du
)
bx(s) ds.

Since bx(t) is bounded and ax(t) > 0, direct calculations shows that the
unique solution for which yx(t) is bounded is given by the initial condition
yx(0) = f(x) = Dk(x) and therefore

yx(t) =
∫ ∞
t

exp
(∫ s

t

−ax(u) du
)
bx(s) ds

with yx(t) = f(φ(t,x)) = Dk(φ(t,x)).
Suppose now that x ∈ SX such that dpath(x) <∞. Let x′ = φ(dpath(x),x)

and t ∈ [−dpath(x), 0], then equation (15) becomes

d
dt
yx′(t) = ax′(t)yx′(t)− bx′(t), yx′(0) = f(x′)

since the solution of the equation is unique and f(x′) = Dk(x′) = 0 by the
boundary condition, then

yx′(t) = f(φ(t,x′)) = Dk(φ(t,x′)).

This completes the proof. ut
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4.2 Path persistence

Define the function U0 such that U0(x̂) = 0 for all x̂ ∈ S∆bX . Let Ô denote an
operator acting on the domain of bounded measurable real valued functions
on S∆bX ∪ B̂ such that the operation of Ô on U0 gives the function U1 ≡ ÔU0

given by

U1(x̂) = Ebx (I bB0(X̂(T̂−1 )) + U0(X̂(T̂1))
)
, x̂ ∈ S∆bX .

Iterating successively k(> 1) times the operator Ô on U0 results into the
function Uk ≡ ÔkU0 given by

Uk(x̂) = ÔUk−1(x̂) = Ebx (I bB0X̂(T̂−1 )) + Uk−1(X̂(T̂1))
)

for x̂ ∈ S∆bX . The metric Uk(x, t0) for (x, t0) ∈ SbX denotes the path persistence

at time t0 constrained to at most k jumps of the process X̂ starting from state
(x, t0). As k tends to infinity, we obtain the expectation functional U(x̂). By
the strong Markov property and the definition of X̂, we can state the following
result.

Proposition 5. For each x̂ ∈ SbX and k ≥ 1,

Uk(x̂) = Ebx
(

k∑
i=1

I bB0(X̂(T̂−i )) + U0(X̂(T̂k))

)

and
lim
k→∞

Uk(x̂) = U(x̂).

Using the definition of Uk and following the same steps as in (9), we have,
for (x, t0) ∈ SbX

ÂUk(t0,x) = V̂Uk(x, t0) + λ(x)
(
Q̂Uk−1(x, t0)− U(x, t0)

)
,

where now Q̂ acts on the function Uk−1. This gives rise to the following result
whose proof is omitted, since it uses merely the arguments used in the proof
of Proposition 4.

Proposition 6. Suppose that the function Uk−1 is given. Then for each x̂ ∈
SbX, t→ Uk(φ̂(t, x̂)) is absolutely continuous function on [0, d̂path(x̂)[ and Uk

satisfies and is the unique solution of the equations

V̂f(x, t0) + λ(x)
(
Q̂Uk−1(t0,x)− f(x, t0)

)
= 0 (16)

for (x, t0) ∈ SbX, f(∆) = 0 and, at a boundary state x̂ ∈ B̂, f(x̂) = I bB0(x̂).
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Computing Dk (resp. Uk) requires only to solve ODEs instead of solving
integro-differential equations. The results of these calculations are then used
to compute the next iteration k + 1. Since they are independent ODEs they
can be computed using parallel computation. The convergence of the solution
depends on how large k has to be before Dk (resp. Uk) is close to D (resp.
U). The derivation of error bounds for these quantities is possible, as shown
in the Appendix, which also gives an estimate of number of iterations needed
for convergence.

Any direct implementation of these equations requires a discretization of
the state space and solving at each grid point an independent ODE, provid-
ing the data for calculating the next iteration. Therefore, numerical software
routines that implement the corresponding differential equations in a recur-
sive way are needed for obtaining the final results. It is unrealistic to hope
that numerical solutions are possible for a medium size number of links in
a single workstation due to the great number of computer processing cycles
and the need of storing large amounts of data. However, it is possible to solve
the equations in the case of one or two links and in one dimensional ad hoc
networks. It should be noted that, for numerical problems of this kind, the
use of distributed computing for studying the reliability of multihops paths
in a general scenario seems to be a conditio sine qua non. Such a development
will be efficient if, in addition, we use techniques such as function interpo-
lation and eliminate sample paths whose contribution is negligible. It seems
that the equations presented in this section can be effectively solved for non
trivial cases, however, more research in this direction is necessary.

5 Numerical Results

In this section we illustrate an application of the preceding results to study
the differences between independent links. The scenario proposed is based
on [6] with pause times and restricted mobility direction of nodes, which in-
tends to model a military scenario where vehicles move in low velocities in a
given direction. We consider that the phase durations are exponentially dis-
tributed with means of 30 s and 120 s in move and pause phase, respectively.
The transmission range of a node is set up to 250 m. The mobility vector
is obtained choosing a velocity (m/s) and direction of nodes uniformly dis-
tributed in ]10, 20[ and ]− π/4, π/4[, respectively. For a multihop path with
N nodes, initially each node i (2 ≤ i ≤ N) is deployed inside node i − 1’s
radio coverage with an angle uniformly distributed in ]−π/4, π/4[ and with a
distance following a triangular distribution in the interval (0,250) and mode
62.5. The initial phase of a node is picked randomly with probabilities pro-
portional to the mean time spent in the phase. If the initial phase is move,
the mobility vector is chosen as if at a transition phase.
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Fig. 1 Mean path duration after each iteration.

