

ALTERAÇÃO DE TEMPERATURA DO SOLO ASSOCIADA A VARIAÇÕES DE INTENSIDADE DE FONTES INTERNAS

Maria Rosa Duque

mrad@uevora.pt

Universidade de Évora, Rua Romão Ramalho, 59, 7000 Évora, Portugal

1. INTRODUÇÃO

A temperatura medida no solo , abaixo da superfície, resulta das transferências de energia térmica proveniente do Sol , propagando-se por condução até ao ponto onde é feita a medição, e energia térmica proveniente do interior da Terra, propagando-se por condução em sentido oposto. Iremos falar apenas desta última transferência de energia..

. As fontes térmicas no interior da Terra são essencialmente energia proveniente de zonas mais internas, relacionada com o processo de formação e desenvolvimento do planeta e fontes radioativas (²³⁵U, ²³⁸U, ²³²Th e ⁴⁰K) que se localizam principalmente nas camadas mais externas (crusta).

Iremos considerar como épocas de referência do nosso estudo a época atual (época do *Homo Sapiens*) e a época dos *Australopithecus* que ocorreu a aproximadamente 4 milhões de anos.

2. DIMINUIÇÃO SECULAR DO FLUXO DE CALOR DO MANTO

A diminuição secular do fluxo de calor proveniente do manto pode ser estudada através de uma expressão do tipo

$$Q_{m}(t) = Q_{mo} e^{(-\alpha t)}$$
 (1)

Sendo t o intervalo de tempo considerado desde o instante inicial e α é a constante de decaimento. No nosso estudo iremos considerar $\alpha = 3 \times 10^{-9}$ anos (Jaupart e Mareschall, 2011).

Analisando esta expressão podemos concluir que, há aproximadamente 1x 10⁹ anos o fluxo de calor proveniente do manto seria aproximadamente o dobro do que é atualmente.

Na litosfera continental espessa, a escala de tempo para o transporte de calor é da ordem das meias vidas do Urânio Tório e Potássio, e, portanto, as temperaturas não estão em equilíbrio com a taxa instantânea de geração na fonte. Por este facto, a espessura da litosfera é um fator muito importante quando se estuda a propagação das perturbações de temperatura.

Na tabela 1 são apresentados dados correspondentes a diferentes épocas associadas ao aparecimento de diferentes antecessores do *Homem Sapiens*.

TABELA 1. Variação secular do fluxo do manto, considerando valores atuais de 25 e 30 mW m⁻²

Δt (anos)	Espécie	$Q_{m} = 25 \text{ mW m}^{-2}$	$Q_{\rm m} = 30 \text{ mW m}^{-2}$
13X 10 ⁶	Primeiros primatas	25,99	31,19
4 X 10 ⁶	Australopithecus	25,30	30,36
3×10^5	Homo Sapiens	25,02	30,03

3. DIMINUIÇÃO DAS FONTES RADIOATIVAS NA CRUSTA

A distribuição de fontes de calor na crusta é muito difícil de obter devido a problemas de heterogeneidade química, dimensão de grãos, tipos de fronteira, etc. Na TABELA 2 encontram-se os isótopos radioativos considerados no estudo das fontes térmicas, as sua meias-vidas e o calor associado ao decaimento dos isótopos radioativos considerados. A produção atual de calor de vido ao decaimento destes isótopos numa dada amostra de rocha, pode obter-se por (Jaupart and Mareschall, 2011)

$$H = 10^{-11} (9,52 [U] + 2,56 [Th] + 3,48 [K])$$
 (2)

sendo [U] e [Th] as concentrações do Urânio e Tório, em p.p.m. e [K] é a concentração do Potássio, em %. A produção de calor por unidade de volume da rocha obtém-se multiplicando H por ρ (a densidade da rocha).

5. REFERÊNCIAS

---Jaupart, C. and. Mareschal, J.-C. "Heat Generation and Transport in the Earth" Cambridge University Press, pp. 357-378, 2011.

