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Abstract. An integral representation formula is obtained for the relaxation of a class of energy
functionals defined in the class of SBVp functions that are constrained to have values on the sphere
Sd−1.

1. Introduction

Equilibrium problems for liquid crystals and magnetostrictive materials lead naturally to the
study of variational problems in which the underlying function space is a subset of Borel functions
with values on the sphere (see [26], [43]). More generally, for bulk energies there is a large literature
on lower semicontinuity, relaxation, and regularity for functionals of the type

E (u) :=

∫

Ω
f (x, u,∇u) dx, u ∈W 1,p (Ω;M) ,

where Ω ⊂ R
N is open and bounded, 1 ≤ p <∞, andM⊂ R

d is a regular m-dimensional manifold,
m ∈ N, (see, e.g., [16], [24], [33], [34], [35]). If f (x, u, ·) is nonconvex, usually u 7→ E (u) fails to be
lower semicontinuous, and thus we must consider the relaxed energy

E (u) := inf
{
lim inf
n→∞

E (un) : un ∈W 1,p (Ω;M) , un → u in L1 (Ω;M)
}
.

One of the main objectives of relaxation theory is to find an integral representation for E (u). If
p > 1 and the integrand f satisfies a coercivity hypothesis of the type

f (x, u, ξ) ≥ 1

C
|ξ|p

for LN -a.e. x ∈ Ω, for all u ∈ M and ξ ∈ R
d×N and for some C > 0, then the domain of E

remains in the Sobolev space W 1,p (Ω;M). On the other hand, if p = 1, then it may happen
that discontinuous fields are approached by sequences of smooth maps with bounded energy, in
which case the domain of E may escape W 1,1 (Ω;M) and include bounded variation type fields. In
this context the relaxed energy E has been studied by Alicandro, Corbo Esposito, and Leone [1]
when M = Sd−1, the unit sphere in R

d, and f has linear growth. This result was later extended
by Mucci [41] to general manifolds and for a restricted class of integrands satisfying an isotropy
condition, and subsequently by Babadjian and Millot [8], who removed this restriction. Note that
the integrands treated and the arguments used in [1] and [8] fall within the general theory developed
for the unconstrained case in [4], [31], and [13].
The key arguments in [1], [41], and [8] are the density of smooth functions in W 1,p (Ω;M) (see

[10], [11], and [37] for the precise statement) and a projection technique introduced in [39], [38].
In this paper we address a constrained variational problem that seems to fall outside the scope

of these techniques. Precisely, we consider the functional

F (u) :=

∫

Ω
f (x, u,∇u) dx+

∫

S(u)
g
(
x, u+, u−, νu

)
dHN−1 u ∈ SBVp

(
Ω;Sd−1

)
,

where p > 1, the functions f : Ω×Sd−1×R
d×N → [0,∞) and g : Ω×Sd−1×Sd−1×SN−1 → [0,∞)

satisfy the hypotheses:
1
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(F1) f is Carathéodory,
(F2) there exists C > 0 such that

1

C
|ξ|p ≤ f (x, u, ξ) ≤ C (1 + |ξ|p)

for LN -a.e. x ∈ Ω, for all u ∈ Sd−1 and ξ ∈ R
d×N .

(G1) g is continuous,
(G2) there exists C > 0 such that

1

C
≤ g (x, λ, θ, ν) ≤ C

for all x ∈ Ω, λ, θ ∈ Sd−1 and ν ∈ SN−1,
(G3) g (x, λ, θ,−ν) = g (x, θ, λ, ν) for all x ∈ Ω, λ, θ ∈ Sd−1 and ν ∈ SN−1.
Here it is important to observe that functions in SBVp

(
Ω;Sd−1) cannot be approximated by

smooth functions. Instead, we adapt to the constrained case an approximation result due to Braides
and Chiadò-Piat (see Lemma 5.2 in [15]) using regularity results developed by Carriero and Leaci
[18] (see also [22]) for a constrained Mumford-Shah type functional, which allows us to replace the
projection argument in [39], [38], with the one due to Carriero and Leaci (see [18], Lemma 3.5).
The purpose of this paper is to obtain an integral representation for the localized relaxed energy

F (u;A) := inf
{
lim inf
n→∞

F (un;A) : un ∈ SBVp

(
A;Sd−1

)
, un → u in L1

(
A;Rd

)}
, (1.1)

with A ∈ A (Ω) and u ∈ SBVp

(
Ω;Sd−1), where A (Ω) denotes the family of all open subsets of Ω.

Precisely,

Theorem 1.1. Assume that
p = 2

and that f and g satisfy (F1), (F2) and (G1), (G2), (G3), respectively. Then for every u ∈
SBV2

(
Ω;Sd−1) and A ∈ A (Ω),

F (u;A) =

∫

A
QT f (x, u,∇u) dx+

∫

S(u)∩A
Rg
(
x, u+, u−, νu

)
dHN−1,

where QT f (x, u, ·) and Rg (x, ·, ·, ·) denote, respectively, the tangential quasiconvex envelope of
f (x, u, ·), and the BV -elliptic envelope of g (x, ·, ·, ·).
The treatment of the unconstrained case may be found in [5], [14] and [15].
This paper is organized as follows. In Section 2 we give a brief overview of preliminary results,

and in Section 3 we establish the lower bound for the relaxed energy F . To obtain the upper bound
for F , in Section 4, we show that F is a variational functional (see Definition 4.1 in [6]), that is,

(H1) F(u; ·) is the restriction to A(Ω) of a Radon measure;
(H2) F is local, i.e., F(u;A) = F(v;A) whenever u = v LN -a.e. in A ∈ A(Ω);
(H3) F(·;A) is L1(Ω;Rd) sequentially lower semicontinuous, that is,

F (u;A) ≤ lim inf
n→∞

F (un;A)

whenever A ∈ A (Ω) and un → u in L1
(
Ω;Rd

)
.

Note that property (H2) follows from (1.1), while property (H3) from (1.1) and a diagonal
argument. The main difficulty is to prove that F (u; ·) satisfies (H1). We will show that F (u; ·)
satisfies (H1) for a special class of functions u such that

u ∈ C
(
Ω \K;Sd−1

)
∩ SBVp

(
Ω;Sd−1

)
, (1.2)

where the compact set K ⊂ Ω satisfies suitable conditions (see (4.2) below). The key result is
Lemma 4.3, in which we show that every admissible sequence for F (u;A) can be modified to
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match u in a neighborhood of ∂A, without increasing the energy. The proof of this lemma relies
strongly on the regularity of u away from K, together with a projection argument introduced by
Carriero and Leaci (see [18], Lemma 3.5).
Once (H1) is established, using blow up techniques developed in [31], [32], we obtain the integral

representation for all u as in (1.2). To remove the additional smoothness of u, we use the regu-
larity results of Carriero and Leaci [18] and of Schoen and Uhlenbeck (see Theorem 2.2.4 in [40])
for sphere-valued minimizers of the Mumford-Shah functional, in order to approximate any u in
SBV2

(
Ω;Sd−1) in a strong sense by a sequence {un} of the type (1.2) (see Lemma 4.4). The fact

that p = 2 is only used to ensure C∞ regularity outside the set K. Indeed, for p > 1, p 6= 2, it is
known that p-harmonic functions are only C1,α, and this prevents the use of Sard’s theorem (see the
proof of Case 4 of Substep 1b in Theorem 4.1). We remark that all the other preparatory results
do not need this restriction, and thus we present them for arbitrary p > 1, although a different
argument is needed to treat Case 4 of Substep 1b in Theorem 4.1 for p 6= 2, and this is ongoing
work.

2. Preliminaries

In the following Ω ⊂ R
N is an open bounded set and we denote by A (Ω) and B (Ω) the families

of open and Borel subsets of Ω, respectively. The Lebesgue N -dimensional measure is denoted by
LN , while HN−1 stands for the (N − 1)-dimensional Hausdorff measure. The unit cube in R

N ,(
−1
2 ,

1
2

)N
, is denoted by Q and we set Q (x0, ε) := x0 + εQ for ε > 0. We define Qν := Rν (Q),

where Rν is a rotation such that Rν (eN ) = ν. The constant C may vary from line to line.

Definition 2.1. A function u ∈ L1
(
Ω;Rd

)
is said to be of bounded variation, and we write

u ∈ BV
(
Ω;Rd

)
, if for all i = 1, . . . , d, and j = 1, . . . , N , there exists a Radon measure µij such

that ∫

Ω
ui (x)

∂ϕ

∂xj
(x) dx = −

∫

Ω
ϕdµij

for every ϕ ∈ C1
c (Ω;R).

The distributional derivative Du is a d × N matrix-valued measure with components µij . The
total variation of the measure Du is given by

|Du| (Ω) := sup

{
d∑

i=1

∫

Ω
ui divϕi dx : ϕ ∈ C1

c

(
Ω;Rd×N

)
, ‖ϕ‖∞ ≤ 1

}
.

We briefly recall some facts about functions of bounded variation. For more details we refer the
reader to [5], [27], [36], and [44].

Definition 2.2. Given u ∈ BV
(
Ω;Rd

)
the approximate upper limit and the approximate lower

limit of each component ui, i = 1, . . . , d, are defined by

(
ui
)+

(x) := inf

{
t ∈ R : lim

ε→0+

LN
({
y ∈ Ω ∩Q (x, ε) : ui (y) > t

})

εN
= 0

}

and
(
ui
)−

(x) := sup

{
t ∈ R : lim

ε→0+

LN
({
y ∈ Ω ∩Q (x, ε) : ui (y) < t

})

εN
= 0

}
,

respectively. The jump set of u is defined by

S (u) :=
d⋃

i=1

{
x ∈ Ω :

(
ui
)−

(x) <
(
ui
)+

(x)
}
.
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It can be shown that S (u) and the complement of the set of Lebesgue points of u differ, at
most, by a set of HN−1 measure zero. Moreover, S (u) is (N − 1)-rectifiable, i.e., there are C1

hypersurfaces Γi such that
HN−1 (S (u) \ ∪∞i=1Γi) = 0.

In addition, for HN−1-a.e. x ∈ S (u) it is possible to find a, b ∈ R
d and ν ∈ SN−1 such that

lim
ε→0+

1

εN

∫

Q+
ν (x,ε)

|u (y)− a| dy = 0, lim
ε→0+

1

εN

∫

Q−ν (x,ε)
|u (y)− b| dy = 0,

where Q+
v (x, ε) := {y ∈ Qν (x, ε) : 〈y − x, ν〉 > 0} and Q−ν (x, ε) := {y ∈ Qν (x, ε) : 〈y − x, ν〉 < 0}.

The triplet (a, b, ν) is uniquely determined up to a change of sign of ν and an interchange between
a and b and it will be denoted by (u+ (x) , u− (x) , νu (x)). In the sequel, we write that

(a, b, ν) ∽
(
a′, b′, ν′

)
(2.1)

if (a, b, ν) = (a′, b′, ν′) or (a, b, ν) = (b′, a′,−ν ′).
Choosing a normal νu (x) to S (u) at x, we denote the jump of u across S (u) by [u] := u+ − u−.

The distributional derivative of u ∈ BV
(
Ω;Rd

)
admits the decomposition

Du = ∇uLN⌊Ω+ ([u]⊗ νu)HN−1⌊S (u) + C (u) ,

where ∇u represents the density of the absolutely continuous part of the Radon measure Du
with respect to the Lebesgue measure. The Hausdorff, or jump, part of Du is represented by
([u]⊗ νu)HN−1⌊(S (u) ∩ Ω) and C (u) is the Cantor part of Du. The measure C (u) is singular
with respect to the Lebesgue measure and is diffuse, i.e., every Borel set E ⊂ Ω withHN−1 (E) <∞
has Cantor measure zero.
We say that a set E ⊂ R

N is a set of finite perimeter in Ω if χE ∈ BV (Ω), that is,

sup

{∫

E
divϕdx : ϕ ∈ C1

0

(
Ω;Rd

)
, ‖ϕ‖∞ ≤ 1

}
<∞.

The perimeter of E in Ω is the total variation of the characteristic function χE in Ω and it is
denoted by Per (E; Ω).
The relation between functions in BV (Ω) and sets of finite perimeter is given by the Fleming-

Rishel coarea formula

|Du| (Ω) =
∫ ∞

−∞
Per ({x ∈ Ω : u (x) > t} ; Ω) dt. (2.2)

For every set E of finite perimeter in Ω, we have

Per (E; Ω) = HN−1 (∂∗E) ,

where ∂∗E represents the reduced boundary of E in Ω, i.e., ∂∗E ∩ Ω = S (χE) ∩ Ω.
Special functions of bounded variation were introduced by De Giorgi and Ambrosio [21] in the

study of image segmentation in computer vision.

Definition 2.3. The space of special functions of bounded variation, SBV
(
Ω;Rd

)
, is the space

of all functions u in BV
(
Ω;Rd

)
such that C (u) = 0.

We say that a function u ∈ SBV
(
Ω;Rd

)
belongs to SBVp

(
Ω;Rd

)
, p > 1, if

∇u ∈ Lp
(
Ω;Rd

)
and HN−1 (S (u)) <∞.

A sequence {un} ⊂ SBVp

(
Ω;Rd

)
converges strongly to u in SBVp if

un → u in L1
(
Ω;Rd

)
, ∇un → ∇u in Lp

(
Ω;Rd×N

)
,

HN−1 (S (un)△S (u))→ 0,

∫

S(un)∪S(u)
(|u+n − u+|+ |u−n − u−|) dHN−1 → 0.

(2.3)
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Here we choose the orientation

νun = νu HN−1-a.e. on S (un) ∩ S (u) . (2.4)

The space SBV0
(
Ω;Rd

)
is defined by

SBV0

(
Ω;Rd

)
:=
{
u ∈ SBV

(
Ω;Rd

)
: ∇u = 0 LN -a.e. in Ω and HN−1 (S (u)) <∞

}
.

We recall the definition of quasiconvexity.

Definition 2.4. A Borel function f : R
d×N → [−∞,∞] is said to be quasiconvex if

f (ξ) ≤ 1

LN (Ω)

∫

Ω
f (ξ +∇ϕ (y)) dy (2.5)

for every open bounded Ω ⊂ R
N with LN (∂Ω) = 0, for every ξ ∈ R

d×N and for every ϕ ∈
W 1,∞
0

(
Ω;Rd

)
whenever the right hand side of (2.5) exists as a Lebesgue integral.

