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Abstract

In the context of analysis of dust acoustic (solitary) waves including viscosity, we introduce a finite
element formulation of the corresponding fluid dust-acoustic wave equations. With this objective, a
Petrov-Galerkin weak form with upwinding is adopted. We consider a dusty unmagnetized plasma
system consisting of negatively charged dust and Boltzmann electrons and ions. Nonlinearity of ion and
electron number density in terms of a electrostatic potential is included. A fully-implicit time-integration
is used (backward-Euler method) which requires the first derivative of the weak form. A three-field
formulation is proposed, with the dust number-density, the electrostatic potential and the dust velocity
being the unknown fields. Two numerical examples are introduced and results show great promise for
the proposed formulation as a predictive tool in viscous dusty plasmas.

KEYWORDS: Viscous dusty plasma, Petrov-Galerkin formulation, acoustic waves, finite elements, nonlinear
fluid.

1 Introduction

Irving Langmuir [1] proposed that electrons, ions and neutrals in an ionized gas can be considered as a
corpuscular material he titled plasma. It is now commonly accepted that more than 99% of the known
universe (in which the dust is a omnipresent ingredient) is in the plasma state, cf. [2, 3]. Plasmas containing
dust particles are important in the study of the space environment, such as asteroid zones, planetary
rings (viz. Saturn rings [4]), comet tails, as well as the magnetosphere of the Earth [5]. Dusty plasmas
are also observed in laboratory with Q-machines, DC discharges, and RF discharges, cf. [6]. It is known
that RF discharges cause dust levitation [7]. Dusty plasmas typically contain dust grains of micrometer or
sub-micrometer size which are negatively charged because of field emission, ultra-violet ray irradiation,
and plasma currents [8, 9]. A quantified study of the charging process was performed by Barkan et al. [10].
Collective effects in micro-plasmas have been studied by Verheest [11] using many-fluid models.
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We assume that dust particles have constant mass and are point charges. In addition, we consider a
three component plasma consisting of electrons and ions having Boltzmann density distributions with
temperatures Te and Ti, respectively, as well as negatively charged dust by electron attachment [12, 13].
Dust are comparatively heavy particles. To simplify the treatment, thermal motion of dust is not included.
This case has been identified as “cold dust” by Rao, Shukla and Yu [9]. In dust-free electron–ion plasmas,
ions charge generally remains constant. However, in a dusty plasma, the charge of a particle does not
remain constant, cf. [12, 6].

The presence of dust grains modifies the existing plasma wave spectra and introduces dust-acoustic
waves, dust ion acoustic waves, dust lattice waves etc. [14]. In dust acoustic waves, the inertia is provided
by dust particle mass and the restoring force is provided by the pressures of electrons and ions. Dust
acoustic waves predicted by Rao, Shukla and Yu have been experimentally observed by Barkan et al. [15].
As mentioned by Merlino and Goree [6], in a dust acoustic wave neighbor, dust fluid elements are coupled
by the electric field associated with the wave rather than by collisions, as they would be in a neutral gas.

According to Shukla and Mamun [3], there are two types of acoustic modes in uniform, unmagnetized,
collisionless dusty plasmas with a weak Coulomb coupling between the charged dust grains: dust acoustic
(DA) and dust ion-acoustic (DIA) waves. In summary,

• In DA waves [9], there is a predominance of low-frequency dust grain dynamics with Boltzmann
electron and ion distribution.

• In DIA waves [16], dust grains are stationary, electrons follow the Boltzmann distribution and ion
dynamics is predominant.

In terms of dusty plasma finite element solutions, we are not aware of antecedent contributions. However,
two-fluid finite element solutions of plasmas exist, one significant solution has been developed by C.R.
Sovinec’s group, cf. [17, 18] using classical (continuous) Galerkin methods. Inherent instabilities caused
by the convective term are dealt at the time-integration level, cf. [18]. In the work of Jardin, Breslau and
Ferraro [19], the Clough-Tocher C 1 triangular element was used to solve smooth magneto-hydrodynamic
problems. If the analysis involves shock waves, discontinuous Galerkin methods (cf. [20]) have been used
with success with plasmas, see Levy, Shu and Yan [21]. According to Garai et al. [22], viscosity should
be included as an important term in dusty plasmas. Although some degree of dependence with the dust
number density is observed [23], we here opt for the Newtonian model for simplicity.