- Rybach, L. 1988. Determination of heat production rate. Pages 125-142 of: Haenel, R, Rybach, L. and Stegena, l. (eds) *Handbook of Terretrial Heat Flow Density Determination*, Kluwer (Netherlands)

TABELA 2. Principais isótopos radioativos existentes na Terra, meias vidas e produção de calor por unidade de massa de isótopo (Rybach,1988)

Isótopo	Meia-vida (anos)	Produção de calor por unidade de massa (W/ Kg)
238U	4,46 X10 ⁹	9,17 X 10 ⁻⁵
235U	7,04 X10 ⁸	5,75 X 10 ⁻⁴
²³² Th	1,40 X10 ¹⁰	2,56 X 10 ⁻⁵
⁴⁰ K	1,26 X10 ⁹	2,97 X 10 ⁻⁵

3.1 EXEMPLO 1

Os valores obtidos numa amostra são:

U = 6,12 p.p.m.; Th = 23,43 p.p.m.; K = 4,04 %

A geração atual de calor e a gerada há 4 milhões de anos para densidades de rocha de 2700 e 2800 Kg / m³ são:

Δt (anos)	Calor gerado (W/Kg)	Calor gerado (μW/ m ³) ρ=2700 Kg / m ³	Calor gerado (μW/ m ³) ρ=2800 Kg / m ³
0	132,32 X 10 ⁻¹¹	3,573	3,705
$4X10^{6}$	132,56 X 10 ⁻¹¹	3,579	3,712

3.2 EXEMPLO 2 – Modelo de crusta média

Crusta superior – Espessura 12 Km – Densidade 2700 Kg / m³

[U] = 2,7 p.p.m.; [Th] = 10,5 p.p.m.; [K] = 2,33 %

Δt (anos)	Calor gerado (W/Kg)	Calor gerado (µW/ m³)	Fluxo gerado na crusta (mW/m²)
0	60,712 x 10 ⁻¹¹	1,639	19,668
4X10 ⁶	60,751 x 10 ⁻¹¹	1,643	19,716

Crusta média- Espessura 11 Km – Densidade 2850 Kg / m³

[U]= 1,3 p.p.m.; [Th]= 6,5 p.p. m.; [K] = 1,92 %

Δt (anos)	Calor gerado (W/Kg)	Calor gerado (µW/ m³)	Fluxo gerado na crusta (mW / m²)
0	35,697 x 10 ⁻¹¹	1,017	11,191
$4X10^6$	35,723 x 10 ⁻¹¹	1,018	11,198

Crusta inferior - Espessura 17 Km – Densidade 2850 Kg / m³

[U] = 0,2 p.p.m.; [Th] = 1,2 p.p.m.; [K] = 0,5 %

Δt (anos)	Calor gerado (W/Kg)	Calor gerado (µW/ m³)	Fluxo gerado na crusta (mW / m²)
0	6,751 x 10 ⁻¹¹	0,192	3,264
4X10 ⁶	6,757 x 10 ⁻¹¹	0,193	3,281

Fluxo gerado em toda a crusta -34,123 mW/ m² $\cdot 34,195$ mW/ m² Fluxo gerado crusta+ manto -(25+34,123) mW/ m² $\cdot (25,3+34,195)$ mW/ m²

Diferença entre valores -0.372 mW/m^2

Se considerarmos uma camada de ar com 5 cm de espessura, junto ao solo num dia sem vento, este aumento de fluxo seria responsável por um aumento de temperatura de cerca de 0,3° C.

4. CONCLUSÕES

- -- Os resultados obtidos permitem-nos deduzir que, no passado, as fontes de calor na crusta teriam sido mais elevadas que as actuais originando temperaturas mais elevadas na crusta.
- -- O conteúdo e distribuição heterogénea das fontes de calor faz com que seja difícil determinar com rigor a influência da sua variação.
- -- Os valores das variações a nível do fluxo do manto são relativamente elevados mas o intervalo de tempo necesário para se propagarem na crusta faz com que seja difícil obter o seu valor à superfície numa época definida.
- -- O exemplo apresentado permite-nos concluir que ascamadas de ar junto ao solo principalmente em dias sem vento, sofreriam aquecimento passível de alterar a sua densidade.