
Mestrado em Engenharia Informática

Dissertação

Évora, 2018

TÍTULO | Secure Framework for Cloud Data
Sharing based on Blockchain

Nome do Mestrando | André Figueira

Orientação | Pedro Salgueiro

ESCOLA DE CIÊNCIAS E TECNOLOGIAS

DEPARTAMENTO DE INFORMÁTICA

Mestrado em Engenharia Informática

Dissertação

Évora, 2018

TÍTULO | Secure Framework for Cloud Data
Sharing based on Blockchain

Nome do Mestrando | André Figueira

Orientação | Pedro Salgueiro

ESCOLA DE CIÊNCIAS E TECNOLOGIAS

DEPARTAMENTO DE INFORMÁTICA

I dedicated this to my Family.

Preface

Little over a year ago I started this dissertation and from the very beginning I had in mind how complex it could
be, however, I was determined to learn more about Blockchain and everything about it and as such I accepted
the challenge. Every chapter in this dissertation is the result of many days, weeks, months of sacrifice and
dedication in research and development on something I was not certain I could accomplish.

From this hard work and determination I hope that you, the reader, will find it as interesting as I did from the
very beginning to the very end.

vii

Acknowledgements

Firstly, I would like to thank Professor Pedro Salgueiro, my dissertation advisor, for providing constant motiva-
tion, guidance, knowledge and support from the very beginning until the end, as well as the patience. Without
his contribution this dissertation would certainly not have been possible. I would also like to thank him for pro-
vidingmewith this topic which during the development of this dissertation determinedmy professional career
goals, which is to be centered on Distributed Ledger Technology, notably Blockchain.

I would like to thank my parents for providing me with their support during the development process of this
dissertation and well as during my academic progress until this point.

Finally, i would like to thank my friends and colleagues who listened, advised and challenged me during the
development of this dissertation.

ix

Contents

Contents xi

List of Figures xvii

List of Tables xix

Acronyms xxi

Abstract xxiii

Sumário xxv

1 Introduction 1

1.1 Motivation . 2

1.1.1 Opportunities . 2

1.2 Objective . 2

1.3 Structure . 3

2 State of the Art 5

2.1 Blockchain Technology . 5

2.1.1 Background of Blockchain . 6

2.2 Smart Contracts for Business Logic . 7

2.3 Private Blockchain Framework . 7

2.3.1 Hyperledger Fabric . 7

xi

xii CONTENTS

2.4 Interaction with the Blockchain Network . 8

2.5 Data Sharing on Clouds . 9

2.6 Data Sharing on Blockchain . 9

2.6.1 Data Access Permissions . 10

2.6.2 Data Access Control . 10

2.6.3 Revocation of Privileges . 10

2.6.4 Ledger . 11

2.7 Data Storage Approaches . 11

2.8 Related Work . 12

3 Blockchain 15

3.1 What is Blockchain? . 15

3.2 Bitcoin . 16

3.3 Transactions . 17

3.4 Block . 18

3.4.1 Bitcoin, Ethereum and Hyperledger Fabric Blocks . 19

3.5 Blockchain Network Types . 20

3.5.1 Public Blockchain . 20

3.5.2 Private Blockchain . 22

3.6 Cryptocurrency . 22

3.6.1 Double Spending Problem . 23

3.6.2 Blockchain and Cryptocurrency . 23

3.7 Wallets . 23

3.8 Consensus Protocols . 24

3.8.1 Proof of Work . 25

3.8.2 Proof of Stake . 32

3.8.3 Delegated Proof of Stake . 34

3.8.4 Hyperledger Fabric Protocol . 35

3.9 Forking . 36

3.9.1 Soft Fork . 36

3.9.2 Hard Fork . 36

CONTENTS xiii

3.10 Blockchain Use Cases and Benefits . 37

4 Smart Contracts 39

4.1 Definition . 39

4.2 Smart Contracts without Blockchain technology . 40

4.3 History of Smart Contracts in Blockchain . 40

4.4 Smart Contracts with Blockchain Technology . 40

4.5 Importance of Security in Smart Contracts . 41

4.5.1 The DAO incident . 41

4.6 Decentralized Applications (DAPPs) vs Smart Contracts . 41

4.7 A Practical Example . 42

5 Hyperledger Fabric 43

5.1 Hyperledger Fabric Business Network . 43

5.2 Clients or Users . 44

5.3 Peers . 44

5.3.1 Peers, Endorsers, Leading and Anchor Peers . 44

5.3.2 Orderer Peers . 44

5.4 Organizations . 45

5.5 Membership Service Providers . 45

5.5.1 Certificate Authority . 46

5.6 Channels . 46

5.7 Transactions . 47

5.7.1 Endorsements . 47

5.7.2 Privacy in Transactions . 49

5.8 Block . 49

5.9 Blockchain Ledger . 50

5.9.1 World State . 51

5.9.2 Blockchain . 51

5.10 Consensus . 52

5.11 Chaincode . 53

xiv CONTENTS

5.11.1 System Chaincode . 54

5.11.2 User Chaincode . 54

5.12 Applications . 55

6 Blockchain Data Sharing 57

6.1 Architecture . 57

6.1.1 Data Storage . 58

6.1.2 Blockchain Decision Process . 59

6.1.3 Role of Smart Contracts . 61

6.1.4 External Applications . 62

6.1.5 Storage Provider Peer restrictions . 62

6.1.6 Encountered Problems and Solutions . 63

6.1.7 Structure . 63

6.2 Data Sharing Flow over the Blockchain . 66

6.3 Smart Contracts and Business Logic . 67

6.3.1 Important Packages . 67

6.3.2 File Management . 67

6.3.3 Share Agreements . 68

6.3.4 Access Requests . 70

6.4 Applications via Blockchain APIs . 74

6.4.1 Client Application . 74

6.4.2 Repository Application . 76

6.5 Storage Providers and Data Hosting . 76

6.5.1 Data Upload . 77

6.5.2 Optimal Scenario for Sharing . 77

7 Experimental Evaluation 79

7.1 Test Environment . 79

7.2 Test Cases . 80

7.2.1 Transaction Proposal Request Payload . 80

7.2.2 File Management Tests . 81

CONTENTS xv

7.2.3 Share Agreement Tests . 82

7.2.4 Access Requests Tests . 84

7.3 Evaluation . 86

8 Conclusions and Future Work 89

8.1 Future Work . 90

Bibliography 91

List of Figures

2.1 A bitcoin blockchain block [Lew15]. 6

2.2 Application interacting with the Blockchain network. [Hyp18] 8

3.1 Bitcoin Transaction. 18

3.2 Bitcoin Block Header Structure [Nak] . 19

3.3 Bitcoin Block Statistics and Information. 20

3.4 Hyperledger Fabric Blockchain Block Structure . 21

3.5 Ledger Nano S . 24

3.6 Longest Chain Rule [Lew15] . 26

3.7 Bitcoin Miners Pie Chart. 29

3.8 Bitcoin energy consumption comparison in one year of difference 29

3.9 GPUmining setup . 30

3.10 Antminer, a Bitcoin ASIC . 31

3.11 An ASIC mining farm . 31

3.12 Hard Fork . 37

5.1 Diagram of a network with multiple Organizations [Hyp18] . 45

5.2 Hyperledger Fabric blockchain block structure [TNV18] . 50

5.3 Blockchain structure in Hyperledger Ledger Fabric. [Hyp18] . 51

5.4 Transaction flow [Hyp18]. 53

5.5 Application interacting with the Blockchain network. [Hyp18] 56

xvii

xviii LIST OF FIGURES

6.1 Diagram of the Layers of the Architecture . 64

6.2 Diagram of the Architecture of the Network . 65

6.3 ”Automatic” Validation Steps . 69

6.4 Access Requests steps . 72

6.5 Decision process for UID confirmation . 75

List of Tables

7.1 Request Payload Fields and Values . 80

7.2 Example of a Request Payload Fields and Values . 81

7.3 Request Payload for querying all files . 81

7.4 Request Payload for querying all files . 82

7.5 Request Payload for Share Agreement creation . 82

7.6 Request Payload for Share Agreement creation . 83

7.7 Request Payload for Access Request creation . 84

7.8 Request Payload for Access Request validation . 85

7.9 Request Payload for Access Request creation . 86

7.10 Request Payload for Access Request validation . 86

xix

Acronyms

HF Hyperledger Fabric

CA Certificate Authority

DAPP Decentralized Application

DAO Decentralized Autonomous Organization

BTC Bitcoin

ETH Ethereum/Ether

UID Unique Identifier

ID Identifier

PoW Proof of Work

PoS Proof of Stake

DPoS Delegated Proof of Stake

BFT Byzantine Fault Tolerance

GPU Graphics Processing Unit

ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

API Application Programming Interface

SDK Software Developer Kit

SHA Secure Hash Algorithms

URL Uniform Resource Locator

BBDS Blockchain Based Data Sharing

xxi

xxii LIST OF TABLES

MB Megabyte

GB Gigabyte

TB Terabyte

Abstract

Blockchain is a relatively new and disruptive technology that is considered a distributed database working as
a ledger, with the ability to facilitate the recording of transactions and tracking of assets. It is a growing list of
records called blocks linked together by the hash of the previous block, where each block contains the most
recent transactions in the network.

Smart contractsareagreementsbetweenentities thatarewritten incode, and,whenassociatedwithBlockchain
they will operate without interference, censorship or malicious intentions.

Data Sharing on Clouds is common but requires trust on third parties to ensure various aspects, such as secu-
rity and privacy, but these are unknown aspects the owner has no controls over. The Cloud Storage providers
control the data access and sharing over the data. Sharing data through third party services, using unknown
methods is a delicate process regarding the privacy and security aspects. These two aspects are crucial points
when it comes to personal and private data.

In this work, the concept of using Blockchain to create a Data Sharing mechanism is explored. This proof of
concept explores howdata access and permissions can be controlled using blockchain and smart contracts, by
giving control to the owner and focusing on smart contracts and blockchain.

Keywords: Blockchain, Smart Contracts, Data Sharing, Privacy, Security

xxiii

Sumário

Framework Segura para Partilha de Dados em Clouds
sobre Blockchain

Blockchain é uma tecnologia relativamente nova e disruptiva, considerada uma base de dados distribuída e
funcionandocomoumlivrode registo. Temacapacidadede facilitar o registode transacçõesede rastreamento
de bens. É uma lista crescente de conjuntos de registos chamados blocos, ligados um aos outros através da
hash do bloco anterior.

Os Contractos Inteligentes são acordos entre entidades escritas emcódigo. Quando associadados à tecnologia
Blockchain operam sem qualquer inteferência de terceiros, censura ou intenções maliciosas.

A partilha de dados na cloud é bastante comummas requere confiança em terceiros para garantir que vários
aspectos como segurança e privacidade são assegurados, mas estes são aspectos sobre quais o dono dos da-
dos não temcontrolo. A cloud temcontrolo sobre o acesso e apartilha dedados, sendoque apartilha dedados
por serviços de terceiros é um processo delicado quando se refere a privacidade e a segurança desses dados.
Estes são aspectos que são cruciais quando se refere a informação pessoal e confidencial

Neste trabalho, o conceitodeblockchainparacriar ummecanismodepartilhadedadoséexplorado. Estaprova
de conceito explora como a partilha de dados e o controlo de acesso pode ser executados usando blockchain
e contractos inteligentes. Isto dando controlo ao dono dos dados e focos em blockchain e contractos in-
teligentes. Permitindo que o dono dos dados seja responsável pelos seus dados.

Palavras chave: Blockchain, Contractos Inteligentes, Segurança, Privacidade, Partilha de Dados

xxv

1
Introduction

In this Chapter we provide an introduction to the topic of this dissertation, where an introduction to
blockchain data sharing, motivation for the project, opportunities and objectives and the structure of
this dissertation are described.

Blockchain is a disruptive and relatively new technology that is increasing in popularity. Using this technology
will be a central component in the work described in this dissertation. The addition of Blockchain and smart
contracts, it can be a viable solution to the problem of data privacy, access control and sharing of data. And
by taking advantage of already existing blockchain framework implementations, more notably, Hyperledger
Fabric which is a dedicated business blockchain, can be a great addition to the proposed topic, allowing the
implementation of a secure data sharing mechanism and methods to control the rules and policies of data
access in the possible way.

Data in the blockchain is tamper proof and records are kept as long as the network persists and using smart
contracts which thrive in the blockchain technology being uncensored agreements and cannot be interfered
by third parties. This makes an ideal environment for a data sharing mechanism, access control and privacy of
data which gives the owner of data control the decisions.

1

2 CHAPTER 1. INTRODUCTION

To explore, research and implement a proof of concept various topics were approached and clearly defined
before tackling the data sharing mechanism, these are essentially Blockchain and Smart Contracts.

This dissertation is centered on the privacy and control aspects of data shared through cloud based service,
aspects that are crucial when it comes to personal, private or confidential data which is of great concern, when
dealing with small, individual users up to corporations and academic institutions who have to trust others to
make sure these aspects are verified while not truly owning their data. The topic of this dissertation revolves
around the study and implementation of a cloud based framework for data sharing based on Blockchain. The
capabilities and properties of Blockchain may prove to be a strong and a viable solution to handle the security
and data sharing of data and most importantly allow for a true sense of ownership and full control over data
access and sharing.

1.1 Motivation

Data sharing on cloud platforms is very common and secure in modern times, but sharing on cloud platforms
and relying on third parties tomanage andmaintain this data secure and privatewith unknownmeans of doing
it, is not easy to accept. It requires a certain degree of trust to have on the third party, especially when it means
to trust others entities with private, sensitive or confidential information while having third parties handle all
the process in between. This leads to several issues including who can access data, who has accessed data,
for how long can data be accessed. These are problems associated with trust, authorization and ownership of
data that concern users among others.

1.1.1 Opportunities

The work presented in this dissertation presents various opportunities specially on corporate and academic
levels. Sharing of information is complex due to the ease of replication, little control from owner of the data,
where the storage provider controls everything although this is complex problem to tackle. Thework presented
in this dissertation canwith the usage of blockchain and smart contracts create a data sharingmechanism that
will give control over to the users who use the network, whatever application it may be used in. This work
additionally, provides a tamper proof record of all interactions at any given point in time of every data that has
been registered.

1.2 Objective

The objective of this work is to provide a tamper proofmechanism that can control the access and data sharing
where the owner of the data has full control over his data. This mechanism is based on the blockchain using
smart contracts to handle all the business logic in order to control and keep record of every access and data
sharing on the data. With the main goals of this work are:

• Research Blockchain technology and Smart Contracts

• Research Hyperledger Fabric as the chosen Blockchain implementation for the project

• Research on a system to ensure the privacy and confidentiality of the data hostedon the storageprovider.

• Implement prototypes for a data sharing mechanism based on Blockchain.

• Test and experimental evaluation of the developed prototypes.

1.3. STRUCTURE 3

Additionally there are secondary goals related to the applications that interact with the blockchain network in
order to make a more stable proof of concept

• Implementation of a simple prototype for file hosting.

• Implementation of a simple prototype of an application to interact with the file host.

• Test and experimental evaluation of developed prototypes.

1.3 Structure

Chapter 2 corresponds to the state of the art of the topic, it presents the topics approach by the project itself
providing a brief explanation of each component and these fit together.

Chapter 3 provides a clear theoretical explanation of the Blockchain, not just the a wide definition and general
topics of it but a detailed approach of various components associated with this disruptive technology, from
transactions structure to consensus protocols definition and structure to use cases. Chapter 4 describes smart
contracts in a detailed manner since this component is essential to the development of the project.

Chapter 5 describe a network referenced multiple times in Chapter 3 and Chapter 4. This the blockchain im-
plementation used by the project. Since it is complex, as all blockchain implementations are, and used for the
development of this project in this chapter it is presented an not in depth overview of various components that
make up this blockchain implementation.

Chapter 6 corresponds to all the decision process that was required to create a data sharingmechanism based
on blockchain. It explains possible approaches, design choices, solutions, alternative solutions faced during
the development of this project. Besides the architecture design process, describes the project itself, describing
the architecture, smart contracts, explanation of data stored in the blockchain, how to interact with it, and how
every component fits together to create a data sharing mechanism based on the blockchain.

Chapter 7 is the experimental evaluation, provides more technical explanations on the behaviour of the net-
work. It is a series of test cases from various interactions with the network. This in a development environment.

Finally Chapter 8 presents conclusions and future work.

2
State of the Art

This chapter contains a revision of various technologies related to the work described in this disserta-
tion. As such it is divided in a series of topics, representing the ones approached in this dissertation.
The topics are blockchain technology, smart contracts and data sharing.

2.1 Blockchain Technology

Blockchain is considered a distributed database working as a ledger, ”having the ability to facilitate the record-
ing of transactions and tracking of assets.” [Gup17]. It consists of individual blocks containing a set of transac-
tions of some sort, where each block references the previous block, resulting in a chain of blocks, thus named
a blockchain. The Blockchain holds information of tangible or intangible assets having the capability to re-
duce risks, increase visibility, faster automated processes in the process as opposed to other commonly used
methods [Gup17]. Often described as decentralized, it is replicated across multiple peers in a network, thus
themajority of the peers maintain the same copy of the blockchain, although, in some networks, peers may be
prevented from holding a copy of the blockchain (private networks). The blockchain, since replicated to every
peermakes it persistent to change, tamper proof, immutable and unable to be corrupted. Asmentioned before
the Blockchain is made by blocks, each block is a set of transactions of some sort that were checked and ac-
cepted by the network rules of consensus. Once a block is considered valid, peers add the block to their copy of

5

6 CHAPTER 2. STATE OF THE ART

blockchain, which themajority of the peers have an equal copy of. This together with the chain that links blocks
prevents theblockchain frombeingmodified andany attempt tomodify it is easily detected. In otherwords, the
block and the transactions that are part of are no longer reversible and the change in the blockchain is final, the
effect is permanent. The blockchain as it is replicated acrossmultiple peers, the blockchain is always available,
having no single point of failure, because every peer can answer as of being part of a peer to peer network. In
terms of blockchain network, it can be public or private, depending on the situation [Lew15].

• Public Blockchain Network, any user can write and read data, interact with the blockchain and anyone
can join the network, an example is the Bitcoin network.

• Private Blockchain Network: the users are assumed to be known but there are enforced restrictions to
participants who can write and read data, maintain the blockchain, etc…

2.1.1 Background of Blockchain

The Blockchain was first implemented and conceptualized by Satoshi Nakamoto, a name used by an unknown
person or group, to be used in Bitcoin, being its core component, also created by Satoshi Nakamoto. The
blockchain was created essentially to be an immutable ledger to record transactions, ”becoming a chain of
digital signatures that defines an electronic coin” [Nak] , making it possible to create a decentralized digital cur-
rency (Bitcoin) allowing ”online payments to be sent directly from one party to another without going through a
financial institution” [Nak]. Becoming the key aspect in solving the problem of ”double spending” [Nak], which
is the idea of using the same amountmore than once, a problem that is often associatedwith digital currencies.

Figure 2.1: A bitcoin blockchain block [Lew15].

Figure 2.1, by Antony Lewis A Gentle Introduction to Blockchain Technology [Lew15], shows an abstract view of
the contents of a bitcoin blockchain block, it contains information from various transactions which have been
confirmed by the network, the reward for the peer who successfully contributed in creating the block and a
link which connects blocks together. In technical terms, a block header contains the transaction list is a Merkle
Tree1, the previous block hash, a timestamp2 and a nonce3.

1A tree whose peers are the hash of the child peers and the leafs are the hash of data
2Date and time value
3Random number to be found by the a peer of the network

2.2. SMART CONTRACTS FOR BUSINESS LOGIC 7

2.2 Smart Contracts for Business Logic

Described byNick Szabo, smart contracts can ”securemany algorithmically specifiable relationships frombreach
by principals, and fromeavesdropping ormalicious interference by third parties”, this becausemany kinds of con-
tractual clauses (suchascollateral, bonding, delineationofproperty rights, etc.) canbeembedded in thehardware
and software we deal with [Sza97]

Smart contracts, often compared to vending machines, are applications, written in a programming language
(Golang, Solidity, …) by users of the network, ”that run exactly as programmed without any possibility of down-
time, censorship, fraud or third party interference” [eth]. A smart contract has rules, conditions and penalties
written in code, and when invoked, automatically determines what is the appropriate action according to the
set of rules and conditions written in the contract for that given situation, thus enforcing, validating and verify-
ing. With the support of the blockchain removes the need to rely on middleman to confirm the conditions and
others processes of a contract, or having the fear of third party malicious actions interfering, as these contracts
are automatically invoked when a specified situation is triggered. These contracts are stored in the blockchain
or any other appropriate method and as such all data is stored within the blockchain and is immutable, in-
creasing safety, visibility and allowing tominimize trust by reducing human judgments that could influence the
transactions.

2.3 Private Blockchain Framework

Private blockchains are permissioned networks. These allows only registered and known users to interact with
it and peers are considered trusted at some level. Due to the nature of being private, network size when com-
paring to a large scale blockchain network like Bitcoin it is to be considered smaller, therefore, the consensus
mechanism may be different. Due to the restrictions and use cases of a private blockchain network these are
ideal for business networks as every user should be known.

2.3.1 Hyperledger Fabric

Hyperledger Fabric is a private blockchain. This framework implementation is a platform for a distributed sys-
tem of records, or a distributed ledger, allowing application with high confidentiality, scalability, consensus
and security using its own blockchain implementation and own version of smart contracts (named chaincode).
The Hyperledger Fabric allows private networks and ”sub private” networks (named channels) of decentralized
peers highly focused on consensus, but there is no proof of work. Consensus in this platform is only achieved in
its entirety when certain policy criteria are checked [Hyp18] and certain peers approve it. A transaction in order
to take place must be endorsed by certain peers, according to certain endorsement policies. After that, there
should exist consensus among the peerswho are allowed to create blocks. Thus, a very complex systemof con-
sensus andunderstanding among thepeersmust takeplacewheneither invokingor deploying a transaction. In
thenetwork, in general terms, there are two types of peers, validatingpeerswhich handles the verificationof the
transactions interacting with the blockchain and so its maintenance, and non-validating peers which act as a
bridge ensuring communication between clients and validating peers and can, if allowed to, verify transactions
able to endorse. [Cac16]

The Blockchain being the most important aspect of the Hyperledger Fabric, its purpose is holding state and
ledger data, run chaincode and execute transactions [Hyp18]. Chaincode is Hyperledger Fabric version of smart
contracts, handling the application and business logic (agreed by the network) and waiting to be invoked by a
user. ”Chaincode initializes and manages ledger state through transactions submitted by applications” [Hyp18],
also known as blockchain applications. Transactions that undergoes in the blockchain are of two types, de-

8 CHAPTER 2. STATE OF THE ART

ploy and invoke. Deploy transactions create chaincode and when successful await to be invoked. Invoked
transactions, invoke chaincode, permits the client to execute functions from a previously deployed chaincode.
Must be noted that not all invoke transactions will end up in a block, as transactions that simply read from the
blockchain are different. Regarding thedistributed ledger, State andBlockchain are data structure components
of the ledger. State is the latest state of transactions, working in key/value pairs, it reflects only successful state
transitions of transactions, this means, it contains the latest values for any given key, and can always be recon-
structed via the Blockchain. Blockchain contains all the history of the state transitions of all transactions that
took place, both invalid and succeeded, thus keeping a record of everything that undergoes in the network. The
blockchain is a definite source of data as the State component can be constructed via the Blockchain.