With the goal of obtaining a stable solution of a shock-free problem, we opt for an implicitly integrated
Petrov-Galerkin formulation, which results in a very simple but effective numerical scheme. We organize this
work as follows: in Section 2 the governing equations are presented (continuity, momentum and Poisson),
with the respective initial and boundary conditions. In Section 3, the weak form using a Petrov-Galerkin
combination of test/trial functions is presented. This is followed, in Section 4, by the discretization using
Streaming Upwind Petrov-Galerkin (SUPG) [24] shape functions. In Section 5, a set of representative
numerical examples is shown, confirming the robustness in terms of mesh and step-size effects in the
numerical results. Vortices are also predicted, in line with the theoretical work of Hasegawa and Shukla
[25]. Finally, in Section 6, conclusions are drawn.

2 Governing equations

2.1 Characteristic quantities

We consider the following independent unknown fields:

1. nd: number density of dust

2. ud: dust velocity

3. ϕ: electrostatic wave potential
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Equations for a dusty plasma typically make use of normalized quantities, which in turn depend on
characteristic values. We introduce the Debye length for a dusty plasma, using the ion temperature, as (see
the approximation λd

∼= λi in [3]):

λi =
1

Zie

√
ε0κBTi

ni
(1)

where ε0 is the electric permittivity of free space, κB is the Boltzmann constant, Ti is the ion temperature
(in Kelvin), Zi is the ion charge number, ni is the number density of ions and e is the electron charge. In this
work, ions are positively charged and dust is negatively charged. In addition, λi serves as a characteristic
length-scale.

The dust acoustic speed (cda) for cold dust is given by (cf. [14], [12]):

cda =

√
ZdκBTi

md
(2)

where Zd is the dust charge number and md is the mass of a single dust grain. This is a particularization
of Equation (3) in [12] by specifying ǫ = 1/Zd in their notation. Making use of equilibrium quasi-neutrality,
we have (cf. [3]):

ni0Zi = ne0 + nd0Zd (3)

where Zi = 1 considered in the remainder of this work. In (3), ni0, ne0 and nd0 are the ion, electron and
dust number densities for t = 0, which is identified as equilibrium time. Another relevant constitutive
ingredient is the viscosity. The bulk viscosity ξ is introduced to account for the dilatation effect in the
pressure and the shear viscosity µ is used to account for the shear strain rate effect on the stress. Viscous
behavior is here introduced by a constitutive law for the Cauchy stresses as a function of the velocity
gradient (see Section 3.3 of [26]):

σ =

(
ξ −

2µ

3

)
(∇ · u) I + µ

[
∇u+ (∇u)T

]
(4)

The kinematic viscosity ν is also required:

ν =
µ

ndmd
(5)

From the gradient of u we obtain the vorticity for a 2D problem as (see, e.g. [27]):

ω =

∣∣∣∣
∂u2
∂x1

−
∂u1
∂x2

∣∣∣∣ (6)

2.2 Fluid theory of the dust acoustic wave: differential equations and boundary con-

ditions

Dust is considered cold, Td ≪ Ti in the following equations. The domain under consideration is denoted by
Ω and the time interval under consideration is [0, T ]. In these conditions, we have a nonlinear electrostatic
fluid flow problem. The governing equations for these unknown fields are, given that x ∈ Ω and t ∈ [0, T ],

3
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Continuity equation on Ω× [0,T] :

ṅd +∇ · (ndud) = 0 (7)

Momentum equation on Ω× [0,T]:

ndmdu̇d + ndmd∇ud · ud +mdc
2
da∇nd (8)

