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Abstract: This paper presents a simulation of onshore energy conversion system connected to the 

electric grid and under an event-based supervisor control based on deterministic version of a finite 

state machine. The onshore energy conversion system is composed by a variable speed wind turbine, 

a mechanical transmission system described by a two-mass drive train, a gearbox, a doubly fed 

induction generator rotor and by a two-level converter. First, mathematical models of a variable 

speed wind turbine with pitch control are studied, followed by the study of different controller types 

such as adaptive controllers and predictive controllers. The study of an event-based supervisor based 

on finite state machines is also studied. The control and supervision strategy proposed for the onshore 

energy conversion system is based on a hierarchical structure with two levels, execution level where 

the adaptive and predictive controllers are included, and the supervision level where the event-based 

supervisor is included. The objective is to control the electric output power around the reference 

power and also to analyze the operational states according to the wind speed. The studied mathematical 

models are integrated into computer simulations for the onshore energy conversion system and the 

obtained numerical results allow for the performance assessment of the system connected to the electric 

grid. A comparison of the onshore energy conversion system performance without or with the supervisor 

is carried out to access the influence of the control and supervision strategy on the performance. 

Keywords: adaptive control; model predictive control; wind energy; event-based supervisor; 

performance assessment; onshore; finite state machine 
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1. Introduction 

The increase in the use of renewable energy sources combined with energy efficiency measures 

has reduced consumption and imports of fossil fuels and has consequently contributed to increase the 

representativeness of renewable energies in final energy consumption. The overall capacity of all 

wind turbines installed worldwide by the end of 2017 reached 539 GW [1]. The annual onshore and 

offshore wind installations achieved, respectively, 12.5 GW and 3.1 GW in EU. There are differences 

between onshore and offshore exploitation of wind energy, mostly due to the: the wind speed is 

relatively more stable at offshore than at onshore; the wind speed at offshore is about 20% higher 

than at onshore. Both these differences imply that the utilization rate is higher at offshore than at 

onshore. Economically wind energy conversion systems at offshore tend to have larger capacity and 

benefit from lager areas than the limited and mostly occupied areas at onshore. But, some issues 

must be regarded with caution, for instance, regarding preservation of fishing, boat navigation, ocean 

habitat and species, marine conservation zone, landscape view from land to sea and vice versa. 

Higher reliability, resistant to corrosion due to the difficulties and costs of maintenance or repairing 

at offshore and consideration of action of sea waves on wind energy conversion systems are needed. 

Turbines need to be designed to take advantage of the higher level of the wind speed, i.e., the design 

must consider a higher value for the cut-out wind speed: the wind speed at which the wind turbine 

shuts down to prevent mechanical damage of the structure. Foundations work at offshore are more 

expensive, than on onshore where the process uses either rods drilled into the ground or a reinforced 

concrete pad set in the ground. Turbines need to be designed to take advantage of the higher level of 

the wind speed at offshore, i.e., the design must consider a higher value for the cut-out wind speed: 

The wind speed at which the wind turbine shuts down to prevent mechanical damage of the structure. 

Foundations work at offshore are more expensive, than on onshore where the process uses either rods 

drilled into the ground or a reinforced concrete pad set in the ground. 

The technology applied on wind energy conversion systems having variable-speed and 

variable-pitch (VSVP) has been reported in literature due to advantageous energy capturing [2,3]. 

Also, amongst the electrical generators available for equipping wind turbines having VSVP, doubly-fed 

induction generator (DFIG) stands out in industry and became the mainstream choice [4,5]. 

Control system architectures are necessary to improve the quality of electrical energy delivered 

into the electric grid. Pitch control is widely used to ensure the best performance during the capture 

of energy under all operational wind scenarios [6–8]. Control strategies have to deal with unforeseen 

variables such as wind speed variability and intermittence, to achieve the goal of an overall 

acceptable performance. Various control techniques are used by researchers in the architecture of 

control strategies, amongst a wide variety of control types, some are mentioned here: Robust 

multivariable gain-scheduled control [9], fuzzy proportional integral [10], adaptive linear quadratic 

control [11], data-driven and adaptive PI control [12], sliding-mode control [13]. 