2.4 Interaction with the Blockchain Network

In the context of Hyperledger Fabric, interaction with the blockchain network comes by the use of external pro-
grams. These programs allow users to connect to peers of the network enabling them to interact with the
blockchain network. This, however, is only true if registered and accepted as a user of the network, which is
achieved by communicating with the Certificate Authority within the network. Interaction with the blockchain
is only allowed through theuseof smart contracts, thus beingonly able toquery andupdate theblockchain and
getting responses from it. Besides interactionwith the blockchain, in the context of this dissertation, it connects
users to the storage server allowing coordination between the two components.

Figure 2.2: Application interacting with the Blockchain network. [Hyp18]

Figure 2.2, by Hyperledger Fabric Official Documentation [Hyp18], provides an abstract view of how these pro-
grams interact with the blockchain network. A step that must e noted is that in order to perform a request to
the blockchain network to run smart contracts, it must come from a registered user within the network. This
enables only known users to interact with the network.

Example in the context of thework tobedescribed: Theapplicationdisplays theownedand/or shared files by
requesting this information from the blockchain via smart contract and if the user wants to download a shared
file, then this application would firstly use a smart contract function to determine if the user still has access
to that specific file and if true would return an unique identifier so it can be used to request that file to the
repository.

2.5. DATA SHARING ON CLOUDS 9

2.5 Data Sharing on Clouds

Data sharing on clouds is the ability of sharing data to another user, in which data is hosted in a remote stor-
age provider with the properties of a cloud, most importantly high availability. The storage providers will then
handle, in theory, the security, privacy and confidentiality of the data and handle access control and revocation
of privileges. This raises issues of confidentiality and privacy due to the uncertainty of how data is treated and
stored, complications increase if the cloud provider gets compromised, revealing the data and possibly meth-
ods to decrypt the data. With no owner control over these aspects, it is expected by users to take control over
security of their own data [ADK+17] and provide enough safety that access to data can only come by the owner
or any user with access. In other terms, the owner needs to have complete control.

The issue is keeping data secured and at the same providing a way to able to be shared by other users. There
are multiple methods to solve this problem [ZRL+10,ADK+17,CCT+14].

Shared secret encryption allows a shared secret between owner and user. But limited to one time uses, as one
leak of the secret and the data is no longer secured.

Asymmetric key encryptionuses a set of private andpublic keys, inwhich thepublic key is sharedby other users,
and the private key remains a secret to the owner of the private key. Asymmetric encryption uses the other user
public key to encrypt data and can only be decrypted by the corresponding user private key.

Several approaches on data sharing mechanism exists but require to have a certain amount of trust on the
cloud repository in order to have, besides the owner’s private key, a shared private key between repository and
owner to enable data sharing [ZRL+10] or uses a trusted cryptography server [ADK+17]. These approaches do
not require the use of re-encryption, but rely on additional factors.

Other approaches provide no sharing of private keys and no additional servers but essentially creates a new
form of encryption that uses a master-key to extract other set of keys that must be securely sent to other users
for sharing of data that does not require the use of a trusted server. [CCT+14]

GNU Privacy Guard is another method for file encryption with multiple recipients [gnu]. Uses of gnu privacy
guard extends data privacy and secure communication between users, and additionally multiple e-mail pro-
grams support this method. [Gua] Additionally, it allowsmulti-key file encryption, which works by encrypting a
symmetric key with the asymmetric keys of the recipients.

In Chapter 6 this approach is used as a possible setup for data sharing combined with blockchain, but was not
implemented.

2.6 Data Sharing on Blockchain

Exploring blockchain data sharing presents a new set of difficulties, but presents a new set of opportunities.
Data Sharing on Blockchain is the concept of using blockchain properties to share data with other entities by
the means of smart contracts and other appropriate tools when the data is hosted on a remote storage repos-
itory. A mechanism as this allows the owner to keep track and himself control the permissions of users who
can access data he owns, which uses identity and smart contracts to control and enforce the rules, which are
unable to be interfered by third parties. Thismethod creates an additional layer of security and privacy which is
manageable by the owner of the data and the use of blockchain and smart contracts, instead solely by a cloud
storage provider handling these aspects. Besides the smart contracts, blocks contain every transaction every
made, this means any event regarding data can be easily inspected by authorized users: who accessed what
data and when, and these logs can never bemodified or deleted. It also allows to easily revoke any user access
to data. [XSS+17,AEVL16, XSA+17]

10 CHAPTER 2. STATE OF THE ART

Smart contractsprovideaway toenforce these interactionsandensure rules arenotbroken. Theseareessential
to the development of a data sharing mechanism in order to automate the process of enabling data sharing
and data access control, and ensure no third party interferes with the behaviour. These tools execute exactly as
coded, without any possibility of downtime, fraud, censorship and third party interference. As long as the owner
does not loose or leak the credentials, it makes it so only the owner has control over the access and sharing of
the data and the smart contracts enforce the rules dictated by the owner. [AEVL16] Additionally, peers execute
the same code, and there must be consensus over the results. So, the outcome is not dependent on a central
authority, but on decentralized network of peers.

Private blockchains facilitate this capability, being able to be deployed anywhere. Hyperledger Fabric capa-
bilities provides identity over anonymity to ensure every participant is known and registered in the network.
Additionally, sharing of data only comes from registered, authorized users. [Hyp18, XSS+17]

2.6.1 Data Access Permissions

Permissions is a mechanism that keeps control over the access permissions of every user the owner of data
has given, essentially being able to identify who of those users are and keeping a clear record who previously
had access to what and who currently has permissions on what, for how long and what permissions. Using
blockchain properties means the owner has increased control over these aspects and can have complete con-
trol of who is he sharing with. The most important part is providing a clear record of every access given to any
data, by any user. Providing a clear tamper proof record of the interaction on data.

2.6.2 Data Access Control

Data access control ensures data can only be accessedby authorized users inwhich the owner of data has given
access to. Blockchainproperties ensure access control firstly to only users registered in thenetwork, and then to
userswith accesswithout the need of a third party to determine if a user has access to any data or not, therefore
it does not need the request the storage provider if a user has given access or not, the information is already
stored in the blockchain at some point in time. Additionally, it also differentiates if a user that has permissions
from a user that owns the data. This is done by attaching the identity of the user to the data.

Regarding current access control permissions andpreviously grantedaccess control, theblockchain keeps track
of every interaction made and every user that had and has access to any piece of data. This system does not
rely on the storage provider to keep control of the permissions or access by external users, but uses the smart
contracts to enforce this [XSA+17,AEVL16, XSS+17]. In theory and practical terms, a user only requires to setup
a share agreement between him and another party, and the smart contracts will handle all the business logic,
from allowing access to the data to removing privileges solely based on the blockchain. This does not mean a
cloud storage provider will not contribute with additional measures.

Smart contracts need also to grant access to data or not, based on the current state of user permissions stored
in the blockchain. Since the smart contract acts without interference, and the blockchain is tamper proof, it can
easily detect if an access request is valid or invalid.

2.6.3 Revocation of Privileges

Revocation of privileges is the action of stopping the access to any data by any user, either manually or by
automatically due to conditions. For example data violations: Blockchain enables this procedure without the

2.7. DATA STORAGE APPROACHES 11

assistance of storage providers, with the aid of smart contracts and the data stored/added, and shifting the
decision process to the blockchain network and stopping access and logging it.

Theowner is in complete control of external users ofwhoaccess thedata, as suchhe canexecute smart contract
functionalities tomanually revoke privileges, or alternatively state in the creation of a share agreement the time
limit of the access. Revocation also happens immediately at moment of requesting if a user with permissions
does not have the correct permissions, i.e: a user with read access attempts a write access. This action should
automatically revokes the data access for possible violation. These unstoppable contracts written in code, will
automatically determinewhenauser loses their access towhat data and stopanymore access, unless provided
by the owner.

2.6.4 Ledger

Blockchain, or Ledger, has stated in Section 2.1, is a tamper proof system of records, therefore it provides great
opportunities for the owner to keep control on data access and users with permissions. Being able on any
point in time to determinewho, when, what wasmodified or accessedwithout a single point of failure. [AEVL16,
XSS+17]

2.7 Data Storage Approaches

There are multiple proposed approaches in order to achieve the stated goals, each with their own challenges
and differences. From fully decentralized to hybrid approaches but themost important point is that all of these
maintain the blockchain as its most crucial and core component. Essentially the blockchain provides a record
of information of files and share access.

Another approach is to use the blockchain blocks as data storage. By the properties of the blockchain this
may be a viable approach for data storage. Alternatively, if blocks are not used, the purpose of the blockchain
would be to locate the file, present the users their files and shared files and help retrieve the original file from
its corresponding repository (either centralized or distributed) control data sharing and data access control
while ensuring ownership. Smart contracts would be used, as the only way, to allow users to interact with the
blockchain in other to perform various operations, like register a file in the blockchain, create share agreement,
among others. The following data storage approaches are possible:

• Block Data Storage. With this approach, the file data is to reside in the blocks of the blockchain. This
approach makes data share the properties of the blockchain, which is immutability, tamper proof, own-
ership where each peer would contain a replica of the data. While this may seem a viable approach has
many complications regarding the consistency, security of the blockchain as well as confidentiality and
privacy of the data. [LSZ15, SZ15]

• Distributed System. With this approach, a file is to be fragmented into smaller equal encrypted pieces
and distributed to the network to be kept in other peer’s physical machines, according to rules stated in
the smart contract. The blockchain would then handle all the relevant information in order to log, locate,
decrypt and rebuild the original file, while still providing complete ownership of the file. [sto]

• Hybrid System. This approach would require a centralized approach, meaning a central authority where
files would be kept in a central repository while using the blockchain, as the decentralized component of
thenetwork. for support in termsof ownership andother relevant information to log, retrieve anddecrypt
user’s files when requested. Files would be shared according to rules stated on smart contracts. This

12 CHAPTER 2. STATE OF THE ART

approach would mean have a centralized component, the repository, and a decentralized component,
the Blockchain.

2.8 Related Work

The blockchain concept led to the rise of blockchain based services. Cloud backend services are obviously
among them. Storj and Sia are two of these services. Any of the two presented solutions imply costs lower than
more known and traditional methods like Google Drive, Dropbox, Amazon S3, for example. [sia, sto] Although
theyusea relatively new innovative anddisruptive technology, usingblockchainsprovides a farmoreaffordable
decentralized solution to cloud [WLB14]. Additionally healthcare based blockchains tend to provide a data
sharing mechanism aswell.

Storj

Storj is an open source but not entirely fully decentralized backend cloud storage service implemented on top
of the Ethereum Blockchain that allows its participants to rent unused hard drive using the public blockchain
as a ledger to keep track of shared files. It does require trust on third parties (named ”bridges”) to connect users
to storage participants in order to pay for storage. Each block in the blockchain contains hash functions, keys,
file locations, etc…. Shared files are fragmented and spread across the decentralized network and encrypted,
guaranteeing the owner, he is the only one who has access to the complete file, it uses its own digital currency
to reward the participants for keeping the network up and running, although allows payments to be done in
other currency besides the network [sto].

But consequently it has some issues. It is not fully decentralized meaning, it has single point of failure. Making
it vulnerable to Distributed Denial of Service due to the ”bridges”, incapacitating the entire network.

Sia

Sia is an open source project, providing a fully decentralized, with no single point of failure cloud backend
servicewhere participants of the network can rent his unused hard drive space andhost files. ”Insteadof renting
storage from a centralized provider, peers on Sia rent storage from each other. A blockchain, similar to Bitcoin, is
used for this purpose” [VC14]. It works by creating a contract between the storage provider and client’s data,
and periodically submit proof, verifiable through the Blockchain, of their continued storage, until the contract
expires, while redundantly storing data acrossmultiple hosts in order to achieve high availability. The platform
uses its own digital currency in order to reward the participants of the network [sia].

But likeStorj, it has some issues. Inorder tohelp thenetwork it requires synchronizingwith theentireblockchain
which can take a considerable amount of time, due to the size of the blockchain. It also have some scalability
issues in handling large volumes of data due to limitations of the blockchain. In addition, payments are only
done in the network currency Siacoin. That could be viewed as a downside.

Healthcare and Blockchain Data Sharing

As referenced before multiple approaches to data sharing on blockchain have been made. All of these ap-
proachesarehealthcare related, sincedataprivacyandconfidentiality in theseareas is very importance. [XSA+17,
AEVL16, XSS+17] Some of the works are

2.8. RELATED WORK 13

• MedRec is a decentralized application running on top of Ethereum, using blockchain, it permits to man-
age authentication, confidentiality, accountability and data sharing. While also allowing to integratewith
the existing local storage for easier adaptability [AEVL16].

• BBDS, Blockchain Based Data Sharing, is similar to MedRec but relies on a private and permissioned
blockchainwhichguaranteesonly invitedandacceptedusers can interactwith themedical records, heav-
ily going by Proof of Verification. This premises allows users to be known and all the interaction to be
logged in the blockchain [XSS+17].

• MedShare is similar to the previous approach, This approach aims at trust-less medical data sharing
among cloud storage providers. The system suggests a permissioned and private blockchain. The de-
sign employs smart contracts and an access control mechanism to effectively track the behavior of the data
and revoke access to offending entities on detection of violation of permissions on data [XSA+17].

3
Blockchain

In this Chapter, Blockchain is the centered topic, in which a clear description of this disruptive is pro-
vided. Besidesanoverall description, thisChapteralsodescribes variousconcepts thatdefineblockchain
in a more detailed level. Blocks, transactions, blockchain networks, consensus protocols and forking
are approached concepts. Additionally some uses cases of Blockchain in various areas, like Cloud
Service, Health and Media among others.

3.1 What is Blockchain?

Blockchain is a Distributed Ledger Technology . Considered a distributed databaseworking as a ledger, in other
words adistributed ledger, it provides the ability to facilitate the recordingof transactions and trackingof assets.
Blockchain is a continuously growing chain of digital blocks, where each block references the previous block
connecting theentire chain, tracingall thewayback to theGenesisBlock1. Eachblock is a setof recordsallowing
permanent and verifiable records of transactions in a secure manner. Each Block, if valid, is then added to the
blockchain. So each block contains the most recent occurrences in the network up to that point.

1The first block of a Blockchain

15

16 CHAPTER 3. BLOCKCHAIN

Theblockchain is a disruptive technology since it revolutionizes theperceptionof data, permitting for a network
to have records of all participants in a single ledger shared by all. Peer to peer, thus decentralized, transactions
that take place and ownership are proven via cryptography instead of trust on a central authority. Transactions
arepermanent and irreversible (at least not by conventional terms)whichmeans theblockchain is cryptograph-
ically secured, it provides a single record of truth which contents are replicated by peers in the network and a
distributed consensus ensures that all parties follow an immutable agreement and share the same information
and information is added via consensus.

Theobjectiveof the first ever implementedblockchain (Bitcoin)was to solve theproblemassociatedwithdigital
currency which is double spending. This notion is using the same currency more than once, which should
never be allowed. Because digital information is easily replicated, so creating digital currency posed the same
challenge. Blockchain solved this problem.

This disruptive technology, havingmany applications, sought out to change finance is nowbeing referenced by
some as the next big innovation since the Internet.

Quoting Ethereum Co-Founder Vitalik Buterin, ”whereas most technologies tend to automate workers on the
periphery doing menial work, blockchains automate away the centre. Instead of putting the taxi driver out of a
job, blockchain puts Uber out of a job and lets the taxi drivers work with the consumer directly.”

3.2 Bitcoin

Bitcoin, is the first blockchain to be created, posing amassive impact and described in just 9 pages. The follow-
ing text, is the abstract of the Bitcoin whitepaper2.

” A purely peer-to-peer version of electronic cashwould allow online payments to be sent directly fromone party to
another without going through a financial institution. Digital signatures provide part of the solution, but themain
benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the
double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them
into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that
it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by peers that are
not cooperating to attack the network, they’ll generate the longest chain and outpace attackers. The network
itself requiresminimal structure. Messages are broadcast on a best effort basis, and peers can leave and rejoin the
network atwill, accepting the longest proof-of-work chain as proof ofwhat happenedwhile theywere gone.” [Nak]

The Bitcoin whitepaper of just nine pages described how it all worked and and introducing the notion of dig-
ital currency in the possible manner. In short, Bitcoin is, a peer to peer version of electronic cash that allow
payments to be sent directly from one party to another without going through a financial institution first. [Nak]

Digital currencies all suffer from at least one common issue which is the double spending problem, the con-
cept of using the same currency more than once. Since digital information is easily duplicated, a digital cur-
rency presents the same issues, for this reason the blockchainwas conceptualized and implemented by Satoshi
Nakamoto3, a name used by an unknown entity.

The blockchain as described in the Bitcoin Whitepaper is an immutable ledger to record transactions using
digital signatures. This makes it possible to create a decentralized payment as the blockchain is a ”chain of
digital signatures that defines an electronic coin” [Nak], allowing ”online payments to be sent directly from one
party to another without going through a financial institution” [Nak]. This method allows every transaction to be

2A less technical and less extensive article
3Author of Bitcoin Whitepaper and Creator of the first Blockchain

3.3. TRANSACTIONS 17

logged in the blockchain in a form of block and its contents agreed upon by a consensus algorithm called Proof
ofWork tomake extremely difficult for the blocks to be tamperedwith but easily inspected, ensuring it’s stability
and security. In order to confirm that a transaction did exist and to prove that users did not attempt malicious
actions regarding transactions, all transactions are publicly available, to remove the need for a central authority
to check every single transaction. Thismeans every user can check the legitimacy of every transaction from the
Genesis Block.

Bitcoin was the basis for many other blockchain implementations. Its source code is publicly available4, and
multiple projects used this as inspiration to build their own projects.

3.3 Transactions

A transaction represents an exchange of ownership of value from one user to another or any information that
is adds content to the blockchain cryptographically signed by the submitter. In other words, transactions are
operations that will perform write operation on the blockchain, increasing the size of the blockchain. These
transactions are then broadcasted to the network and picked up by peers. When they reach a certain number
of transactions, or after enough time, they are bundled into a block.

Naturally, depending on the type of blockchain (see Section 3.5 for details) transactions are usually not en-
crypted. In public networks, other peers maintaining the network as well any other user are aware of every
transaction and can easily inspect them. This method is to enforce security and substitute trust over crypto-
graphic proof, because a peer of the network wouldn’t be able to tell malicious transactions from valid ones, it
may be added that transactions are visible to outside users5.

In private networks or any network that supports private transactions or impose restrictions on readoperations,
users may not be able to inspect them, besides authorized users.

In Bitcoin, transactions are between two parties, each one are represented by an address, which is an unique
alphanumeric sequence which is the hash of the public key. These addresses are public, enabling the transfer
of value. Although in other networks, transactions do not need to represent an exchange of ownership of value
between two parties, but just logging of information without the need of the second party.

Transactions are the essence of the blockchain as they provide themeans to keep record of users activity in the
network by registering it in a permanent way. Depending on the network type of the network transactions may
or not be visible to all other users. In private chains this is the contrary, since the peers are considered trusted,
transactions are not visible outside the network but only within it, but may be not visible to certain users of the
networks. (additional rules)

When a transaction is formulated, it is broadcasted to the network for peers to pick it up in order to generate a
block, transactions are placed in a queue waiting their turn to be picked up. Although transactions will eventu-
ally be bundled with other transactions into a block there is no exact guarantee when that will occur.

In public blockchains, monetary incentive solves this. Transactions in order to ensure they are picked up and
placed into a block may require a fee. The amount of fee sent depends on who sends the transaction, but, in a
general, thehigher the fee thehigher thechances itwill getpickedupas soonaspossible. Inprivateblockchains,
or blockchains that do not necessarily resolve around monetary values to ”get things done”, it may just be by
arrival time or urgency because incentives are not the focus.

Transactions by definition in the blockchain are irreversible and final, once submitted and if considered valid

4https://github.com/bitcoin/bitcoin
5https://www.blockchain.com/pt/explorer can for example show the history of all transactions

18 CHAPTER 3. BLOCKCHAIN

they will no longer be changed, but will only be considered irreversible when an agreed amount of confirma-
tions6 is reached, this makes it difficult for any attacker to perform malicious actions that could reverse the
transactions (double spend).

In order to submit a transaction theuser or peermaybe required to synchronizehis blockchainwith thenetwork
before sending but will depend on the client software.

Figure 3.1: Bitcoin Transaction.

Figure 3.17 explores a transactionbetween twoparties, one address to another and the amount of Bitcoin trans-
ferred fromone address to the other. This is a case of a very simple transactionwith one input and two outputs.
By inspecting Figure 3.1, one of the output address is the same as the input, this is the ”change”, because the
value of input was greater than the output value, so some of the currency must be refunded.

3.4 Block

Blocks by definition are batches of transactions that occurred at some point in time specific to a blockchain
network. The term blockchain comes from how blocks are generated. Each block contains the hash of the
previous block which acts as a secure link, allowing every block to be traced back to the Genesis block. Each
new block added to the chain represents the most recent transactions that occurred in the network.

The system of connecting blocks with the hash of the previous block along with the consensus protocol make
the blockchain very resilient and tamper proof because one change to an old block’s contents imply a different
hashwhich causes thenext block tobe incompatible and so forth, breaking the link andmaking thewhole chain
incompatible. This makes the detection of an malicious action easily detectable.

All blocks added to the chain are considered valid by rules of consensus representing all valid and irreversible
transactions, whenenough confirmations are achieved. Theblockchain is replicatedacross participatingpeers,
where each peer contains a full copy of the blockchain considered valid by the consensus protocol.

In the case the peer wants to participate in the creation of blocks, the peer must have his blockchain synchro-
nized at all times, which implies downloading the full blockchain to the peer’s machine so this matches the
blockchain that is considered valid by the consensus protocol.

How new blocks are generated and accepted to the blockchain depends entirely on the consensus protocol
associated with that network. (see Section 3.8 for details) Additionally it also depends on the implementation
of the blockchain, the contents of a block can also differ, in the following sections describes three different
blocks of three different blockchains.

6Number of blocks that follow the one the transaction resides in
7 https://www.blockchain.com/en/btc/tx/5b28d83af4236e26c1a5af3d3ee7a47ac1ebcee935d7b5fa2de9d285ab927e6b

3.4. BLOCK 19

3.4.1 Bitcoin, Ethereum and Hyperledger Fabric Blocks

As previously mentioned, the contents of a block depends on the implementation of the blockchain. In order
to exemplify the difference, two different blockchain’s blocks are presented: Bitcoin and Hyperledger Fabric.