−∇ · σ − endZd∇ϕ = 0

Poisson-like equation on Ω× [0,T] :

∇2ϕ+
e

ε0
(ni − ne − ndZd) = 0 (9)

complemented by the initial and boundary conditions for the unknown functions ud(x, t), nd(x, t), ϕ(x, t)
and t(x, t) = σ (x, t) · v:

ud(x, 0) = u0(x) (10)

nd(x, 0) = nd0(x) (11)

ud(x, t)|x∈Γu = u(t) (12)

nd(x, t)|x∈Γn = n(t) (13)

ϕ(x, t)|x∈Γϕ = ϕ(t) (14)

∇ϕ(x, t)|x∈Γϕ′
· v = t(t) (15)

σ (x, t) |x∈Γt · v = t(x, t) (16)

where Γ = ∂Ω with Γu, Γn, Γϕ, Γϕ′ and Γt are subsets of Γ with Γ = Γu ∪ Γt and Γ = Γϕ ∪ Γϕ′ . We have v

as the outer normal to Γ. In equation (9), the electron number density ne, and the ion number density ni,
are given by the Boltzmann distributions, corresponding to a very low frequency wave [3]:

ne = ne0 exp

[
eϕ

κBTe

]
(17)

ni = ni0 exp

[
−

eϕ

κBTi

]
(18)

These are our constitutive equations for ni and ne. Characteristic lengths based on (17-18) are obtained by
linearization:

λe =
1

e

√
ε0κBTe

ne0
(19)

λi =
1

e

√
ε0κBTi

ni0
(20)

these are the two initial Debye lengths for electrons and ions. The time scale is obtained from the dust
angular frequency:

ωd = Zde

√
nd0

ε0md
(21)
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Table 1: Relevant quantities and constants (cf. 7-18).

e Electron charge [1.6022× 10−19 C]

κB Boltzmann constant [1.38065× 10−23 m2kg s−2K−1]

ε0 Vacuum permittivity [8.85419× 10−12 Fm−1]

Zd Dust charge number Zd = −Qd/e

nd0 Dust number density at equilibrium
[
m−3

]

ni0 Ion number density at equilibrium [m−3]. Approximation: ni0
∼= Zdnd0

ne0 Electron number density at equilibrium [m−3]. Approximation: ne0
∼= ni0

ξ Bulk dynamic viscosity
[
Nsm−2

]

µ Shear dynamic viscosity
[
Nsm−2

]

Te Electron temperature [K]

Ti Ion temperature [K]

Zi Ion charge number Zi = Qi/e

md Mass of a dust particle [kg]

ϕ⋆ Representative electrostatic potential ϕ⋆ = κBTi

e
[NC−1m]

u0(x) Initial dust velocity

nd0(x) Initial number density of dust

u(t) Imposed velocity at the boundary Γu

n(t) Imposed density at the boundary Γn

ϕ(t) Imposed electrostatic potential at the boundary Γϕ

t(t) Imposed electrostatic gradient at the boundary Γϕ′

using the period, T d = 2π
ωd

. Relevant quantities are summarized in Table 1.
Unknown fields are nd, ud and ϕ. Since nd for t = 0 is known to be nd0, we must transform the

continuity equation to read:

ṅ⋆ +∇ · [(n⋆ + 1)ud] = 0 (22)

where nd = (1 + n⋆)nd0. In equation (22) it is assumed that nd0 is uniform. In the Poisson-like equation,
we have,

∇2ϕ+
e

ε0
[ni − ne − nd0 (1 + n⋆)Zd] = 0 (23)

In Table 1, the conversion between eV and K is performed including the Boltzmann constant, i.e. a
strictly interpretation of temperature given in eV and not eV /κB in the literature is taken (values for the
temperatures in eV are given by [28]):

T (K) = T (eV)/
(
1.16045× 104κB

)
(24)

A graphical interpretation of the Poisson equation (9) with one species of positive and one species of
negative charges is now presented (Figure 1), relating the charge balance with the electrostatic force. In