Figure 1 shows the results of the mean path duration after each itera-
tion for different link count. The departure states of the multihop path were
sampled according to the initial distribution and their respective mean path
durations were estimated in each iteration using Monte Carlo methods (in a
single computer workstation). The results were averaged out in the final of
each iteration. The difference between iterations gets smaller as the number
of links increases since it is more likely that a path failure occurs after a
small number of phase transitions. However, all curves have converged before
iteration 20.

In Figure 2 we investigate the impact of neglecting the dependency between
links in the mean path duration for different link count. Numerical routines
were developed for independent links. Since each link is only dependent on
its neighboor links the difference between mean path durations reaches its
maximum value for two links and decreases with the increase of link count.
The percentage error from assuming independent links is always higher than
15%.

Figure 3 depicts the path persistence for 2 and 5-links in the interval
[0, 200]. The initial states of the multihop path were selected according to
the initial distribution (described above) and the paths persistence were es-
timated in each iteration through Monte Carlo methods. After convergence,
the results were averaged out. The curves obtained have been plotted against
the independent link assumption. The marginal probabilities of independent
links were computed using the results of PDMP with one link. For 2-link
paths the maximum difference between the curves is smaller than for 5-link
paths but persists for a longer time since the path duration is stochastically
decreasing in the number of links. As expected, for values of t0 at the be-
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ginning and at the end of the interval the differences are small. Finally, the
independent link failure assumption leads to underestimation of the path
metrics in the scenario presented.

In Figure 4 we study the impact of mean time in pause phase on the mean
duration of a 4-link path. The results are rather sensitive to the mean value
of pause phase and getting an estimate for the mean path duration using
the link independence assumption may in fact be a major problem when the
inactive time of a node is large.



An Analytical Framework to Infer Multihop Path Reliability in MANETs 23

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 90  100  110  120  130  140  150

M
e
a
n
 p

a
th

 d
u
ra

tio
n
 (

s)

Mean time in pause phase (s)

Dependent (4 links)
Independent (4 links)

Fig. 4 Mean path duration vs mean pause phase.

In spite of the goal of this paper being to present an analytical frame-
work to study path reliability, we highlight from our experiments that slower
moving nodes along with shorter link distances conducts to more significant
differences in the path metrics when compared with the corresponding inde-
pendent link approximations.

6 Conclusion

This paper developed an analytical framework to fully characterize the ran-
dom behavior of a multihop path under a PDMP. The proposed framework
enabled to describe the mean path duration and the path persistence through
a set of integro-differential equations. Further, we have presented a recursive
scheme to compute these path metrics. Numerical results show the adequacy
of the framework developed to obtain the path metrics which were compared
with the corresponding independent link approximations. These results en-
abled to accurately determine the reliability of communications paths and can
be employed to improve the performance of routing algorithms in MANETs.
Future work will include the use of other individual (or group) mobility mod-
els of nodes [2] that admit a PDMP description of a multihop path; the
application of our analytical framework to derive other path metrics; and
distributed implementation of the recursive equations.
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Appendix

We prove here a result which was used in the proof of Proposition 1.

Proposition 7. The expected path duration D(x) is a bounded function of
x ∈ S∆X and Ex(D(X(t))) goes to zero as t tends to infinity.

Proof (Proposition 1). For any multihop path process (X(t)) with initial state
x = (p,a) ∈ SX, we have that

D(x) ≤ D(x′)

where D(x′) denotes the expected path duration of a multihop path pro-
cess (X′(t)) with one hop whose initial state

x′ = (p′,a′)),p′ = (pj , pj+1)

and
a′ = ((ej , ej+1), (mi,mj+1), lj+1

r ),

j = 1, . . . , n − 1 is given by the state of two consecutive nodes of (X(t)) at
time 0.

If T ′i , i ≥ 1 are the jump times of the process (X′(t)) then taking T ′0 = 0
and S′i = T ′i+1 − T ′i , we can write

D(x′) = Ex′

( ∞∑
i=0

S′iISX
(X ′(T ′i ))

)
.

Given that at a jump time the path is not broken, the expected time between
jumps is bounded by

Ex′(S′iISX
(X ′(T ′i ))) ≤ K ≡ 1/(2 min(λmin

0 , λmin
1 ))

where we recall that we assume that hazard rate functions of the times distri-
butions in the phases are bounded such that 0 < λmin

i ≤ λi(t) ≤ λmax
i . If at

time T ′i the process is in a state X′(T ′i ) where the two nodes are in different
phases then, dpath(X′(T ′i )), the duration of the path constrained to no phase
transitions of the nodes, is smaller or equal to 2R/vmin (i.e. the maximum
time it takes for a node in move phase to cross the transmission range of a
node in pause phase). Hence,

Ex′

(
ISX

(X ′(T ′i ))|X′(T ′i ) ∈ S−(0,1) ∪ S
−
(1,0)

)
≤ p ≡ 1− exp(−2R/vmin(λmax

0 + λmax
1 ))

Note that for a multihop path process (X′(t)) with two nodes the jumps
alternate between a state where both nodes are in different phases or in the
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same phase. Therefore, assuming that the path just breaks when the two
nodes are in different phases, the probability that the path is alive after i
jumps is bounded by

Ex′ (ISX
(X ′(T ′i ))) ≤ pbi/2c

where bi/2c is the minimum number of jumps from a state where the two
nodes are in different phases in i jumps of the process from any initial state
x′. Thus, putting all together, we have that

D(x′) ≤ K
∞∑
i=1

pbi/2c =
K(1 + p)

1− p

which proves the first statement of the proposition. From the above

Ex(D(X(t))) = Ex (D(X(t))ISX
(X ′(t)))

≤ D(x′)P(X ′(t) ∈ SX).

Since limt→∞ P(X ′(t) ∈ SX) = 0, the Proposition is proved.
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