Bitcoin block

The Bitcoin block is the first concept of blocks in blockchains. The structure is relatively simple yet complex, the
block contains information regarding number of transactions, size of block but most importantly is the block
header. The block header contains the hash of the previous block, a Merkle Tree of transactions at the leaves
[Nak], a timestamp and a nonce8. Figure 3.2 represents a block header in the network.

Figure 3.2: Bitcoin Block Header Structure [Nak]

Additionally, blockchain explorers are a term for platforms that scans the blockchain and provides a clean inter-
face for users to inspect the contentsmore easily. Figure 3.3 contains additional block information and statistics
extracted from a block at some point in time9

The important factors to note on the block from Figure 3.310 are the hash, the difficulty, the nonce, the version,
the previous block hash an timestamp and the merklee tree root.

• Hash represents the cryptographic proof that the block has been put some effort into building it. And the
Previous Hash representating the connection to a previous block.

• Difficulty represents the number of tries required in order to generate a nonce that will output thatHash.

• Nonce, a random number, that enabled the block to achieve the target Hash structure.

8A random number that will give a block the target hash, participating peers will try to find this value via ”mining”
9https://www.blockchain.com/btc/block-height/536315

10https://www.blockchain.com/btc/block-height/536315

20 CHAPTER 3. BLOCKCHAIN

Figure 3.3: Bitcoin Block Statistics and Information.

• Version represents the software version of the block.

• Merkle Tree Root, the root hash of tree containing the transactions at the leaves.

• Timestamp, represents the moment of creation. Representing the most recent occurrences in the net-
work.

Hyperledger Fabric block

Blocks in Hyperledger Fabric are discussed in detail in Chapter 5. Nonetheless Figure 3.4 presents the struc-
ture of the block in version 1.0 of Hyperledger Fabric. Shows an almost completely different structure from the
Bitcoin block. A notable component is the Endorser signature, that will be in detail in Chapter 5.

3.5 Blockchain Network Types

Blockchain networks come in two types, public and private, each have their differences, functionalities and
reason to exist and as the names suggest, a public blockchain is meant to be accessible by anyone, while a
private blockchain is meant to be only accessible depending on certain conditions, invitation for example.

3.5.1 Public Blockchain

Public blockchains, are mostly open source and permissionless11, meant to be accessible by anyone with no
restrictions being applied, which means any user can freely join the network, interact with it and contribute,
usually by ”discovering” new blocks to be added to the blockchain. In other words joining a public blockchain
is where any user perform read and write operations, if valid by the network rules of consensus. By definition a
public blockchain means transactions are publicly available meaning every transaction is visible. This method

11Anyone can read from the blockchain anyone can make changes and contribute as a peer as long as they follow the rules

3.5. BLOCKCHAIN NETWORK TYPES 21

Figure 3.4: Hyperledger Fabric Blockchain Block Structure

increases the overall security and integrity of the blockchain as every user is aware of all transactions and any-
one can confirm the existence of every transaction that as ever occurred since start of the network (genesis
block) which is particularly useful for the detection and prevention of double spending. [Nak] Since anyone can
join a public network it means trust cannot be considered as a reliable factor for security, stability and growth
of the network. Instead, they rely on publicly presenting transactions and cryptographic proof to ensure said
factors.

Bitcoin is the first blockchainandpublicblockchaindescribed inSection3.2, as it is the foundationofblockchain
development.

Ethereum is another widely extremely popular public blockchain as it introduced a blockchain for the develop-
ment of smart contracts, alongwith a customprogramming language, permits its developers to use the proper-
ties of the blockchain not only limited to finance, although it also permits the creation of cryptocurrency using
the Ethereum Blockchain as the eco-system, these are called Tokens instead of Cryptocurrency. With the ob-
jective of becoming a global computer, it permits the creation of Decentralized Applications. Similar to normal
applications but these use the blockchain and smart contracts as part of their backend.

There are many and open source blockchain public networks and more on the rise. Bitcoin and Ethereum are
two of the most well known and largest blockchain networks.

22 CHAPTER 3. BLOCKCHAIN

3.5.2 Private Blockchain

Private blockchains as the name suggests are private networks, and can be open source but permissioned12.
These networks are usually associated with a level of trust among its peers. In order to become a peer certain
conditions beforehand may apply, such as invitation only, and to when be a participant of the network there
can be restrictions on available operations, such as restricting certain users on read only. And tend to go by
identity instead of anonymity or pseudo anonymity.

These networks, may be more complex in terms of peers, while in public blockchains there is usually one type
of peer (thosewho create blocks), in private blockchains theremay bemore than one type of peer. For example,
in Hyperledger Fabric, a private blockchain implementation, there are two important peers, an Endorser who
endorses a transaction, and the Orderer who collects endorsed transactions and creates blocks.

Participants of private networks are usually restricted, while in public networks a participant can read/write
from the blockchain, maintain the blockchain , and many other operations, the private networks can restrict
their users on read only, write only, only a selective peers tomaintain the blockchain, among other restrictions.
Although there are restrictions they allow for increased privacy and confidentiality, such as private transactions
taking place which are only visible within the network, and even within the network they may only be visible to
set of users or peers or both. This overall greatly increases its applicability.

These networks are usually associated with closed situations like corporations under an umbrella, various de-
partments in a organization, financial institutions who want the benefits from the blockchain but want their
transactions not to be visible to the world, among others.

These networks rely on trusted peers, to an extent, because it implies a much smaller network when com-
pared to public networks like Bitcoin. In thework described in this dissertationHyperledger Fabric is the chosen
blockchain framework.

3.6 Cryptocurrency

Cryptocurrency is a digital asset that is used as an alternativemethod of exchange of value that is purely digital.
By definition cryptocurrencies can either be centralized or decentralized.

Centralized currencies are no different from paper currency, it requires the need of a central authority to con-
trol the flow of currency, and validate transactions to ensure no double spending. Decentralized currencies,
however, are a different type where there is no central authority to dictate the flow or the future of the currency,
an example of this is Bitcoin, the first decentralized cryptocurrency controlled by the community as there is no
central entity or government regulation applied to it.

What defines a cryptocurrency is ”as a chain of digital signatures” [Nak], where each transaction is a change of
ownership of value from A to B.

Cryptocurrency wallets are also standard as they provide an interface to interact with the blockchain. These
wallets maintain the private and public keys of the users, only to be accessed by the owner.

Cryptocurrency is not limited to public networks. Any network can implement a form of cryptocurrency as it is
just needed to write the business logic for it.

Themost known cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Ripple (XRP).

12Restrictions on who can contribute as a peer and can join

3.7. WALLETS 23

3.6.1 Double Spending Problem

The most important issue when facing a digital currency is double spending. The concept of using the same
currency more than once. Digital assets are easily replicated. This leads to a major concern when referring to
digital currency as the idea of an user duplicating his digital currency and sending it to another party poses a
major flaw in the digital currency scheme, leading to lack of trust and other consequences. Blockchain was the
first successful solution to solve this in a decentralized way.

3.6.2 Blockchain and Cryptocurrency

Blockchain is not exclusive for cryptocurrency. Not all blockchains are cryptocurrency focused, an example is
Hyperledger Fabric, a private blockchain implementation, whichwill be described in Chapter 5. The blockchain
merely provides a strong, valid and proved solution for digital currencies to shine, but essentially blockchain is
an immutable ledger allowing the recording of information to be done in a permanentway. The cryptocurrency
also works, as a method of incentive to peers to keep stability and security in the network in order to keep the
network healthy by contributing to it by being a peer. But if a blockchain supports the build of complex smart
contracts, essentially anynetwork, evennot cryptocurrency focused, canhavecryptocurrencyas it just business
logic that can be programmed into a smart contract.

3.7 Wallets

Wallets are a sort of programs or part of it, which are a enable store and secure the credentials of a user. This is
used to execute transaction proposals and possibly other features. Which by definition enables the interaction
with the blockchain network, taking advantage over its features. If a network supports cryptocurrency then
it provides a way to keep check his balance on the stake of the blockchain network, transactions proposals
(request to send value to another address) and possibly other features.

Depending on the type and software of the wallet and the network type, it may be required that the wallet is
synchronized with the corresponding blockchain in order to interact with the blockchain network. This means
having a copy of the blockchain in the physical machine of the user. In private or permissioned networks, this
may not be the case, and instead these communicate with peers.

When related to cryptocurrency, wallets do not store the currency, as that goes against the properties of the
blockchain. Instead, wallets scans the full blockchain or a world state of it, hence the possibility of having the
full copy of the blockchain, and determines what is the account balance of the user.

There are multiple types of wallets, not limited to a program running on a laptop for example, each with their
advantages and disadvantages and some rather controversial due to its nature.

The different types of wallets are the following:

• OfflineWalletorDesktopWallet. Alsoknowas thedesktopwallet, it providesan interface for theblockchain
or blockchains (if the wallet supportsmultiple networks) and the keys aremaintained in the physicalma-
chine of the user. It provides security and the owner controls the keys (maintains ownership). This is the
most common type of wallet. The downsides are obvious, a physical machine is always vulnerable to
attacks so the user must be careful and must protect it. The user can forget or lose the keys, hence will
loose the cryptocurrency, but these wallets tend to have some safetymechanism, such as backup, so the
user wont easily lose them.

24 CHAPTER 3. BLOCKCHAIN

• Paper Wallet. Cheap alternative to the hardware wallet, emits a readable code and is used to recover
the private and public keys of the user, which can confirm the entity of the user hence access his stake
in the network. The paper wallet cannot be damaged and must be kept safely. If the code in the paper
is unreadable then the keys are unable to be recovered. Usually the codes are represented in QR code
form.

• Hardware Wallet. The most secure type (but not free) type of wallet is the hardware wallet. Requires the
use of an actual physical device to allow interaction with the blockchain such as perform transactions,
securing and recovering private/public keys, accessing the wallet, among other features. A widely used
hardwarewallet is the Nano Ledger S, as seen in Figure 3.5, which resembles aUSB flash drive, it supports
numerous cryptocurrencies, and even if this hardwarewallet is lost or damaged, the user can still recover
the keys, by a safety mechanism on setup of the Nano Ledger S.

• OnlineWallet. TheOnlinewallet is rather controversial, thiswallet is hostedonline, whichmeans the host
controls the keys and not the actual user, this means the user is not in complete control of over his iden-
tity on the network which goes rather off track of what a blockchain truly his. Nonetheless, these hosts
are usuallymostly safe and secure and abide by the law of the country the host resides in. Personal infor-
mation like passport or national id card or driver’s license will most likely need to be submitted in order
to use the services of said host. Online wallets are very common when associated with cryptocurrency
exchanges. Much like a stock exchange but cryptocurrency exclusive. (hence the online wallet)

Figure 3.5: Ledger Nano S

3.8 Consensus Protocols

Consensus protocols maintain the stability and consistency of the blockchain and ensures consensus over
the contents of the blockchain. Consensus determines how new blocks added to the blockchain and which
blockchain does every peer in the network consider to be the valid blockchain. Essentially every decision that
affects the blockchainmust be determined by consensus. Additionally any change to the consensus protocol if
accepted by consensus will result in a soft or hard fork, as explained in Section 3.9. Blockchain networks must
implement a consensus protocol and the ones described in the following sections are the most popular ones.
Proof of Work the most popular and well known and the one used in Bitcoin; the emerging and viable alterna-
tive to Proof of Work being Proof of Stake and Delegated Proof of Stake; and last the Hyperledger Fabric choices
of consensus.

Block Confirmations on the Blockchain

In order to increase security in a blockchain network, a transaction is only considered irreversible and final if the
blockwhere the transaction resides is followedby a consensusdefinedamount of blocks first. This is toprevent,
by making it difficult for malicious users to attempt an attack on the state of blockchain network. Notably the
double spend attack or majority attack. (see Section 3.8.1 for more details)

3.8. CONSENSUS PROTOCOLS 25

3.8.1 Proof of Work

Proof of Work, is the most known consensus protocol related to blockchain and also the one Bitcoin relies on,
but it did not originate in Bitcoin White Paper. This system is based on an existing one called hashcash, was
originally proposed as a mechanism to throttle systematic abuse of un-metered internet resources such as email,
and anonymous remailers. [B+02]

In thecontextof blockchain,whenusingPOW, thegenerationofnewblocksaexponentially difficult taskbutper-
mits users and peers to easily verify its legitimacy. In a short definition, proof of work is a protocol that requires
peers to solve complexmathematical puzzles in order to generate valid blocks. This protocol is associatedwith
the common used word in the cryptocurrency world:”miner”.

How it works

Miners are peers of the network whose task is generating new valid blocks with valid transactions, achieved
by solving complex mathematical puzzles, which produces a hash that represents that block and meets the
requirements agreed upon by the network, and then rewarded by their efforts only if their block meets the
requirements of the protocol and is accepted to the active blockchain. Proof of work is nothing but a piece of
data, a hash, that must be difficult to generate, difficult to replicate but legitimacy of that block must be easily
verified.

This protocol requires a exponentially growing computational power that grows based on various factors like
number of generated blocks, how difficult it was to generate a block and the computational power used to
generated a new block. In technical terms each generated block proof of work (the resulting hash) must be
lower than a certain difficulty target, and the hash must have a specific structure. In Bitcoin must have an X
amount of 0 bits at the start of the hash. This becomes increasingly more difficult as the blockchain grows
in size which leads to a very low probability of success for each new block leading to a ludicrous amount of
trial and error. The difficulty to generate a new block is also adjusted every certain amount of generated valid
and accepted blocks so the rate of block generation remains constant. Each new block contains the hash of
the previous block providing a way to link the genesis block to the most current valid block and every block in
between.

In technical terms, miners collect transactions and additional data, in Bitcoin is timestamp, Merkle Tree, or any
and the previous block, and this is used to formulate the structure of a block, after that is done the ”mining”
begins, miners need to find the hash that has that specific structure. The way this is done is by means of a
nonce as presented in Figure 3.3 and Figure 3.2. Miners need to find the nonce which is a random number
that will generate a hash with that structure, this is solely based on trial and error so there is no real time limit
when a miner will find that nonce, mainly luck so there is no other alternative then pure brute force. Modern
computers have no trouble cycling through large numbers especially if its an interval of Long or Integer size.
This process is so complex because it is not guaranteed that cycling through all possible values of a nonce will
find the correct hash, so a change in the data that is calculated along with a nonce must be cycled as well,
notably the transactions and its order in the Merkle Tree and timestamp, the previous block hash remains the
same.

This protocol makes the blockchain very resilient and very difficult to be tampered as a block gets older and
older. This is because in order tomodify the contents of a block in the blockchain will result in a totally different
hash of that block. This makes it incompatible with the hash of the previous block stored in the block that
follows it and this incompatibility will propagate all the way to the most current block therefore requiring a
massive amount of computational power as it needs to re-generate all blocks that follow themodified old block
andall of thework that generated them. Inmore technical terms,modifying anoldblock is not possible, instead

26 CHAPTER 3. BLOCKCHAIN

a modified block will generate a fork. See section 3.9 for more details.

In order to incentive miners to solve these complex mathematical puzzles, each time a block is generated the
miner creates a transaction fromnoone to himself, named coinbase, with an agreed amount of cryptocurrency.
If theblock is acceptedby thenetwork the ”miner” createsnewcryptocurrency rewarded tohimself aswell along
with the fees associated with the transactions. So miners compete for the acceptance of blocks in order to get
rewards from it.

Fees in Proof of Work aremust as users who wish to use the blockchain via transactions will want their transac-
tion to be processed as fast as possible so the users include a fee (payed to the miner) to try and include their
transaction in the next accepted valid block.

The Longest Chain Rule

The longest chain rule is the most important rule of Proof of Work, this implies the network to agree upon.
Valid blocks must reach other peers in order to have their blockchain synchronized with all other peers, but
this means blocks take some time to reach other peers which naturally can lead to conflicts because blocks
can be ”discovered” concurrently. These conflicts are related to multiple valid blocks being broadcasted to
the network, roughly at the same time and depending on number of factors like geographical location of the
peer will influence which block the peers get first so this leads to the issue of what the valid block that a peer
must accept in their copy and will eventually lead to competing chains. In networks that use Proof of Work
consensus protocol, they follow the longest chain rule. This states that a peer must accept the first block he
receives and must start building on top of that block. If later that same peer receives a block that corresponds
to a different chainwhich is obviously longer chain than his, then he should discard thework he has done on his
previous chain and accept that new longer chain as the valid one, since these peers will not have the complete
information they must reach to other peers to complete it. Figure 3.6 presents a visual representation of the
longest chain rule.

Figure 3.6: Longest Chain Rule [Lew15]

Figure 3.6, by Antony Lewis A Gentle Introduction to Blockchain Technology [Lew15], presents a case of forking,
where the blockchain is forked and peers mine on different sides of the blockchain, block 81a, block81b and
block 81c. When block 82b is found, peers working on block 81a and 81c, discard the previous work and imme-
diately start working on block 83b.

3.8. CONSENSUS PROTOCOLS 27

Peers discard the previous chain they were working on, whats happens to the transactions? Every time
transactions are broadcasted to the network they are placed in queue, when peers discover they are working
on the wrong chain, all the transactions of the now inactive chain are placed back in a queue, peers ask for the
information of the missing block(s), assuming they didn’t received the block from the other chain and kept a
copy, which may be possible. This most likely contain the same transactions of the block in the inactive chain,
so peers who receive the information start comparing with the queue with the active chain. Since those blocks
were not confirmed, missing transactions will eventually get fulfilled.

Additionally the longest chain is considered the active chain, which in Proof of Work it refers to the chain that
has themost ofwork in, andby definition, is the chainwhere consensus exists, as in, equal to all other peers and
all peers state this chain as the valid one and the one to follow. But there are multiple inactive chains, which
reflect the case of the conflict previously described, peers may keep the old block but must rely on the active
chain if peers want their contribution to take place.

Nothing stops a peer from continuing to build on that older chain, but this action has to be taken into consid-
eration that no consensus will happen because that chain is considered inactive so no rewards unless it results
in a 51% Attack.

51% Attack, Majority Attack or Double Spend Attack

This vulnerability deserves an explanation by itself as it is amajor issue in a blockchain that uses Proof of Work.
It refers to an entity controllingmore than 51% of the network total computational power, leading to effectively
double spend which is the concept of using the same currency more than once, which results in reverting pre-
viously confirmed and valid transactions. However it is not possible to change the rewards of generating blocks
or revert users transactions (as it requires access to private keys) unless they were in the block(s) that were af-
fected by the double spend. The malicious user however can approve transactions which are malicious since
the user as more than 51% of the computational power those transactions can be considered valid.

How it works: If the entity holds more than 51% of the computational power of the network, he has a much
higher chance of generating blocks faster than the rest of the network so themalicious user can submit a trans-
action, start a competing chain (without broadcasting it) and start working on the chain and after the transac-
tion is confirmed the malicious user can broadcast the chain made if the chain is larger than the current active
chain. This in the proof of work algorithm states that the new chain has more work in and now is considered
the active chain, effectively conducting a double spend because the transaction in the previous longer chain is
now reverted.

This vulnerability has a flaw from the start, if an user/group manages to get 51% of the total computational
power and attempts a double spend attack, the network is then compromised whichmay lead to users leaving
the network causing lack of credibility to the blockchain network. In terms of value, the digital currency value
would drop, losing the investment.

In short 51% attack can do the following:

• Reverse transactions affected by double spend and double spend transactions previously seen in the
blockchain.

• Prevent transactions from being confirmed.

• Prevent miners frommining valid blocks.

But in contrast, the malicious user cannot:

28 CHAPTER 3. BLOCKCHAIN

• Reverse other people’s transactions without their cooperation. (unless it was affected by the double
spend)

• Prevent transactions from being sent at all.

• Change the reward of generating blocks

• Generate cryptocurrency ”magically”.

In order to increase security on this type of attack, the number of confirmationsmakes the attack exponentially
more difficult because in order to effectively double spend, more blocks would have to be generated. But in
contrast the more confirmations the longer it takes to confirm a transaction.

In Bitcoin or Ethereum, this type of attack has never beenmade (withmalicious intention not bymeans testing
to find a bug on the live network with consensus of the network) or at least successfully.

Uselessness of Computational Power

Uselessness is a situation that often occurs in the longevity of a proof of work blockchain, it refers to the amount
of computational power that is wasted in trying to solve themathematical puzzle. Sincemultiple tries are often
required to achieve the solution, and is not guaranteed that some other miner will not solve the puzzle first
this will mean other miners contribution will be useless and this computational power has no other use than
serving the network, producing an enormous quantity of computational power that has no other purpose and
cannot be redirected to some place, leading to waste.

Centralization

Since to generate a block is a race where there is no prize for second place andwith the growing computational
needs to generate blocks peers start teaming up with their computational resources and work together to find
blocks, this is called Pool Mining. There are numerous mining pools, and the number of peers joining mining
pools is continuously growing. This can lead to a problem of centralization. Figure 3.713 shows a pie chart of
the top miners between 22-08-2018 and 23-08-2018 (as in whomined the most blocks)

Pools that win the race, get the rewards of the block generation and distribute rewards to the participants ac-
cordingly to the policy of the mining pool. As difficulty increases, the more computational power is required,
the more users join pools in time may lead to pools owning more than 51% of the network total computing
power, leading to centralization.

Energy Consumption

Asmentioned before, the increase in computational powersmeans increase in energy consumption, Figure 3.8
shows a graphof the amount of estimated energy consumption in one year difference, as the graph shows there
is a jump from from 20 TWh to 80 TWh according to statistics of the same source of that provided this energy
consumption index chart the Bitcoin network consumes almost as much energy as Austria as of 22 of August
2018 and is expected to continuously grow.

13https://www.blockchain.com/pt/pools?timespan=24hours

3.8. CONSENSUS PROTOCOLS 29

Figure 3.7: Bitcoin Miners Pie Chart.

Figure 3.8: Bitcoin energy consumption comparison in one year of difference

Contributing to Proof of Work

Mining is done by running code on the client side that generates hashes with the hardware that is configured
by theminer. Since the difficulty increases, it is expected that a wide number of tries will occur until a hash that

30 CHAPTER 3. BLOCKCHAIN

meets all requirements is found, so themore hashrate14 the hardware has themore likely the user will generate
a valid block faster than others.

Sincemining is a competition for who finds the block first and with the increased requirements as presented in
Figure 3.8, miners got together and form what is called a ”mining pool”, where miners join their efforts to find a
block and are evenly rewarded by their contribution, Figure 3.7 presents variousmining pools in existence as of
this date.

There are multiple ways to contribute and it all depends in total hash rate of the hardware or combined hard-
ware. In order to achieve requires computational power of which the following methods are explored: CPU
power, GPU power, ASIC power.