Here, and in what follows, the spaceW 1,∞
0

(
Ω;Rd

)
denotes theW 1,∞ weak * closure of C∞c

(
Ω;Rd

)
.

Given f : R
d×N → (−∞,∞], the quasiconvex envelope Qf : R

d×N → (−∞,∞] of f is defined by

Qf (ξ) := sup
{
f (ξ) : f : R

d×N → (−∞,∞] is quasiconvex, f ≤ f
}
,

where ξ ∈ R
d×N , where we use the convention that sup ∅ = −∞.

If f : R
d×N → R is a Borel function locally bounded from below, then it can be shown that the

quasiconvex envelope of f is given by

Qf (ξ) = inf

{∫

Q
f (ξ +∇ϕ (y)) dy : ϕ ∈W 1,∞

0

(
Q;Rd

)}
,

see [30].
For manifold-constrained fields the appropriate notion of quasiconvexity was introduced in [24],

precisely,

Definition 2.5. Let M ⊂ R
d be an m-dimensional manifold of class C1, with 1 ≤ m ≤ d, and

let f : R
d×N → R be a Borel function locally bounded from below. The tangential quasiconvex

envelope, QT f , of f is defined by

QT f (z, ξ) := inf

{∫

Q
f (ξ +∇ϕ (x)) dx : ϕ ∈W 1,∞

0 (Q;Tz (M))

}
,

z ∈M and ξ ∈ [Tz (M)]N , where Tz (M) is the tangent space to M at z.

SettingM :=
{
(z, ξ) ∈M× R

d×N : ξ ∈ [Tz (M)]N
}
, a Borel function f :M→ R is said to be

tangentially quasiconvex if

f (z, ξ) = QT f (z, ξ) for all (z, ξ) ∈M.

It was proved in [24] that under the conditions of Definition 2.5, one has

QT f (z, ξ) = Qf (z, ξ) (2.6)

for all z ∈M and ξ ∈ [Tz (M)]N , where f :M× R
d×N → R is the function defined by

f (z, ξ) := f (Pzξ) , (2.7)

(z, ξ) ∈M×R
d×N . Here Pzξ :=

(
Pzξ

1, . . . , Pzξ
N
)
, where ξi stands for the ith column of the matrix

ξ ∈ R
d×N , and Pz is the orthogonal projection of R

d onto the tangent space Tz (M). In the special
case in whichM is the unit sphere Sd−1, then for z ∈ R

d \ {0} and ξ ∈ R
d×N ,

Pzξ =

(
Id×d −

z

|z| ⊗
z

|z|

)
ξ (2.8)
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is the orthogonal projection of ξ onto the plane perpendicular to z
|z| , i.e., Pzξ ∈ T z

|z|

(
Sd−1) and so

the function (2.7) takes the simple form

f (z, ξ) := f ((Id×d − z ⊗ z) ξ) ,
(z, ξ) ∈ Sd−1 × R

d×N . Note that we may extend f to R
d \ {0} × R

d×N by

f (z, ξ) := f

((
Id×d −

z

|z| ⊗
z

|z|

)
ξ

)
.

Definition 2.6. Given a Borel set E ⊂ R
d, a Borel function g : E ×E × SN−1 → [0,∞] is said to

be BV-elliptic if for every (a, b, ν) ∈ E × E × SN−1,
∫

S(u)
g
(
u+, u−, νu

)
dHN−1 ≥ g (a, b, ν)

for all functions u ∈ SBV0
(
Qν ;R

d
)
∩ L∞

(
Qν ;R

d
)

that take values in E and such that u = ua,b,ν

in a neighborhood of ∂Qν . Here

ua,b,ν (x) :=

{
b if x · ν ≥ 0,
a if x · ν < 0.

(2.9)

If the set E ⊂ R
d is bounded, then it turns out that BV -ellipticity is a necessary and sufficient

condition for sequential lower semicontinuity of functionals of the form

u ∈ SBV0 (Ω;E) 7−→
∫

S(u)
g
(
u+, u−, νu

)
dHN−1

under appropriate conditions on the integrand g. We refer to Theorem 5.14 in [5] for more details.

Definition 2.7. Given a Borel set E ⊂ R
d and a Borel function g : E × E × SN−1 → [0,∞), the

BV-elliptic envelope Rg : E × E × SN−1 → [0,∞] of g is defined by

Rg (a, b, ν) := inf

{∫

S(u)
g (u+, u−, νu) dHN−1 : u ∈ SBV0

(
Qν ;R

d
)
∩ L∞

(
Qν ;R

d
)
,

u = ua,b,ν on ∂Qν

}
,

(2.10)

(a, b, ν) ∈ E × E × SN−1.

3. Lower bound

Set

F (u;A) :=

∫

A
QT f (x, u,∇u) dx+

∫

S(u)∩A
Rg
(
x, u+, u−, νu

)
dHN−1, (3.1)

where u ∈ SBVp

(
Ω;Sd−1) and A ∈ A (Ω).

The main result of this section is the following sequential lower semicontinuity theorem.

Theorem 3.1. Let Ω ⊂ R
N be open and bounded. Assume that f : Ω×Sd−1×R

d×N → [0,∞) and
g : Ω×Sd−1×Sd−1×SN−1 → [0,∞) satisfy hypotheses (F1), (F2) and (G1), (G2), (G3), respectively.
Then for every u ∈ SBVp

(
Ω;Sd−1), p > 1, A ∈ A (Ω), and every sequence {un} ⊂ SBVp

(
A;Sd−1)

converging to u in L1
(
A;Rd

)
,

F (u;A) ≤ lim inf
n→∞

F (un;A) . (3.2)

The proof of the previous theorem uses the next two lemmas.
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Lemma 3.2. Assume that g : Ω×Sd−1×Sd−1×SN−1 → [0,∞) satisfies conditions (G1) and (G2),
let a, b ∈ Sd−1, ν ∈ SN−1, {ωn} ⊂ C (Qν ; Ω), {un} ⊂ SBVp

(
Qν ;S

d−1) be such that un → ua,b,ν in

L1
(
Qν ;R

d
)

and

lim inf
n→∞

∫

S(un)
g
(
ωn (y) , u

+
n (y) , u

−
n (y) , νun (y)

)
dHN−1 (y) <∞, lim

n→∞

∫

Qν

|∇un (y)|p dy = 0.

(3.3)
Then there exists a sequence {vn} ⊂ SBVp(Qν ;S

d−1) such that vn → ua,b,ν in L1(Qν ;R
d), vn =

ua,b,ν in a neighborhood of ∂Qν ,

lim inf
n→∞

∫

S(vn)
g
(
ωn (y) , v

+
n (y) , v−n (y) , νvn (y)

)
dHN−1 (y)

≤ lim inf
n→∞

∫

S(un)
g
(
ωn (y) , u

+
n (y) , u

−
n (y) , νun (y)

)
dHN−1 (y) ,

and

lim
n→∞

∫

Qν

|∇vn (y)|p dy = 0.

Proof. Without loss of generality, we take a = ed, b = e1, ν = eN , we denote ua,b,ν by u0, i.e.,

u0 (y) :=

{
e1 if yN > 0,
ed if yN ≤ 0,

and we write Q in place of Qν .
Extract a subsequence (not relabeled) such that

lim inf
n→∞

∫

S(un)
g
(
ωn, u

+
n , u

−
n , νun

)
dHN−1 = lim

n→∞

∫

S(un)
g
(
ωn, u

+
n , u

−
n , νun

)
dHN−1 <∞.

In view of (G2) and since {un} converges to u0 in L1
(
Q;Rd

)
, we may also assume that the sequence

of Radon measures νn := HN−1⌊(S (un) ∩Q) weakly star converges in the sense of measures to some
nonnegative Radon measure ν and that {un} converges to u0 pointwise LN -a.e. in Q.
Using an argument of Carriero and Leaci (see [18], Lemma 3.5), we modify the sequence {un} in

such a way that its projection onto the sphere is Lipschitz. For each z ∈ R
d set z′ :=

(
z1, . . . , zd−1)

and z′′ :=
(
z2, . . . , zd

)
so that

(
z′, zd

)
∈ R

d−1 × R and
(
z1, z′′

)
∈ R× R

d−1. Set

Q+ := {y ∈ Q : yN ≥ 0} , Q− := {y ∈ Q : yN < 0} ,
and define

ûn (y) :=

{ (
max

(
u1n (y) ,

1
2

)
, u′′n (y)

)
if y ∈ Q+,(

u′n (y) ,max
(
ud

n (y) ,
1
2

))
if y ∈ Q−.

Since |u0| = 1 in Q and {un} converges to u0 pointwise LN -a.e. in Q, we have that {ûn} still
converges to u0 pointwise LN -a.e. in Q, and since 1

2 ≤ |ûn| ≤ 2, by the Lebesgue dominated

convergence theorem, we have that {ûn} converges to u0 in Lq
(
Q;Rd

)
for every 1 ≤ q <∞.

Using the fact that the function f1 (t) := max
(
t, 12
)
, t ∈ R, is Lipschitz, by Corollary 3.1 in [3]

and Corollary 3.89 in [5] (with Ω replaced by Q+), it follows that ûn belongs to SBVp

(
Q;Rd

)
, with

∇û1n =
{
0 LN -a.e. in Q+ ∩

{
u1n ≤ 1

2

}
,

∇u1n otherwise,
(3.4)

∇ûd
n =

{
0 LN -a.e. in Q− ∩

{
ud

n ≤ 1
2

}
,

∇ud
n otherwise,

(3.5)

∇ûi
n = ∇ui

n for i = 2, . . . , d− 1, and

S (ûn) ⊂ S (un) ∪ {y ∈ Q : yN = 0} , (3.6)



8 GRAÇA CARITA, IRENE FONSECA, AND GIOVANNI LEONI

In what follows, for simplicity of notation we abbreviate {y ∈ Q : ûn (y) 6= un (y)} as {ûn 6= un}
and Q (0, s) as Qs. Observe that

LN ({ûn 6= un}) = LN

(
Q+ ∩

{
u1n <

1

2

})
+LN

(
Q− ∩

{
ud

n <
1

2

})
≤ LN

(
Q ∩

{
|un − u0| >

1

2

})
,

therefore LN ({ûn 6= un})→ 0 as n→∞. By Fubini’s theorem we deduce that
∫ 1

0
HN−1 ({ûn 6= un} ∩ ∂Qs) ds = LN ({ûn 6= un})→ 0 as n→∞,

and so, up to a subsequence (not relabeled),

HN−1 ({ûn 6= un} ∩ ∂Qs)→ 0 as n→∞ for L1-a.e. s ∈ (0, 1) . (3.7)

Fix δ > 0, and in view of (3.7) choose sδ ∈ (1− δ, 1) such that
HN−1 ({ûn 6= un} ∩ ∂Qsδ

)→ 0 as n→∞ and ν (∂Qsδ
) = 0. (3.8)

Consider m ∈ N so large that δ + 1
m < 1 and let {ϕm} be a sequence of smooth cut-off functions

such that ϕm = 1 in Qsδ
, ϕm = 0 in Q \Qsδ+

1
m
, and ‖∇ϕm‖L∞(Q;RN ) = O (m). Define

un,m,δ :=

{
un in Qsδ

,

P (ϕmûn + (1− ϕm)u0) in Q \Qsδ
,

where P is the projection onto the sphere Sd−1. Note that un,m,δ = u0 on ∂Q because Pu0 = u0.
Since

û1n ≥
1

2
in
(
Q \Qsδ

)
∩Q+, ûd

n ≥
1

2
in
(
Q \Qsδ

)
∩Q−,

then

ϕmû
1
n + (1− ϕm)u

1
0 ≥

1

2
in
(
Q \Qsδ

)
∩Q+, ϕmû

d
n + (1− ϕm)u

d
0 ≥

1

2
in
(
Q \Qsδ

)
∩Q−.

Using the fact that the projection P : R
d \Bd

(
0, 12
)
→ Sd−1 is Lipschitz, by Corollary 3.89 in [5],

∇un,m,δ =

{ ∇un in Qsδ
,

∇P (ϕmûn + (1− ϕm)u0)∇ (ϕmûn + (1− ϕm)u0) in Q \Qsδ
,

(3.9)

and
S (un,m,δ) ⊂ S (un) ∪ ((Q \Qsδ

) ∩ {yN = 0}) ∪ (∂Qsδ
∩ {tr (ûn) 6= tr (un)}) , (3.10)

where we have used (3.6). By (3.4), (3.5), and (3.9), we obtain

|∇un,m,δ| ≤ Lip
(
P |

Rd\Bd(0, 12)

)
(|∇ûn|+ |∇ϕm| |ûn − u0|) ≤ C (|∇un|+m |ûn − u0|)

in Qsδ+
1
m
\Qsδ

, and so
∫

Q
|∇un,m,δ|p dy ≤ C

(∫

Q
|∇un|p dy +mp

∫

Q
|ûn − u0|p dy

)
.

Since ûn → u0 in L
p
(
Q;Rd

)
, also by (3.3), we get

lim
n→∞

∫

Q
|∇un,m,δ|p dy = 0. (3.11)

On the other hand, by (G2), (3.6), and (3.10), we deduce that∫

S(un,m,δ)
g
(
ωn, u

+
n,m,δ, u

−
n,m,δ, νun,m,δ

)
dHN−1 ≤

∫

S(un)
g
(
ωn, u

+
n , u

−
n , νun

)
dHN−1

+ CHN−1 ({ûn 6= un} ∩ ∂Qsδ
) + CHN−1

(
S (un) ∩

(
Qsδ+

1
m
\Qsδ

))
+ CHN−1 ({yN = 0} ∩ (Q \Qsδ

)) .
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Letting n→∞ and using (3.8) and the fact that νn
⋆
⇀ ν in the sense of measures, we obtain

lim sup
n→∞

∫

S(un,m,δ)
g
(
ωn, u

+
n,m,δ, u

−
n,m,δ, νun,m,δ

)
dHN−1

≤ lim
n→∞

∫

S(un)
g
(
ωn, u

+
n , u

−
n , νun

)
dHN−1 + Cν

(
Qsδ+

1
m
\Qsδ

)
+ CHN−1 ({yN = 0} ∩ (Q \Qsδ

)) .