A suitable design for control and supervision under the unpredictable character of the wind 

energy is challenge in order to maximize power output. Thus, the controller needs to have access to 

the variables generator speed and pitch angle. The performance during the capture of wind energy is 

a prominent issue and has been dealt not only by research on turbine design and advanced control 

strategy, but also by condition monitoring using a supervisor. Some works addressed this issue, such 
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as: Classification of wind turbine condition monitoring methods and techniques with a focus on 

trends and future challenges [14], supervisory control and data acquisition system [15]. The 

supervisory control theory is behind the architecture proposed in this paper and is suitable for control 

application with event-based operations as can be seen in previous works [16,17]. 

This paper presents the following contributions: A two-level control architecture, consisting in a 

supervisory level (event-based supervisor) and an execution level (LQG and MPC controllers); a 

study and implementation of adaptive controllers and predictive controllers; a study of an 

event-based supervisor, having the objective of determining the most suitable operational state 

among the possible states; a simulation of the system with the distinct types of controllers with and 

without the presence of an event-based supervisor; and an evaluation of the system performance 

driven from the assessment of the results obtained with the action of each controller. In the overview 

of this paper, Section 2 presents the onshore energy conversion system modelling, Section 3 presents 

the control and supervision strategy applied to the system, namely the LQG, MPC in the execution 

level, an event-based supervisor in the supervision level and is also defined the operating regions 

according to the wind speed. Section 4 presents the simulation results as well the performance of the 

system without and with supervisor. Conclusions remarks are given in Section 5. 

2. Onshore energy conversion system modelling 

A mathematical model representing an appropriate and thorough dynamic of an onshore energy 

conversion system is developed in this section. The development of the mathematical model is based 

on the benchmark model developed in [19], whose electric power output is 4.8 MW. The proposed 

control and supervision hierarchical structure is represented by a block diagram model composed by 

the following functional systems: Mechanical system (blade-pitch angle and two-mass drive train), 

controllers (LQG and MPC), electrical system (generator and two-level converter) and event-based 

supervisor. The block diagram model shown in Figure 1, is composed by the following variables: vw 

is the wind speed in m/s, g  and r  are the generator and turbine rotor torques in Nm, g  and r  

are the generator and turbine rotor speed in rad/s, r  is the pitch angle in degrees, gP  and rP  are 

the generator and reference power in MW. The r and m subscripts designate respectively reference 

and measurements values. 
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Figure 1. Proposed block diagram model. 

2.1. Blade and pitch modelling 

This model combines the aerodynamic with blade and pitch models. The aerodynamic torque is 

given by: 
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          (1) 

Where R is the radius of the blades,   is the air density,  ( ), ( )pC t t   is the power 

coefficient, which is a function of the tip speed ratio ( )t  and the pitch angle ( )t . The tip speed 

ratio is given by: 
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From Eq 2, variations of the wind speed can lead to two consequences: 

a) If the turbine rotor speed is held constant, then λ(t) will change, leading to a consequent 

change in the power coefficient; 

b) If the turbine rotor speed is suitably adjusted, then λ(t) can be held at a reference point and as 

a result power coefficient can be kept at a desired value. 

The power coefficient of a wind turbine using pitch control [20–23] is given by: 
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The pitch angle can be modelled as a second order differential equation given by: 

2 2( ) 2 ( ) ( ) ( ) ( )n n n rt t t t t                (4) 

2.2. Drive-train modelling 

The mechanical drive train is composed by two shafts, a low-speed shaft from the rotor side, a 

high-speed shaft from the generator side, connected by a transmission equipped with a gear box. The 

two-mass drive train is shown in Figure 2. 
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Figure 2. Two-mass drive train model. 