• CPU mining consist in using the CPU of the miners machine. This method is considered inefficient for
large networks such as Bitcoin or Ethereum and is discourage as of today because of the low hashrate it
produces when compared to other methods that are muchmore efficient.

• GPUminingmining is a standard, it provides a lot more computational power than the CPU and as such
is widely adopted byminers, especially for large blockchain networks like Ethereum or Bitcoin. High end
graphic cards are usually the chosen ones because it provides the most cost/benefit. GPUs are flexible
to use, in other words, the miner is not bound to contribute to one blockchain, but can change the focus
to other ones, because they are not built to run in a specific blockchain network, like ASICs. Figure 3.9
shows typical mining setup using GPUs.

• ASIC (Application-Specific Integrated Circuit) mining are popular but no easily acquired. It’s hardware
built for the single purpose of mining, hence the name ”application-specific” and as such it is usually
more powerful than GPUs. The most popular of the ASIC miners are the Antminers which are Bitcoin
mining machines. ASIC machines are application specific, they have the single purpose of solving hash
algorithms to one cryptocurrency in specific. If the miner wants to contribute to other blockchains it will
require different ASICs. Figure 3.10 shows an Antminer S9.

Figure 3.9: GPU mining setup

Figure 3.11 shows an Antminer (or ASIC) mining farm, an individual ASIC is very expensive, more expensive
then a high end GPU, thus requiring serious investment. These farms are usually placed in a large warehouse
filled with shelves of these ASIC machines. These warehouses tend to be located in places where energy costs
are very low. Depending on the status of the country towards bitcoin mining, these farms can be considered
somewhat illegal.

14Number of hashes generated per second

3.8. CONSENSUS PROTOCOLS 31

Figure 3.10: Antminer, a Bitcoin ASIC

Figure 3.11: An ASIC mining farm

Advantages and Disadvantages of Proof of Work

Regardless of what has been stated, proof of work is the longest running consensus protocol in Blockchain
implementations. It is a strong and viable consensus protocols andas obvious eachprotocol has its advantages
and disadvantages.

Advantages:

32 CHAPTER 3. BLOCKCHAIN

• Arguably the most secure consensus protocol.

• Difficult to generate blocks but very easy to verify legitimacy.

• Very secure and resistant against any network attacks.

• Replaces the trust factor in favour of cryptographic proof.

• Incentive for the hard work.

• The bigger the network the safer it gets.

Disadvantages:

• Energy Consumption because of continuous increase of amounts of computational power

• 51% Attack

• Uselessness of computational power

• Centralization

• Not reliable in private networks or many other use cases.

3.8.2 Proof of Stake

Proof of stake was first introduced by Sunny King and Scott Nadal the creators of Peercoin stated in Peercoin
whitepaper [KN12]. This blockchain network is a hybrid proof of work and proof of stake where proof-of-stake is
used to build the security model of a peer-to-peer crypto currency and part of its minting process, whereas proof-
of-work mainly facilitates the initial part of the minting process and gradually reduces its significance” [KN12]

By itself, Proof of Stake is a category of consensus algorithms that focuses on a peer’s stake in the network, it
is intended as a viable alternative to Proof of Work in order to counter eventual issues in the long term which
are related to the increase in energy consumption (visible in Figure 3.8) and centralization. (visible in Figure
3.7) The goal of Proof of Stake is the same as Proof of Work which is to achieve undeniable consensus in the
network but these protocols behave very differently from one another. While Proof of Work heavily depends
on computational power, Proof of Stake does not, however, it relies on stake and the availability of peers to
achieve consensus. As Proof of Work will bring a higher cost in hardware to keep up with demand, in Proof of
Stake anyone with any hardware can participate: can be a smartphone or laptop instead of multi GPU rigs or a
warehouse filled with ASICs, thus being significantly more energy efficient then its counterpart.

In Proof of Stake there are no ”miners” instead peers which goes by the name of ”forger” or ”validator”.

How it works

When the need to generate a block comes, any peer holding stake is eligible to participate, so, peers who want
to take part of the process place a percentage of their stake in a ”vault”, being locked for a determined amount
of time until a peer is chosen as the current block creator. Inmore accurate terms, this translate into a ”special”
transaction from validator to vault. How peers are chosen as the current block creator will depend on the im-
plementation of the protocol, not having a fixed guideline. Peercoin is the first blockchain to introduced a Proof
of Stake mechanism, it makes a random selection from the pool of available validators at the time based on

3.8. CONSENSUS PROTOCOLS 33

coin age which means how long the validator as been holding the cryptocurrency. In other words, higher the
coin age the higher the probability to get chosen. [KN12]

If a peer wins the right to generate the block the next step is to follow all the rules for a block to be considered
valid, which means ensure valid transactions. Since there might be no incentive to add blocks to the longest
chain, this again depending on the implementation of the protocol, it is by the decision of the validator which
competing chain to add a block to, but naturally validators add blocks to the longest chain for consistency and
value of investment.

Like Proof ofWork, Proof of Stake is not safe frommalicious actions. Malicious validators canattempt to commit
fraudulent transactions or try to censor others, but if the validator attempts to do so he will loose a big chunk
of his vaulted stake (the currency is never recovered) since confirmations are required this means fraudulent
transactions or censorship will be easily detected and since the cryptocurrency is locked, this will make loosing
some if not all of themalicious validator investment. So, this system of locking heavily disincentives fraudulent
validators. Another worrying issue is the Nothing at Stake, which will be described in the following section.

As mentioned before Proof of Stake depends on the implementation of the protocol thus making it a category
of algorithms. Ethereum Project defines two major types of Proof of Stake algorithms, Chain Proof of Stake
and Byzantine Fault Tolerance Proof of Stake. [Vuk17,pro]

Chain Proof of Stake, the right to generate a block is pseudo-randomly assign to an user that holds some
amount of stake. This block must then point to some previous block, which should be the latest block of the
longest chain. [Vuk17,pro]

Byzantine Fault Tolerance Proof of Stake, works with a system of votes where voters are randomly assigned
the right to vote for proposal of blocks. There aremultiple blocks to be validated and users send votes to which
block to be added to the blockchain. Its amulti roundprocess for each voting session. In the end of the process,
votersmust agree onwhich blockwill be added to the chain, but if at the end of the process no decision ismade
then the whole process is restarted until a block is added. [Vuk17,pro]

Nothing at Stake

Nothing at stake is a concerning issue in Proof of Stake networks. Although at of the date of this work is just a
theory since therehavebeennooccurrences. ”Nothing at Stake” doesnotmeanamalicious attackbecause this
can be considered by definition a normal behaviour of the protocol. At the time of forging a block a forger/val-
idator must be chosen, but there could be a case where one or more users managed to arrive at the same
threshold, which determined who gets to be the validator. This issue can relate to longest chain rule as Proof
of Work incentives users to work on one chain (the longest chain) in order to be rewarded because no rewards
are given by working on different competing chains. Since this protocol requires reduced computational re-
sources but only a mix of factors related to the stake of the user it means there is minimal work involved when
thereare competing chainsand thecaseofmultiple forgers at the same time it results ona forkof theblockchain
and now majority of the network has to agree which chain to follow. This is were the ”nothing at stake” kicks
in, a peer can vote on every fork because it is in his best interest to do so (economic wise), then remove his
investments from the losing chain votes and place it on where the majority of voters lies, since the peer loses
nothing, this incentives users to vote on multiple chains because they have ”nothing at stake”. This also leads
to the double spend attack but much more difficult where a user can make a transaction on a chain wait for
it to get confirmed (again multiple people forging on multiple chains until majority agrees) then switch to the
another and the other chain gets the blocks transactions reverted. This is somewhat unrealistic because, for
example, there needs to be 99% of users on one chain and 99% of users on the other chains (same users forge
on competing chains) and that remaining 1% user can effectively double spend. By default peers tend to focus

34 CHAPTER 3. BLOCKCHAIN

on just one chain, which reasons may include, value of investment.

The Casper protocol, proposed by Ethereum Foundation, which is a Proof of Stake mechanism but at early
phases a Proof ofWork/Proof of Stake hybrid, solves this problemby introducing punishments for voting on the
multiple chains. [BG17]

Nothing at stake tends to be just on the theory side because it may affect the credibility of the network, and
since these networks require monetary investment, it may reduce amalicious users from doing so, but it is still
possible to do so.

Advantages and Disadvantages of Proof of Stake

Just because its an energy efficient solution to Proof of Stake it still has its disadvantages. Which should be
taken into consideration.

Advantages

• 51% Attacks are almost impossible and unreliable, attacker(s) need to own more than 51% of the total
cryptocurrency of the network.

• Lower energy costs and lower computational power, meaning less need for mining.

• Increased distributed consensus as more peers can participate.

• Better long term solution then Proof of Work.

• The bigger it gets the safer it gets

Disadvantages

• Dishonest andmalicious validators.

• Requires investment to contribute to the generation of block instead of just contributing with computa-
tional power (PoW)

• Exclusive to digital currency based consensus.

• May disincentive small stakeholders.

3.8.3 Delegated Proof of Stake

Delegated Proof of Stake while similar to Proof of Stake, there are some differences. It is intended to incentive
smaller stake holders to continue to participate in the voting process. This happens because larger stake holder
have essentially a higher chance of generating blocks, which means smaller holders may not be so interested.

This new system essentially becomesmore democratic. In Proof of Stake, stakeholders use their stake to gain a
chance to create a block, in Delegated Proof of Stake, stakeholders use their stake to vote on a user that will act
as a validator on their behalf and from a list of top electors, someone gets chosen to become the current block
creator and the rewards coming from the block are then shared among with those who voted for the creator. A
user can essentially always be chosen as the current block creator but as the networks grows larger it becomes

3.8. CONSENSUS PROTOCOLS 35

increasingly more difficult to be a creator. This also disincentives users to domalicious actions because trust it
a big factor, if the voters don’t trust a user, hewill never be picked as a creator. i.e: for censoring transactions by
not including them in the next block. But the elector can always get voted off if malicious intentions are actions
are detected.

This system holds a problem because it enables everyone to from small to big stakeholders, it centralizes the
network.

Advantages and Disadvantages of Delegated Proof of Stake

Although it may seem as an improvement to Proof of Stake because it is more democratic it holds its problems.

Advantages

• Better distribution of rewards.

• Every can participate. (from small to large stakeholders)

• As it works by voting, even small stakeholders can a top elector.

• Democratic system so it incentives users to behave in order to get voted.

• Scalability and no powerful hardware is required.

• Easily avoid malicious users.

Disadvantages

• Can lead to more centralization.

• Censorship of transactions.

• Needs a big network for the system to work viably. Therefor not useful in private networks.

3.8.4 Hyperledger Fabric Protocol

Hyperledger Fabric is a private and permissioned blockchain, so different rules apply when compared to public
blockchains. Hyperledger Fabric goes by identity over anonymity. Conditions apply in order to become a peer.
The samegoing for participants. This network uses adifferentwayof achieving consensusbecause trust is a fac-
tor for its peers. Becauseof the sizeof thenetwork, proof ofworkor proof of stakearenot consideredaspossible
consensus choices because are not ideal for smaller networks. Hyperledger Fabric is the blockchain framework
to be used in the work described in this dissertation. Therefore this section will be a simple introduction to the
Hyperledger Fabric consensus protocol, Chapter 5 will correspond to a detailed view of the Hyperledger Fabric
and all its components.

Consensus on a private blockchain like Hyperledger Fabric

A complex system of consensus takes places where it has multiple levels of confirmation before it reaches the
blockchain. In public blockchains the usual case is having a peer which is called a miner, or any other appro-
priate designation based on protocol, like validator in Proof of Stake. In Hyperledger Fabric there are twomajor

36 CHAPTER 3. BLOCKCHAIN

types of peers, Endorser peers and Orderer peers. Endorser peers endorse transactions and orderer peers re-
ceive endorsed transactions and create blocks. So these Orderer Peers are the consensus. Consensus comes in
different supported algorithms, Simplified Byzantine Fault Tolerance, Kafkawith Zookeeper and Solo, although
Solo consensus is for development purposes only.

Every request must strictly follow certain rules and must come from a registered user within the Certificate Au-
thority. Transactions need to be endorsed by Endorser peers which determine if the transaction follows the
rules. After being endorsed individually needs to be submitted to the Orderer Peers which check if the transac-
tions follow the rules and then bundled into a block.

3.9 Forking

Forking is common on blockchain, because of the nature of the Longest Chain Rule, such as competing chains
or majority attack. Besides cases, forking may also happen due to changes entirely on how rules are validated
or addition of new rules among others. This leads to a Soft Fork and Hard Fork. Various blockchain projects
are direct forks from other blockchains projects which occurred for many reasons, leading to a change of rules
where the old peers no longer recognized blocks from the new peers.

Previously mentioned cases of blockchain forking, which do not relate to changes in software:

• Competing Chains. Whenpeers receive different valid blocks, roughly the same time, causing competing
chains until a new higher block is found.

• Majority Attack. Causes blocks to be modified, since it is not possible, the resulting chain is a fork of the
original chain. But by the longest chain rule it is considered the valid one.

3.9.1 Soft Fork

Soft fork is a change of rules in how new blocks are generated but are still seen valid by the same software,
making it backwards compatible. Soft forks can also lead to hard forks if the way blocks are generated is no
longer accepted by the same unaltered software. An obvious example is when the new rules for generating
blocks want to be reversed. Peers following old rules will still see the new blocks as valid ones, but not the old
blocks.

3.9.2 Hard Fork

Hard fork in a blockchain is when a change of rules in how new blocks are generated occurs and the current
software does not consider it valid anymore, in technical terms, its a change of current software.

Figure 3.12 represents a hard fork. A hard fork occurs at a certain block height and the chain is ”split” in two,
where the peers who contribute have a choice of whether follow the rules or continue to follow the old rules,
but the more peers follow the new rules the more secure the blockchain ”post-fork” is. The blocks with ”old
rules” tag continue to abide the old software, the blocks with the ”new rules” abide by the new software, these
blockchains are completely independent from the other, as in, doesn’t affect the original. Simply at some point
in time, these two were one.

Hard forks occurs by a number of reasons. Most obvious cases is to attempt to fix problematic issues that can
only be fixed by reverting transactions in blocks. Since the power is not within the developers but the commu-

3.10. BLOCKCHAIN USE CASES AND BENEFITS 37

nity, it is the community thatmust reach consensus onwhether the problemor solution or upgradeor any other
reasonmust occur. A famous example is the DAO incident in the Ethereumblockchain, where it led to Ethereum
and Ethereum Classic.

Figure 3.12: Hard Fork

Example of Hard Fork: The DAO attack

The Decentralized Autonomous Organization (The DAO), was a project, which expectations for it were higher
than predicted, and during its Initial Coin Offering (ICO) raised 150 million dollars worth of Ether, Ethereum
cryptocurrency. [Amm16] The DAO running on Ethereum, handles everything by code, but the smart contract
suffered from bad engineering design. This bad design led to a malicious user exploiting it. The design flaw
was due to updating records only after the currency wasmoved. This lead to a recursive exploitation where the
attacker was withdrawing currency and before the smart contract would update the records the attack would
interrupt andwithdrawagain. The issuewith thedevelopers of theDAO is that they arepowerless, in the sense is
that the community of Ethereummust reach consensus on the decision tomake regardless of what happened.
[dbc]

Soft forks proposals were introduced to serve as temporary solutions but the solution led to a hard fork on the
Ethereumblockchain in order to restore stolen funds from The DAO, and give back to the users. This lead to the
new chain still named Ethereum and the old chain was named Ethereum Classic. [Amm16]

This issue is rather controversial because the contract operated in its capabilities and did exactly what it was
told to do, so it canbe said that the attackwas completely legit, it was not a problemof Ethereumbut a problem
of The DAO. This ”history rewrite” caused several criticism because if other contracts have the same fate then
other users will want the same treatment if other problem occurs.

3.10 Blockchain Use Cases and Benefits

Blockchain can be used when the properties of a tamper proof shared ledger among participants can be taken
advantage of. Its first use case was in financial situations, which was the objective of Bitcoin, to have a decen-
tralized currency without the need of a middleman.

Besides financial uses, blockchain has many other important applications in today’s society. Areas like Health-
care [XSA+17, XSA+17], Decentralized Storage [sia, sto], Media, Internet of Things [CD16], Professional Services,
Public Administration, Real Estate, Supply chain, Identity Management, Fraud Prevention are some of the areas
blockchain can be taken advantage of. [CPVK16,Gup17]

Blockchain can also be beneficial to all sort of business applications. For business applications, a private and
permissioned blockchain is more ideal, as identity and permissions permits only authorized users to interact
with the network. [Gup17]

4
Smart Contracts

In this Chapter, tends to show a broad understanding of what smart contracts actually are and how
blockchain permits smart contracts to have an environment where they shine. Not only limited to a
definition but understanding how crucial and the importance of a well defined and tested smart con-
tract. Additionally this Chapter describes the difference between smart contracts and applications,
and how they are different in behaviour and functionality.

4.1 Definition

Smart contracts are agreements between entities that are translated into code. Described by Nick Szabo smart
contracts can ”secure many algorithmically specifiable relationships from breach by principals, and from eaves-
dropping or malicious interference by third parties”, this because many kinds of contractual clauses (such as col-
lateral, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal
with [Sza97].

They are to be ”run exactly as programmed without any possibility of downtime, censorship, fraud or third party
interference.” [eth] As such, smart contracts can be compared to vending machines. What this means is that
smart contracts, like vending machines, have their entire logic written within. The input will decide without

39

40 CHAPTER 4. SMART CONTRACTS

third party interference what is the correct output. Based on this description it is clear that smart contracts
contain the rules, conditions and penalties written in code, therefore once the smart contract is called in the
sense of calling functions, theywill automatically enforce, validate and verify the current conditions and output
taking into consideration the input provided.

EthereumCo-Founder Vitalik Buterin describes smart contracts as ”theprogramruns this codeandat somepoint
it automatically validates a condition and it automatically determines whether the asset should go to one person
or back to the other person, or whether it should be immediately refunded to the person who sent it or some com-
bination thereof”

4.2 Smart Contracts without Blockchain technology

Smart contracts can exist without the blockchain technology, but it must be noted that blockchain technology
allows for smart contracts to shine and taken the most advantage of. Smart contracts can be created on top of
a traditional database, the problem with agreements is that smart contracts must be immutable, uncensored
and unable to be interfered, which with a centralized entity it may pose contradictory. Blockchain provides this
component to be check, as it is one of themajor properties of the blockchain. Additionally no need for a central
entity to keep tabs on these contracts due to the decentralized nature of the blockchain and thus ensuring the
previous features are kept true.

4.3 History of Smart Contracts in Blockchain

The early phases of smart contracts started in the first blockchain, Bitcoin, which has the capability of built
a limited number of scripts due to using a non turing complete language. [ABC+18] this is also due as it was
designedwithonlya singlepurpose inmindandnot tobe toexpand fromthatpoint. EthereumandHyperledger
Fabric are blockchain, respectively, implementations, that permit unlimited creativity in their smart contracts
development which allows for a much larger set of tools that permit developers to create applications that
harness the power of the smart contracts. And allowing for decentralized applications.

4.4 Smart Contracts with Blockchain Technology

Smart contracts, shine with blockchain technology, because of the properties of the blockchain. Smart con-
tracts provide default consensus, as explained in an interview with Gavin Wood in Dutch Blockchain Confer-
ence 2016 [dbc], they will act as they were programmed to act until the a majority of peers says different, but
not a single entity and this is why smart contracts are ideal with blockchain in the mix.

When smart contracts are deployed on the production network it will include every issue not caught during
development, so the developers of these contracts per say, are powerless if contract changes are required,
there must be a consensus by the maintainers of the networks, this in private and public networks, that must
decide if a contract is to be changed.

Blockchain properties also permit that any service that depends on these smart contracts to continue to exist.
As they will be available for usage as long as the network continues to acknowledge their existence.

4.5. IMPORTANCE OF SECURITY IN SMART CONTRACTS 41

4.5 Importance of Security in Smart Contracts

The security of Smart Contracts when associated with Blockchain, have their security increased by blockchain
properties, therefore they will operate without fraud, censorship, third party interference and also as equally
important, constant availability, as long as there are peers maintaining the network, and able to execute it,
then the contract swill always be available.

But the very nature of the smart contract can pose a potential security risk [DAK+16] to the application or ap-
plications that rely on these smart contracts to work. If the source code that reflects the deployment is visible
or by means of reverse engineering then so its bugs, exploits and security vulnerabilities. This means if a smart
contract has a severe security issue that was overlooked or ignored during development thismay not be solved
in a quick manner, and its effect can be permanent.

It must be noted that the blockchain eco-system is not the problem, the problem is with the developers of the
smart contract that introduced code security flaws, in short, human error is the problem.

In sum, creating smart contracts require serious thought and the more complex the contracts are, the more
attention to detail and testing it requires before being deployed on the production-ready blockchain network
for its users to use.

4.5.1 The DAO incident

The DAO stands for Decentralized Autonomous Organization. And as previously explained of the hard fork on
Ethereum that forked the blockchain into Ethereum and Ethereum Classic, the DAO incident was because of
bad code on the smart contract. Since this was visible, a malicious user could replicate the contract in some
way and use it to exploit the DAO contract in order to siphon a large amount of Ether. The contract did had
some safety features which locks the currency for a total of 39 days, so a solution had to be found in less than
that time. As stated by Gavin Wood on an interview in the Dutch Blockchain Conference 2016, ”the developers
are powerless”, only the community can determine what action to take. Since the amount of Ether stored in
the DAO blockchain address corresponded to 14% of the total circulating Ether at the time, the decision was to
hard fork which led to revert transactions in order to recover the ”stolen” funds. This again led to controversy
because the smart contract operated as programmed and the malicious user was simply taking advantage of
it, so there is an argument to be taken. Nonetheless, the Ethereum community reached consensus and a hard
fork occurred, reverting the transactions related to the DAO incident.

4.6 Decentralized Applications (DAPPs) vs Smart Contracts

Smart contracts aredifferent fromDecentralizedApplications. Smart contract is anagreementwritten in code
that resides in the blockchain or any other appropriate immutable support.

In the traditional sense, an application has a frontend andabackendwhich connects to somedatabase in order
to fetch and update information. But a traditional application has its backend running on a centralized servers.

A Dapp or Decentralized Application, on the other hand, has a front end and its backend runs on the blockchain
by themeans of one or various smart contracts invocations to fetch information from the blockchain or perform
to transactions in it. Essentially a DAPP is an application that sits on top of the blockchain eco-system to thrive.

i.e: An application can be anything, Ethereum describes three different types of decentralized applications.
The first are financial only applications, currencymanagement, creation of cryptocurrency, among others. The

42 CHAPTER 4. SMART CONTRACTS

second type are applications that use currency but there is more to it, payment for services, rewards for doing
something, etc…. And the third type is any application that doesn’t fit into the previous two categories. [Woo14]

Decentralized Applicationsmay rely on other components like decentralizedmessaging anddecentralized stor-
age.