When m→∞ we have that

ν
(
Qsδ+

1
m
\Qsδ

)
→ ν (∂Qsδ

) = 0

by (3.8). It suffices to let δ → 0+ to conclude that

lim sup
δ→0+

lim sup
m→∞

lim sup
n→∞

∫

S(un,m,δ)
g
(
ωn, u

+
n,m,δ, u

−
n,m,δ, νun,m,δ

)
dHN−1

≤ lim
n→∞

∫

S(un)
g
(
ωn, u

+
n , u

−
n , νun

)
dHN−1.

This, together with (3.11), and a simple diagonalization argument, yields the desired result. �

The next lemma allows us to work with sequences in SBV0
(
Ω;Sd−1) in order to use the BV -

ellipticity condition. A similar argument already appears in Theorem 3.3 of [2].

Lemma 3.3. Let a, b ∈ Sd−1, ν ∈ SN−1, let {un} ⊂ SBVp

(
Qν ;S

d−1), p > 1, be a sequence of
functions satisfying

sup
n
HN−1 (S (un)) <∞, lim

n→∞

∫

Qν

|∇un|p dy = 0, (3.12)

and un = ua,b,ν in a neighborhood of ∂Qν (depending on n).

Then there exists a sequence {ṽn} ⊂ SBV0
(
Qν ;S

d−1) such that

lim
n→∞

‖ṽn − un‖L∞(Qν ;Sd−1) = 0, lim
n→∞

HN−1 (S (ṽn) \ S (un)) = 0,

and ṽn = ua,b,ν in a neighborhood of ∂Qν .

Proof. Let kn be the integer part of
(∫

Qν
|∇un| dy

)−1/2
, so that kn →∞ and

kn

∫

Qν

|∇un| dy → 0 as n→∞.

Take n so large that 1/kn < |bi − ai|, whenever bi 6= ai, i = 1, . . . , d, where ai and bi are the
components of the vectors a and b, respectively. For every j = 0, . . . , 3kn−1 and every i = 1, . . . , d,
by the coarea formula (see (2.2)), we have

∫

{αj<ui
n≤αj+1}

∣∣∇ui
n

∣∣ dy =
∣∣Dui

n

∣∣ ((Qν \ S
(
ui

n

))
∩
{
αj < ui

n ≤ αj+1

})

=

∫ αj+1

αj

HN−1 ((Qν \ S
(
ui

n

))
∩ ∂∗

(
{y ∈ Qν : u

i
n (y) > t}

))
dt,

where α0 := −2, αj := −2 + j
kn
, α3kn := 1, and so there exists tij ∈ (αj , αj+1) such that

∫

{αj<ui
n≤αj+1}

∣∣∇ui
n

∣∣ dy ≥ 1

kn
HN−1 ((Qν \ S(ui

n)
)
∩ ∂∗{y ∈ Qν : u

i (y) > tij}
)
.
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Summing over j yields

∫

Qν

∣∣∇ui
n

∣∣ dy ≥ 1

kn

3kn−1∑

j=0

HN−1 ((Qν \ S(ui
n)
)
∩ ∂∗{y ∈ Qν : u

i
n (y) > tij}

)
dt.

Let ti−1 := −2, ti3kn
:= 1, and for j ∈ {−1, . . . , 3kn − 1} set

Ei
j :=

{
y ∈ Qν : t

i
j < ui

n (y) ≤ tij+1

}
,

vi
n(y) :=





ai if y ∈ Ei
j and t

i
j < ai ≤ tij+1,

bi if y ∈ Ei
j and t

i
j < bi ≤ tij+1,

tij otherwise in Ei
j .

Since 1
kn
<
∣∣bi − ai

∣∣ whenever bi 6= ai, then either ai or bi is in
(
tij , t

i
j+1

]
but not both simultaneously,

so vi
n is well-defined and ‖vn − un‖L∞(Qν ;Rd) ≤

√
d

kn
.

Moreover, vn = ua,b,ν in a neighborhood of ∂Qν . Indeed, since un = ua,b,ν in a neighborhood of
∂Qν , if y0 ∈ ∂Qν and y0 · ν > 0, then ui

n (y) = bi for all y ∈ Qν near y0. Using the fact that for

every fixed i ∈ {1, . . . , d} the family
{
Ei

j

}3kn−1

j=−1
is a partition of Qν , there is j ∈ {−1, . . . , 3kn − 1}

such that y ∈ Ei
j for all y near y0 with t

i
j < bi < ui

n (y) ≤ tij+1. Thus v
i
n (y) = bi for all such y, by

the definition of vi
n. In turn, v

i
n (y0) = bi. Similarly, vn (y) = a for all y ∈ ∂Qν with y · ν < 0.

We have

S(vn) ⊂
d⋃

i=1

3kn−1⋃

j=0

∂∗Ei
j ⊂

d⋃

i=1

3kn−1⋃

j=0

∂∗{y ∈ Qν : u
i
n (y) > tij},

so that

HN−1(S(vn)\S(un)) ≤
d∑

i=1

3kn−1∑

j=0

HN−1 ((Qν \ S(ui
n)
)
∩ ∂∗{y ∈ Qν : u

i
n > tij}

)
≤ Ckn

∫

Qν

|∇un| dy → 0,

where we have used (3.12). Moreover, for y ∈ Qν we have

1 = |un (y)| ≤ |un (y)− vn (y)|+ |vn (y)| ≤
√
d

kn
+ |vn (y)| .

Hence, |vn (y)| ≥ 1−
√

d
kn
≥ 1

2 for LN -a.e. y ∈ Qν and for all n sufficiently large. Define ṽn := P (vn).
Then

‖ṽn − un‖L∞(Qν ;Rd) ≤ C ‖vn − un‖L∞(Qν ;Rd) ≤
C

kn
→ 0.

Since P : R
d \ Bd

(
0, 12
)
→ Sd−1 is Lipschitz, by Corollary 3.1 in [3], ṽn ∈ SBV0

(
Qν ;R

d
)
and

S (ṽn) ⊂ S (vn). Thus, HN−1 (S (ṽn) \ S (un))→ 0 and the proof is complete. �

Remark 3.4. Consider the function ψ : R
d → R defined by ψ (z) := |z|2, z ∈ R

d. Since ψ is locally
Lipschitz, for any u ∈ SBVp

(
Ω;Sd−1) we have ψ ◦ u ∈ SBVp (Ω;R) by Corollary 3.1 in [3], and

0 = ∇ (ψ ◦ u) = ∇ψ (u)∇u = 2 (∇u)T u LN -a.e. in Ω. Hence,

(∇u (x))T u (x) = 0 for LN -a.e. x ∈ Ω. (3.13)
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Proof of Theorem 3.1. Without loss of generality, we may assume that

lim inf
n→∞

(∫

A
f (x, un,∇un) dx+

∫

S(un)∩A
g
(
x, u+n , u

−
n , νun

)
dHN−1

)

= lim
n→∞

∫

A
f (x, un,∇un) dx+ lim

n→∞

∫

S(un)∩A
g
(
x, u+n , u

−
n , νun

)
dHN−1 <∞.

By the coercivity conditions (F2) and (G2), up to a subsequence (not relabeled), there exists a
nonnegative Radon measure µ : B (A) → [0,∞), where B (A) is the family of all Borel subsets of
A, such that

f (x, un,∇un)LN⌊A+ g
(
x, u+n , u

−
n , νun

)
HN−1⌊(S (un) ∩A) ⋆

⇀ µ

as n→∞, weakly star in the sense of measures.
By the Radon-Nikodym and Lebesgue decomposition theorems (see [29] Theorems 1.101 and

1.115, respectively), we can write µ as a sum of three mutually singular nonnegative measures

µ =
dµ

dLN⌊AL
N⌊A+

dµ

dHN−1⌊S (u)H
N−1⌊(S (u) ∩A) + µs.

By the Besicovitch derivation theorem (see [29] Theorem 1.153)

dµ

dLN⌊A (x0) = lim
ε→0+

µ (B (x0, ε))

LN (B (x0, ε))
<∞ for LN -a.e. x0 ∈ A,

dµ

dHN−1⌊S (u) (x0) = lim
ε→0+

µ (Qν (x0, ε))

HN−1 (S (u) ∩Qν (x0, ε))
<∞ for HN−1-a.e. x0 ∈ S (u) ∩A.

By Theorem 2.83 in [5], it follows that

dµ

dHN−1⌊S (u) (x0) = lim
ε→0+

µ (Qν (x0, ε))

εN−1

for HN−1-a.e. x0 ∈ S (u) ∩A.
We claim that

dµ

dLN⌊A (x0) ≥ QT f (x0, u (x0) ,∇u (x0)) for LN -a.e. x0 ∈ A, (3.14)

dµ

dHN−1⌊S (u) (x0) ≥ Rg
(
x0, u

+ (x0) , u
− (x0) , νu (x0)

)
(3.15)

for HN−1-a.e. x0 ∈ S (u) ∩A.

If (3.14) and (3.15) hold, then the conclusion of the theorem follows immediately. Indeed, since

µn
∗
⇀ µ in the sense of measures,

lim inf
n→∞

(∫

A
f (x, un,∇un) dx+

∫

S(un)∩A
g
(
x, u+n , u

−
n , νun

)
dHN−1

)

= lim inf
n→∞

µn (A) ≥ µ (A) ≥
∫

A

dµ

dLN⌊A dx+

∫

S(u)∩A

dµ

dHN−1⌊S (u) dH
N−1

≥
∫

A
QT f (x, u,∇u) dx+

∫

S(u)∩A
Rg
(
x, u+, u−, νu

)
dHN−1,

where we have used the fact that µs ≥ 0.
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Step 1- Let ϕ : [0,∞) → [0, 1] be a continuous function such that ϕ = 0 in
[
0, 12
]
and ϕ = 1 in

[1,∞). Define f̃ : Ω× R
d × R

d×N → [0,∞) by

f̃ (x, z, ξ) :=

{
ϕ (|z|) f

(
x, z
|z| , Pzξ

)
+ (1− ϕ (|z|)) |ξ|p if z 6= 0,

0 if z = 0,
(3.16)

where Pzξ is defined in (2.8). Observe that f̃ is a Carathéodory function satisfying

0 ≤ f̃ (x, z, ξ) ≤ C (1 + |ξ|p)
for LN -a.e. x ∈ Ω, for all z ∈ R

d and ξ ∈ R
d×N . Moreover, by (2.6),

Qf̃ (x, z, ξ) = QT f (x, z, ξ) (3.17)

for LN -a.e. x ∈ Ω, for all z ∈ Sd−1 and ξ ∈ R
d×N .

We denote by B1 the unit ball in R
N . Fix x0 ∈ A satisfying a), b), c) and d) in the proof of

Theorem 5.29 in [5] and such that

(∇u (x0))T u (x0) = 0, (3.18)

where we have used Remark 3.4.
Choosing εk ց 0+ such that µ (∂B (x0, εk)) = 0, we have

dµ

dLN⌊A (x0) = lim
k→∞

µ (B (x0, εk))

ωNεNk

= lim
k→∞

lim
n→∞

1

ωNεNk

(∫

B(x0,εk)
f (x, un,∇un) dx+

∫

S(un)∩B(x0,εk)
g
(
x, u+n , u

−
n , νun

)
dHN−1

)

= lim
k→∞

lim
n→∞

1

ωN

(∫

B1

f (x0 + εky, u (x0) + εkwn,k,∇wn,k) dy

+
1

εk

∫

S(wn,k)∩B1

g
(
x0 + εky, u (x0) + εkw

+
n,k, u (x0) + εkw

−
n,k, νwn,k

)
dHN−1

)
,

where

wn,k (y) :=
un (x0 + εky)− u (x0)

εk
.

Clearly, wn,k ∈ SBVp

(
B1;R

d
)
and wn,k → w0 in L

1
(
B1;R

d
)
, where w0 (y) := ∇u (x0) y, y ∈ B1.

By the choice of x0 and the coercivity conditions (F2) and (G2) we have

lim sup
k→∞

lim sup
n→∞

∫

B1

|∇wn,k|p dy <∞, lim sup
k→∞

lim sup
n→∞

HN−1 (S (wn,k) ∩B1)
εk

<∞. (3.19)

By a standard diagonalization argument we can extract a subsequence wk := wnk,k that converges

to w0 in L
1
(
B1;R

d
)
and such that

lim
k→∞

HN−1 (S (wk) ∩B1) = 0, sup
k

(∫

B1

|∇wk|p dy +

∫

S(wk)∩B1

|[wk]| dHN−1
)
<∞, (3.20)

dµ

dLN⌊A (x0) ≥ lim
k→∞

1

ωN

∫

B1

f (x0 + εky, u (x0) + εkwk,∇wk) dy,

where we used the facts that g ≥ 0, |[wn,k]| ≤ 2
εk
, and (3.19)2. Since |u (x0) + εkwk (y)| =

|unk
(x0 + εky)| = 1 for LN -a.e. y ∈ B1, then by (3.13),

(∇ (u (x0) + εkwk (y)))
T (u (x0) + εkwk (y)) = εk (∇wk (y))

T (u (x0) + εkwk (y)) = 0.
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Hence, using the fact that for z ∈ R
d and ξ ∈ R

d×N , (z ⊗ z) ξ = z ⊗
(
ξT z

)
, we have that

[I− (u (x0) + εkwk (y))⊗ (u (x0) + εkwk (y))]∇wk (y) = ∇wk (y) ,

and so (3.20)3 may be written as

dµ

dLN⌊A (x0) ≥ lim sup
k→∞

1

ωN

∫

B1

f̃ (x0 + εky, u (x0) + εkwk,∇wk) dy

≥ lim sup
k→∞

1

ωN

∫

B1

Qf̃ (x0 + εky, u (x0) + εkwk,∇wk) dy,

where we have used the fact that f̃ ≥ Qf̃ and f̃ is the function defined in (3.16).
In view of (3.20)2, it follows that

dµ

dLN⌊A (x0) ≥ lim sup
δ→0+

lim sup
k→∞

1

ωN

∫

B1

[
Qf̃ (x0 + εky, u (x0) + εkwk,∇wk) + δ |∇wk|p

]
dy. (3.21)

For each δ > 0 fixed, we proceed as in the proof of Theorem 5.29 in [5] (applied to the quasiconvex

integrand Qf̃ (x, z, ξ) + δ |ξ|p) to obtain

lim sup
k→∞

1

ωN

∫

B1

[
Qf̃ (x0 + εky, u (x0) + εkwk,∇wk) + δ |∇wk|p

]
dy

≥ Qf̃ (x0, u (x0) ,∇u (x0)) + δ |∇u (x0)|p = QT f (x0, u (x0) ,∇u (x0)) + δ |∇u (x0)|p ,
where we have used (2.6) and the fact that [I− u (x0)⊗ u (x0)]∇u (x0) = ∇u (x0), since (∇u (x0))T u (x0) =
0 by (3.18). This, together with (3.21), yields (3.14).
Step 2- To prove (3.15), fix x0 ∈ S (u) ∩A such that

dµ

dHN−1⌊S (u) (x0) = lim
ε→0+

µ (Qν (x0, ε))

εN−1
<∞, (3.22)

lim
k→∞

1

εNk

∫

Qν(x0,εk)
|u (x)− ux0,ν (x)| dx = 0,

where ν := νu (x0) and

ux0,ν (y) :=

{
u+ (x0) if y · ν > 0,
u− (x0) if y · ν ≤ 0.