5
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n− > n+

1

F = −q∇ϕ > 0

q < 0

F < 0

ϕ, ∇2ϕ > 0

ϕ, ∇2ϕ > 0

ṅ− < 0

ṅ− > 0

u̇− = en−Zd︸ ︷︷ ︸
−q

∇ϕ
m−

Figure 1: Graphical interpretation of the Poisson equation (9) for known ϕ.

the depicted case, with ∇2ϕ > 0, a outward acceleration of negatively charged particles occurs for x 6= 0
which in turn, due to the continuity equation (7) will decrease n− and eventually invert the sense of u̇−.

3 Weak form with distinction of the convective term

Numerical time-integration of equations (7-9) is performed with the backward-Euler method. In 2D, the
integrated versions of (7-9) between time-steps ti and ti+1 are straightforward1:

(n⋆ + 1)

(
∂u1
∂x1

+
∂u2
∂x2

)
+

n⋆
i+1 − n⋆

i

∆t
+

∂n⋆

∂x1
u1 +

∂n⋆

∂x2
u2 = 0 (25)

(n⋆ + 1)

(
ui+1 − ui

∆t

)
+ (n⋆ + 1)

{
u1

∂u1

∂x1
+ u2

∂u1

∂x2

u1
∂u2

∂x1
+ u2

∂u2

∂x2

}
+

−
e (n⋆ + 1)Zd

md

{
∂ϕ
∂x1

∂ϕ
∂x2

}
+

c2da
nd0

{
∂n⋆

∂x1

∂n⋆

∂x2

}
−

1

mdnd0

{
∂σ11

∂x1
+ ∂σ21

∂x2

∂σ12

∂x1
+ ∂σ22

∂x2

}
=

{
0

0

}
(26)

∂2ϕ

∂x21
+

∂2ϕ

∂x22
+

e

ε0
[ni − ne − nd0 (1 + n⋆

d)Zd] = 0 (27)

Stress components are, in 2D,

σ11 = 2µ
∂u1
∂x1

+

(
ξ −

2µ

3

)(
∂u1
∂x1

+
∂u2
∂x2

)
(28)

σ22 = 2µ
∂u2
∂x2

+

(
ξ −

2µ

3

)(
∂u1
∂x1

+
∂u2
∂x2

)
(29)

σ12 = µ

(
∂u1
∂x2

+
∂u2
∂x1

)
(30)

1The d subscript in ud is omitted in this part
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To make use of finite elements, equations (25-27) are now written in weak form. We introduce the
following test functions:

• ñ⋆ ∈ Vn(Ω) where Vn (Ω) =
{
ñ⋆|ñ⋆ ∈ W 1,2 (Ω) ∧ ñ(Γn) = 0

}

• ũ ∈ Vu (Ω) where Vu (Ω) =
{
ũ|ũ ∈ W 1,2 (Ω) ∧ ũi(Γu) = 0

}

• ϕ̃ ∈ Vϕ(Ω) where Vϕ (Ω) =
{
ϕ̃|ϕ̃ ∈ W 1,2 (Ω) ∧ ϕ̃(Γϕ) = 0

}

where

Wm,p(Ω) = {w ∈ Lp(Ω)|Dαw ∈ Lp(Ω) ∀ |α| ≤ m} (31)

and Lp (Ω) is the space of p−power integrable functions. With this purpose, we use the test functions to
obtain a weak form of (25-27) integrating in the domain Ω,

W̃ =

∫

Ω
ñ⋆

[
(n⋆ + 1)

(
∂u1
∂x1

+
∂u2
∂x2

)
+

n⋆
i+1 − n⋆

i

∆t
+

∂n⋆

∂x1
u1 +

∂n⋆

∂x2
u2

]
dΩ+

∫

Ω
ũT

[
(n⋆ + 1)