4.7 A Practical Example

A smart contract for account balancewould contain several functions related tobalance. Some functionswould
be, checkBalance(), send(toB) The first function checkBalance(), the behaviour is obvious, but the sec-
ond function send(toB) has different behaviour. When the user wants to transfer value from A to B, certain
conditions must be checked by the smart contract. Is user A an existing and valid user? Does user A have per-
missions to call this function of this smart contract? Is the user B an existing and valid user? Can user B receive
balance? Does user A have the sufficient balance to send to user B? This last question is the most important
one

If all answers are true then the contract will automatically transfer value from A to B and reduce the current
account balance of A and increase the balance of B. If any step fails, the contract will have different outputs.
But the idea is that the smart contract automatically determines what is the appropriate action to take based
on a set of variables provided so no third party will interfere with its behaviour. For example if user A does not
sufficient balance, then the transaction ignore, or return the funds back to user A.

Smart contracts are made to be always available and cannot be shutdown and cannot be changed by anyone
other than by consensus.

In networks like Ethereum, smart contracts cannot be changed, once deployed they are to be in the blockchain
as long as it exists. The only way to make a change is to upload a new contract and have the community ac-
cept the new smart contract as the valid one and forget the old one. But these smart contracts can implement
selfdestruct, a function that ”kills” the smart contrac.

In networks like Hyperledger Fabric, smart contracts do not technically reside in the blockchain, every peer that
can hold the smart contract, holds a copy but these execute in an isolated manner to not be interfered by the
peer. In order to update the contract, an upgrade must be requested and consensus must be achieved, which
replaces the old with the new contract.

5
Hyperledger Fabric

In previous Chapters, Hyperledger Fabric was referenced several times. The reason is because this
blockchain framework is the one chosen to develop the work described in this dissertation. Since it is
the basis of the work, needs to be clearly described, but in less technical terms. Because this Chap-
ter objective is a description of what Hyperledger Fabric and its various components, such as peers,
Blockchain and Consensus are.

5.1 Hyperledger Fabric Business Network

Hyperledger Fabric is a private and permissioned blockchain for blockchain oriented business network which
primary aspects are trust, identity over anonymity, shared ledger and privacy. Providing the ability for private
transactions only executed by registered and known participants.

Hyperledger Fabric is a private, permissioned network thus permits the creation of business networks com-
posed of multiple organizations, which can be suppliers, manufacturers, banks, from small commercials shops
to large ones, among others. These participate in multiple channels where they interact in private channels
independent from others where each shares a unique single ledger common to all participants.

Consensus takes a different shape as well. It does not uses Proof of Work or Proof, but a special mechanism.

43

44 CHAPTER 5. HYPERLEDGER FABRIC

5.2 Clients or Users

Clients are users of the network who interact with the blockchain via external programs. These clients must be
registered within the Certificate Authority of an Organization in order to participate. If the user is accepted and
successfully enrolled, these users can only interact with the network via programs built with the Fabric SDK,
which means conducting transactions proposals to update the blockchain or simply querying it.

5.3 Peers

Instead of having one type of peer, such asminer or forger, Hyperledger Fabric is compromised of various peers
which together form the whole network, where each peers holds certain responsibilities. There are peers, en-
dorsers, anchor, leading and orderer peers.

5.3.1 Peers, Endorsers, Leading and Anchor Peers

Peers simply receive updates from the ordering service andmaintain the blockchain, assuming default network
configurations where peers can hold the blockchain and forward requests to other peers.

Endorser Peers, receive requests in the shape of transactions proposals where they endorse it. In other words,
providing a valid signature which is required for query or writing to the blockchain. In order to provide a valid
endorsement a certain number of steps must be checked. This is done locally without the interaction of other
peers, but the procedure to provide an endorsement must be equal to all other endorser peers.

Anchor Peers, are the communication bridge between different organizations. They can be endorser peers or
leading peers.

Leading Peers: each channel must have a leading peer. these peers are the communication bridge between
peers and the orderer peers. The orderer service, which is composed of orderer peers, creates and broadcasts
a new block to the leading peers and the leading peers distribute the block to the peers in the channel where
they belong to. They can be endorsers and anchors.

5.3.2 Orderer Peers

Orderer peers control the Ordering Service. This serving is a complex system and pivotal to the stability and
consistency of the Hyperledger Fabric network, which in others wordsmean consensus. In general terms, these
peers and service are a must in the network, as they provide the consensus for other peers to maintain their
blockchain copy. In less general terms, the orderer service provides a guarantee to the delivery of blocks to
peers, so they can update and maintain their blockchain copy. These peers receive the transactions with en-
dorsement, which thenmust follow a certain number of steps to prove endorsements and transaction are also
valid, and if valid create blocks of transactions to be broadcasted to the other peers.

Orderer peers allow for consensus in the blockchain network. They guarantee messages are broadcasted and
received by the peers and will also guarantee that received transactions are either correct or incorrect.

5.4. ORGANIZATIONS 45

5.4 Organizations

Organizations are the members of a Hyperledger Fabric business network. Peers are associated with a single
organization which is identified by the membership providers of that organization or a common membership
service provider between organizations. When a network starts, it starts with main channel and every organi-
zation is present. Organizations have their anchor peers which serves as the communication bridge between
other organizations.

Figure 5.1: Diagram of a network with multiple Organizations [Hyp18]

Figure 5.1, by Hyperledger Fabric Official Documentation [Hyp18], represents a channel in a Hyperledger Fabric
business network with multiple organizations in a single channel with multiple peers in each Organization and
their own peers communicating with the channel and external programs and which peers is it associated with.
Additionally each organization has one or more Membership Service Providers (MSP) that issues and manages
the existing and revoked identities of its participants.

5.5 Membership Service Providers

Membership Service Providers is an abstract interface providing the ability to identify its participants in the
network. All participants, users and peers, must be identified in order to be in the network, since Hyperledger
Fabric network provides identity over anonymity. There can be multiple Membership Service Providers in a
network not being limited to one network wide service.

The Membership Service Provider has the following functionality:

• Create credentials.

• Revoke credentials.

• Generate signatures and verification of the same.

• Provide identity to participants.

Mappings for the Membership Service Provider:

• One-to-one. One Organization to one MSP.

46 CHAPTER 5. HYPERLEDGER FABRIC

• One-to-many. One Organization with multiple MSP.

• Many-to-one. Many Organizations to one MSP.

Hyperledger FabricDevelopers recommends theapproachofusingone-to-onemappingofMembershipService
Provider and Organization, but organizations are free to choose they ownmapping.

Althoughmany MSPs in one organization is useful, this can come into practice when organization needs to de-
fine multiple levels of access on their participants. Must be noted that a peer can only have one identity inde-
pendent of howmanyMSP exists within the organization. So this can lead to issues of organization participants
not recognizing participants of the same organization. [Hyp18]

5.5.1 Certificate Authority

Certificate Authority, CA, is the Hyperledger Fabric default implementation of the Membership Service Provider
interface named Hyperledger Fabric CA.

Implementation of a Membership Service Providermapping is usually composed of the following components:

• Root Certificate Authority: manages the identity and certificates, which are, closely guarded not to be
leaked. Used to sign intermediate certificates issued by the Intermediate Certificate Authority.

• Intermediate Certificate Authority: manages and issues certificates and identity signed by the root cer-
tificate. Intermediate Certificate Authorities can link to other Intermediate Certificate Authorities.

• Client Certificate Authority: used to connect to the Fabric CA Server which correspond to the Intermedi-
ate Certificate Authority

• Fabric SDK for CA: used instead of Client CA. Uses the Fabric SDK to build applications to communicate
with the Intermediate CA.

5.6 Channels

The Hyperledger Fabric network is composed of channels where organizations interact each other, and chan-
nels are a ”sub-net” of the Hyperledger Fabric business network. Multiple channels may exist at the same time
andpeersmay belong to asmany channels as possible, assuming they are invited or they created it. Each chan-
nel is independent from other channels and have separate blockchains, so, information is contained only in a
channel and no leaks can occur. This method allows for clients and peers of organizations to have increased
privacy in transactions without the knowledge of others.

Setting up a channel requires additional maintenance, and since these are independent, channel configura-
tion is required. When a channel is created, the anchor peers, the policies and membership among other re-
quirements must be determined and then stored initially in the genesis block of that channel. Besides channel
configuration issues, channels have their own blockchain visible only to the channel whichmeans peers of said
organizations have to maintain additional ledgers if they belong to more than one channel.

Additionally smart contracts alsohave tobedeployed in the channel. but the versions andcontents of the smart
contract is independent fromother smart contractsdeployed inother channels, soachange inonechannel only
affects that channel.

5.7. TRANSACTIONS 47

As an example considering smart contracts: Channel C1 and channel C2 and both have smart contract S. If
S requires a change in C1, and if the change is approved by the endorser peers and Orderer Service then the
changes in S only affect C1. C2 still goes by the older unchanged version.

Analogy - Channels and Group Chats

Channelswork similar to social platformsorbusiness social platforms likeDiscord1 orSlack2, where youengage
in private conversationwith a user or a groupof users, users outside of this ”chat room” cannot see thedata in it.
In Hyperledger Fabric channels is the same, the data is only visiblewithin that channel and is not visible to other
peers or users that have not been invited to that channel or are even aware of the existence of the channel. This
mechanism allows a level of confidentiality and increased privacy between two or more entities, for example,
enabling file sharing between two entities without the slightest knowledge of others.

5.7 Transactions

Transactions in the Hyperledger Fabric are of two types. Transactions that affect smart contracts and transac-
tions that interact with the smart contracts.

Transactions that affect contracts are calleddeploy transactions, these transactions install newsmart contracts
in the corresponding channel or upgrade the existing smart contracts to a newer version.

Transactions that interact with smart contracts, called invoke transactions, since they call invoke method of
a smart contract, are able to query the blockchain and/or update the blockchain. Transactions ready-only are
different from transactions that update the blockchain. Read-only only requires endorsement from endorser
peers. If a read-only transaction attempts awrite thiswill be ignoredbut the transaction can still succeed just ig-
noring thewrite. This happens because a transaction proposal for query is different than a transaction proposal
to write, requiring the Orderer Peers approval to update.

Transaction that updates the blockchain also requires the endorsement from endorser peer(s) to be submitted
to the orderer peer(s). These peers, controlling the Orderer Service, will update the blockchain by creating new
blocks. Must noted that query transactions do not show up in a block because it does not affect the blockchain
as it only reads from it so endorser peers just serve the request.

Additionally, transactions life cycle are either valid or invalid. The following enumeration describes the differ-
ence, in HF:

• Valid transactions will update the world state.

• Invalid transactions are still logged in the blockchain but will not update the world state.

5.7.1 Endorsements

Endorsements corresponds to endorser peers signatures that a user submitting a transaction proposal must
acquire if the transaction is to be considered valid when submitted to the ordering service. The amount of en-
dorsements required for a transaction is definedby apolicy criteria in the deploy transactionof a smart contract

1Gaming oriented social platform
2Business oriented project collaboration platform

48 CHAPTER 5. HYPERLEDGER FABRIC

but this policy criteria can change if there is consensus among the endorser peers in the channel(s) the change
is taking place. Endorsers do not need to communicate with other endorsers when endorsing but will go by the
same rules as all other peers and the ordering service will determine if the endorsements were correctly made
and the necessary endorsements was achieved.

Endorsements policies can take different shapes but go by logical expressions, and each endorser peer may
have a different endorsement ”weight”.

Assuming a channel with three endorser peers, we have an Endorser set, E = {e1 ,e2 ,e3}, where e1 is
Endorser 1, e2 is Endorser 2 and e3 is Endorser 3.

• e1 AND e2 AND e3

• e1 AND (e2 OR e3)

• At least two of E

• At least one of E

• Any one of E

• Any one of E except e2

• e1 = 10, e2 = 20, e3 = 30. And the endorsement must be n >= 30.

The process of getting an endorsement is a set of policy criteria that must be checked, with the aid of special
smart contracts. This must be done before an endorser peer may provide a valid signature for the specific
transaction proposal. The following steps the steps required for an Endorser peer to provide a signature to a
transaction.

• Transaction comes from a valid user

• The same transaction has not been broadcasted before. This avoid duplicate transactions.

• User is allowed to perform the execute from the smart contract.

• User is allowed to interact with the channel.

• Simulation of transaction and return of result to peers.

All previous steps require usage of special smart contracts known to the Endorsers and Orderer in order to en-
force the various steps endorsement of transaction proposals. If all the previous steps are valid then a signature
is provided The following expression is a command that instantiates a smart contract :

cli peer chaincode instantiate -o orderer.example.com:7050 -C mychannel -n sc -v 2.0 -
-c '{"Args":[""]}' -P "OR ('Org1MSP.member','Org2MSP.member')"

Theprevious command starts the smart contractscon the channelmychannelwith version2.0with thepolicy
criteria stating only one endorsement from amember of either organization 1 or 2 is required and the transac-
tion is sent to ordering service endpoint orderer.example.com:7050

5.8. BLOCK 49

5.7.2 Privacy in Transactions

Private transactions is information only visible to a set of participants. In Hyperledger Fabric v1.1, as of this date,
this is achievable multiple ways.

• Join a Hyperledger Fabric business network. By default all transactions are private to outside users not
affiliated with the network.

• Restrict other users on read-only and/or limit what they can read or inspect.

• Joining a Channel or creating a channel and inviting peers to conduct transactions only visible within the
channel.

• Private transactions. Thesecan takeplace inanychannelwheredataor somepartof it is keptprivate. This
is achieved by special smart contracts functions that handle private data similar to channel visible data is
doneandproviding additional details that specifywhocanhaveaccess and store theprivatedata. Private
transactions are special because they are sent to a private database on the peer and the ordering serving
does not see the output, but in order to prove the transaction happened the data of the transaction is
hashed.

Privacy is oneof themain aspects of aHyperledger Fabric network. Creating channels has its benefits because it
enables two ormore entities to engage in transactions and a dedicated blockchain for it without the knowledge
of other entities present in the network. Although it does have to deal with additional configurations such as
setting up smart contracts, peers role and maintain a new blockchain. Because of this, engaging in private
transactions without creating new channels for it can be a benefit.

Any of the two approaches will entirely depend on the case at hand.

5.8 Block

Figure 5.2, Parth Thakkar,Senthil Nathan and Balaji Vishwanathan in Performance Benchmarking and Optimiz-
ing Hyperledger Fabric Blockchain Platform [TNV18], represents the structure of a block in Hyperledger Fabric
version 1.0. Descriptionover ablock is described indetail in Chapter 3. Eachblock inHF is composedofmultiple
components. The blockchain header, list of recent transactions and block metadata.

Block Header Component

Block header is composed by 3 components: 1) The Number which corresponds to the block height3; 2) The
Previous Hash which corresponds to the hash of the previous block; 3) The Data Hash corresponding to the
hash of all transactions, which is similar to the Merkle Tree used in Bitcoin and other blockchain implementa-
tions.

Transactions Component

Transactions are composed of three main components. 1) Transaction proposal, is divided into 3 sub compo-
nent. The first is the header of a transaction, containing data about the chaincode version, channel id, among

3Number of blocks starting from Genesis Block

50 CHAPTER 5. HYPERLEDGER FABRIC

Figure 5.2: Hyperledger Fabric blockchain block structure [TNV18]

others. The second is the signature of the submitter of the transaction. Third is input parameters which is used
create or update a entry in the world state; 2) Endorsements, corresponds to the endorser peers signature, as
explained in Section 5.7.1; 3) Transaction response, corresponds to the before and after values of the world
state caused by a smart contract. If the transaction is flagged as valid, then the after values will be applied to
the blockchain.

Block Metadata Component

Data in this component is not hashed, but added when a block is created. [Hyp18] It is related to who created
the block, as well as the flags for every transaction in order to tell which transactions in the block are valid and
invalid. The difference from invalid and valid, is that valid transactions will affect the world state as explained in
Section 5.9.1. Invalid transactions will not update the world state in any way but stored in the block for record
keeping.

5.9 Blockchain Ledger

Theblockchain has two components. theworld state andblockchain, as describedbyHyperledger Fabric Doc-
umentation [Hyp18]. Theworld state component is themostmost current state of every entry in theblockchain,
the Blockchain is transaction valid and invalid. Figure 5.3, by Hyperledger Fabric Official Documentation, is a di-
agram representing both the components. The components together are called Ledger or more accurately
Blockchain Ledger.

5.9. BLOCKCHAIN LEDGER 51

Figure 5.3: Blockchain structure in Hyperledger Ledger Fabric. [Hyp18]

5.9.1 World State

The world state component contains the most recent state for any given entry in the blockchain for every valid
transaction, which is key-value pair. The world state is in constant change as it only keeps one record for any
given key.

For example: User A registers a file in the blockchainwith a unique keyFILE01, with a status ofAvailable. The
same user queries blockchain with with the key FILE01, the information returned will be the same he entered,
with status Available. User A then updates the status to Deleted. If user A of the file or any user (with given
permission by the user A) queries with the same file key (FILE01), the information returned will be different
were the status is now Deleted. But, if another user attempts to change any field identified by key FILE01
other than owner the transaction will fail, but will get registered in the blockchain as an invalid transaction but
won’t update the world state.

By definition the world state contains only the successful transitions of state for any given key, translating to
transactions flagged as valid.

Must be noted that since the state component is subset of the blockchain, the existence of this the state com-
ponent will depend on the deployment configuration of the network. It is up to the developers to determine if
a world state is necessary. Additionally, it is fairly simple to reconstruct this component because it is a subset
of the blockchain.

The state component resides on the peers, anchor peers, endorser peers, leading peers and is alsomaintained
by the same. The orderers on the other hand do not hold or maintain this component, only the ledger compo-
nent, for fault tolerance.

5.9.2 Blockchain

The Blockchain component, contains all the successful and unsuccessful state transitions for any given key,
translating to valid and invalid transactions, it works as a record keeper for everything that undergoes in the
channels of a Hyperledger Fabric network. By logic, the blockchain is the only component that is actually re-
quired, because theworld state is a construct from the blockchain, therefore the blockchain serves as the single
shared truth for all records.

52 CHAPTER 5. HYPERLEDGER FABRIC

Where the blockchain resides depends on the configuration of the network. By default every peer holds a full
copy of the blockchain, but optionally only the orderers or a subset of orderers maybe be the ones who hold
the full copy of it.

Depending on the type of peers (Peers or Orderers) the blockchain may have a different name designation and
a different ”function”. Blockchain that resides on Orderer peers are named Orderer Ledger and blockchain that
resides on peers are named Peerledger. But the blockchain are the same and have the same contents the
difference is due to the state component.

• OrdererLedger, is maintained by orderers for fault-tolerance and availability.

• PeerLedger, mechanism to tell a part valid transactions from invalid transactions. Used to build and
maintain the world state component.

5.10 Consensus

In order for a block tobe created, a number of rulesmust be enforced, just like any other Blockchain technology,
aspresented inSection3.8. Bitcoin reliesonProofofWork,wherecomputationalpowerdictateshowconsensus
is achieved. In Peercoin or any other Proof of Stake network, stake determines how consensus is achieved. All
of these networks have something in commonwhich is being public. Hyperledger Fabric is a private blockchain
and thesemethodsmay not be themost efficient way of achieving consensus. Proof of work and Proof of Stake
requires a vast number of peers to bemost efficient and secure, but requiremonetary investment and incentive
to keep the security and stability.

Hyperledger Fabric is targeted at business networks, so Proof orWork or Proof of Stakemay not be ideal due be-
ing targeted at public networks, and gettingmore secure as the network grows, among others details explained
in Chapter 3. Consensus on the Hyperledger Fabric is achieved by the Ordering Service which works by creating
new blocks with valid endorsed transactions to be submitted to the leading peers of the channels so these can
distribute the blocks to other blockchain holding peers. Hyperledger Fabric as of version 1.1 supports three
different consensus implementations.

• Kafka and ZooKeeper, presented in Hyperledger Fabric v1.0, allows crash fault tolerance. But not good
against malicious actions.

• Solo, solo ordering, should only be used in development environment.

• Simplified BFT is the first ordering algorithm introduced. Allows the use of Byzantine Fault Tolerance.

Theordering servicemust providedelivery guaranteesof allmessages aswell as consistencyofmessages. Addi-
tionally the orderer service may provide ordering service to multiple channels, not being limited to one. Figure
5.4, by Hyperledger Fabric Official Documentation, presents the consensus mechanism.

Ordering of transactions

When a transaction has achieved the number of correct endorsements, the client applications must then send
the transaction proposal to the ordering service in order to be committed to the application.

The process of ordering a transaction is presented below. This is done with the aid of specials smart contracts
to enforce and secure:

5.11. CHAINCODE 53

Figure 5.4: Transaction flow [Hyp18].

1. Orderer service receives transaction proposals;

2. Validates endorsements and verify if transactions meet the stated endorsemennt policy criteria;

3. Compare smart contract output from all endorsements. If equal, the transaction may succeed else, it
fails;

4. Transaction is either flagged valid or invalid;

5. Bundle sufficient transactions into a block or wait for a timeout and then broadcast the newly created
block to the leading peers of a channel;

Orderer Peers and Transaction Data

Orderers do not inspect the transactions but only the endorsements and the necessary information to check its
validity like the output data. Input parameters can be included in a transaction, but this field can be turned off
to endorsers only although the output datamust be visible in order for the orderer service to achieve consensus
from all the endorsements response. Workarounds can be made to a certain extent, like hashing the data or
encrypting it. Although in Hyperledger Fabric newer versions, the private data feature can bypass the previous
condition.

5.11 Chaincode

”A chaincode typically handles business logic agreed to by members of the network, so it may be considered as a
”smart contract”” [Hyp18]. These programs are supported in one main programming language called Golang,
other programming languages include peer.js and Java. There are two types of chaincode, system and user.
Chaincode does not reside on the blockchain, systemchaincode resides on the peersmachine. User chaincode
resides on an isolated Docker containers so not to be interfered associated with each peer that can instantiate
it, but in order to deploy, upgrade, initialize a user chaincode, it generates transactions that are recorded in the
blockchain, so these must be endorsed and ordered.

54 CHAPTER 5. HYPERLEDGER FABRIC

5.11.1 System Chaincode

System chaincode resides on peers and is deployed and register by the peer on start-up. These special chain-
codes allow for privileged actions as it hasmore resources at disposal as opposed to the user chaincode. These
chaincodes are used to evaluate transactions, achieve consensus and aid channel configuration. New system
chaincodes can be added but follow a different procedure when compared to user chaincode because they
reside on the peers machine instead in a isolated Docker container.

Pre-exisitng system chaincodes are:

• Lifecycle System Chaincode: handles the lifecycle of user chaincode. It packages, instantiates, installs
and upgrades

• Configuration System Chaincode: handles channel configuration on the peer side [Hyp18]

• Query System Chaincode: query related interactions.