Using the fact that µ is a Radon measure, we may choose εk ց 0+ such that µ (∂Qν (x0, εk)) = 0.
Then

lim
k→∞

µ (Qν (x0, εk))

εN−1k

=

= lim
k→∞

lim
n→∞

1

εN−1k

(∫

Qν(x0,εk)
f (x, un,∇un) dx+

∫

S(un)∩Qν(x0,εk)
g
(
x, u+n , u

−
n , νun

)
dHN−1

)

(3.23)

= lim
k→∞

lim
n→∞

(∫

Qν

εkf

(
x0 + εky, vn,k,

1

εk
∇vn,k

)
dy +

∫

S(vn,k)∩Qν

g
(
x0 + εky, v

+
n,k, v

−
n,k, νvn,k

)
dHN−1

)
,

where
vn,k (y) := un (x0 + εky) , y ∈ Qν .

Note that vn,k ∈ SBVp

(
Qν ;S

d−1), and by (3.22)2, lim
k→∞

lim
n→∞

‖vn,k − ux0,ν‖L1(Qν ;Sd−1) = 0. More-

over, by (3.22)1, (3.23), and the coercivity hypotheses on f and g, we have that

lim sup
k→∞

lim sup
n→∞

1

εp−1k

∫

Qν

|∇vn,k|p dy <∞, lim sup
k→∞

lim sup
n→∞

HN−1 (S (vn,k)) <∞. (3.24)
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By a standard diagonalization argument, we may extract a subsequence vk := vnk,k that converges

to ux0,ν in L
1
(
Qν ;S

d−1) such that

lim
k→∞

∫

Qν

|∇vk|p dy = 0, C0 := sup
k
HN−1 (S (vk)) <∞, (3.25)

and

lim
k→∞

µ (Qν (x0, εk))

εN−1k

≥ lim
k→∞

∫

S(vk)
g
(
x0 + εky, v

+
k , v

−
k , νvk

)
dHN−1. (3.26)

By Lemma 3.2 there exists {vk} ⊂ SBVp

(
Qν ;S

d−1) such that vk → ux0,ν in L
1
(
Qν ;R

d
)
, vk = ux0,ν

in a neighborhood of ∂Qν ,

lim
k→∞

∫

Qν

|∇vk|p dy = 0,

and

lim inf
k→∞

∫

S(vk)
g
(
x0 + εky, v

+
k , v

−
k , νvk

)
dHN−1 ≤ lim inf

k→∞

∫

S(vk)
g
(
x0 + εky, v

+
k , v

−
k , νvk

)
dHN−1.

(3.27)

Since g is uniformly continuous on Q (x0, r)× Sd−1 × Sd−1 × SN−1, where Q (x0, r) ⊂ Ω, for η > 0
fixed there exists δ ∈ (0, 1) such that

|g (x, λ, θ, ν)− g (x1, λ1, θ1, ν)| ≤ η (3.28)

for all x, x1 ∈ Q (x0, r), λ, λ1, θ, θ1 ∈ Sd−1, ν ∈ SN−1, with |x− x1| < δ, |λ− λ1| < δ, |θ − θ1| < δ.
By Lemma 3.3, we can find a sequence {ṽk} ⊂ SBV0

(
Qν ;S

d−1) such that

lim
k→∞

‖ṽk − vk‖L∞(Ω;Rd) = 0, lim
k→∞

HN−1 ((S (ṽk) \ S (vk))) = 0, (3.29)

and ṽk = ux0,ν on ∂Qν . Using the facts that g ≥ 0 and
(
v+k , v

−
k , νvk

)
∽
(
ṽ+k , ṽ

−
k , νevk

)
HN−1-a.e.

in S (vk) ∩ S (ṽk) (see Proposition 3.73(b) in [5]) in the sense of (2.1), (G3), (3.28), (3.25)2, and
(3.29), we have

∫

S(vk)
g
(
x0 + εky, v

+
k , v

−
k , νvk

)
dHN−1 ≥

∫

S(vk)
g
(
x0, v

+
k , v

−
k , νvk

)
dHN−1 − ηC0

≥
∫

S(vk)∩S(evk)
g
(
x0, v

+
k , v

−
k , νvk

)
dHN−1 − ηC0

≥
∫

S(vk)∩S(evk)
g
(
x0, ṽ

+
k , ṽ

−
k , νevk

)
dHN−1 − 2ηC0.

On the other hand, by the growth condition (G2) and (3.29)2, we obtain,∫

(S(evk)\S(vk))
g
(
x0, ṽ

+
k , ṽ

−
k , νevk

)
dHN−1 ≤ CHN−1 ((S (ṽk) \ S (vk)))→ 0.

Hence,

lim sup
k→∞

∫

S(vk)
g
(
x0 + εky, v

+
k , v

−
k , νvk

)
dHN−1 ≥ lim sup

k→∞

∫

S(evk)
g
(
x0, ṽ

+
k , ṽ

−
k , νevk

)
dHN−1 − 2ηC0

≥ Rg
(
x0, u

+ (x0) , u
− (x0) , νu(x0) (x0)

)
− 2ηC0,

(3.30)

where in the last inequality we have used (2.10), the facts that ṽk = ux0,ν on ∂Qν and ṽk ∈
SBV0

(
Qν ;S

d−1). Combining (3.26), (3.27), and (3.30) yields

dµ

dHN−1⌊S (u) (x0) ≥ Rg
(
x0, u

+ (x0) , u
− (x0) , νu

)
− 2ηC0.
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It now suffices to let η → 0+. �

4. Upper bound

In this section we prove the opposite inequality of (3.2) for functions u ∈ SBVp

(
Ω;Sd−1).

Theorem 4.1. Let Ω ⊂ R
N be open and bounded. Assume that

p = 2

and that f : Ω × Sd−1 × R
d×N → [0,∞) and g : Ω × Sd−1 × Sd−1 × SN−1 → [0,∞) satisfy

hypotheses (F1), (F2) and (G1), (G2), (G3), in the introduction, respectively. Then for every
u ∈ SBV2

(
Ω;Sd−1), A ∈ A (Ω), there exists a sequence {un} ⊂ SBV2

(
A;Sd−1) converging to u in

L1
(
Ω;Rd

)
and such that

lim inf
n→∞

F (un;A) ≤ F (u;A) , (4.1)

where F is the functional defined in (3.1).

To prove (4.1), we first show that F (u; ·) is the restriction to A (Ω) of a Radon measure for all
functions u ∈ SBVp

(
Ω;Sd−1) with the property that there exist a closed (N − 1)-rectifiable set K

and a constant C > 0 such that u ∈ C
(
Ω \K;Sd−1) and for every compact set K ′ ⊂ K,

lim sup
ε→0+

LN ({x ∈ Ω : dist (x,K ′) < ε})
ε

≤ CHN−1 (K ′) . (4.2)

Theorem 4.2. Let Ω ⊂ R
N be open and bounded. Assume that f : Ω × Sd−1 × R

d×N → [0,∞)
and g : Ω × Sd−1 × Sd−1 × SN−1 → [0,∞) satisfy hypotheses (F1), (F2) and (G1), (G2), (G3), in
the introduction, respectively and let u ∈ SBVp

(
Ω;Sd−1), p > 1, be such that u ∈ C

(
Ω \K;Sd−1),

where K ⊂ R
N is a closed (N − 1)-rectifiable set satisfying (4.2). Then F (u; ·) is the restriction to

A (Ω) of a Radon measure absolutely continuous with respect to the measure

(1 + |∇u|p)LN⌊Ω+HN−1⌊S (u) .
The following lemma plays a central role in the proof of Theorem 4.2.

Lemma 4.3. Under the hypotheses of Theorem 4.2, let u ∈ SBVp

(
Ω;Sd−1) be such that u ∈

C
(
Ω \K;Sd−1), where K is a closed (N − 1)-rectifiable set satisfying (4.2), and let {un} ⊂ SBVp

(
A;Sd−1)

converge to u in L1(A;Rd) for some A ∈ A (Ω). Given an open set B0 ⊂⊂ A with polyhedral bound-
ary and such that HN−1 (∂B0 ∩K) = 0, there exists a sequence {vn} ⊂ SBVp

(
A;Sd−1), converging

to u in L1
(
A;Rd

)
, and such that vn = u in a neighborhood of ∂B0 (depending on n) and

lim sup
n→∞

F (vn;A) ≤ lim inf
n→∞

F (un;A).

Proof. By extracting subsequences, if necessary, we may assume that

lim inf
n→∞

F (un;A) = lim
n→∞

F (un;A) <∞, (4.3)

and, by (F2) and (G2), that the sequence of measures

µn := (1 + |∇un|p)LN⌊A+HN−1⌊(S (un) ∩A)
weakly star converges in the sense of measures to some nonnegative Radon measure µ : B (A) →
[0,∞).

Since B0 has polyhedral boundary, we may write ∂B0 =
⋃M

i=1Pi, where

Pi ⊂
{
x ∈ R

N : (x− ai) · νi = 0
}
,

with ai ∈ R
N , νi ∈ SN−1, i = 1, . . . ,M .
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For t > 0 set

E1
t := {x ∈ A : dist (x, ∂B0 ∩K) ≤ t} , E2

t := {x ∈ A : dist (x,∪i6=j (Pi ∩ Pj)) ≤ t} , (4.4)

and

Et := E1
t ∪ E2

t .

By (4.2),

lim
ε→0+

LN ({x ∈ A : dist (x, ∂B0 ∩K) < ε})
ε

≤ CHN−1 (∂B0 ∩K) = 0. (4.5)

In particular,

LN
(
E1

t

)
→ 0 as t→ 0+. (4.6)

Consider the function

f (x) := dist (x, ∂B0 ∩K) , x ∈ R
N .

It is well-known that f is Lipschitz, and thus by the coarea formula (see (2.74) in [5]) we have that
∫

{x∈A: 0<f(x)<ε}
|∇f (x)| dx =

∫ ε

0
HN−1 ({x ∈ A : f (x) = s}) ds. (4.7)

By Corollary 3.4.5 in [17] we have that |∇f (x)| = 1 for all x ∈ R
N \ (∂B0 ∩K) such that f is

differentiable at x. Hence, also by Rademacker’s theorem (see Theorem 2.14 in [5]) we have that
∫

{x∈A: 0<f(x)<ε}
|∇f (x)| dx = LN ({x ∈ A : 0 < f (x) < ε}) ,

which, together with (4.7), yields

LN ({x ∈ A : dist (x, ∂B0 ∩K) < ε}) =
∫ ε

0
HN−1 ({x ∈ A : dist (x, ∂B0 ∩K) = s}) ds =

∫ ε

0
HN−1 (∂E1

s

)
ds.

Thus, by (4.5) there exists sε ∈
(

ε
2 , ε
)
such that

HN−1 (∂E1
sε

)
→ 0 as ε→ 0+. (4.8)

Set

Bε :=
{
x ∈ A : dist (x,K) ≥ ε

4

}
∩ {x ∈ A : dist (x, ∂B0) ≤ 2ε} .

Since B0 ⊂⊂ A, by taking ε sufficiently small, we have that Bε ⊂⊂ A, and so Bε is compact. Using
the fact that u ∈ C

(
Ω \K;Sd−1), we have that u ∈ C

(
Bε;S

d−1). Hence there exists 0 < δε <
ε
2

such that for every x, x′ ∈ Bε, with |x− x′| < δε,

∣∣u (x)− u
(
x′
)∣∣ < 1

2
√
d
. (4.9)

For every i = 1, . . . ,M , let {Ri,j,ε}Mi,ε

j=1 be a grid of closed rectangles, with mutually disjoint

interiors, with centers in Pi \ Esε and with two sides parallel to νi covering Pi \ Esε and such that
the sides parallel to νi have length δ

2
ε and the sides orthogonal to νi have length δε. Note that

since the center of each Ri,j,ε does not belong to Esε and δε <
ε
2 we have that Ri,j,ε ⊂ Bε. As a

consequence, (4.9) holds in each rectangle Ri,j,ε. Let

Pi,ε := int
(⋃Mi,ε

j=1 Ri,j,ε

)
. (4.10)

Observe that

Mi,ε ≤
HN−1 (Pi)

δN−1
ε

. (4.11)

Indeed,

HN−1 (Pi) ≥ HN−1 (Pi,ε ∩ Pi) =
∑Mi,ε

j=1 HN−1 (Ri,j,ε ∩ Pi) =Mi,εδ
N−1
ε .
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Step 1- We now modify the sequence {un} in each rectangle Ri,j,ε. Without loss of generality, we
may assume that νi = eN and the center of the rectangle is the origin. To simplify the notation,
we denote this rectangle by R.
We will use the same argument as in the proof of Lemma 3.2. Since |u (0)| = 1, there is

i = 1, . . . , d such that
∣∣ui (0)

∣∣ ≥ 1√
d
. We may assume that i = d and, further, that ud (0) ≥ 1√

d
(the

case ud (0) ≤ − 1√
d
is similar). By (4.9), we have

ud (x) ≥ ud (0)− 1

2
√
d
≥ 1

2
√
d

for all x ∈ R. (4.12)

For x ∈ R define

ûn (x) :=

(
u′n (x) ,max

(
ud

n (x) ,
1

4
√
d

))
. (4.13)

Reasoning as in the proof of Lemma 3.2, by Corollary 3.1 in [3] with ψ (s) := max
{
s, 1

4
√

d

}
, we

have

∇ûd
n =

{
0 LN -a.e. on R ∩

{
ud

n ≤ 1
4
√

d

}
,

∇ud
n otherwise,

∇ûi
n = ∇ui

n, i = 1, . . . , d− 1,

(4.14)

and

S
(
ûd

n

)
∩R ⊂ S (un) ∩R,

[
ûd

n

]
= ψ

((
ud

n

)+)
− ψ

((
ud

n

)−)
on S (un) ∩R (4.15)

[
ûi

n

]
=
[
ui

n

]
for i = 1, . . . , d− 1.