(
ui+1 − ui

∆t

)
−

e (n⋆ + 1)Zd

md

{
∂ϕ
∂x1

∂ϕ
∂x2

}]
dΩ+

∫

Ω

[
(n⋆ + 1) ũ•T

{
u1

∂u1

∂x1
+ u2

∂u1

∂x2

u1
∂u2

∂x1
+ u2

∂u2

∂x2

}
+

c2da
nd0

ũT

{
∂n⋆

∂x1

∂n⋆

∂x2

}]
dΩ+

∫

Ω

1

mdnd0

[
σ11

∂ũ1
∂x1

+ σ22
∂ũ2
∂x2

+ σ12

(
∂ũ1
∂x2

+
∂ũ2
∂x1

)]
dΩ+ (32)

∫

Ω

{
−∇ϕ · ∇ϕ̃+ ϕ̃

e

ε0
[ni − ne − nd0 (1 + n⋆

d)Zd]

}
dΩ+

∫

Γϕ′

ϕ̃∇ϕ · v︸ ︷︷ ︸
t

dΓ +

∫

Γt

ũT tdΓ = 0 (33)

The non-symmetric term ∇ud ·ud makes use of a specific test function ũ• to ensure a stable formulation.
This will be detailed later. For the application of the Newton-Raphson method, we require the first variation
of (33), for which we will make use of the symbol d:

dW̃ =
∫
Ω ñ⋆

[
dn⋆

(
∂u1

∂x1
+ ∂u2

∂x2

)
+

dn⋆
i+1

∆t

]
dΩ+

∫
Ω ñ⋆

[(
∂n⋆

∂x1
du1 +

∂n⋆

∂x2
du2

)
+
(
∂dn⋆

∂x1
u1 +

∂dn⋆

∂x2
u2

)]
dΩ+

∫
Ω ũT

[
(n⋆+1)

∆t
du+

(
ui+1−ui

∆t

)
dn⋆

]
dΩ−

∫
Ω ũT

[
e(n⋆+1)Zd

md

{
∂dϕ
∂x1

∂dϕ
∂x2

}
+ dn⋆eZd

md

{
∂ϕ
∂x1

∂ϕ
∂x2

}]
dΩ+

∫
Ω (n⋆ + 1) ũ•T

{
du1

∂u1

∂x1
+ du2

∂u1

∂x2
+ u1

∂du1

∂x1
+ u2

∂du1

x2

du1
∂u2

∂x1
+ du2

∂u2

∂x2
+ u1

∂du2

∂x1
+ u2

∂du2

∂x2

}
dΩ+

∫
Ω

[
(n⋆ + 1) dũ•T

{
u1

∂u1

∂x1
+ u2

∂u1

∂x2

u1
∂u2

∂x1
+ u2

∂u2

∂x2

}
+ dn⋆ũ•T

{
u1

∂u1

∂x1
+ u2

∂u1

∂x2

u1
∂u2

∂x1
+ u2

∂u2

∂x2

}]
dΩ+

c2
da

nd0

∫
Ω ũT∇dn⋆dΩ+

1
mdnd0

∫
Ω

[
σ11

∂dũ1

∂x1
+ σ22

∂dũ2

∂x2
+ σ12

(
∂dũ1

∂x2
+ ∂dũ2

∂x1

)]
dΩ+

1
mdnd0

∫
Ω

[
dσ11

∂ũ1

∂x1
+ dσ22

∂ũ2

∂x2
+ dσ12

(
∂ũ1

∂x2
+ ∂ũ2

∂x1

)]
dΩ+

∫
Ω

[
−∇dϕ · ∇ϕ̃+ ϕ̃ e

ε0

(
dni

dϕ dϕ− dne

dϕ dϕ− dn⋆
dnd0Zd

)]
dΩ

(34)
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We note that, in deriving (34), we made use of the property dũ = 0 but note that dũ• 6= 0. The Newton
solution is based on the two definitions (33-34) using standard techniques (see, e.g. [29]).