Changingexisting systemchaincode is not recommendby theHyperledger Fabric developers andmustproceed
with extreme caution.

5.11.2 User Chaincode

User chaincode resides on isolated Docker containers in order not to be tampered or interfered with by any
other peers. User chaincode can be implemented using multiple languages but mostly Golang and Node.js
although there is support for Java, as of this date. All chaincodes have the invoke method in common, this is
the first function to be called which will redirect to other functions called by the transaction proposal.

These contracts are called using a Software Developer Kit (SDK). Invocation by the SDK is exclusive to appli-
cations, as referenced in Section 5.12, and can perform multiple operations like read from and update the
blockchain with new entries and update existing ones, amongmany others.

Install, Instantiate and Upgrade Cycle

Chaincode needs to be installed, instanteated and at some point in time upgrade because of unseen changes.
This cycle only affects user chaincode, because system chaincode does not have the same behaviour or cycle.
These chaincode operations only targeted at endorser peers.

• Install, install chaincode into the target peers. All peers within the channel must install the chaincode, in
order to endorse transactions from it. Installing a chaincode is treated as a transaction therefore it needs
to be endorsed and ordered.

• Instantiate, this enables the contract in the channel it resides onand starts thedocker container enabling
the simulation of transactions. It is treated as a transaction therefore needs to be endorsed and ordered

• Upgrade, replaces the old chaincode with a newer version to apply changes on the old chaincode. It is
treated as a transaction therefore needs to be endorsed and ordered. New endorsement policy criteria
may be specified, but in order for the transaction to succeed the current policy is what matters. [Hyp18]

5.12. APPLICATIONS 55

Interacting with multiple Chaincodes

Since the state component is populated by key-value pairs, if a chaincode requires access to information, a
simple fetch using the ”key” should suffice.

The previous statement will fetch the information stored in the state component or blockchain and if the in-
formation being fetched was previously entered in the blockchain by the chaincode that performed the write
operation. This means, that if a chaincode requires access to information written by another chaincode, the
return information will be an empty result set, but will not cause the transaction to fail. This is to not cause
information leaks.

So theonlyway, at themoment, is touse special functions that call other smart contracts via the invokemethod.
When calling chaincode via another chaincode it will not require a new transaction, multiple chaincode calls
happen in a single transaction.

This is not exclusive to read operations, the same goes forwrite operation. Only the chaincode can operate over
the information written by that chaincode.

Random Numbers

Using random numbers is a common practice in software development. In this case, where the Orderers com-
pare output results, using random numbers may lead to inconsistency. In the case of Hyperledger Fabric each
endorser peer simulates the transaction outcome, and if the chaincode uses random numbers it means differ-
ent endorser peersmight have different results. This particular situation becomes a problemwhen the ordering
service validates the received transaction proposal with the endorsements and notices, regarding this factor,
that there is no consensus on results, therefore the transaction fails and does not update the world state.

Random numbers must have special attention because an initially correct transaction will most likely fail due
to inconsistency of results.

5.12 Applications

Applications are programs built with the Hyperledger Fabric Client Software Developers Kit or, Fabric SDK for
short. These are presented in a numerous languages but only Node.js has full support and documentation.

The purpose of the Fabric SDK is to provide easy to use APIs to interact with a Hyperledger Fabric blockchain via
smart contracts, as presented in Figure 5.5, by Hyperledger Fabric Official Documentation . Applications are not
unique, as there can bemultiple applications, which can be seen in Figure 5.1, in a sense that an organizations
creates their own applications to fit the needs of their services, essentially having multiple applications which
are organization specific.

Applications are used by users which allows them to generate transaction proposals to be sent to endorser
peers and orderer peers. Effectively reading from the blockchain or upgrade the blockchain.

56 CHAPTER 5. HYPERLEDGER FABRIC

Figure 5.5: Application interacting with the Blockchain network. [Hyp18]

6
Blockchain Data Sharing

This chapter consists of the description of the components and decision process in the work done in
thisdissertation. Consists of architecturedesignprocess, descriptionof thedevelopedsmart contracts
and applications that interact with the Blockchain.

6.1 Architecture

The architecture is focused on maximizing the properties of the blockchain technology. The concept behind
the architecture is to have as much focus on blockchain and smart contracts as possible for the management
and control of the data sharing mechanism. Focus on the implementation process was primarily on smart
contracts because these describe the business logic of the data sharingmechanism. External applications that
connect to the blockchain network are also important as they provide ways of interacting with the data sharing
mechanism.

57

58 CHAPTER 6. BLOCKCHAIN DATA SHARING

6.1.1 Data Storage

Data storage can take many forms, storage providers or hosting data on blocks of the blockchain. The concept
of using blocks for data storage can pose few problems, the reason why is because of consistency, efficiency
and security [LSZ15, SZ15]. Blocks by nature store only transactions, previous block reference, timestamp and
additional important fields. Transactions are lightweight in size, this means a block can fit a large number of
transactions, and the amount of transactions that reside in a blockwill also depend on the size of the block. Ad-
ditionally the number of transactions allowed per block or timeout creates a block due to not receiving enough
transactions.

Either hosting on blocks or using the blocks to store file data, leads to three approaches:

1. Unlimited block size

2. Maximum data share size on blocks

3. External storage provider approaches

Unlimited Block Size

This first approach is not recommended since blocks have a fixed size limit because of consistency, efficiency
andsecurity. Themoreblocks, theharder it is for amalicioususer todisrupt thenetwork, as explained inSection
3.8. Removing this factor enables blocks to have different sizes and destabilizes the growth of the blockchain
as well its security.

Peers must have a a copy of the blockchain locally, if the blockchain is a dedicated decentralized repository
machine, every peer holds a copy of all files of all participants, considering one time edits on files. If a file
requires an update, this scales the size of the blockchain exponentially. Additionally, besides the file data, it
also requires the transaction data. Another setback of this approach is the input data. This would have to be
encrypted, otherwise, peers validating the transaction would be able to see contents of a file.

As an example, if the blockchain has 100TB of data, counting only file data in blocks, and every participants
makes one small edit, the blockchain grows to 200TB.

Maximum Data Size

Data sharing directly on the block with fixed block size limits the amount of data and the kind of data able to be
shared on the network. Bitcoin blocks size is around 1MB, this would limit the maximum size of data shared by
1MB. Theblockchainwould growexponentially in the long term, because thenumberof files per blockwouldbe
low, therefore the number of transactions would also be low. As an example, considering a network of 2 billion
files, if every file had 1MB each that would mean two billions blocks not counting transaction data. In contrast
Bitcoin does not have onemillion blocks as of this date since start [blo]. This approach holds the sameproblem
as theprevious, datawouldnotbeable tochangedoftenbecauseof theblockchainexponential growth, limiting
the network for just very small and critical files with low probability of update. Additionally, input data is visible
by certain peers, unless encrypted.

Stored files on the blockchain also poses an additional problem, even when considering small files with a very
low probability of beingmodified. The file could never be deleted and a complete history of changes would be
logged in the blockchain, which this last can be seen as positive. For sensitive or confidential data this would

6.1. ARCHITECTURE 59

not be the optimal approach, even by the properties of a permissioned and private blockchain network limiting
whatother users can visualize, In order to reachconsensus input andoutputmust be visible unless theseare en-
crypted, in this case, the submitter of the transactionmust be able to share the decryption keys. An alternative
is to use private data functionality of Hyperledger Fabric.

External Storage Providers Connected to the Blockchain

This was the approached that was taken in the work described in this dissertation, that makes logical sense.
This allows files to be registered as an asset in the blockchain network but not reveal its contents, providing
enough information to trace it to the owner and allowing the storage provider to identify a given data based on
requests validated by the blockchain network. Additionally it allows the use of smart contracts to control the
flow of the data sharing mechanism.

This approach allows the blockchain to not grow out of proportions and blocks remain with a fixed size. Addi-
tionally, it allows for data to be deleted and use the blockchain to update the status of a given file and logs all
events.

Anobviousproblem is that it requiresusers tohavea certain level of trust regarding the storageprovider if data is
not encrypted before uploading, as explained in Chapter 2. Nonetheless each Organization of the Hyperledger
Fabric network can have its own trusted storage providers.

6.1.2 Blockchain Decision Process

This section is focused on the decision process regarding the choice between implementation of a blockchain
network or using an existing blockchain implementation. Based on the previous decision, choosing between
a public or a private blockchain is a fundamental decision. The selection of the blockchain technology is clear,
because it was mentioned several time in Chapter 4 and 5, which is Hyperledger Fabric.

Implementation vs Using a Blockchain Implementation

Developing a project based on blockchain technology leads to the question of implementing a blockchain from
scratch, or use open source blockchain like Bitcoin or Ethereumas a basis for implementation, or use a popular
blockchain framework like Hyperledger Fabric.

1. Implementation of a Blockchain Network from scratch.

2. Existing Blockchain implementation with turing or nearly turing complete smart contracts functionality.

The first approach is the more flexible approach, which allows the development of a blockchain network fo-
cused entirely around data sharing. This would mean a dedicated blockchain optimized for a single objective.
The main obstacle with this approach would be the complexity of developing a fully working decentralized
blockchain network with appropriate scripts for data sharing.

The second approach is to use a blockchain implementation that has smart contract capability with a turing
complete or near turing complete language support. This would allow to use the blockchain and create busi-
ness logic thatwould create the data sharingmechanismwithout implementing a full blockchain decentralized
network from scratch. It is similar as to the previous approach, without being fully optimized for a single task

60 CHAPTER 6. BLOCKCHAIN DATA SHARING

but would be considered as feasible proof of concept or even production approach of a secure data sharing
mechanism.

In the context of this project, the second approach is the most obvious due to the nature of developing a proof
of concept with less costs and a more realistic approach.

Public Blockchain or Private Blockchain

Public or private blockchain was a fundamental decision in the development of this project, this would mean
choosing a blockchain implementation like Ethereumor a blockchain framework implementation Hyperledger
Fabric. From Chapter 1 to Chapter 5, the decision is clear on which approach was taken. But a fundamental
aspect was to make a choice that could make the proof of concept closer to an actual reality. This means that
the concept of blockchain framework or network would be around smart contracts, which means having the
tools to build these with a turing or nearly turing complete programming language.

Using a large public blockchain, such as the Ethereum Project, has some advantages. The main advantage is a
large community, strong and stable blockchain network anda consensusmechanism that ensures security, sta-
bility and consistency. But it holds a setback, transactions are made to be public and tend to favor anonymity
instead of identity, this in order to increase security and confidentiality in the network. An additional point is
the consensus mechanism. Public blockchains do not tend go by trust so cryptographic proof is the approach,
usually a Proof of Work and Proof of Stake variations is common. This requires monetary investments on hard-
ware especially in Proof of Work because of its nature. In order to execute smart contracts payment is required
for theminers to execute the smart contract. Evenwithout the needed hardware costs, computational costs are
required. So settingupa sharingmechanismon theseplatformswould imply additional costs for organizations.

When focusing on business networks, involving multiple businesses this would not be a correct approach be-
cause of the infrastructure cost and maintenance associated with these public consensus mechanisms, and
would require a great number of peers to keep it secure and tamper proof. Additionally, these networks tend to
go by anonymity andbeing public permissionless,means anyone can join. Thiswould be difficult or impossible
to keep track of data sharing, unless some sort of identification, external to the network is used. Alternatively,
the public network can be a permissioned one, but this still allows outside users of the network to access trans-
actions, which would not be a desirable in terms of privacy.

Private blockchains, on the other hand, the situation is different. The consensus of Hyperledger Fabric does not
require heavy computational resources, but requires some trustworthy peers at least regarding the Ordering
Service peers. Hyperledger Fabric provides identity over anonymity, so participants are identified as well as
allowing restriction over who can join, who can add content to the blockchain, among others, who can see
what data, thus being permissioned. Transaction can be traced to the identity of a user and by inspecting the
blockchain the owner of the data can easily identify who interacted with the data and it must have been from
a user registered within the network. This guarantees only know and registered users can interact with the
network.

An additional positive factor when choosing Hyperledger Fabric is that it could be deployed anywhere to serve
theneedsof the situation that requires it. There is noneed for a single global network, but it allows theexistence
of several independent networks, serving different needs.

6.1. ARCHITECTURE 61

6.1.3 Role of Smart Contracts

Business logic has to describe data sharing solely based on the blockchain. This is where smart contracts are
required and this is the reason why a turing complete or nearly complete is of most importance as it allows
to develop the mechanism with a greater flexibility and little restrictions. Data sharing includes the following
points that must be addressed.

• Who owns the data.

• Who has access to the data.

• When was data accessed.

• For how long can the data be accessed.

• How can data access be controlled.

• How to stop users from accessing the data.

First smart contract - File Management

In order to provide data sharing mechanism solely based on the blockchain, a file is to be considered an asset.
From this decision, a smart contract to control and manage the asset is required.

The smart contract needs the necessary information to trace it to the owner but not reveal its actual contents,
so, information like unique file identifier, publish date of file, file name, identity of owner, hash of contents and
a list of users who have access was considered enough to trace it to the owner and be able for a repository to
identity.

The process behind this smart contract is that the blockchain is tamper proof and incorruptible therefore, by
using these assets the user knows all available files to him at all times, the client application would retrieve the
information only from the blockchain and not ask the storage provider,meaning omitted data froma repository
if remotely stored. If the user wants to fetch data from a repository then the hash regarding that file would be
compared with the hash of the retrieved file in order to tell if the data was tampered with. Assuming the actual
data has been uploaded to the repository using the unique file identifier, then when the user only needs to
query the blockchain to determine what data access he currently has, there is no need to interact with the
storage provider for this information.

Second smart contract - Share Agreements

The previous smart contract enables to trace data to the owner but it does not provide a secure enoughmech-
anism for data sharing with other users. Another smart contract was necessary to control the access of data,
handle and control the sharing of data between two entities. This would control who can access the data, for
how long data can be accessed, who owns the data, and the status of the agreement and stopping a user from
accessing.

62 CHAPTER 6. BLOCKCHAIN DATA SHARING

Third smart contract - Access Requests

The twoprevious smart contracts arenot enough to control theaccessof dataanddoesnotprovidea logof data
access besides the Share Agreements smart contract, as this only log at the time of creation and when status
is updated. So a another smart contract was necessary. In the same sense that the interaction between user
and repository to be as limited and provide as little details as possible without interacting with the blockchain
doing most of the work.

This smart contract controls the access requests between users and repositories, and the blockchainwould au-
tomaticallymanageandgrant or denydata access by validating itwithout interactingwith the actual repository.
And it also log all access requests.

The objective of this smart contract, besidewhat has been stated, is to provides as little information as possible
on request creation and deliver the file(s) in question with as minimal interaction as possible between repos-
itories and users. The solution is via an Unique Identifier generated at time of a valid request by the smart
contract. Since the repository is not able to determine what that unique identifier means, the repository must
use the blockchain and returns the corresponding data to the user. This in the case of valid request.

6.1.4 External Applications

Applicationswerebasedon tutorial applicationsofHyperledger Fabric. Theyarebasic applications that provide
interaction with smart contracts. There are two applications: client and repository. The Client applications
provide interaction with the blockchain and are able to make and receive requests from repositories.

Repository applications, were made to be also simple, simply interacting with the blockchain upon receiving
requests from clients and provide the most simple data storage and interaction between users. Additionally,
besides confirming and validating unique identifiers they, also invoke Access Requests to register in the net-
work.

Interaction with repository applications and client applications is by means of a unique identifier.

6.1.5 Storage Provider Peer restrictions

A storage provider as a peer, is a possibility but depends on the situation, as mentioned previously, peers, if
possible, are able to endorse and order transactions. In the case of the development process, the repository
is not a peer, but an application that connects to a peer. This is not unintentional due to simplicity of testing
purposes. Although having a repository as a peer means it is part of the network, this is acceptable, but for
security reasons it should not be an endorser peer or an orderer peer. The reason for this decision is to increase
privacy and transparency so these cannot accept, deny endorsements or censor transactions from being in
blocks, or even inspect input and output. The assumptions is that a repository may be considered untrusted
by users and providing validating capabilities can imply additional risks to the users, for example censorship of
transactions or unable to achieve consensus.

If a storage provider is to be considered untrusted at some level, then the data security must be taken special
care, either by storage providers ensuring data security and privacy and/or users encrypting their data before
uploading. In Section 6.5, a simple approach using Gnu Privacy Guard for encryption of data and sharing of the
same will be described.

6.1. ARCHITECTURE 63

6.1.6 Encountered Problems and Solutions

Multiple problems were encountered in the development of this work, themost problematic in terms of imple-
mentation are presented in this section.

Random Numbers

Randomnumbers canbeproblematic in termsof consensus, thismeanswillmost likely fail due to inconsistency
of results. This made relying on random numbers a more careful approach. Initially the unique identifier used
for the interaction of clients and repositories was based on random numbers but was changed to a SHA256
because the same input will always lead to the same output. The input was chosen as the timestamp, file
identifier, user public signature and operation. The larger the size of the hash the more likely a brute force
attack will fail.

Uploads

Uploading files to a storage provider presented to be a difficult problem. Access requestsmust be confirmed by
the repository and createdby the user. Thismeans the user can senddata to repository and repository does not
confirm theaccess requestor confirmsbutdoesnot send. Or another caseof theuser creatinganaccess request
but never uploading. For this issue, an assumption wasmade and was to consider the user as nonmalicious in
terms of upload. The reason for this assumption is because the network is private and permissioned, meaning
all users are registered and identified, and a user would not register himself in the network if not for secure data
sharing. Additionally a third optional confirmation was implemented. When the user receives the data he has
the option to confirm he received it, nonetheless if a confirmation is not provided after a certain period of time
it is considered confirmed.

Validity based on Timestamp

Hyperledger Fabric chaincode does not have a clock in the chaincode so it cannot auto validate itself with-
out being called by external entities, so, instead of discarding the idea of timestamp validation the focus was
changed to compare timestamps at time of chaincode calls.

The idea revolved around the concept of validation by chaincode calls. If the transaction proposal is either a
query or write then an attempt towrite ismade to validate all active Share Agreements, this because chaincode
cannot tell the difference between query/write. The operation type does not matter because the return values
will be correct, but if it is a query transaction then the contents of the blockchain will not be updated.

6.1.7 Structure

The architecture is composed bymultiple layers, each representing a level of depth. There are four layerswhere
the highest layer is composed of two components. Figure 6.1 represents all layers from highest level to lowest
level.

The highest layer possible to the applications layers. These interaction is between a user of the network and
a storage provider connected to the network via unique identifiers generated with the aid of the Hyperledger
Fabric SDK layer. The storage provider maintains the files hosted by other participants and determine whether

64 CHAPTER 6. BLOCKCHAIN DATA SHARING

Figure 6.1: Diagram of the Layers of the Architecture

the request sent by a client application should be fulfilled or not. Whether is fulfilled or not depends on the
Hyperledger Fabric SDK layer.

Hyperledger Fabric SDK level is the layer enabling the previouslymentioned applications to communicate with
the blockchain network. This encapsulates enrollment, registry of user and the ability to perform transactions
proposals, in the sense of executing smart contract functions.

The Smart Contract level is where the smart contracts are deployed in the blockchain network which describes
the business logic of the data sharing mechanism. During the development of this work and as mentioned
previously, three smart contracts were created in order to devise a secure and controlled sharing mechanism.

• File Management: handles registry of filesmade by owners as file assets to bemade available for sharing
or just stored in the network.

• Share Agreement: creates, validates and manages the share agreements between owner of file and en-
tity.

• Access Requests: creates, validates andmanages all outgoing requests to the repositories.

The bottom layer is the Blockchain layer and together with the Smart Contract layer, compose the Blockchain
network. This last layer corresponds to the immutable shared ledger containing all the information regarding
the data written by smart contracts excluding information in Genesis block regarding channel configurations.

The architecture is described in Figure 6.2 which describes the data sharing flow over the blockchain.

In Figure 6.2 it can be seen the division between applications and the blockchain network. Applications submit
transaction proposals against smart contracts, and blockchain network processes them and returns results.

6.1. ARCHITECTURE 65

Figure 6.2: Diagram of the Architecture of the Network

Figure 6.1 represents a top level view of the network without regarding endorsement and orderer steps and
using a single channel and presents just the interaction between applications, smart contracts and blockchain.
Applications are external to the network and communicatewith the blockchain network only by invoking smart
contracts. Smart contracts query and update the blockchain based on input provided by the requests made
by client/repository applications. The repository applications only use the blockchain network when client
applications interact with it, except when registering, explained in Section 6.3.4.

66 CHAPTER 6. BLOCKCHAIN DATA SHARING

6.2 Data Sharing Flow over the Blockchain

From uploading data to a storage provider and a second entity download the data there are several steps to
follow, excluding any endorsements and orderer steps. Follows the details of how the data sharing procedure
takes place.

1. Participant 1 registers and enrolls in the network and receives identity;

2. Participant 1 registers the file as an asset using File Management smart contract and creates an request
for upload via Access Requests smart contract, pending confirmation from the storage provider;

3. An unique identifier is returnedwhich is used to generate a request for uploading to the storage provider;

4. Participant 1 uploads the data along with the unique identifier.

5. Storage provider receives data and checks the unique identifier and signs the request as ACCEPTED or
ACCESS_DENIED;

6. Participant 2 registers and enrolls in the network and receives identity;

7. Participant 1 creates a share agreement using Share Agreement smart contractwith Participant 2 spec-
ifying that Participant 2 has a maximum of 24 hours to access the file;

8. Participant 2 makes an access request using Access Request smart contract and returns an unique
identifier;

9. Participant 2 makes a request to the URL of repository with the unique identifier as a parameter;

10. Storage provider checks blockchain for a request that generated the received unique identifier and the
smart contract handles the process of validation;

11. Storage Provider sends the file to Participant 2 and signs the requests;

From the previous steps, there are a total of 5mandatory transactions and 1 optional executed fromuser chain-
code. These transactions are not necessarily bundled into the same block.

• Transaction 1: File registered as an asset by Participant 1 by invoking File Management.

• Transaction 2: Participant 1 invokes Access Request for upload request. If not made in transaction 1 by
a function that creates both in a single transaction.

• Transaction 3: Creation of Share Agreement by Participant 1 and 2 by invoking Share Agreements.

• Transaction 4: Participant 2 invokes Access Request for upload request.

• Transaction 5: Signing of access request by repository.

• [Optional] Transaction 6: Signing of access request by Participant 2 to confirm data was retrieved.

This is a simple caseof just enabling thedata sharing flowover theblockchain. This scenario expects Participant
2 to be within the limit stated in the share agreement made with Participant 1. Test cases are described in
Chapter 7.

6.3. SMART CONTRACTS AND BUSINESS LOGIC 67

6.3 Smart Contracts and Business Logic

Following the architecture design process of the three smart contracts, this section is towards an accurate de-
scription and behaviour of the functionalities provided by each one of the smart contracts.