Observe that since un → u in L1
(
A;Rd

)
, by (4.12),

LN ({ûn 6= un} ∩R) ≤ LN

({
ud

n <
1

4
√
d

}
∩R

)
≤ LN

({
|un − u| >

1

2
√
d

}
∩R

)
→ 0.

Let R+ := R′ ×
[
0, δ2

ε
2

]
and R− := R′ ×

[
− δ2

ε
2 , 0

]
. By Fubini’s theorem we deduce that

LN ({ûn 6= un} ∩R) =
∫ δ2ε

2

− δ2ε
2

HN−1 ({ûn 6= un} ∩ Ys) ds→ 0 as n→∞,

where Ys := R′ × {xN = s}. Hence,

HN−1 ({ûn 6= un} ∩ Ys)→ 0 as n→∞ for L1-a.e. s ∈
(
−δ

2
ε

2
,
δ2ε
2

)
.

Choose s := s (ε) ∈
(
0, δ2

ε
2

)
such that

{ HN−1 ({ûn 6= un} ∩ Ys) +HN−1 ({ûn 6= un} ∩ Y−s)→ 0 as n→∞,
µ (Ys) + µ (Y−s) = 0, HN−1 (S (u) ∩ (Ys ∪ Y−s)) = 0.

(4.16)

Consider m ∈ N so large that 1
m < s, and let ϕm ∈ C∞c (R; [0, 1]) be such that ϕm ≡ 1 in

R′ ×
[(
− δ2

ε
2 ,−s

)
∪
(
s, δ2

ε
2

)]
, ϕm ≡ 0 in R′ ×

(
−s+ 1

m , s− 1
m

)
, and ‖∇ϕm‖∞ ≤ Cm.

Define um,n : R→ Sd−1 by

um,n :=
ϕmûn + (1− ϕm)u

|ϕmûn + (1− ϕm)u|
.
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Note that um,n is well-defined since by (4.12) and (4.13) in R,

ϕmû
d
n + (1− ϕm)u

d ≥ ϕm
1

4
√
d
+ (1− ϕm)

1

2
√
d
≥ 1

4
√
d
.

Using the fact that the projection P : R
d \Bd

(
0, 1

4
√

d

)
→ Sd−1 is Lipschitz, by Corollary 3.1 in [3],

we have that um,n ∈ SBVp

(
R;Sd−1) with

|∇um,n| ≤ C Lip

(
P |

Rd\Bd

“

0, 1

4
√

d

”

)
|∇ (ϕmûn + (1− ϕm)u)| (4.17)

≤ C (m |ûn − u|+ ϕm |∇un|+ (1− ϕm) |∇u|)

in R, where we used (4.14),

S (un,m) ∩R ⊂ (S (un) ∪ S (u)) ∩R, (4.18)

and

|[um,n]| ≤ C (|[un]|+ |[u]|) ≤ C (4.19)

in S (um,n) ∩R by (4.15) and the fact that ψ is Lipschitz.
Let

Rs := R′ ×
((
− δ2

ε
2 ,−s

)
∪
(
s, δ2

ε
2

))
,

Ls,m := R′ ×
(
s− 1

m , s
)
, L−s,m := R′ ×

(
−s,−s+ 1

m

)
,

and define um,n : R→ Sd−1 by

um,n :=

{
um,n on R \Rs,

un in Rs.
(4.20)

Note that

um,n = u in R′ ×
(
−s+ 1

m
, s− 1

m

)
. (4.21)

We claim that

lim sup
m→∞

lim sup
n→∞

Im,n ≤ C

∫

R′×(−s,s)
(1 + |∇u|p) dx+ CHN−1 (S (u) ∩

(
R′ × (−s, s)

))
, (4.22)

where

Im,n := F (um,n;R)− F (un;R) . (4.23)

To prove this, note that by Corollary 3.89 in [5], um,n ∈ SBVp

(
R;Sd−1), with

∇um,n =

{
∇um,n LN -a.e. on R \Rs,
∇un LN -a.e. in Rs,

(4.24)

S (um,n) ∩R ⊂ (S (un) ∪ S (u) ∪ (Ys ∪ Y−s)) ∩R, (4.25)

and

|[um,n]| =





|[un]| on S (un) ∩Rs,

|[um,n]| on S (um,n) ∩ (R \Rs) ,

|tr (un)− tr (ûn)| on {tr (un) 6= tr (ûn)} ∩ (Ys ∪ Y−s) ,

(4.26)

where we have used (4.19) and the fact that

tr (um,n) = tr (ûn) on Ys ∪ Y−s.
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By (F2), (G2), and (4.17)-(4.26), we have

Im,n = F (um,n;R)− F (un;R) ≤ C

∫

R′×(−s+ 1
m

,s− 1
m)

(1 + |∇u|p) dx

+ CHN−1 (S (u) ∩
(
R′ × (−s, s)

))

+ C

∫

L−s,m∪Ls,m

(1 +mp |ûn − u|p + |∇un|p + |∇u|p) dx

+ CHN−1 (S (un) ∩ (L−s,m ∪ Ls,m)) + CHN−1 ({ûn 6= un} ∩ Y−s)

+ CHN−1 ({ûn 6= un} ∩ Ys) .

Since ûn → u in Lp
(
R;Rd

)
(since ûn → u in L1

(
R;Rd

)
and the sequence is bounded in L∞

(
R;Rd

)
)

and µn
∗
⇀ µ in the sense of measures, we have that

lim sup
m→∞

lim sup
n→∞

Im,n ≤ lim sup
m→∞

C

(∫

L−s,m∪Ls,m∪R′×(−s+ 1
m

,s− 1
m)

(1 + |∇u|p) dx

+ HN−1 (S (u) ∩R′ × (−s, s)
)
+ µ

(
L−s,m ∪ Ls,m

))
(4.27)

= C

∫

R′×(−s,s)
(1 + |∇u|p) dx+ CHN−1 (S (u) ∩

(
R′ × (−s, s)

))
,

where we have used (4.16). This proves the claim.

Step 2- For every i = 1, . . . ,M and j = 1, . . . ,Mi,ε, let u
i,j
ε,m,n : Ri,j,ε → Sd−1 be the sequence

defined in (4.20), and let vε,m,n : Ω→ Sd−1 be given by

vε,m,n (x) :=





u (x) if x ∈ Esε ,

ui,j
ε,m,n (x) if x ∈ Ri,j,ε \ Esε ,
un (x) elsewhere.

By Corollary 3.89 in [5], we have that vε,m,n ∈ SBVp

(
Ω;Sd−1). Moreover, since ui,j

ε,m,n = un on the
top and on the bottom of each rectangle Ri,j,ε, the only new jumps created are contained on the
lateral sides of each rectangle Ri,j,ε and on the boundary of Esε . Thus by (F2) and (G2), (4.22),
we have

F (vε,m,n;A) ≤ F
(
un;A \ ∪M

i=1Pi,ε

)
+ F (u;Esε) +

M∑

i=1

Mi,ε∑

j=1

F
(
ui,j

ε,m,n;Ri,ε

)

+ C
M∑

i=1

Mi,ε∑

j=1

Mi,ε∑

l=1
l 6=j

HN−1 (∂Ri,j,ε ∩ ∂Ri,l,ε) + CHN−1 (∂Esε)

≤ F (un;A) + F (u;Esε) +

M∑

i=1

Mi,ε∑

j=1

Ii,j
ε,m,n (4.28)

+ C

M∑

i=1

Mi,ε∑

j=1

Mi,ε∑

l=1
l6=j

HN−1 (∂Ri,j,ε ∩ ∂Ri,l,ε) + CHN−1 (∂Esε) ,

where in the last inequality we have used (4.27) and Ii,j
ε,m,n is the expression Im,n defined in (4.23)

for each rectangle Ri,j,ε. For each i = 1, . . . ,M and j = 1, . . . ,Mi,ε the number of rectangles Ri,l,ε
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that have a side in common with Ri,j,ε, j 6= l, depends only on N , and so we have that

M∑

i=1

Mi,ε∑

j=1

Mi,ε∑

l=1
l6=j

HN−1 (∂Ri,j,ε ∩ ∂Ri,l,ε) = C (N)
M∑

i=1

Mi,ε∑

j=1

HN−2 (R′i,j,ε
)
δ2ε (4.29)

= CMMi,εδ
N−2
ε δ2ε ≤ Cδε,

where in the last inequality we have used (4.11). By (4.8), HN−1 (∂E1
sε

)
→ 0 as ε → 0+, while

from the fact that B0 has polyhedral boundary it follows that

HN−1 (∂E2
sε

)
≤ Cε,

where the set E2
s is defined in (4.4). Hence HN−1 (∂Esε)→ 0. By (4.6) and again the fact that B0

has polyhedral boundary

LN (Esε) = LN
(
E1

sε

)
+ LN

(
E2

sε

)
→ 0. (4.30)

Finally, by (F2) and (G2),

F (u;Esε) ≤ C

∫

Esε

(1 + |∇u|p) dx+ CHN−1 (S (u) ∩ Esε) . (4.31)

Combining (4.28), (4.29), and (4.31) yields

F (vε,m,n;A) ≤ F (un;A) + C

∫

Esε

(1 + |∇u|p) dx+ CHN−1 (S (u) ∩ Esε)

+
M∑

i=1

Mi,ε∑

j=1

Ii,j
ε,m,n + Cδε +O (ε) .

By (4.3) and (4.27),

lim sup
m→∞

lim sup
n→∞

F (vε,m,n;A) ≤ lim
n→∞

F (un;A) + C

∫

Esε

(1 + |∇u|p) dx+ CHN−1 (S (u) ∩ Esε)

+ C

M∑

i=1

Mi,ε∑

j=1

[∫

Ri,j,ε

(1 + |∇u|p) dx+HN−1 (S (u) ∩Ri,j,ε)

]

≤ lim
n→∞

F (un;A) + C

∫

Esε

(1 + |∇u|p) dx+ CHN−1 (S (u) ∩ Esε)

+ C
M∑

i=1

[∫

Pi,ε

(1 + |∇u|p) dx+HN−1 (S (u) ∩ Pi,ε)

]
+O (1) ,

where Pi,ε is the set defined in (4.10). Using (4.30) and the fact that HN−1 (S (u) ∩ ∂B0) = 0, by
letting ε→ 0+, it follows that

lim sup
ε→0+

lim sup
m→∞

lim sup
n→∞

F (vε,m,n;A) ≤ lim inf
n→∞

F (un;A) .

By a diagonalization argument, we obtain a subsequence vk := vεk,mk,nk
∈ SBVp

(
Ω;Sd−1) con-

verging to u in L1
(
Ω;Rd

)
and such that

lim sup
k→∞

F (vk;A) ≤ lim inf
n→∞

F (un;A) .

By construction, vk = u on a neighborhood of ∂B0. �

We now turn to the proof of Theorem 4.2.
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Proof of Theorem 4.2. We prove that F (u; ·) satisfies the hypotheses of Proposition 5.2 in the
appendix. Property (1) follows from the fact that admissible sequences for A1 ∪ A2 are exactly
those obtained by pairing admissible sequences for A1 and A2.
Next we prove that

F (u;A) ≤ F (u;B) + F
(
u;A \ C

)
(4.32)

for every A, B, C ∈ A (Ω) such that C ⊂⊂ B ⊂⊂ A. By (1.1), for every η > 0 one can find
{un} ⊂ SBVp

(
B;Sd−1), {vn} ⊂ SBVp

(
A \ C;Sd−1) such that un → u in L1

(
B;Rd

)
, vn → u in

L1
(
A \ C;Rd

)
and

lim
n→∞

F (un;B) ≤ F (u;B) + η, lim
n→∞

F
(
vn;A \ C

)
≤ F

(
u;A \ C

)
+ η. (4.33)

ChooseB0 ∈ A∞ (Ω) such thatB0 has polyhedral boundary, C ⊂⊂ B0 ⊂⊂ B, andHN−1 (S (u) ∩ ∂B0) =
0. Applying Lemma 4.3 we may find {u′n} ⊂ SBVp

(
B;Sd−1), {v′n} ⊂ SBVp

(
A \ C;Sd−1), converg-

ing to u in L1
(
B;Rd

)
and L1

(
A \ C;Rd

)
, respectively, such that u′n = v′n = u in a neighborhood

of ∂B0 (depending on n), and

lim sup
n→∞

F
(
u′n;B

)
≤ lim

n→∞
F (un;B) , lim sup

n→∞
F

(
v′n;A \ C

)
≤ lim

n→∞
F

(
vn;A \ C

)
.

Define

wn :=

{
u′n in B0,

v′n in A \B0.
Then wn ∈ SBVp

(
A;Sd−1) and wn → u in L1

(
A;Rd

)
. Hence, by (1.1), (4.33), and the fact that

f, g ≥ 0,

F (u;A) ≤ lim inf
n→∞

F (wn;A) ≤ lim sup
n→∞

F
(
u′n;B

)
+ lim sup

n→∞
F

(
v′n;A \ C

)

≤ lim
n→∞

F (un;B) + lim
n→∞

F
(
vn;A \ C

)
≤ F (u;B) + F

(
u;A \ C

)
+ 2η.

Letting η → 0+, we obtain (4.32).
Finally, let

µ := C (1 + |∇u|p)LN⌊Ω+ CHN−1⌊S (u) .
By considering the sequence un ≡ u, by (1.1) and (F2), (G2), we have that

F (u;A) ≤ µ (A)

for all A ∈ A (Ω).
Thus, all the hypotheses of Proposition 5.2 in the appendix are satisfied, and so the result

follows. �

To establish (4.1) for a general u ∈ SBVp

(
Ω;Sd−1), we will use the regularity results of Carriero

and Leaci [18] for sphere-valued minimizers of the Mumford-Shah functional, to approximate any
u in SBVp

(
Ω;Sd−1) in a strong sense by a sequence {un} of functions satisfying the hypotheses of

Theorem 4.2. The proof follows essentially the one of Braides and Chiadò-Piat (see Lemma 5.2 in
[15]) for the unconstrained case.