4 Petrov-Galerkin discretization

In terms of discretization, we introduce the interpolations for a given element e. Use is made of the
interpolation matrices Ne(ξ) for ud and Ne(ξ) for scalars n⋆ and ϕ, with ξ being the parent-domain
coordinates. Introducing the nodal unknowns (trial functions) for a given element e (ue, n

⋆, and ϕe), we
have the interpolations:

ud = Ne (ξ)ue (35)

n⋆ = Ne (ξ)n
⋆
e (36)

ϕ = Ne (ξ)ϕe (37)

For the Galerkin projection (33) we require the test functions:

ũ = Ne (ξ) ũe (38)

ũ• = N•

e (ξ,ue) ũe (39)

ñ⋆ = Ne (ξ) ñ
⋆
e (40)

ϕ̃ = Ne (ξ) ϕ̃e (41)

where

Ne(ξ) = [N1(ξ) · · ·Nnne (ξ)] (42)

Ne (ξ) =

[
N1(ξ) 0 N2(ξ) · · · Nnne(ξ) 0

0 N1(ξ) 0 N2(ξ) · · · Nnne(ξ)

]
(43)

N•

e (ξ,ue) =

[
N•

1 (ξ,ue) 0 N•

2 (ξ,ue) · · · N•

nne (ξ,ue) 0

0 N•

1 (ξ,ue) 0 N•

2 (ξ,ue) · · · N•

nne (ξ,ue)

]
(44)

In definitions (42-44), nne is the number of nodes in each element, here taken as 4 (low-order quadrilateral)
and (cf. [30])

N•

K (ξ,ud) = NK(ξ) +
αh

2

udi

‖ud‖

∂NK

∂xi
(45)

where α is a stabilization parameter, and h is the element characteristic length. The optimal value of α is
given by [30]:

α = cothPe−
1

Pe
(46)

where the Péclet number is defined as

Pe = ‖ud‖h/2ν (47)
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Table 2: Properties used in the numerical examples (provided by [28])

Value

Zd 1000

nd0 1× 108 m−3

ni0 3× 1011 m−3

ne0 2× 1011 m−3

ξ 0 Nsm−2

µ 1.63× 10−4 Nsm−2

Te 6.24151× 1017 K (cf. Eq. 24)

Ti 6.24151× 1017 K (cf. Eq. 24)

md 1.05893× 10−12 kg•

λe 121907.0 m

λi 99536.8 m

cda 90209.7 ms−1

T d 12.008 s

ϕ⋆ 5.37844× 1013 NC−1m

• md = 4πρd
3 r3d

rd = 4× 10−6 and ρd = 3950 kgm−3(Al2O3)

This corresponds to the Streaming Upwind Petrov-Galerkin (SUPG) [24, 30], specializing the element size
from the velocity. The element characteristic length, h, is defined in agreement with Tezduyar and Park
[31], as:

h =
2 ‖ud‖

∑nne
K=1

∣∣∣∂NK

∂Xi
udi

∣∣∣
(48)

where NK are the shape functions and nne denotes the number of nodes in each element. We use the
isoparametric interpolation [32]. For a low-order quadrilateral we have nne = 4, and the shape functions
have the following form:

NK(ξ) =
1

4
(1 + ξ1ξ1K) (1 + ξ2ξ2K) (49)

{ξ1K} = {−1, 1, 1,−1} (50)

{ξ2K} = {−1,−1, 1, 1} (51)

5 Numerical examples

We implemented a specific finite element in SimPlas [33] and used the properties that are shown in Table 2
for the following two examples. The core source code for this element is available. In the first example we
assess the nonlinear effects in a short element slab, comparing time-step and mesh dependencies as well as
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the effect of viscosity. In the second example, a variable-width slab is presented, which produces a slowly
moving vortex.