Smart contracts, or chaincode inHyperledger Fabric terms, allows themanipulationofdata stored in theblockchain,
which operations are accessible via the Fabric SDK, used by applications. For the proof of concept, three dif-
ferent smart contracts were developed, as previously described. A smart contract may depend on other smart
contracts, so internal calls in a single transaction occurs.

Business logic represents the data sharing mechanism managed by the smart contracts explained as Section
6.2. The smart contracts perform the following business logic:

• FileManagement, registers a file as an asset. Controls themanagement of all files ownedby a participant
hosted in a repository or participant’s local machine.

• Share Agreements, controls the management of share agreements between the owner of the data and
entities.

• Access Requests, management of access control of data between participant and repository. Purpose of
this smart contract is the generation of unique identifiers and acceptance by the repositories.

6.3.1 Important Packages

For the development of the smart contracts, there are two packages, cid and shim, that are very useful and out
of the two, the shim package is mandatory.

• shim. ”Package shim provides APIs for the chaincode to access its state variables, transaction context
and call other chaincodes” [shi]

• cid. Client identity, permits the manipulation of the invoker’s signature, which contains organization,
unique name, attribute and additional properties. [cid]

6.3.2 File Management

This smart contract written in Go, between the three smart contracts, the file management smart contract is
the first the user should interact with. Following Section 6.2, in order to enable sharing of data in the network a
user must invoke this smart contract first in order to register his data as an asset so the hosting and/or sharing
of data can be set up in a secure way. The information regarding the data is not the data itself, as explained in
Section6.1. As such, it contains the information that can trace thedata to theowner if hosted ina remote storage
provider in the network. It also allows for querying information regarding data, such as history of changes in
the fields presented below or which data a user has access to. By logic, when the user registers a file as an
asset, it works as a shared ledger of all the data in all repositories. This in the case the user has data spanned
acrossmultiple storageproviders connected to thenetwork. Basedonwhathasbeenstated, this smart contract
contains the following information to be stored in the ledger.

• File Identifier, this value is the key parameter in the key/value pair. It is used to uniquely identify
the contents in the blockchain, which links the data to the owner, and allows the management of data.
Users can only change information if the unique identifier corresponds to the current owner.

68 CHAPTER 6. BLOCKCHAIN DATA SHARING

• File Name, the name of the file provided by the owner.

• Location of File. Repository that holds the data.

• Owner Identifier, self explanatory, is an unique ID that identifies the user. In order to perform any
operation, the user must be a registered user within the Certificate Authority.

• User Permissions List. A list of users with access permissions. Contains the user IDs of every user
that can have access to this data. The list updates itself depending on the Share Agreements. If a Share
Agreement expires or is terminated by the owner, it will modify the list. This field is necessary for Access
Requests smart contract to determine if its the owner making a request. This information only visible to
owner. It holds no purpose to show users a list of users with access permission.

• Timestamp, self explanatory, when was the file registered or modified in a readable format.

• Status, the user may disable access to this file at any given time. Status can hold two values ”Available”,
”Unavailable”. It will not terminate any active Share Agreements with the FILE ID, but no access will be
given.

• SHA512, a SHA512 of the file. Useful when hosted in a remote repository. Used for comparisons at time
of upload and download and share between users. SHA512 to ensure no likely collisions will happen.

No smart contract is complete without a set of functions that allows the manipulation of the data stored in the
blockchain. All smart contracts in Hyperledger Fabric have an invoke() method which contains all functions
publicly available for applications to use, as such, a wide variety of functions is required. Every data asset is
firstly registered in the blockchain as a means to be able to control and keep record of all share and access
history regarding that file.

Having a data asset enables to have no interaction with hosted repositories in order to visualize existing data
and to provide a shared ledger between multiple repositories. This allows users to use the blockchain to keep
control of all files scattered amongmultiple or single repositories.

Changes that happens in the file regarding the information stated above, either a file registration, an update
in permissions, a status update, or a file delete will trigger a timestamp update. This only happens if the user
has the permissions to do so: it is either an owner or is able to edit the file. This permits the owner to have a
complete history of changes on the data asset across single or multiple repositories with little hassle.

This smart contracts allows users to check which files he owns, which files he has given share permissions on.

Not all functions will result in an update of the blockchain, usersmay just require the need for simple query. An
example is querying all the data he owns.

6.3.3 Share Agreements

Share Agreements are written in Go and describes in code how data sharing interaction between two entities
will occur against a file. This is the most important smart contract of the three previously stated as it ensures
and enforces access control of data. This smart contracts creates, validates andmaintains the state of all active
share agreements between two entities. A share agreement between two entities can only be made if the user
submitting the transaction proposal is the owner of the data, this means an internal call to the previous smart
contract in order to determine if this condition is met. A contract contains the conditions of how a file is meant
to be shared and with who. As such, it also writes to the blockchain a specific set of data in order translate the
agreement into code.

6.3. SMART CONTRACTS AND BUSINESS LOGIC 69

Additionally only one active share agreement of FILE ID per user.

• Share Identifier, this is the primary key. Same as the File ID, used to uniquely identity a state in
the blockchain.

• Owner of File, or creator of contract. This information is to help identity who owns the contracts with-
out calling the previous contract to find who owns the data identified by the unique identifier.

• File Identifier, corresponds to the file being shared.

• List of Users, corresponds to the second party of the share agreement.

• Conditions, corresponds to the conditions of which determine the validity of the contract. i.e: User has
access for 24 hours.

• Timestamp, corresponds to the exact moment when the contract was created or updated.

• Terminated, corresponds to the status of a contract. By the name it is of boolean type.

• Can Modify?, this corresponds to being able to modify the data. If this field is true then it will need to
update data identified by FILE ID

Due to the nature of identity and smart contracts double checking identity, a malicious user cannot grant him-
self access to data owned by another user. This unless the owner of the data leaks the credentials.

Smart agreements cannot automatically validate themselves, asmentioned in Section 6.1.6, which is solved by
validating share agreements by invocation.

Validating a share agreement ”automatically”

Validating share agreements is achieved by using the properties of the blockchain. Updates on the blockchain
only occurs if the requests from the application are a transaction proposal that updates the blockchain.

Since chaincode cannot tell if a transaction is a write or read operation, the solution is to assume every request
from applications are transaction proposals that update the blockchain. As such every invoke() method of
every smart contract, not limited to the Share Agreements calls the function to validate every valid contract in
the blockchain. This way, on every request from applications, an attempt to validate the agreements is made.

Figure 6.3 represents the process for every chaincode call, it first begins by attempting to validate the contracts
and then proceeds to the actual chaincode call. If it happens to be a transaction that updates the blockchain
then the agreements get updated. This will lead to two obvious questions:

Figure 6.3: ”Automatic” Validation Steps

• Question 1: Why not just check contracts if they are valid and not write to blockchain? Because that
would imply scanning every single contract from the genesis blockwith the user id and recheck the valid-
ity, which although is an alternative, the previous implementedmethod is not that heavy, it performs less
operations then the alternative method because it only needs to scan active contracts via Terminated
field and only performs write operations when necessary.

70 CHAPTER 6. BLOCKCHAIN DATA SHARING

• Question 2: If there is not a write operation then how can the network know if the user still has ac-
cess? Because although it is assumed that every application request is a transaction proposal the smart
contract only uses this assumption to update the status of the agreement on the blockchain, but can still
say the contract is not valid because, if the Terminated returns false, a validity checkmust happen. The
difference is it will not update the contents, but the return values will be correct because of the validity
check.

Alternatively, instead of validating every Share Agreement, validation of only relevant Share Agreements to the
user could reduce any possible block creation conflicts because of inconsistent states created by transactions.

Terminating a Share Agreement

Contracts are made to be able to share and control share permissions between two entities, and once created
can be terminated at any given time but only by the creator of the contract, by the Conditions field not being
met, or due to violations on the contract, for example attempting to write with only read access. If a contract
is terminated, all access to the data is unauthorized, and once terminated, the Terminated field cannot be
change, requiring a new share agreement.

Terminating a contract also updates the users list in fields of the data asset identifier by FILE ID of the File
Management smart contract.

More Functionalities

This smart contract is not only to maintaining and validating share agreements. Queries in this contract are
obvious, allowing to checkavailable contracts, history of changes, query contracts byFILE IDandall contracts
associated with the same FILE ID, terminating contracts at any time, querying by owner and also importantly
validate contracts.

6.3.4 Access Requests

The Access Request smart contract is written in Go, is the last smart contract in the trio and is howusers interact
with the data spanned acrossmultiple storage providers . It describes the logic of requesting access to data that
is hosted on repositories. Thismeans all requests of accessing a filemust be channeled through the blockchain
so it can be validated. As mentioned previously, it is the only way to retrieve a given file.

A request must contain enough information to determine who made the request, what data is the user re-
questing and when was the request made and the legitimacy. Requests created by Access Requests needs
two validations, three optionally, to be considered valid, which translate into two or three transactions. The
first transaction is by the client application, the second one is by the repository application to confirm the re-
quest, and the third is by client application to confirm the repository delivered the data. This smart contract
requires interaction between all layers described in Figure 6.1. The information that is stored in the blockchain
is the following:

• Access Request Identifier, same as File ID and Share ID. Used to uniquely identify the access
request in the blockchain.

• User Identifier, identity of the user that made the request.

6.3. SMART CONTRACTS AND BUSINESS LOGIC 71

• File Identifier, file identified by File ID that user will want to access.

• Timestamp, timestamp of when the request was made.

• Status, status of the request. Values: ACCEPTED or DENIED.

• Repository Identifier, identity of the storage provider that checked this request and gave it a sec-
ond confirmation.

• Unique Identifier, an unique identifier generated the smart contractwhen the request ismade, valid
only once, in order to download data.

• Unique Identifier SHA256, used to compare the input based on the unique identifier received on
each PENDING request.

• When Validated by Repository? Timestamp but for repository validation of request.

• Feedback on Receive, onlywritable if the twoprevious fieldshavebeenupdatedby theStorageProvider.
This is anoptional third confirmationof theaccess request. Startsnullbut canbechanged to twovalues.
DATA_RECEIVED or DATA_NOT_RECEIVED. If field is not modified it is assumed delivered.

• Has UID been used?, filter out used UID.

• Operation, do determine what is the operation being executed.

• Is Owner?, determine if it is the owner of a user with permissions.

• HTTP Request Method, to determine if the Operationmatched the correct HTTP Request Method. To
be completed by second confirmation.

At time of file asset registration, the user should be aware of the storage provider in order to fill the information,
as stated in Section 6.3.2

The information regarding the repositories is the following and is maintained by the Access Requests Smart
Contract.

• Repository Name, the name of the repository.

• Repository Identifier, unique repository ID, achieved from the certificate. Same as the user ID.

• Timestamp, how long has this repository been around since registration.

• Access, how to access this repository. In the test environment this field is a localhost:port.

• Is Repository?, for query purposes, a filter for active repositories.

This smart contract is of great importance since it is the link between the user and the repository when fetching
data. Asmentioned, access requests are divided into twoparts, and a third optional one. Figure 6.4 summarizes
the two validation process of the generation unique identifiers, UID, for a request for any operation, either get
or update or delete, to be submitted to a repository.

In a descriptive way, the all steps for access request validations found in Figure 6.4 are:

1. User makes a transaction proposal for a request.

72 CHAPTER 6. BLOCKCHAIN DATA SHARING

Figure 6.4: Access Requests steps

2. Access Requests checks for any valid Share Agreements, by invoking Share Agreements, for the given
FILE ID in which the user is in the list of permitted users. If there are none, then it checks for ownership
of the file by invoking File Management if the user is the owner of FILE ID.

3. If the request is valid, returns an UID and the status of the request is flagged PENDING else it gets flagged
ACCESS_DENIED. If it is flagged ACCESS_DENIED the Repository Application Steps are not required.

4. User sends UID as a parameter for the repository URL.

5. Repository receives UID and checks the legitimacy of the UID by checking if it exists, has not been used
and has not expired and the operation matches the correct HTTP request method.

6. If any of the conditions fail then the request is flagged as ACCESS_DENIED. And the process stops here.

7. If all conditions are true, then, in the same transaction proposal, it makes another invocation to Share
Agreements to determine if the Share Agreement is still valid and who made the access request. If there
is no Share Agreements and if the UID is valid by the business logic then it determines it was the owner
of the data who did it.

8. If it is not the owner but a user with permissions and the contract is no longer valid then the request is
flagged ACCESS_DENIED.

9. If validity check turns out to be valid, then anupdate on the request is flaggedwithACCEPTED and request
is signed by the repository.

10. Transaction proposal returns a set of values to determine the data the repository is going to send back to
the user.

11. Repository sends the data back to the user.

12. Optionally User may sign again the request to confirm receive of data.

6.3. SMART CONTRACTS AND BUSINESS LOGIC 73

The formula for Unique Identifiers:

UID = SHA256(timestampraw + fileid + invokerid + operationid) (6.1)

The formula is composed of four elements wrapped in a SHA256.

Equation 6.1 is a the formula for generating an UID. In order to be easily verified that the input generated the
hash, keeping it consistent. A hash of 256 characters long permits, along with the timeout given to the unique
identifier permits brute force attacks to be much more difficult to achieve. It is then encoded into base64 for
URL simplicity.

The first element in Equation 6.1 is the timestamp. For a timestamp based identifier, but in order to make
consistent results due to the decentralized nature, nanosecond and seconds were removed from the equation
due to possible inconsistency of results in endorsements.

The second element in Equation 6.1 is the FILE ID. The previous element is not considered enough because
there could be multiple access requests in the sameminute, so this field was added to avoid collisions.

The third element in Equation 6.1 is the user ID. Every user has an unique id, and there are no equal ids in the
network, according to Membership Service Providers. The previous two elements are not considered sufficient
to avoid collisions because of the oneminute difference, because there could be same file id requests at in that
time limit, the invoker user id was added to reduce the number of possible collisions. An obvious disadvantage
is the user can only perform access requests once every 60 seconds.

The fourth element in Equation 6.1 is the operation. Operation ID holds three values UPLOAD, DELETE, GET.
Since with the previous three elements a request can only be made every 60 seconds, using this element adds
flexibility because permits different type of operations in 60 seconds instead of one. This element also allows
the UID to identify the operation being executed, use it to compare with Share Agreements, as in, can the user
modify the data or not. The owner of the file can easily verify if the correct operation was really conducted by
doing the SHA256 of the input, although the type of operation is also logged.

Additional UID confirmations

From the current setup, there is no way to tell if the UID sent by URL parameter is amalicious action, accidental
action or legitimate action. Because of this uncertainty, it is treated as a possible malicious action therefore,
once the storage provider application receives the UID as parameter, it makes a transaction proposal to update
the access request using UID and the HTTP request method, either GET, POST or DELETE. Figure 6.4 sums the
following steps for the repository application.

A second UID confirmation is deemed necessary to enforce that a repository will process the request. Figure
6.5 represents a flow chart representing all the steps and decision process for a UID confirmation.

A third confirmation is optional by the user, mostly useful to confirm data was downloaded or not. When the
operation is finished, a transaction proposal can be made to the blockchain to update the access request in
order to confirm if the operation was conducted or not by the repository. This to ensure a storage provider
signs the access request and does not deny for whatever reason. Because there can be other reasons for the
request to fail, such as lost of internet access, it was deemed optional and therefore after a certain period of
time the signing of the request becomes irrelevant.

A timeout is necessaryand the reason is becausealthoughonly theowner, theuser that submitted the requests
and the repositories see this UID, not taking into consideration orderer or endorser peers, it is not wise to have

74 CHAPTER 6. BLOCKCHAIN DATA SHARING

a non expiring UID, this because of possible human error.

An example why the timeout was deemed necessary: the user is notmalicious, gets a valid UID and the second
confirmation will make it valid as well. The good user loses internet access for a brief period of time and forgets
about the request he made. This leaves a valid UID waiting to be used for as long as the channel exists or until
the user remembers. In the meantime, a malicious user in the meantime gets hold of the UID and sends UID
via parameter to the storage provider and gets access to the data. Unless the user can get hold of the UID and
make a request within the timeout time limit the malicious user will never get hold of the file.

Automatic Revocation of Access

Automatic revocation is based on the type of operation and the permissions the user has. If the user does not
have the right permissions the share agreement is terminated. But itmust be considered that files havedifferent
levels of sensitivity. As such, any user with the incorrect permissions trying to access data with high sensitivity
should be blocked from interacting. Additionally, in the same case, a user with read permissions attempting a
write permission should lose all access permissions. Essentially terminating the share agreements.

AnHTTPRequestMethod isnecessary toensure thecorrect operation that auser submittedmatches the correct
HTTP Request method received. This is to avoid a user submitting a FETCH operation but sending a POST
request, whichmay lead to updated data which hemay have not had access to. If these two fields don’t match,
then a searchon the share agreements is firstlymadeand if found the agreement is terminated then the request
is flagged as ACCESS_DENIED.

6.4 Applications via Blockchain APIs

Applications are programs that use the Hyperledger Fabric Software Developers Kit to use blockchains APIs to
interact with the network. Applications are used by participants of the network, which are registered within the
Membership Service Provider of that organization. As referenced in Figure 5.1 and Figure ??, each organization
has its own applications. In the work a single organization was used thus providing two different applications.
Applications act as wallets as they store the credentials of the user used to sign transactions.

6.4.1 Client Application

The client application acts as a wallet, in the sense that it stores credentials and has the ability to access the
blockchain via those credentials. By holding the credentials, it gives access to the data stored in the blockchain
which allow for remote storage access. And as long as the participant does not loose access to his credentials,
then data will never be lost, as long as the storage provider persists.

Additionally, besides blockchain level interaction, it provides interaction with the repository hosting the data,
via three http requests methods. In the test environment this is done outside the application.

• POST, upload data to the repository. Data should be registered as an asset in the blockchain in order to
increase overall security.

• DELETE, delete data from the repository. Data must have been uploaded first and unique link identifier
must match one in the blockchain. If data does not match or does not exist no valid link is created. So,
malicious or careless actions are flagged as invalid.

6.4. APPLICATIONS VIA BLOCKCHAIN APIS 75

Figure 6.5: Decision process for UID confirmation

76 CHAPTER 6. BLOCKCHAIN DATA SHARING

• GET, get data from the repository. Datamust have been registered and unique identifier mustmatch one
in the blockchain. But if data does not match or does not exist, the requests are are flagged as invalid.

6.4.2 Repository Application

The repository application is used by storage providers, and like the client application it acts as awallet, storing
credentials and allowing access to the blockchain via those same credentials. In the current implementation
there is nothing that differentiates a participant from an actual storage provider at certificate level. Only a list
kept by the Access Requests smart contract stating who is registered as a storage provider and who is not.
Adding storage provider specific attributes when registering using the Membership Service Providers is an al-
ternative to clearly differentiate, removing the need for previous list.

The repository application is always on hold for requests and waits for requests at two different routes. The
repository at the highest level of the architecture does the following steps

• /upload/, receive data from participants. This takes shape of a POST request and the fields are UID and
the data.

• /delete/{UID}, delete data identified by unique link based on UID. This takes the shape of a DELETE
request.

• /fetch/{UID}, fetch data identified by unique link based on UID. This takes the shape of a GET request.

In short, the repository application does the following:

• Identifies data identified by unique identifier.

• Compares the client submitted operation with the http request method.

• Update status and sign access requests.

6.5 Storage Providers and Data Hosting

In Chapter 2, it was presented several approaches in order to secure data in a cloud repository, not necessarily
using blockchain. This sectionprovides an approachwhichwas not implemented, usingGnuPrivacyGuard as a
method of privacy and security. [gnu] Gnu Privacy Guard enablesmulti-key encryption, which works by encrypt
a symmetric key with asymmetric keys. The primary issue with this approach is that it the owner of the data
would be the only one performing updates on the data because of the re-encryption.

Client Setup for Secure Data Upload

In order to send data to the storage providers, it must be encrypted first by the user. This is the objective, but is
not enforced and the cloud provider can still add some security. Any of the two options still allows the owner
to control access to his data by other users in the network. Data encryption is not implemented, merely it was
merely research. Nonetheless for data encryption a setup is needed.

Using Gnu Privacy Guard the user must generate a key using the identity identifier provided by the Hyper-
ledger Fabric network, which can be obtained by querying the blockchain for a specific function of the cid

6.5. STORAGE PROVIDERS AND DATA HOSTING 77

package, GetID(). This will would make re-uploading data an easier task for the user. This action, makes the
sharing of public keys an easier task for the owner and the client application automating the process. An ideal
scenario would be: at time of upload, checks the existence of valid share agreements and returns the users id,
assuming the owner still has valid keys, and encryption follows.

6.5.1 Data Upload

Data upload is done in two parts, as described in Section 6.3.4. In the client side, data is encrypted using asym-
metric key encryptionanduploaded to the repository, where the repository flags the request asACCEPTED. Data
can be re-encrypted, before being sent, with a shared secret if the owner chooses it.

Assuming a single copy of the data, any time a new user needed access, re encryption with the public keys
of every user would be required. This can all be automated with the blockchain, due to the setup and share
agreement automatic validation at request creation and request validation.

6.5.2 Optimal Scenario for Sharing

When it comes to sharing of files, with thismethod, the best case scenario is uploading the encrypted data with
Gnu Privacy Guard with all the users who need access, using multi-key encryption. This would require every
party to be in the network before hand, and knowledge of every user requiring access.

Data in the repository

If the data is already hosted in the repository and a group of users require access to the data, the owner will
follow the same procedure explained previously. The next step is to re-encrypt the data using the client appli-
cation with the target recipient public keys, which may require to download the data once again. Since its just
one copy, the client application queries the contracts with by FILE ID, returning every user’s identity, so the
client application can re-encrypt with all the recipient keys and re-upload.

Increased Protection

The first encryption uses GNU Privacy Guardian to encrypt the data. This encryption method allows for multi-
key encryption, and was ideal for data sharing for multiple users and groups of users that do not interact with
each other. This allows for data to be secure between users and the untrusted repository with the addition of
the blockchain eco-system.

Additionally, the storage provider should provide its own encryption method as expected from cloud storage
providers in order to ensure increased privacy and confidentiality. This pre-upload encryption is to ensure the
owner has more control over the security and confidentiality of the data in case of untrusted repositories.

Additionally the cloud storage provider could perform a shared secret encryption, which would be generated
by the Share Agreements and applied by the storage provider. This system would work at time of an access
request validation by repositories, instead of just returning the FILE ID of the data. It would also return the
shared secret, and the cloud storage provider would re-encrypt with the shared secret.

7
Experimental Evaluation

In this chapter we present some experimental test cases with the test setup. This chapter provides
detail on the test environment setup and the test cases detailing the flow of permissions and file asset
registration andmalicious test cases.