The mathematical model to describe the dynamic of the drive train is a two-mass model. On 

the rotor side, the mass Jr concentrates the inertia of the hub, turbine blades and low-speed shaft 

inertia. On the generator side, Jg concentrates the generator inertia and high-speed shaft. The 

low-speed shaft and high-speed shaft are connected by a gear box with a ratio Ng. The torsion 

shaft stiffness is Kdt and torsion shaft damping is Bdt. The angular deviation due to the damping 

and stiffness coefficients between the turbine and the generator is ( )t . The linear model for the 

drive train model is given by: 
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2.3. Generator and converter modelling 

The model for the generator and the power converter is described by the state equation given by: 

,( ) ( ) ( )g gc g gc g rt t t              (8) 

Where 
gc  is a first order constant and 

,g r  is the reference torque of the generator. The 

power of electric generator is given by: 

( ) ( ) ( )g g g gP t t t             (9) 

Where g  is the efficiency of the generator. 
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3. Control and supervision strategy 

The onshore energy conversion system components, the wind speed and the wind turbulence, 

the tip speed ratio and the pitch angle are some of the variables considered in the control design to 

achieve the rated power with an acceptable overall performance. In this paper two distinct controller 

are considered, adaptive and predictive. The control and supervision strategy are based on the 

switching from Region II (constant-pitch, generator torque control) to Region III (variable-pitch control, 

constant torque). Region II (wind speed is between 5 m/s and 13 m/s) and Region III (wind speed is 

between 14 m/s and 22.5 m/s) can be seen at the regions of power operation as shown in Figure 3. 

 

Figure 3. Operating regions of power [18]. 

Figure 3 shows that in Region II, the control objective is to extract optimal power reducing 

oscillation on the drive train, thus torque control is applied. The pitch angle and tip speed ratio are set 

to their optimal value to achieve this control objective and the rotor speed must be adjusted to the 

reference rotor speed given by: 
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The optimal electric generator torque is given by: 
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Where 
opt  is the optimal point for achieving maximum CP and A is the area swept by the blades. 

Figure 3 shows that in Region III, the control objective is to control the output generator power 

through pitch control. To achieve this control objective, the pitch angle varies according the error 

between nominal speed and the output generator speed. The pitch reference and generator torque 

reference should be adjusted at the same time and the latter is given by: 
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Switching between Region II and Region III is determined by the electric generator power, Pg, 

and the generator speed, 
g , the control mode switching is performed according to the following 

conditions: Switching from Region II to Region III is enabled if 
g r g nomP P and     and 

switching back from Region III to Region II is enable if 
g nom    . The non-null threshold   

is required to enable preventing sudden switches from Region III and Region II. 

3.1. Adaptive linear quadratic gaussian controller 

Discrete adaptive linear quadratic gaussian control (LQG) deals with unpredicted variables and 

the adaptation depends on estimation of parameter  ˆ k . Using recursive least squares algorithm, 

polynomials parameters from A1(z
−1

) and B1(z
−1

) can be estimated, obtaining parameters      

𝜃  𝑘 =  𝑎 11  𝑎 12  𝑏 11  𝑏 12 . The dynamic development of this controller is presented in [24]. The 

dynamical system of the onshore wind turbine benchmark around a nominal set-point r(k) is 

represented by an ARX model, thus the linear quadratic control transfer function is given by: 
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Where the Z-transform of the system output and control input are respectively Y(z) and U(z). 

The performance index H is given by: 

     
2 2

( ) ( ) ( )H k Py k d Qr k u k          (14) 

Where P and Q assume a unit value, the scalar 0.4   is chosen to achieve an acceptable 

closed-loop performance and optimal control u(k) minimizes performance index. 

The LQG pitch control structure is shown in Figure 4. 
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Figure 4. LQG pitch control structure. 
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3.2. Model predictive controller 

Model predictive controller [25] use the states of the blades and pitch model, drive train and 

nonlinear aerodynamics as input. By optimizing the best output according to the operating region and 

control objective, the model predictive controller generates reference values for 𝛽(k) and 𝜏g,r (k). 