5.1 Nonlinear effects on a short element slab, L ∼= 5λi

We introduce a simple benchmark which consists of a rectangular slab. The left edge of the slab has an
imposed electrostatic potential which is constant in time. Two cases are considered, ϕ = −1× 1010 NC−1m
and ϕ = −1× 1012 NC−1m. Relevant data is shown in Figure 2 and results for the monitored quantities
(u1, ϕ/ϕ

⋆ and n⋆
d as functions of time) are presented. To test the robustness with respect to spatial and

time discretizations, five meshes are used from 50 up to 220 longitudinal square elements. Time steps are
5× 10−2 s up to 5× 10−1 s. Figure 2 shows the effect of time-step size and Figure 4 shows the effect of mesh
size for this problem. We note some sensitivity to both parameters, but similar to what occurs in nonlinear
structural problems. Viscosity has a marked effect, also, and a parametric study is shown in Figure 5.

With the purpose of clearly representing the solitary wave for case B, we deactivate the upper and lower
boundary conditions (which were ud = 0) and scaled the x− dimension 5×. A depiction of the solitary
wave is presented in Figure 6. The presence of a solitary wave can be seen, but no evidence of shock waves
was detected.

5.2 Vortex in a variable width slab

In this test, we introduce a change of section in the direction of flow with the goal of testing the robustness of
our combination Petrov-Galerkin/Backward Euler integration. Figure 7 shows the dimensions and relevant
data for this slab. Time-step sensitivity was found to be very good with the larger time step ∆t = 0.5 s
providing acceptable detail. In terms of mesh sensitivity, we test 4 meshes, all with square elements. Only
slight dependence is observed, cf. Figure 8. Contour plots for u1, u2, nd, ϕ and ω are shown in Figure 9.
We can observe the smooth behavior of most quantities, with oscillations in nd, attributed to the change in
section.

The 3D version of the slab is shown in Figure 10, where the boundary conditions are equivalent to
those in 7, but with the zero velocity around the external boundary, except in the symmetry plane, in
which u3 = 0. Figure 10 shows another type of vortex, which was found in the inlet section, with a rotation
axis parallel to x. The vortex after the jump is also shown in this Figure and is similar to what was found
in the 2D example.
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Figure 2: Short element slab. Geometry and evolution of u1, n
⋆
d and ϕ/ϕ⋆ with time.
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Figure 3: Short element slab. Contour plots of u1, n
⋆
d and ϕ for t = 20 s.
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(b) Evolution of ϕ/ϕ⋆ with t for several meshes.

Figure 4: Effect of mesh size in the variation of u1 and ϕ/ϕ⋆.
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(b) Evolution of ϕ/ϕ⋆ for several values of µ.

Figure 5: Effect of µ in the variation of u1 and ϕ/ϕ⋆.
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Figure 6: Elongated slab (5×): presence of a solitary wave.
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(b) Point B: evolution of u1/u for four different values of ∆t.

Figure 7: Variable width slab: relevant data and results for u1 and ϕ. Points A and B indicate monitored
ϕ/ϕ⋆ and u1, respectively.
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(b) Point B: evolution of u1 for four different meshes, ∆t = 0.5 s.

Figure 8: Variable width slab: relevant data and results for u1 and ϕ. Points A and B indicate monitored
u1 and ϕ/ϕ⋆ , respectively.
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Figure 9: Variable width slab (t = 500 s): contour plots for u1, u2, ϕ, n⋆
d and ω. The velocity vectors are

also shown.
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Figure 10: 3D version of the variable width slab. With the addition of a symmetry plane, boundary
conditions are similar to those of Figure 8, but additional vortices occur at the inlet.
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6 Conclusions

We introduced a new formulation for dust-acoustic waves in unmagnetized plasma including viscosity. This
consists of a Petrov-Galerkin finite element combined with the backward-Euler time integration method.
Nonlinear effects are included in the number density of ions and electrons, which are affected exponentially
by the electrostatic potential. Numerical experiments showed good robustness with respect to mesh size
and time-step size and absence of instabilities. Waves resulting from the nonlinear constitutive laws for
number densities are sharply observed. In a variable width slab we observe the formation and evolution of
a vortex. As a follow-up contribution we will introduce the magnetic field, along with a specialized version
of the Maxwell’s equations.
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Corrections performed to the manuscript “Stable

finite element analysis of viscous dusty plasma”

by Areias, Sikta and dos Santos submitted to

Engineering Computations

August 30, 2017

1 Introduction

We would like to thank the Journal and its Editor, Professor de Souza Neto, for
the fair and precise review of the manuscript. We thank the Reviewers for the
time and effort spent with this manuscript. We tried to enrich the work so that
it values the Journal.