7.1 Test Environment

The test environment is built on top of a Hyperledger Fabric Samples tutorial, Write Your First Application Tu-
torial [hfw], that is composed of the essentials to run an application on the network, and make the network
function. The components are the following:

• A single organization.

• An ordering service with one Orderer peer.

• Consensus Mechanism: solo.

• A single Certificate Authority.

79

80 CHAPTER 7. EXPERIMENTAL EVALUATION

Request Fields Request Values
Chaincode Identifier Target Chaincode

Function Target Function
Function Arguments [arg0, arg1, ..., argN]

Channel Identifier Target Channel
Transaction Identifier txId

Table 7.1: Request Payload Fields and Values

• A single channel.

• Three Smart Contracts.

• Three users. One of these acts as a repository.

• One administrator.

Peers and Certificate Authority are Docker containers from various Hyperledger Fabric Docker images. Peers
and Certificate Authority are part of a Docker network in order to communicate.

The network is booted up by running a script that runs the docker-compose.yaml and a bash script to setup
up the network. This includes setting up channel configuration, joining the peers into the channel, install and
instantiates the smart contracts. When smart contracts are instantiated, it also boots up an individual docker
container that is connected to peers who have installed and instantiated the smart contract for all the peers in
the channel. After the script is finishing running, an administratormust be registered first before other users are
allowed to join.

7.2 Test Cases

Test cases are divided into three sections, each one for each developed smart contract, and within these sec-
tions there are tests for intended behaviour of the network withoutmalicious interference and for accidental or
malicious behaviour of the network. Regarding the three sections: the first section of tests are for file assetman-
agement, including registration and querying available files. The second section are tests for Share Agreement
creation and management. Including creation, unauthorized creation, and termination of the same. The third
section are tests for access requests that range from authorized to unauthorized and timeout and revocation
of access.

7.2.1 Transaction Proposal Request Payload

In order to use the properties of the smart contracts, a request must be filled that must specify the target con-
tract, target function of the contract, arguments, target channel and finally a transaction identifier which will
identify the transaction proposal.

Table 7.1presents the formatof a requestpayloadandall thenecessary fields toperforma transactionproposal.
If it is a query proposal then Transaction Identifier is not required. Table 7.2 presents an example of an
actual request payload for a transaction proposal on smart contract File Management, to query a file by the
id of FILE_01 on channel mychannel and the transaction id, to identify the transaction proposal. This last is
not required unless for the updating of share agreements as it was previously stated in Chapter 6.

7.2. TEST CASES 81

Request Fields Request Values
chaincodeId ’file_management’

fcn ’queryFile’
args [’FILE_01’]

chainId ’mychannel’
txId txId

Table 7.2: Example of a Request Payload Fields and Values

Request Fields Request Values
chaincodeId ’file_management’

fcn ’queryAllFiles’
args []

chainId ’mychannel’
txId txId

Table 7.3: Request Payload for querying all files

7.2.2 File Management Tests

In order to have a valid share agreement between two entities, a valid asset registrationmust occur beforehand.
Therefore the first step is to ensure a valid registrationmust occur. In order to query for shared files itmust check
the share_agreements smart contract.

Test 1: File Asset Registration

Pre-Requisite: Fill request payload with appropriate field values.
Expected Result: Commit of file asset.

In order to create an asset, an user must have a valid set of credentials which is generated by the Certificate
Authority connected to the Organization. A user fills up the request form. If the request payload is well formed,
and the user has a valid set of credentials the registration will always be accepted, assuming FILE ID is not al-
ready takenand there4arguments in theargsparameter. FILE ID, Location of File, Name of File,
SHA512 If the FILE ID is not available or there are not 4 arguments in the args field of the request, the chain-
code will perform a run time error and the transaction will fail.

Test 2: Inspect all Files with access

Pre-Requisite: File Asset registration of FILE ID or valid Share Agreements of FILE ID.
Expected Result: Return all file information.

The request payload for this test is represented in Table 7.3. For all query related operations, a txId is not
required because it does not need to generate a transaction for just read operations. Although for validation of
contracts, it needs to have a txId.

For this test, the args field is empty because the only information needed is the userId of the invoker which
will be determined with the cid package at runtime, so the user does not need to provide it. The smart con-
tract scans the file assets for userId and valid Share Agreements. Bundles up the results and returns to the
applications which in turn show the results to the user.

82 CHAPTER 7. EXPERIMENTAL EVALUATION

Request Fields Request Values
chaincodeId ’file_management’

fcn ’queryFile’
args [’FILE_01’]

chainId ’mychannel’
txId N/A

Table 7.4: Request Payload for querying all files

Request Fields Request Values
chaincodeId ’share_contracts’

fcn ’createContract’
args [”FILE_01”, ”user2, user3”’, ”60”,”TIME”, ”true”]

chainId ’mychannel’
txId txId

Table 7.5: Request Payload for Share Agreement creation

Test 3: Inspecting a FILE ID with no access

Pre-Requisite: File Asset registration of FILE ID
Expected Result: Failed Transaction.

The request payload used for this test is presented in Table 7.4. If the userId of the invoker does notmatch the
ownerId or an id in the User Permissions List of the data asset regarding FILE ID then the transaction
will always fail. But the error message will not say if the given FILE ID exists or not.

7.2.3 Share Agreement Tests

A Share Agreement can only be created if, and only if the user submitting the transaction proposal matches
the ownership field in the FILE ID. This implies FILE ID must exist beforehand. But does not require to be
hosted in a remote storage provider.

Test 1: Valid Share Agreement Creation

Pre-Requisite: File Asset registration of FILE ID.
Expected Result: Commit of Share Agreement.

The request payload for this test is presented in Table 7.5. If the user has successfully registered a file with a
valid FILE ID, it enables the sharing mechanism.

The first arguments in args parameter is the FILE ID, the second argument is a list of the target users, the
third one is the time limit, 60minutes in this case, and the last is to determine what type of contract is this (time
based in this case). Since the current implementation only handles time based contracts, the forth argument
can be considered useless for now, the final argument states if the user can modify the data.

The following enumeration describes the steps for a successful Share Agreement creation:

1. Internal invoke to file_management using the function query_file with the FILE ID provided in the

7.2. TEST CASES 83

Request Fields Request Values
chaincodeId ’share_contracts’

fcn ’terminateContract’
args [’FILE_01’]

chainId ’mychannel’
txId txId

Table 7.6: Request Payload for Share Agreement creation

payload.

2. Determine if the userID using GetID() from the cid package from the invokermatches the ownerID in
the file Registration. Assuming it found FILE ID.

3. Create a new Share Agreement based on the arguments provided in args.

4. Update Users Permissions List field by invoking file_management of the file FILE ID with the
users provided in the args parameter.

If all these stepsoccurwithout interruption, the transaction is consideredvalidandcommitedon theblockchain.

Test 2: Invalid Share Agreement Creation

Pre-Requisite: No File Asset Registration or not enough arguments.
Expected Result: No commit of Share Agreement and failed transaction.

The request payload for this test is presented in Table 7.5. If the user does not provide a valid number of ar-
guments from the args parameter, the transaction will fail because the first check on every function of every
smart contract is to verify the number of arguments in args parameter.

Invalid creation of a Share Agreement occurs by twomethods.

1. The user provides a correct number of arguments and an existing FILE ID either by an accidental action
or malicious intention. This will cause the transaction to fail on step 2, since the smart contract will not
grant unauthorized alterations on file data or access control over it. In order to do so, the malicious user
would require to have ownership over file asset identified by FILE ID which must be done by the smart
contracts with the original owners credentials or the owner changing the ownership. Additionally the
error message is simply a transaction fail message. It will not explicitly say if the FILE ID exists or not.

2. The user submits an non existing FILE ID, which will make the transaction to fail at step 1. Additionally
the error message is simply a transaction fail message. It will not explicitly say if the FILE ID exists or
not. The error message is the same as the previous method.

Test 3: Automatic and Manual Revocation of Access

Pre-Requisite: File Asset registration of FILE ID and a Share Agreement of FILE ID
Expected Result: Commit of updated share agreement with Terminated field set to true.

Termination of a contract is one of twomethods: manual or automatic. Manual termination requires a transac-
tion proposalwith the request payloaddescribed in Table 7.6, where it performs a validity check before granting

84 CHAPTER 7. EXPERIMENTAL EVALUATION

Request Fields Request Values
chaincodeId ’access_requests’

fcn ’createRequest’
args [”FILE_01”, ”GET”]

chainId ’mychannel’
txId txId

Table 7.7: Request Payload for Access Request creation

a revocation,which ismadebyan internal call tofile_management todetermine ifFILE IDexists and if the in-
voker is the owner of said file. If it is not true, the transactions fails. But if these steps succeed then Terminated
is set to true and the transaction is flagged as valid.

The second method is automatic. In table 7.5, the contract created has a timespan of 60 minutes. After 60
minutes it is no longer valid, and, when possible, change Terminated field from false to true. This requires a
transaction proposal to change this field. But it is not of vital importance, because the timestamp comparisons
will always be checked until an update occurs.

7.2.4 Access Requests Tests

In order for an access request to be processed it must come from a registered user. The FILE ID must be
registered and the transaction proposal for an access request must be submitted by either a owner of the file
asset or user with access permissions. Follows a series of test cases that range from expected behaviour to
unexpected behaviour.

Test 1: Valid Access Request Creation

Pre-Requisite: File asset registration and/or Smart Contract registration if user is not an owner.
Expected Result: UID is returned and status is pending confirmation from repository.

Table 7.7 presents the request payload for the creation of an access request in order to fetch data froma storage
provider. Upon request payload, when received by the smart contracts the following checks occur:

1. Check valid Share Agreements with the user userId for FILE ID in question and if found check the op-
eration GET matches the value in Can Modify in the share agreement.

2. If no Share Agreement are found, it may mean the user is the owner of the file.

3. Check for ownership of the file using file management smart contract.

If step 1 or step 3 returns true, a valid UID is generated and the status of the access request is modified to
pending. Awaiting storage provider confirmation.

Test 2: Invalid Access Request Creation

Pre-Requisite: File asset registration missing, and/or Smart Contract expired or was terminated.
Expected Result: Transaction succeeds but logs status field with value of ACCESS_DENIED for the request.

7.2. TEST CASES 85

Request Fields Request Values
chaincodeId ’access_requests’

fcn ’validateRequest’
args [uid, HTTP_REQUEST]

chainId ’mychannel’
txId txId

Table 7.8: Request Payload for Access Request validation

Table 7.7 presents the request payload for the creation of an access request. An access request creation fails
due to two reasons:

• There is no valid smart contract at the time corresponding to FILE ID in which the user is part of.

• The operation does not match value in Can Modify?.

• User is not the owner of FILE ID.

At the moment of creation of an access request, the smart contract will determine first if there are any valid
Share Agreement with the FILE ID and userId that matches the invoker and the operation. If no contract is
found, the contract checks for ownership of file via file_management. If no ownership is found then it flags
the request as invalid but validates the transaction for the owner to know who has been illegally attempting to
access his file.

Test 3: Valid Access Request Confirmation

Pre-Requisite: Users sends UID using request payload presented in Table 7.7.
Expected Result: status field value is modified to ACCEPTED and file is returned.

Table 7.8 presents the request payload for validation of an access request. A repository application upon re-
ceiving a valid request three conditions must be verified.

1. Check if the operation submitted matches the http request received.

2. Check if UID exists and has not been used before.

3. Check if UID is not over the time limit.

4. Check if UID still matches an owner or valid Share Agreement with the is Owner? flag.

If any of those steps fails, the smart contractmodifies status to ACCESS_DENIED, the transaction is committed
and the request process stops there.

Test 4: Timeout

Pre-Requisite: Users sends UID 60s after it was generated.
Expected Result: status field value modified to ACCESS_DENIED and no file is returned.

86 CHAPTER 7. EXPERIMENTAL EVALUATION

Request Fields Request Values
chaincodeId ’access_requests’

fcn ’createRequest’
args [”FILE_01”, ”UPLOAD”]

chainId ’mychannel’
txId txId

Table 7.9: Request Payload for Access Request creation

Request Fields Request Values
chaincodeId ’access_requests’

fcn ’validateRequest’
args [uid, ”GET”]

chainId ’mychannel’
txId txId

Table 7.10: Request Payload for Access Request validation

The request for this test is presented in Table 7.8. Timeout only occurs with a valid UID had been generated.
Upon generation a user has 60 seconds to use it or at the time of usage, the smart contract access requests
is automatically determine if it has been over time limit or not.

When the user submits the UID via URL parameter, it is received by the storage provider which in turn checks
the blockchainwith the previous request payload. The access_request smart contract will fail at step 2 of the
previous enumeration and flag the status field value with ACCESS_DENIED.

Test 5: Revocation of Access

Pre-Requisite: Valid Share Agreement of FILE ID but with read-only access.
Expected Result: The request is denied and the share agreement is terminated and transaction is flagged as
valid.

Revocation of access can happen either when the client applications submits a transaction proposal with the
payload presented in Table 7.9 or when a Repository Application receives the UID and compares the operation
submitted by the client application presented in Table 7.7 does not match the HTTP request of GET presented
in Table 7.10, as presented in Figure 6.5.

An update on the data canonly occur if the share agreement for the givenFILE IDhas the fieldCan Mofify to
true. If the request payload presented in Table 7.9, the access_requests smart contract will firstly determine
if there is a valid share agreement for FILE_01, assuming this returns true, it then checks if the operation being
conducted is possible. If it is not, the smart contract determines a violation and terminates the contract.

7.3 Evaluation

Various tests were conducted which approached several situations, the results from these tests were as ex-
pected which proved to be satisfying results.

Although these tests only assumed one storage provider registered in the network, which in turn facilitated the
testing process because of only focusing on one storage provider instead of many, it was considered to be an

7.3. EVALUATION 87

overall success where expectations were achieved. Addingmore storage providers would certainly increase the
testing.

8
Conclusions and Future Work

In this chapter we present the conclusion of the work done in this dissertation as well as the future
work.

The work described in this dissertation implements a data sharingmechanism solely based on the blockchain,
introducing new concepts that are deemed disruptive and are the focus of the development of this work. The
concepts are Blockchain and Smart Contracts, which are explained in depth in Chapters 3 and 4. Due to the
nature of the applications of the project and the need for an identity based blockchain, to identity participants
so the owner of the data can be clearly identified as well as as the users with access permission. A private
blockchain implementation was the basis for this project, as explained in Chapter 5.

The ultimate goal of this work was to create a proof of concept where users are able to share the data in cloud
storage providers having as little interaction as possible in order to shift the focus, decision power and busi-
ness logic to the blockchain network, but must be stated that during the development and as stated in Section
7.3, only one storage provider was considered and a very simple one. Instead of having an interaction with the
storage provider and having the storage provider handling every aspect related to the data of the user, or have
additional services controlled by the provider, the user has an interaction with a decentralized network which
provides uncensored, tamper proof information about the data sharing access and additionally, controlled by

89

90 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

the user and enforced, maintained and validated by the smart contracts. As importantly, besides the user con-
trolling the access control via a decentralized network, it also provides a complete record of every interaction
madewith the data by any user approved solely by the owner, which both the data andusersmust be registered
and identified in order to interact with it.

In Chapter 6 we described the decision process while developing a data sharing mechanism controlled by the
user and validated by the smart contracts of the network. To do so there was the need for three smart contracts
to describe the logic of creating an asset, creating a share agreement and finally create an access request for
interactionbetweenusers and storageproviders. Aside from the smart contracts, applications that interactwith
these smart contracts were also created and developed which allow users to freely interact with it.

Various tests cases were described in Chapter 7 showing the results of the developed project, which provides
only authorized modifiable states and access control based on blockchain. Providing output for the owner or
any other user to seewho is accessing the data, who is altering the data, for how long can other users access the
data, andwithwhat permissions. This is achievedwith a decentralized blockchain network and smart contracts
to handle all the business logic. The objectives stated in Chapter 1 can be deemed fulfilled. This project was
more shifted to theunderstandingof theBlockchainandSmartContracts capabilitiesas the twomost important
components. This also allowed to reduce the centralization of the data mechanism from the storage providers
and putting into the hands of the blockchain network.

Comparing the initial versionand the final versionof thisdissertation the focuswas shiftedmore towardsBlockchain
and Smart Contracts then that of Clouds, where in testing, as described in Chapter 7, it was used an application
with very simple storage capabilities. However, the data sharingmechanismworked as expected and the goals
of this work were achieved, although certain additional points are in need of some improvement, which are
described in Section 8.1.

8.1 Future Work

Although the work describe in this work achieve the proposed goals, it can improved in many areas. Some of
this areas include:

• Implementation of data encryption method for cloud hosting. It was studied a few approaches on data
sharing encryption for cloud hosting and sharing.

• Hyperledger Fabric is all about identity over anonymity, a concept to improvewould the in the area of the
Membership Service Providers in order to improve overall identity and distinction between users, storage
providers and any other identity deemed necessary.

• Incorporate private transactions as these were introduced in a later version of Hyperledger Fabric.

• Additional channel setup. In this dissertationa single channelwas setup. Anobvious improvementwould
to be to have applications with the option of setting upmore channels, regarding the applications stated
in Chapter 6.

• Expand to multiple Storage Providers. In the describe work, only one storage provider was considered.

• Optimization and Code Quality. regarding smart contracts efficiency this would permit serving a great
number of requests and query optimization by using indexes and other database optimization tools to
make the network scale in greater numbers. And as important, increased testing in order to discover and
fix possible loopholes and security flaws missed during the development process.

Bibliography

[ABC+18] Nicola Atzei, MassimoBartoletti, TizianaCimoli, Stefano Lande, andRoberto Zunino. Sok: unraveling
bitcoin smart contracts. In International ConferenceonPrinciples of Security andTrust, pages 217–242.
Springer, 2018.

[ADK+17] Mazhar Ali, Revathi Dhamotharan, Eraj Khan, Samee U Khan, Athanasios V Vasilakos, Keqin Li, and
Albert Y Zomaya. Sedasc: secure data sharing in clouds. IEEE Systems Journal, 11(2):395–404, 2017.

[AEVL16] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec: Using blockchain for medi-
cal data access and permission management. In Open and Big Data (OBD), International Conference
on, pages 25–30. IEEE, 2016.

[Amm16] Saifedean Ammous. Blockchain technology: What is it good for? 2016.

[B+02] Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

[B+13] Vitalik Buterin et al. Ethereumwhite paper, 2013.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437,
2017.

[blo] Blockchain. https://www.blockchain.com/pt/. Accessed October 2, 2018.

[Cac16] Christian Cachin. Architecture of the hyperledger blockchain fabric. InWorkshop onDistributed Cryp-
tocurrencies and Consensus Ledgers, 2016.

[CCT+14] Cheng-Kang Chu, Sherman SM Chow, Wen-Guey Tzeng, Jianying Zhou, and Robert H Deng. Key-
aggregate cryptosystem for scalable data sharing in cloud storage. IEEE transactions on parallel and
distributed systems, 25(2):468–477, 2014.

[CD16] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart contracts for the internet
of things. Ieee Access, 4:2292–2303, 2016.

[cid] GoDoc - cid package. https://godoc.org/github.com/hyperledger/fabric/core/
chaincode/lib/cid. Accessed July 10, 2018.

[CPVK16] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, and Vignesh Kalyanaraman. Blockchain tech-
nology: Beyond bitcoin. Applied Innovation, 2:6–10, 2016.

91

92 BIBLIOGRAPHY

[DAK+16] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi. Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab. In International Con-
ference on Financial Cryptography and Data Security, pages 79–94. Springer, 2016.

[dbc] Interview with Gavin Wood. Accessed September 16, 2018.

[dpo] What is delegated Proof of Stake? Accessed September 16, 2018.

[eth] Ethereum Project. https://www.ethereum.org/. Accessed 15 February, 2018.

[gnu] Guard, GNU Privacy. Accessed October 5, 2018.

[Gua] GNU Privacy Guard. Encrypt files on Linux.

[Gup17] Manav Gupta. Blockchain for dummies. John Wiley & Sons, 2017.

[hfw] Hyperledger Fabric Write Your First Application. https://hyperledger-fabric.readthedocs.
io/en/release-1.0/write_first_app.html. Accessed April 10, 2018.

[Hyp18] Hyperledger. hyperledger-fabricdocs documentation. Technical report, Linux Foundation, 2018.

[Kas17] Preethi Kasireddy. Ethereum how it works, anyway? https://medium.com/
@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369, 2017. Accessed 15
February, 2018.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-
published paper, August, 19, 2012.

[Lew15] Antony Lewis. A gentle introduction to blockchain technology. Brave New Coin, 2015.

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 528–547. Springer, 2015.

[Nak] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

[pro] Ethereum Proof of Stake FAQs. https://github.com/ethereum/wiki/wiki/
Proof-of-Stake-FAQs. Accessed October 17, 2018.

[shi] GoDoc - shim package. https://godoc.org/github.com/hyperledger/fabric/core/
chaincode/shim. Accessed February 15, 2018.

[sia] Sia. https://sia.tech/. Accessed February 15, 2018.

[sto] Storj. https://storj.io/. Accessed 15 February, 2018.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 507–527. Springer, 2015.

[Sza97] Nick Szabo. Formalizing and securing relationships on public networks. First Monday, 2(9), 1997.

[TNV18] ParthThakkar, SenthilNathan, andBalaji Vishwanathan. Performancebenchmarkingandoptimizing
hyperledger fabric blockchain platform. arXiv preprint arXiv:1805.11390, 2018.

[VC14] David Vorick and Luke Champine. Sia: Simple decentralized storage. 2014.

[Vuk17] Marko Vukolić. Rethinking permissioned blockchains. In Proceedings of the ACM Workshop on
Blockchain, Cryptocurrencies and Contracts, pages 3–7. ACM, 2017.

BIBLIOGRAPHY 93

[WLB14] Shawn Wilkinson, Jim Lowry, and Tome Boshevski. Metadisk a blockchain-based decentralized file
storage application. Technical Report. Technical Report, 2014.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project
yellow paper, 151:1–32, 2014.

[XSA+17] Qi Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin Gao, Xiaojiang Du, and Mohsen
Guizani. Medshare: Trust-less medical data sharing among cloud service providers via blockchain.
IEEE Access, 5:14757–14767, 2017.

[XSS+17] Qi Xia, EmmanuelBoatengSifah, AblaSmahi, SandroAmofa, andXiaosongZhang. Bbds: Blockchain-
based data sharing for electronic medical records in cloud environments. Information, 8(2):44, 2017.

[ZN+15] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect personal data. In
Security and Privacy Workshops (SPW), 2015 IEEE, pages 180–184. IEEE, 2015.

[ZRL+10] Gansen Zhao, Chunming Rong, Jin Li, Feng Zhang, and Yong Tang. Trusted data sharing over un-
trusted cloud storageproviders. In 2nd IEEE International ConferenceonCloudComputingTechnology
and Science, pages 97–103. IEEE, 2010.