From Eq 1 to Eq 9 a linear state space model representing the onshore energy conversion system 

dynamics at certain operating wind speed is given by: 
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∈  ℝ2 is the measured output. One important purpose in this region is to 

maintain the generator speed very close to the nominal speed with the least stress on the generator 

and pitch control system. To accomplish this objective, one must follow the mathematical 

formulation for the objective function, i.e., the cost function is given by: 
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In Eq 17 the cost function is associated with the prediction horizon, given by the periods j 

with j = 1,…, Np. The first term is a quadratic functional, weighted by matrix Q, of the difference 
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between reference ( )r k j  and predicted output ˆ( )y k j k  and is used for penalization of the 

error. Also, the second term is a quadratic functional, weighted by matrix R, measuring the control 

effort ( )u k j k . 

The MPC pitch control structure is shown in Figure 5. 

 

Figure 5. MPC pitch control structure. 

The optimization problem consists in the minimization of the cost function subjected to the 
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version of an FSM used in this paper has the state transition diagram shown by Figure 6. 

 

Figure 6. Supervisor. 

In Figure 6, the operational states are park, start, generating and brake, typifying the regions of 

power operation as follow: 

a) In the Park state, the wind turbine is in shutdown mode and the generator is disconnected 

from the electric grid. This state corresponds to Region I. 

b) In the Start state, the wind speed must be above the cut-in speed (vmin). The wind turbine 
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electric grid, but not necessarily at rated power in the majority of the operation in Region II. 
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to Region II. 
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rated wind speed (vrated) and the cut-out speed (vmax). The generator is connected to the 

electric grid at rated power, by conveniently curtailment of the capture of kinetic energy 

from the wind. This state corresponds to Region III. 

d) In the Brake state, also known as slow down state, the pitch angle is adjusted in order to 
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conditions, one can enter into the start state or into the park state. 

4. Results 
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wind speed with the addition of white noise is shown in Figure 7. 

 

Figure 7. Wind speed with white noise. 

4.1. Without supervisor 

The following figures represent the simulations of the controllers, LQG and MPC, without the 

presence of the event-based supervisor. The electric output and reference power of the LQG and the 

MPC controllers are shown in Figures 8a, b. 

(a)                             (b) 

 

Figure 8. Electric and reference power: (a) LQG; (b) MPC. 

In Figure 8 both controllers, the electric output power follows the reference power with some 
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of MPC are abilities to handle multivariable interactions and operating constraints in systematic 

manner. MPC is formulated as a constrained optimization problem, which is solved on-line 

repeatedly by carrying out model-based forecasting over a moving window of time. More 

importantly, MPC facilitates optimal control systems with unequal number of manipulated inputs and 

measured outputs. LQG provides a systematic approach to designing a control law for linear 
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multi-variable systems. However, some difficulties associated with the classical LQG formulation is 

inability to handle operating constraints explicitly. Operating constraints, such as limits on 

manipulated inputs or on their rates of change, limits on controlled outputs arising out of product 

quality or safety considerations, are commonly encountered in any control application. 

MPC can be viewed as modified versions of LQ (or LQG) formulation, which can deal with the 

operating constraints in a systematic manner. Origins of MPC can be traced to the classical linear 

quadratic optimal control (LQOC) formulation. These techniques, although have different 

mechanisms, are similar, thus, giving similar outputs. 

The LQG controller and the MPC controller pitch angles are shown in Figures 9a, b. 

(a)                            (b) 

 

Figure 9. Pitch angle: (a) LQG; (b) MPC. 

In Figure 9 LQG controller provides pitch angle variations between 7 degrees and 18 degrees. 

MPC controller provides pitch angle variations between 10 degrees and 65 degrees. 