We performed all indicated corrections and introduced more content in the
last example (3D vortices), beyond the requested solition wave demonstration.
In addition, we slightly changed the text to increase clarity in the notation and
further indicate the provenance of all properties in Table 2, including the proof
for the temperature values (Te and Ti).

2 Performed corrections

2.1 Reviewer #1 (recommended Acceptance)

1. Reviewer #1: “The paper addresses the analysis of dust-acoustic waves in
unmagnetized plasma including viscosity with a classical Petrov-Galerkin ap-
proach for convection-diffusion equations, usually adopted in the framework
of finite element solutions of fluid mechanics problems. It is a “multi-physics”
problem, in which the unknown fields are the electrostatic potential, the dust
density and velocity. It is a very interesting application of known numerical
tools on a completely different field, with the necessary adaptations for this
specific problem. The paper is clear, well written and the mathematics is
flawless. The numerical examples are well chosen to illustrate the capabili-
ties of the code implemented and the solutions are plausible. Nevertheless,
the paper would gain immensely if the results, could be validated or con-
fronted, if possible, against other existent solution(s), at least in one or
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two examples. Therefore, in my opinion the paper could be published in its
present form, but the validation suggested would be welcomed.”
Our corrections: We completely agree with the Reviewer and tried to
enrich the manuscript. Validation would be perfect, but this topic is very
coarse in terms of experimental data, which is mostly qualitative. We now
have a demonstration of the presence of the solitary wave in section 5.1

2.2 Reviewer #2 (recommended Minor Revision)

1. Reviewer #2: “The authors should be demonstrated the main difference
between the dust-acoustic waves and dust ion-acoustic waves in the intro-
duction.”
Our corrections: we completely agree with the indication and now in-
serted a description of the difference. We have the highest respect for the
book “Introduction to Dusty Plasma Physics” by Shukla and Mamun and
use their words: “According to Shukla and Mamun [2], there are two types
of acoustic modes in uniform, unmagnetized, collisionless dusty plasmas
with a weak Coulomb coupling between the charged dust grains: dust
acoustic (DA) and dust ion-acoustic (DIA) waves. In summary,

(a) In DA waves [1], there is a predominance of low-frequency dust grain
dynamics with Boltzmann electron and ion distribution.

(b) In DIA waves [3], dust grains are stationary, electrons follow the
Boltzmann distribution and ion dynamics is predominant.

2. Reviewer #2: “It is well known that waves propagating through a plasma
medium can transform into a soliton/solitary wave under conditions when
the broadening of the wave due to a dispersion effect is balanced by the wave
steepening due to nonlinearity. However, if the viscosity effect is included
in the plasma system; the balance between the nonlinearity and dispersion
is broken and as a result solitons break down and another nonlinear phe-
nomena appears called shock waves or double layers. So, could the author
demonstrate how can solitary waves propagate in the plasma system taking
into account dust viscosity?”
Our corrections: That is very interesting and we provide an answer.
Concerning the solition, we obtain a self-similar wave with asymmetric
profile created by the nonlinearity in (Eqs. 17-18). We did not mentioned
that in the original submission since it requires a long mesh. Now it is in
the manuscript. A Figure depicting this is shown here:
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3. Reviewer #2: “This is a very good and novel piece of work. The results
of this paper will benefit a lot of researchers in this field. So, I do not have
any objection to accept the manuscript after the authors take into account
the above comments.”
Our corrections: We thank the Reviewer and tried to be clear in what
we write.
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