Lemma 4.4. If u ∈ SBVp

(
Ω;Sd−1), p > 1, then there exists a sequence {un} in SBVp

(
Ω;Sd−1)

strongly converging to u in SBVp

(
Ω;Sd−1) with the property that for each n ∈ N there exist a

closed (N − 1)-rectifiable set Kn and a constant Cn > 0 such that un ∈ C1
(
Ω \Kn;S

d−1) and for
every compact set K ⊂ Kn,

lim sup
ε→0+

LN ({x ∈ Ω : dist (x,K) < ε})
ε

≤ CnHN−1 (K) . (4.34)

Moreover, if p = 2, then un ∈ C∞
(
Ω \Kn;S

d−1).
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Proof. Since S (u) is (N − 1)-rectifiable, for every n ∈ N, we may find a finite union of closed
subsets Rn of hypersurfaces of class C1 such that

HN−1 (S (u) \Rn) ≤
1

n
.

Extend u to be zero outside Ω and let ũn ∈ C∞c
(
R

N ;Rd
)
be the mollification of this extension.

Without loss of generality, we may assume that

lim
n→∞

n

∫

Ω
|u− ũn|p dx = 0.

Let I be the functional defined on SBVp

(
Ω;Sd−1) by

I (v) : =

∫

Ω
|∇v|p dx+HN−1 (S (v) \Rn) + n

∫

Ω
|v − ũn|p dx (4.35)

+

∫

Rn

(
1 +

∣∣v+ − u+
∣∣+

∣∣v− − u−
∣∣) dHN−1.

Here we choose the orientation νv = νu on S (u) ∩ S (v) ∩Rn.
Following the proof of Lemma 5.2 in [15], we have that this functional is coercive in SBVp and

it is lower semicontinuous with respect to strong convergence in L1loc
(
Ω;Sd−1). Hence, for each n

there exists a minimizer un ∈ SBVp

(
Ω;Sd−1) for (4.35). Again by Lemma 5.2 in [15], we obtain

that un → u strongly in SBVp

(
Ω;Sd−1).

We claim that the restriction of un to Ω \Rn is a local minimizer for the functional

J (v) :=

∫

Ω\Rn

|∇v|p dx+HN−1 (S (v) \Rn) + n

∫

Ω\Rn

|v − ũn|p dx,

v ∈ SBVp

(
Ω \Rn;S

d−1). Indeed, fix n and let v ∈ SBVp

(
Ω \Rn;S

d−1) be such that v = un

LN -a.e. (Ω \Rn) \K for some compact set K ⊂ Ω \Rn, and define

w (x) :=

{
v (x) for x ∈ K,
un (x) for x ∈ Ω \K,

we have that w ∈ SBVp

(
Ω;Sd−1), and so I (un) ≤ I (w), or, equivalently,

J
(
un|Ω\Rn

)
≤ J (v) ,

where we have used the fact w+ = u+n and w− = u−n HN−1-a.e. on Rn.
Since Lemma 4.5 in [18] still holds for local minimizers, we deduce that un belongs to the space

C1
(
(Ω \Rn) \ S (un);S

d−1
)
and

HN−1
((
S (un) ∩ (Ω \Rn)

)
\ S (un)

)
= 0.

Observing that Lemmas 4.8 and 4.9 in [18] are still valid for local minimizers, as in the proof
of Proposition 5.3 in [7] (see also Theorem 4.10 in [18]), we have that for every compact set

K ⊂ S (un) ∩ (Ω \Rn),

lim
ε→0+

LN ({x ∈ Ω \Rn : dist (x,K) < ε})
2ε

= HN−1 (K) .

Letting Kn := S (un) ∪ Rn, we have un ∈ C1
(
Ω \Kn;S

d−1). Fix a compact set K ⊂ Kn. Using

the fact that for every x ∈ R
N ,

dist (x,K) = min {dist (x,K \Rn) ,dist (x,K ∩Rn)} ,
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we obtain that

{x ∈ Ω : dist (x,K) < ε} ⊂ {x ∈ Ω \Rn : dist (x,K \Rn) < ε} ∪ {x ∈ Ω : dist (x,K ∩Rn) < ε} .
Since Rn is a finite union of hypersurfaces of class C1, it satisfies (4.34) (with Rn in place of Kn)
for some constant C ′n > 0 (see by Theorem 3.2.39 in [28]). Hence,

lim sup
ε→0+

LN ({x ∈ Ω : dist (x,K) < ε})
ε

≤ lim sup
ε→0+

LN ({x ∈ Ω \Rn : dist (x,K \Rn) < ε})
ε

+ lim sup
ε→0+

LN ({x ∈ Ω : dist (x,K ∩Rn) < ε})
ε

≤ 2HN−1 (K \Rn) + C ′nHN−1 (K ∩Rn) ≤
(
2 + C ′n

)
HN−1 (K) ,

which shows (4.34).

Finally, if p = 2, then for any open ball B ⊂ (Ω \Rn) \ S (un), we have that un is a minimizer
of the functional

J1 (v) :=

∫

B
|∇v|2 dx+ n

∫

B
|v − ũn|2 dx

among all functions v ∈ un + W 1,2
0

(
B;Sd−1). In view of the continuity of un in B, we have

that the singular set (i.e. the set of discontinuity points) of un is empty in B, and reason-
ing as in Theorem 2.2.4 in [40], we obtain that un ∈ C∞

(
B;Sd−1). This shows that un ∈

C∞
(
(Ω \Rn) \ S (un);S

d−1
)
. �

Lemma 4.5. Under the hypotheses of Theorem 4.2, let u ∈ SBVp

(
Ω;Sd−1) and let {un} ⊂

SBVp

(
Ω;Sd−1) converge to u strongly in SBVp

(
Ω;Sd−1). Then for every A ∈ A (Ω),

lim sup
n→∞

∫

A
QT f (x, un,∇un) dx ≤

∫

A
QT f (x, u,∇u) dx, (4.36)

lim sup
n→∞

∫

S(un)∩A
Rg

(
x, u+n , u

−
n , νun

)
dHN−1 ≤

∫

S(u)∩A
Rg

(
x, u+, u−, νu

)
dHN−1. (4.37)

Proof. Step 1- By extracting a subsequence, if necessary, we have that

lim
n→∞

∫

A
QT f (x, un,∇un) dx = lim sup

n→∞

∫

A
QT f (x, un,∇un) dx.

Since {un} converges strongly to u in SBVp

(
Ω;Sd−1) (see (2.3)), by extracting a further subse-

quence, without loss of generality, we may assume that {un} and {∇un} converge pointwise to u
and ∇u LN -a.e. in Ω and that there exists h ∈ L1 (Ω) such that |∇un|p ≤ h LN -a.e. in Ω and for
all n ∈ N. By Definition 2.5 and (F2), we have that

0 ≤ QT f (x, y, ξ) ≤ f (x, y, ξ) ≤ C (1 + |ξ|p)
for all x ∈ Ω, y ∈ Sd−1, and ξ ∈ R

d×N . In particular,

QT f (x, un (x) ,∇un (x)) ≤ C (1 + |h (x)|)
for LN -a.e. x ∈ Ω and for all n ∈ N.
Moreover, by (3.17) and the fact that f̃ is a Carathéodory function, we have that Qf̃ is upper

semicontinuous in y and continuous in ξ (see Proposition 9.5 in [19]), and so we are in a position
to apply Fatou’s lemma to the sequence of functions

x ∈ A 7→ C (1 + |h (x)|)−QT f (x, un (x) ,∇un (x))

to obtain (4.36).
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Step 2- By extracting a subsequence, if necessary, we have that

lim
n→∞

∫

S(un)∩A
Rg

(
x, u+n , u

−
n , νun

)
dHN−1 = lim sup

n→∞

∫

S(un)∩A
Rg

(
x, u+n , u

−
n , νun

)
dHN−1.

Using the fact that ∫

S(u)

(∣∣u+n − u+
∣∣+

∣∣u−n − u−
∣∣) dHN−1 → 0

by (2.3), by extracting a further subsequence, without loss of generality, we may assume that
u±n (x)→ u± (x) for HN−1-a.e. x ∈ S (u). Since 0 ≤ Rg ≤ g ≤ C by (G2),

lim
n→∞

∫

S(un)∩A
Rg

(
x, u+n , u

−
n , νun

)
dHN−1

≤ lim sup
n→∞

(∫

S(un)∩S(u)∩A
Rg

(
x, u+n , u

−
n , νu

)
dHN−1 + CHN−1 ((S (un) \ S (u)) ∩A)

)

≤ lim sup
n→∞

∫

S(u)∩A
Rg

(
x, u+n , u

−
n , νu

)
dHN−1,

where we have used the fact that νun = νu HN−1-a.e. in S (un)∩ S (u) (see (2.4)), (G3), and (2.3).
Since Rg is nonnegative and upper semicontinuous (see Proposition 5.1 in the appendix), applying
Fatou’s lemma to the sequence of functions

x ∈ S (u) ∩A 7→ C −Rg
(
x, u+n , u

−
n , νu

)
,

we obtain (4.37). �

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. Step 1- Assume first that u ∈ SBV2
(
Ω;Sd−1) is such that u ∈ C∞

(
Ω \K;Sd−1),

where K ⊂ R
N is a closed (N − 1)-rectifiable set satisfying (4.2). Then, in view of Theorem 4.2,

to establish the upper bound (4.1), it is enough to prove that

dF (u; ·)
dLN⌊Ω (x0) ≤ QT f (x0, u (x0) ,∇u (x0)) for LN -a.e. x0 ∈ Ω, (4.38)

dF (u; ·)
dHN−1⌊S (u) (x0) ≤ Rg

(
x0, u

+ (x0) , u
− (x0) , νu (x0)

)
for HN−1-a.e. x0 ∈ S (u) . (4.39)

Substep 1a- We prove (4.38). Since f : Ω×Sd−1×R
d×N → [0,∞) is a Carathéodory function, by

the Scorza–Dragoni theorem, for each j ∈ N there exists a compact set Kj ⊂ Ω with LN (Ω \Kj) ≤
1
j such that f : Kj × Sd−1 × R

d×N → [0,∞) is continuous. Let K∗
j be the set of Lebesgue points

of χKj and set

ω :=
⋃

j

(
Kj ∩K∗

j

)
.

Fix x0 ∈ ω \ S (u) such that x0 is a Lebesgue point of χKj ,

(∇u (x0))T u (x0) = 0, (4.40)

dF (u; ·)
dLN⌊Ω (x0) = lim

ε→0+

F (u;Q (x0, ε))

εN
<∞, lim

ε→0+

HN−1 (S (u) ∩Q (x0, ε))

εN
= 0. (4.41)

Since Ω \ K is open there exists ε0 > 0 such that Q (x0, ε0) ⊂ Ω \ K. Using the fact that u ∈
C1

(
Ω \K;Sd−1), we have that

M := ‖∇u‖
L∞(Q(x0,ε0);Rd×N) <∞. (4.42)
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In view of (4.40), ∇u (x0) ∈
[
Tu(x0)

(
Sd−1)]N , and so by (2.6)

QT f (x0, u (x0) ,∇u (x0)) = Qf (x0, u (x0) ,∇u (x0)) , (4.43)

where

f (x, z, ξ) := f (x, z, (Id×d − z ⊗ z) ξ)
for all (x, z, ξ) ∈ Ω×R

d×R
d×N . By (4.43), for any fixed η > 0 there exists ϕ ∈W 1,∞

0

(
Q;Rd

)
such

that

QT f (x0, u (x0) ,∇u (x0)) + η ≥
∫

Q
f (x0, u (x0) ,∇u (x0) +∇ϕ (y)) dy. (4.44)

Extend ϕ periodically to R
N with period Q, and for x ∈ Ω define

un (x) :=
u (x) + ψn (x)

|u (x) + ψn (x)|
,

where ψn (x) :=
1
nϕ (n (x− x0)). Note that for n large enough

|u+ ψn| ≥ |u| −
1

n
‖ϕ‖∞ ≥

1

2
. (4.45)

Thus by Corollary 3.1 in [3], un ∈ SBV2
(
Ω;Sd−1) and

∇un =

(
I− u+ ψn

|u+ ψn|
⊗ u+ ψn

|u+ ψn|

) ∇ (u+ ψn)

|u+ ψn|
, (4.46)

so that in view of (4.45) and (4.42) in Q (x0, ε0),

|∇un| ≤ 2

∣∣∣∣I−
u+ ψn

|u+ ψn|
⊗ u+ ψn

|u+ ψn|

∣∣∣∣ (M + ‖∇ϕ‖∞) (4.47)

≤ 2 (|I|+ 1) (M + ‖∇ϕ‖∞) = 2
(√

d+ 1
)
(M + ‖∇ϕ‖∞) =: L.

Since S (un) ∩ Ω ⊂ S (u) ∩ Ω, by (F2), (4.47), and (G2) we have

dF (u; ·)
dLN⌊Ω (x0) ≤ lim inf

ε→0+
lim inf
n→∞

1

εN

(∫

Q(x0,ε)∩Kj

f (x, un,∇un) dx+ C

∫

Q(x0,ε)\Kj

(
1 + L2

)
dx

)

(4.48)

+ C lim
ε→0+

HN−1 (S (u) ∩Q (x0, ε))

εN
≤ lim inf

ε→0+
lim inf
n→∞

1

εN

∫

Q(x0,ε)∩Kj

f (x, un,∇un) dx,

where we have used (4.40)3 and the fact that x0 is a Lebesgue point of χKj .