The switching between Region II and Region III is shown in Figures 10a, b. 

(a)                           (b) 

 

Figure 10. Control switching: (a) LQG; (b) MPC. 

In Figure 10 Region II (0) corresponds to startup operational mode and Region III (1) 

corresponds to generation operational mode. Both controllers present, with some frequency, 

switching between Region II and Region III. 
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4.2. With supervisor 

The following figures represent the simulations of the controllers, LQG and MPC, with the 

presence of the event-based supervisor. The electric output and reference power of LQG and the 

MPC controllers are shown in Figures 11a, b. 

(a)                            (b) 

 

Figure 11. Electric and reference power: (a) LQG; (b) MPC. 

In Figure 11 MPC controller allows a smoother response around reference power, when 

compared to the one obtained with the LQG controller, however presents several peaks. 

The LQG controller and the MPC controller pitch angles are shown in Figures 12a, b. 

(a)                            (b) 

 

Figure 12. Pitch angle: (a) LQG; (b) MPC. 

In Figure 12 LQG controller pitch angle variation only occurs in a small interval of time 

reaching the maximum of 40 degrees. LQG controller contributes to less variation on the pitch angle. 

MPC controller provides pitch angle variations between 15 degrees and 25 degrees having one peak 

above 30 degrees. 

The switching between Region II and Region III is shown in Figures 13a, b. 
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(a)                            (b) 

 

Figure 13. Control switching: (a) LQG; (b) MPC. 

In Figure 13 the transition between the two operational states is due to the need of sustaining the 

electric output at the rated power. The LQG controller allows a less frequent switching between 

Region II and Region III, with permanence in Region III while MPC controller presents few 

switching between Region II and Region III. 

4.3. Performance assessment 

The metrics used in the evaluation of the performance of the controller are the integral of time 

multiplied by the absolute value of the error (ITAE) and the integral of the square value (ISV). The 

ITAE is given by: 

0
( )

ft

ITAE t e t dt           (19) 

And the ISV is given by: 

2

0
( )

ft

ISV u t dt            (20) 

The control performances for the WECS without or with supervisor control are summarized in 

Table 1. 

Table 1. Performance assessment results. 

Controller LQG MPC 

Without Supervisor 

ITAE 1.0792 × 10
15

 1.0886 × 10
15

 

ISV 1.0770 × 10
7
 1.4791 × 10

7
 

With Supervisor 

ITAE 7.0328 × 10
14

 7.0250 × 10
14

 

ISV 2.7171 × 10
5
 1.7276 × 10

7
 

In Table 1 considering the values obtained without the event-based supervisor, the error between 
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the electrical output and the reference power is smaller with the LQG controller, although with the 

MPC the error is close to that presented by the LQG controller. As far as the control effort is concerned, 

the LQG controller has a smaller error when compared to the MPC controller, consuming less energy. 

Considering the values obtained under the event-based supervisor, both controllers accomplish 

equivalent performance with respect to the error between electric output and reference power. 

Regarding the control action effort, it is observed that the lowest effort is obtained with the LQG 

controller while the MPC requires more energy to maintain the output power around reference power. 

5. Conclusion 

An onshore energy conversion system connected to the electric grid and under an event-based 

supervisor control is presented. The control and supervision strategy proposed for the onshore energy 

conversion system is based on a hierarchical structure with two levels. LQG and MPC controllers are 

in the execution level whereas the event-based supervisor is placed in the supervision level. 

The closed loop response between LQG and MPC without supervisor is quite similar, with 

abrupt variations around reference power. The pitch angle variations achieve lower amplitude values 

with the LQG controller. In terms of performance, LQG controller outperforms the latter at expense 

of lower control effort. 

The closed loop response with supervisor remains similar as the above one, with smoother 

variations around reference power. The pitch angle variations with LQG only occurs in a small 

interval of time reaching the maximum of 40 degrees. In terms of performance, LQG controller 

maintains superiority over MPC. 
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