Since f : Kj ×Sd−1×Bd×N (0;L)→ [0,∞) is uniformly continuous, there exists δ > 0 such that

|f (x, z1, ξ1)− f (x0, z2, ξ2)| < η (4.49)

for all x ∈ Kj , z1, z2 ∈ Sd−1, ξ1, ξ2 ∈ Bd×N (0;L), with |x− x0| < δ, |z1 − z2| < δ, |ξ1 − ξ2| < δ.
Using the fact that ‖ψn‖∞ ≤ 1

n ‖ϕ‖∞ we have that
(

I− u+ ψn

|u+ ψn|
⊗ u+ ψn

|u+ ψn|

)
1

|u+ ψn|
→ (I−u⊗ u)

uniformly on Q (x0, ε0). Thus
∣∣∣∣
(

I− u+ ψn

|u+ ψn|
⊗ u+ ψn

|u+ ψn|

)
1

|u+ ψn|
− (I−u⊗ u)

∣∣∣∣ ≤
δ

3 (1 + L)
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for all n sufficiently large. On the other hand, since u and ∇u are continuous at x0, there exists
0 < ε1 < ε0 such that

|u (x)− u (x0)| ≤
δ

2
, |u (x)⊗ u (x)− u (x0)⊗ u (x0)| ≤

δ

3 (1 + L)
,

|∇u (x)−∇u (x0)| ≤
δ

3
(
2 +

√
N
)

for all x ∈ Q (x0, ε1). Hence in Q (x0, ε1), for all n sufficiently large, we have |un − u (x0)| ≤ δ and
∣∣∣∣
(

I− u+ ψn

|u+ ψn|
⊗ u+ ψn

|u+ ψn|

) ∇u+∇ψn

|u+ ψn|
− (I−u (x0)⊗ u (x0)) (∇u (x0) +∇ψn)

∣∣∣∣ ≤ δ.

In turn, by (4.46), (4.49), in Kj ∩Q (x0, ε1) for all n sufficiently large we have

f (x, un,∇un) ≤ f (x0, u (x0) , (I−u (x0)⊗ u (x0)) (∇u (x0) +∇ψn))+η = f (x0, u (x0) ,∇u (x0) +∇ψn)+η.

It follows from (4.48) and the fact that f ≥ 0 that

dF (u; ·)
dLN⌊Ω (x0) ≤ lim inf

ε→0+
lim inf
n→∞

1

εN

∫

Q(x0,ε)
f (x0, u (x0) ,∇u (x0) +∇ψn (x)) dx+ η

=

∫

Q
f (x0, u (x0) ,∇u (x0) +∇ϕ (y)) dy + η ≤ QT f (x0, u (x0) ,∇u (x0)) + 2η,

where we have used the Riemann-Lebesgue lemma (see Lemma 2.85 in [29]) and (4.44). Letting
η → 0+, one attains (4.38).
Substep 1b- To obtain (4.39), let x0 ∈ S (u) be such that

dF (u; ·)
dHN−1⌊S (u) (x0) = lim

ε→0+

F
(
u;Qνu(x0) (x0, ε)

)

εN−1
<∞, (4.50)

lim
ε→0+

1

εN−1

∫

Qνu(x0)(x0,ε)
|∇u|2 dx = 0, (4.51)

lim
ε→0+

1

εN−1

∫

Qνu(x0)(x0,ε)∩S(u)
Rg

(
x, u+, u−, νu

)
dHN−1 = Rg

(
x0, u

+ (x0) , u
− (x0) , νu (x0)

)
.

(4.52)

For simplicity, in what follows we assume that x0 = 0 and ν = eN . We divide the proof into 4
cases.
Case 1 - Assume first that u ∈ SBV2

(
Ω;Sd−1) has the form

u (x) = c1χE (x) + c2χΩ\E (x) , x ∈ Ω,
where c1, c2 ∈ Sd−1 and the set E ⊂ R

N is a polyhedral set, that is,

∂E ⊂
M⋃

i=1

Pi,

where
Pi =

{
x ∈ R

N : (x− ai) · ηi = 0
}

for some ai ∈ R
N , ηi ∈ SN−1, i = 1, . . . ,M . Since S (u) = ∂E ∩ Ω ⊂

M⋃

i=1

Pi, it is enough to study

the case in which 0 belongs to the (relative) interior of one of the Pi.
Fix ρ > 0. By definition of BV -elliptic envelope we may find a function ϕ ∈ SBV0

(
Q;Sd−1)

such that
ϕ = uu+(0),u−(0),eN

on ∂Q (4.53)
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and ∫

S(ϕ)
g
(
0, ϕ+ (y) , ϕ− (y) , νϕ(y)

)
dHN−1 (y) ≤ Rg

(
0, u+ (0) , u− (0) , eN

)
+ ρ. (4.54)

In view of (4.53) for every yN ∈
(
−1
2 ,

1
2

)
we may extend ϕ (·, yN ) to R

N−1 as a periodic function
with period QN−1. Since 0 belongs to the (relative) interior of Pi, for ε > 0 small we have that
u = uu+(0),u−(0),eN

in Q (0, ε) and

S (u) ∩Q (0, ε) = Pi ∩Q (0, ε) ,

and consider the sequence vn : Q (0, ε)→ Sd−1 defined by

vn (x) :=

{
ϕ
(

n
εx

)
if |xN | ≤ ε

2n ,
u (x) otherwise.

By Corollary 3.89 in [5], vn ∈ SBV0
(
Q (0, ε) ;Sd−1). Moreover, |vn| = 1 LN -a.e. in Q (0, ε), vn → u

in L1
(
Q (0, ε) ;Rd

)
, and so

F (u;Q (0, ε)) ≤ lim inf
n→∞

(∫

Q(0,ε)
f (x, vn, 0) dx+

∫

S(vn)∩QN−1(0,ε)×]− ε
2n

, ε
2n [

g
(
x, v+n , v

−
n , νvn

)
dHN−1

)
,

(4.55)
where we have used the facts that vn ∈ SBV0

(
Q (0, ε) ;Sd−1) and that, by choice of ε,

S (vn) = S (vn) ∩
(
QN−1 (0, ε)×

]
− ε

2n
,
ε

2n

[)

for all n sufficiently large. By (F2), (4.55) becomes

F (u;Q (0, ε)) ≤ CεN + lim inf
n→∞

∫

S(vn)∩QN−1(0,ε)×]− ε
2n

, ε
2n [

g
(
x, v+n , v

−
n , νvn

)
dHN−1.

Since g is uniformly continuous, there exists δ > 0 such that |g (x, a, b, ν)− g (y, a, b, ν)| < ρ for all
x, y ∈ Q (0, ε) with |x− y| < δ, all a, b ∈ Sd−1 and all ν ∈ SN−1. Hence, if ε < δ we have that

F (u;Q (0, ε)) ≤ CεN + lim inf
n→∞

∫

S(vn)∩QN−1(0,ε)×]− ε
2n

, ε
2n [

(
g
(
0, v+n , v

−
n , νvn

)
+ ρ

)
dHN−1

≤ CεN + lim inf
n→∞

εN−1

nN−1

∫

S(ϕ)∩QN−1(0,n)×]− 1
2
, 1
2 [

(
g
(
0, ϕ+, ϕ−, νϕ

)
+ ρ

)
dHN−1

= CεN + εN−1
∫

S(ϕ)
g
(
0, ϕ+, ϕ−, νϕ

)
dHN−1 + ρεN−1

≤ CεN + εN−1Rg
(
0, u+ (0) , u− (0) , eN

)
+ 2ρεN−1

where we have used the change of variables x = ε
ny, Fubini’s theorem, the periodicity of ϕ (·, yN )

(see (4.53)), and (4.54). In turn, by (4.50),

dF (u; ·)
dHN−1⌊S (u) (0) ≤ Rg

(
0, u+ (0) , u− (0) , eN

)
+ 2ρ.

Letting ρ go to zero we obtain (4.39).
Case 2- Next assume that u ∈ SBV2

(
Ω;Sd−1) has the form

u (x) = c1χE (x) + c2χΩ\E (x) , x ∈ Ω, (4.56)

where c1, c2 ∈ Sd−1 and the set E ⊂ R
N is such that ∂E is contained in a closed (N − 1)-rectifiable

set K ⊂ R
N satisfying (4.2). Fix ε > 0 sufficiently small. By standard approximation results (see,
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e.g., Lemma 3.1 in [9] or [20]), there exists a sequence {En}n∈N
⊂ Q (0, ε) such that each En is a

polyhedral set and

χEn → χE in L1 (Q (0, ε)) , |DχEn | (Q (0, ε))→ |DχE | (Q (0, ε)) .

Set un := c1χEn + c2χQ(0,ε)\En
. Then un → u in L1

(
Q (0, ε) ;Sd−1), and so by Case 1 applied to

each un, we have

F (u;Q (0, ε)) ≤ lim inf
n→∞

F (un;Q (0, ε))

≤ lim inf
n→∞

(∫

Q(0,ε)
f (x, un, 0) dx+

∫

S(un)∩Q(0,ε)
Rg

(
x, u+n , u

−
n , νun

)
dHN−1

)
.

Since Rg is upper semicontinuous, there exists a decreasing sequence of continuous functions gk :
Ω× Sd−1 × Sd−1 × SN−1 → [0,∞) such that Rg = infk gk. Fix k ∈ N. Then

lim sup
n→∞

∫

S(un)∩Q(0,ε)
Rg

(
x, u+n , u

−
n , νun

)
dHN−1

≤ lim
n→∞

∫

∂∗En∩Q(0,ε)
gk (x, c1, c2, νEn) dHN−1

=

∫

∂∗E∩Q(0,ε)
gk (x, c1, c2, νE) dHN−1,

where in the equality we have used Reshetnyak continuity theorem (see Theorem 2.39 in [5], see
also [42]). Therefore,

lim sup
n→∞

∫

S(un)∩Q(0,ε)
Rg

(
x, u+n , u

−
n , νun

)
dHN−1 ≤

∫

S(u)∩Q(0,ε)
Rg

(
x, u+, u−, νu

)
dHN−1,

by Lebesgue monotone convergence theorem and (G2). Hence, also by (F2), we have that

F (u;Q (0, ε)) ≤ CεN +

∫

S(u)∩Q(0,ε)
Rg

(
x, u+, u−, νu

)
dHN−1.

Dividing the previous inequality by εN−1 and letting ε→ 0+, (4.39) follows from (4.50) and (4.52).
In view of Step 1, this shows that (4.1) holds for all functions u as in (4.56).
Case 3- Consider next the case in which u ∈ SBV2

(
Ω;Sd−1) has the form

u (x) =

M∑

i=1

ciχEi (x) , x ∈ Ω, (4.57)

where ci ∈ Sd−1, the sets Ei ⊂ R
N are pairwise disjoint, {Ei ∩ Ω}i is a partition of Ω, and

⋃M
i=1 ∂Ei

is contained in a closed (N − 1)-rectifiable set K ⊂ R
N satisfying (4.2). Then by Theorem 4.2,

F (u; ·) is the restriction to A (Ω) of a Radon measure defined on B (Ω) and still denoted F (u; ·).
As in the proof of Proposition 4.8 in [6], we have that

F (u;Q (0, ε)) = F (u;Q (0, ε) \ S (u)) + F (u;S (u) ∩Q (0, ε)) (4.58)

= F (u;Q (0, ε) \ S (u)) +
M∑

i=1

∑

j>i

F (u; ∂∗Ei ∩ ∂∗Ej ∩Q (0, ε)) .

Note that for HN−1-a.e. x ∈ ∂∗Ei ∩ ∂∗Ej ∩Q (0, ε) the function u coincides with the function

v (x) := ciχEi (x) + cjχΩ\Ei
(x) , x ∈ Ω.
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Repeating word-for-word the proof of Step 1 of Proposition 4.4 in [6], we have that for every
compact set K1 ⊂ ∂∗Ei ∩ ∂∗Ej ∩Q (0, ε),

F (u;K1) = F (v;K1) . (4.59)

Indeed, all the hypotheses of that proposition are satisfied with the exception of hypothesis (4.12)
in [6], that is,

F (w;A) ≤ C |Dw| (A)
for all w ∈ BV

(
Ω;Rd

)
and all A ∈ A (Ω), and for some C > 0. Note however, that by (F2) and

(G2), we have that

F (w;A) ≤ C
(
LN (A) + |Dw| (A)

)

for all w ∈ SBV0
(
Ω;Rd

)
and all A ∈ A (Ω). An inspection of the proof of Step 1 of Proposition

4.4 in [6] shows that this latter condition is all is needed. Hence, (4.59) holds, and so

F (u;Q (0, ε) ∩ ∂∗Ei ∩ ∂∗Ej) = F (v;Q (0, ε) ∩ ∂∗Ei ∩ ∂∗Ej) .

Since the function v is of the type (4.56), in view of Step 1 and Case 1, we have that (4.1) holds
for v. In turn, also by Theorem 4.2 applied to v,

F (v; ∂∗Ei ∩ ∂∗Ej ∩Q (0, ε)) ≤
∫

∂∗Ei∩∂∗Ej∩Q(0,ε)
Rg

(
x, v+, v−, νv

)
dHN−1

=

∫

∂∗Ei∩∂∗Ej∩Q(0,ε)
Rg (x, ci, cj , νEi) dHN−1.

Hence, also by (4.58) and (F2), we obtain

F (u;Q (0, ε)) ≤ CεN +

M∑

i=1

∑

j>i

∫

∂∗Ei∩∂∗Ej∩Q(0,ε)
Rg (x, ci, cj , νEi) dHN−1

= CεN +

∫

S(u)∩Q(0,ε)
Rg

(
x, u+, u−, νu

)
dHN−1.

Dividing the previous inequality by εN−1 and letting ε→ 0+, (4.39) follows from (4.50) and (4.52).
In view of Step 1, this shows that (4.1) holds for all functions u as in (4.57).
Case 4- Finally, assume that u ∈ SBV2

(
Ω;Sd−1) is such that u ∈ C∞

(
Ω \K;Sd−1), where K

is a closed (N − 1)-rectifiable set satisfying (4.2). Since 0 ∈ Ω, we may find ε0 > 0 such that

Q (0, ε0) ⊂ Ω. Let

Bn :=

{
x ∈ Ω : dist

(
x,K ∩Q (0, ε0)

)
<
1

n

}
.

By (4.2) there exists c > 0 such that for any n ∈ N, LN (Bn) ≤ c
n . Since ∇u ∈ L2

(
Ω;Rd×N

)
, we

have that
∫
Bn
|∇u|2 dx→ 0 as n→∞. Let kn ∈ N be chosen such that kn →∞,

n

k2n
+ kn

∫

Bn

|∇u| dx→ 0 as n→∞. (4.60)

(If
∫
Bn
|∇u|2 dx 6= 0 we may take kn to be the integer part of n1/2

(
R

Bn
|∇u|2 dx)

1/4 ). For every l ∈ Z,

with −2kn ≤ l < 2kn, and for every j = 1, . . . , d, by the coarea formula, we have
∫

Bn∩
n

l
kn

<uj≤ l+1
kn

o

∣∣∇uj
∣∣ dx = |Duj |

(
(Bn \ S (u)) ∩

{
l

kn
< uj ≤ l + 1

kn

})

=

∫ l+1
kn

l
kn

HN−1 ((Bn \ S (u)) ∩ ∂∗
({
uj > t

}))
dt.
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By Sard’s theorem (see, e.g., Theorem 1.2 in [12]), we have that for L1-a.e. t ∈ [−1, 1],
(Ω \K) ∩

(
uj

)−1
({t}) is a C∞ hypersurface. (4.61)

Let Γ ⊂ [−1, 1] be the set of t for which (4.61) holds. Then
∫

Bn∩
n

l
kn

<u(j)≤ l+1
kn

o

∣∣∇uj
∣∣ dx =

∫
“

l
kn

, l+1
kn

”

∩Γ
HN−1 ((Bn \ S (u)) ∩ ∂∗

({
uj > t

}))
dt,

and so there exists tj,l ∈
(

l
kn
, l+1

kn

)
∩ Γ such that

∫

Bn∩
n

l
kn

<u(j)≤ l+1
kn

o

∣∣∇uj
∣∣ dx ≥ 1

kn
HN−1 ((Bn \ S (u)) ∩ ∂∗

({
uj > tj,l

}))
.

Summing over l yields
∫

Bn

∣∣∇uj
∣∣ dx ≥ 1

kn

2kn−1∑

l=−2kn

HN−1 ((Bn \ S (u)) ∩ ∂∗
({
uj > tj,l

}))
. (4.62)

Define v̂n : Bn → R
d as

v̂j
n (x) := ĉjl if x ∈

{
y ∈ Bn : tj,l < uj (y) ≤ tj,l+1

}
, (4.63)

for l = −2kn, . . . , 2kn − 1, where the numbers ĉjl ∈ (tj,l, tj,l+1] are chosen so that
bcj
l

|bcj
l |
6= − bcj

s

|bcj
s| for

l 6= s. Since tj,l+1 − tj,l ≤ 2
kn
, we have that

∥∥∥v̂j
n − uj

∥∥∥
L∞(Bn)

≤ 2
kn
, and so

1

2
≤ 1− 2

√
d

kn
≤ |u (x)| − |v̂n (x)− u(x)| ≤ |v̂n (x)| ≤ |u (x)|+ |v̂n (x)− u (x)| ≤ 1 +

2
√
d

kn
(4.64)

for LN -a.e. x ∈ Bn and for all n sufficiently large. Thus we may define vn : Bn → Sd−1 as

vn :=
v̂n

|v̂n|
.

Then

‖vn − u‖
L∞(Bn)

≤ ‖vn − v̂n‖L∞(Bn)
+ ‖v̂n − u‖L∞(Bn)

≤ ‖1− |v̂n|‖L∞(Bn)
+
2
√
d

kn

≤ 2
√
d

kn
+
2
√
d

kn
≤ C (d)

kn
, (4.65)

where we have used (4.64). Moreover, by construction

S (vn) ∩Bn ⊂
⋃d

j=1

⋃2kn−1
l=−2kn

∂∗
({
uj > tj,l

})
∩Bn, (4.66)

and so by (4.62),

HN−1 ((S (vn) ∩Bn) \ S (u)) ≤
d∑

j=1

2kn−1∑

l=−2kn

HN−1 ((Bn \ S (u)) ∩ ∂∗
({
uj > tj,l

}))
(4.67)

≤ kn

d∑

j=1

∫

Bn

∣∣∇uj
∣∣ dx.

Since vn ∈ SBV0
(
Bn;S

d−1) takes only a finite number of values, we may write

vn (x) =

Mn∑

i=1

ci,nχEi,n (x) , x ∈ Bn, (4.68)



RELAXATION IN SBVp
`

Ω;Sd−1
´

31

where {Ei,n}Mn

i=1 is a partition of Bn. Let B
′
n be an open subset with Lipschitz boundary such that

B2n ∩Q (0, ε0) ⊂ B′n ⊂ Bn ∩Q (0, ε0) .

Define

v̄n (x) :=

{
vn (x) if x ∈ B′n,
e1 if x ∈ Ω \B′n.

Note that in view of (4.61), (4.63), the properties of K, and the fact B′n is Lipschitz, the function
v̄n is of the type (4.57).
We now modify vn to match u in the region B′n \ B3n. Let ϕn ∈ C∞

(
B′n

)
be such that ϕn = 1

in B3n ∩Q (0, ε0), ϕn = 0 outside B′n, 0 ≤ ϕn ≤ 1, and ‖∇ϕn‖L∞(B′n;RN ) ≤ Cn and define

un :=
ϕnv̄n + (1− ϕn)u

|ϕnv̄n + (1− ϕn)u|
=

ϕnvn + (1− ϕn)u

|ϕnvn + (1− ϕn)u|
.

Since |vn − u| ≤ C(d)
kn

LN -a.e. in Bn, we have that for n large enough,

|ϕnvn + (1− ϕn)u| = |u+ ϕn (vn − u)| ≥ |u| − |ϕn (vn − u)| ≥ 1− C (d)

kn
≥ 1

2
LN -a.e. in B′n.

Using the fact that the projection P : R
d \ Bd

(
0, 12

)
→ Sd−1 is Lipschitz, by Corollary 3.1 in

[5], we deduce that un ∈ SBV2
(
Ω;Sd−1). Moreover, since v̄n is of the type (4.57), we have that

un ∈ C1
(
Ω \Kn;S

d−1), where Kn is a closed (N − 1)-rectifiable set satisfying (4.2).
By Theorem 4.2, F (un; ·) is the restriction to A (Ω) of a Radon measure, and so for 0 < ε ≤ ε0,

F (un;Q (0, ε)) = F (un;B3n ∩Q (0, ε)) + F (un;Q (0, ε) \B3n)

≤ F (un;B3n ∩Q (0, ε)) + C

∫

Q(0,ε)\B3n

(
1 + |∇un|2

)
dx (4.69)

+ CHN−1 (S (un) ∩ (Q (0, ε) \B3n)) .

Since un = vn in B3n∩Q (0, ε), and since Case 3 applies to v̄n, by the locality of F (·;B3n ∩Q (0, ε)),
we have that

F (un;B3n ∩Q (0, ε)) = F (vn;B3n ∩Q (0, ε))

≤
∫

B3n∩Q(0,ε)
QT f (x, vn, 0) dx+

∫

Q(0,ε)∩B3n∩S(vn)
Rg

(
x, v+n , v

−
n , νvn

)
dHN−1

≤ CεN +

∫

Q(0,ε)∩S(u)
Rg

(
x, v+n , v

−
n , νu

)
dHN−1 (4.70)

+ CHN−1 (Q (0, ε) ∩B3n ∩ S (vn) \ S (u))

≤ CεN +

∫

Q(0,ε)∩S(u)
Rg

(
x, v+n , v

−
n , νu

)
dHN−1 + Ckn

∫

Bn

|∇u| dx,

where we have used Proposition 3.73 in [5], the fact that Rg ≥ 0, and (4.67).
Similarly, since S (u) ⊂ B3n, by (4.67),

HN−1 (S (un) ∩ (Q (0, ε) \B3n)) ≤ HN−1 ((S (vn) ∩B′n
)
\ S (u)

)
≤ Ckn

∫

Bn

|∇u| dx, (4.71)
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while by (4.60) and (4.65),
∫

Q(0,ε)\B3n

(
1 + |∇un|2

)
dx ≤

∫

Q(0,ε)

(
1 + |∇u|2

)
dx+ C

∫

B′n\B3n

n2 |vn − u|2 dx

≤
∫

Q(0,ε)

(
1 + |∇u|2

)
dx+ C

n2

k2n
LN (Bn) (4.72)

=

∫

Q(0,ε)

(
1 + |∇u|2

)
dx+ o (1) ,

where we have used the facts that∇vn = 0 LN -a.e. inB′n and that |∇un| ≤ C |∇ (ϕnvn + (1− ϕn)∇u)|,
since |ϕnvn + (1− ϕn)u| ≥ 1

2 . Combining (4.69)-(4.72), we obtain

F (un;Q (0, ε)) ≤ C

∫

Q(0,ε)

(
1 + |∇u|2

)
dx+

∫

Q(0,ε)∩S(u)
Rg

(
x, v+n , v

−
n , νu

)
dHN−1 + o (1) .

Since un → u in L1
(
Ω;Rd

)
, it follows that

F (u;Q (0, ε)) ≤ lim inf
n→∞

F (un;Q (0, ε)) ≤
∫

Q(0,ε)

(
1 + |∇u|2

)
dx

+ lim inf
n→∞

∫

Q(0,ε)∩S(u)
Rg

(
x, v+n , v

−
n , νu

)
dHN−1.

By (4.65), using the fact that S (u) ⊂ Bn, the upper semicontinuity of Rg (x, ·, ·, νu), (G2), and
Fatou’s lemma, we conclude that

F (u;Q (0, ε)) ≤
∫

Q(0,ε)

(
1 + |∇u|2

)
dx+

∫

Q(0,ε)∩S(u)
Rg

(
x, u+, u−, νu

)
dHN−1.

By dividing the previous inequality by εN−1 and letting ε→ 0+, (4.39) follows from (4.50)-(4.52).

Step 2- We establish (4.1) for a general u ∈ SBV2
(
Ω;Sd−1) and A ∈ A (Ω). Let {un} ⊂

SBV2
(
Ω;Sd−1) be the sequence given in Lemma 4.4. By the lower semicontinuity of F (·;A),

we have that

F (u;A) ≤ lim inf
n→∞

F (un;A)

≤ lim inf
n→∞

(∫

A
QT f (x, un,∇un) dx+

∫

S(un)∩A
Rg

(
x, u+n , u

−
n , νun

)
dHN−1

)
,

where in the last inequality we have applied Step 1 to each un. By Lemma 4.5, (4.1) now follows. �

Proof of Theorem 1.1. Theorem 1.1 follows from Theorems 3.1 and 4.1. �

5. Appendix

Proposition 5.1. Let g : Sd−1 × Sd−1 × SN−1 → [0,∞) be continuous. Then Rg is upper semi-
continuous.

Proof. Let {an}, {bn} ⊂ Sd−1, {νn} ⊂ SN−1 be such that an → a, bn → b and νn → ν. For ε > 0,
choose u ∈ SBV0

(
Q;Sd−1) such that u = ua,b,ν on ∂Qν and

Rg (a, b, ν) ≥
∫

S(u)∩Qν

g
(
u+, u−, ν

)
dHN−1 − ε,

where ua,b,ν is given by (2.9). Since g is uniformly continuous, there exists 0 < δ < 1 such that

|g (α1, β1, ν)− g (α2, β2, ν)| ≤ ε (5.1)

for all αi, βi ∈ Sd−1, ν ∈ SN−1, i = 1, 2 with |α1 − α2|, |β1 − β2| ≤ δ.
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Let n0 ∈ N be such that for all n ≥ n0,

max {|an − a| , |bn − a|} ≤
δ

4
.

Then for every θ ∈ (0, 1) and z ∈ Sd−1,

|z + θ (an − a)| ≥ |z| − |an − a| ≥
1

2
, |z + θ (bn − b)| ≥ |z| − |bn − b| ≥

1

2
. (5.2)

Let r > 0 be so small that B (a, r) ∩ B (b, r) = ∅ and let ϕ ∈ C∞c (B (0, r) ; [0, 1]) be such that
ϕ (0) = 1. Define

Ψn (z) :=





z+ϕ(z−a)(an−a)
|z+ϕ(z−a)(an−a)| if z ∈ B (a, r) ,
z+ϕ(z−b)(bn−b)
|z+ϕ(z−b)(bn−b)| if z ∈ B (b, r) ,

z otherwise.

Then Ψn : S
d−1 → Sd−1 is C∞ and by (5.2)

|Ψn (z)− z| ≤ 4max {|an − a| , |bn − a|} ≤ δ (5.3)

for all n ≥ n0.
Define

un (x) := (Ψn ◦ u) (Rnx) , x ∈ Qνn ,

where Rn is a rotation such that RT
nν = νn. Since Ψn ∈ C∞

(
Sd−1;Sd−1), by Corollary 3.1 in [3]

we have un ∈ SBV0
(
Qν ;S

d−1), un = uan,bn,νn on ∂Qνn , S (un) = RT
nS (u), and

u±n (x) =
(
Ψn ◦ u±

)
(Rnx)

for x ∈ S (un).
Since un is admissible for Rg (an, bn, νn), we have

Rg (an, bn, νn) ≤
∫

S(un)
g
(
u+n (x) , u

−
n (x) , νun (x)

)
dHN−1 (x)

=

∫

S(u)
g
((
Ψn ◦ u+

)
(y) ,

(
Ψn ◦ u−

)
(y) , νu (y)

)
dHN−1 (y)

≤
∫

S(u)
g
(
u+ (y) , u− (y) , νu (y)

)
dHN−1 (y) + εHN−1 (S (u)) ,

where we have used the change of variables y = Rnx, (5.1), and (5.3). Letting first n → ∞ and
then ε→ 0+ we obtain the desired result. �

The following proposition provides sufficient conditions for an increasing set function be a Radon
measure. It was used in the proof of Theorem 4.2 and is a consequence of De Giorgi-Letta’s criterion
(see [23]). The proof may be found in [25] (see Corollary 5.2), and is an adaptation of that of
Theorem 4.3 in [6].

Proposition 5.2. Let (X, d) be a locally compact metric space such that every open set A ⊂ X is
σ-compact. Assume that ρ : A(X)→ [0,∞) is an increasing set function such that

(1) (additivity on disjoint sets) ρ (A1 ∪A2) = ρ (A1) + ρ (A2) for all A1, A2 ∈ A(X), with
A1 ∩A2 = ∅;

(2) for all A, B, C ∈ A(X), with C ⊂⊂ B ⊂⊂ A we have

ρ(A) ≤ ρ(B) + ρ(A \ C);
(3) there exists a measure µ : B(X)→ [0,∞) such that

ρ(A) ≤ µ (A) < +∞
for every A ∈ A(X).
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Then ρ is the restriction to A(X) of a measure defined on B(X).
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