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Introduction

This seventh number of the Microbiology Book Series published by Formatex Research
Center (Spain) offers the latest scientific results in microbiology research. Readers will find a
major collection of knowledge, approaches, methods and discussions on the latest advances
and challenges in microbiology research in a compilation of 32 chapters written by active
researchers using original research materials but presented in a way accessible to a public

beyond those ones who are specialists in the topic dealt.

Clearly, this is a truly inter- and multi-disciplinary edition. Thus, pieces of research works

dealing with very different academic fields were included in this book.

We hope readers will find this seventh number of the Microbiology Book Series interesting

and stimulating.

Enrique Torres-Hergueta and A. Méndez-Vilas, Editors

\
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Propolis is a resinous substance produced by honeybees with plant ingredients, which is used to fill gaps in the hive to
prevent the entry of undesirable visitors and to provide better thermal insulation. It has been used for centuries to treat
different pathologies and more recently became very popular in Europe due to its antibacterial activity.

Biofilm is a multi-layered cluster of bacteria embedded in an extracellular polysaccharide matrix, which is known to increase
bacterial ability to colonise inert materials and to protect bacteria from body defence mechanisms and antimicrobials,
contributing to the establishment of persistent infections. Bacteria of the genus Staphylococcus are responsible for a plethora
of infections in humans and animals and are the main etiological agents of mastitis in ruminants. The production of biofilm
by these bacteria increases their resistance to antimicrobials, greatly hindering the treatment of infections.

This study aims to investigate the in vitro activity of propolis ethanol extracts (PEE) against biofilms produced by
staphylococci isolated from the milk of small ruminants with mastitis. The inhibitory action on biofilm formation and the
PEE ability to eliminate established biofilms were evaluated.

Ten PEE were produced from seven samples of propolis harvested in several regions in Brazil (one green, two red and four
brown) and three samples collected in different regions in Portugal (all brown). These PEE were assessed for biofilm
formation inhibition and biofilm disruption ability on 45 biofilm producing Staphylococcus isolates (26 S. aureus, seven S.
chromogenes, four S. warneri, three S. auricularis, two S. simulans, one S. caprae, one S. capitis, and one S. epidermidis)
on polystyrene flat-bottom microtiter plates. All PEE showed antibiofilm activity against some Staphylococcus isolates.
Generally, PEE are more effective in inhibiting biofilm formation, than in destroying the formed biofilm.

According to these results, propolis deserves to be considered for the control of infections caused by biofilm producing
staphylococci.

Keywords: Staphylococcus; propolis; biofilm; mastitis.

1. Introduction

Propolis is a resinous mass, rich in flavonoids and other phenolic compounds, produced by honeybees Apis mellifera for
the protection of the honeycomb. Propolis may display different colours due to the biodiversity of plants used for its
production. It has earned the attention of many researchers due to its antimicrobial action (1-3), but also due to its
synergistic effect in combination with antibiotics (4). Besides antimicrobial activity, propolis has other biological
properties, like antiviral, antifungal, antitumor, anti-inflammatory and antioxidant ones, and is used in traditional
medicine since Antiquity (5-7). Recently antibiofilm activity of propolis has been described (3,8) and anti-quorum
sensing was also stated (9).

Inflammation of the mammary gland, known as mastitis, is a serious problem for milk producers, both bovine and
small ruminant, as it is responsible for lowering milk yield and quality (10). Staphylococcus spp. are recognized
worldwide as a frequent cause of intramammary infections in small ruminants (11-19). Some of these bacteria also
produce enterotoxins accountable for public health threats (20-22). Treatment and control of mastitis due to
Staphylococcus spp. is challenging due to antimicrobial resistance (22-24) and bacterial ability to produce biofilm
(26,27). Biofilm hampers mastitis control as it increases microbial survival and contribute to pathogens’ persistence in
the farm (25). Biofilm production has been considered responsible for antimicrobial resistance and for persistent mastitis
(28-33). Its major components are an exopolysaccharide matrix (slime), proteins and environmental DNA (eDNA) along
with the bacterial cells (34).

Propolis may replace or reduce the use of antibiotics in veterinary medicine due to its antimicrobial action, but also
due to its antibiofilm activity. This study aims at investigating the in vitro antibiofilm activity of propolis ethanol extracts
(PEE) against biofilm produced by staphylococci isolated from the milk of small ruminants with mastitis. The study
includes the assessment of PEE inhibitory action on biofilm formation and PEE ability to eliminate established biofilms.

2. Materials and methods
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2.1  Propolis ethanol extracts

Ten different batches of raw propolis, seven from Brazil (Green, Red1l, Red2, Brownl, Brown2, Brown3 and Brown4)
and three from Portugal (Brown5, Brown6 and Brown7) were collected in apiaries located in different regions with
different climates and vegetation (data not shown). Propolis ethanol extracts were prepared as follows (35). Cold
maceration of 300 g of raw propolis in 700 mL of 70% ethanol was performed, resulting in 30% PEE. The preparations
were kept at room temperature, protected from light, for 45 days. After this period, extracts were filtered through a sterile
funnel and filter paper. Extracts were kept refrigerated at 4°C, in amber bottles, until use.

2.2 Bacterial isolates

Forty-five biofilm producing Staphylococcus field isolates (26 S. aureus, seven S. chromogenes, four S. warneri, three S.
auricularis, two S. simulans, one S. caprae, one S. capitis, and one S. epidermidis) collected from different mammary
glands of sheep and goats, belonging to different flocks, with clinical and subclinical mastitis, were included in this study.
Milk samples were aseptically collected and immediately refrigerated until processed, within no more than 12 hours.
Bacteriological analyses were undertaken according to the National Mastitis Council methodology (36) and isolates were
identified to the species level using API-Staph (Biomérieux) or Vitek 2 Compac (Biomérieux).

2.3 Biofilm production

Biofilm production was assessed according to Merino et al. (37) with some modifications. Bacteria were grown overnight
in Trypticase Soy Broth (Oxoid, CM0129) with 1% glucose (TSBg) at 37°C. Bacterial cultures were diluted in sterile
TSBg until the turbidity reached 0.5 of the MacFarland scale (approximately 1 x 108 CFU/mL), according to the
turbidimeter reading (DensiChek, bioMérieux), and again diluted 1:20 to reach 5 x 10°® CFU/mL (38). One hundred
microliters of these suspensions were added to 100 pL of sterile TSBg in flat bottom sterile 96-well polystyrene microtiter
plates. A non-biofilm producer Staphylococcus epidermidis ATCC 12228 was used as negative control, S. aureus ATCC
25923 as positive control and non-inoculated TSBg as sterility control. Plates were incubated overnight at 37°C. The
wells were gently washed three times with 200 pL of distilled water, dried in an inverted position, and stained with 100 L.
0.25% gentian violet for 3 min at room temperature. Wells were rinsed again, 200 pL of alcohol-acetone (80:20) were
added and the optical density was read at 620 nm in an ELISA plate reader (BioRad). Each assay was performed in
triplicate and repeated three times. Results were recorded as follows: optical readings (OR) average value of the triplicates,
subtracting the average value for the negative control (NC) in the same microplate according to the following formula:

OD = (¥ ORI, OR2, OR3)/3 - (¥, NC1, NC2, NC3)/3)

No production of biofilm (isolate OD < negative control OD), weak biofilm formation (negative control OD < isolate OD
<2 X negative control OD), moderate biofilm formation (2 X negative control OD < isolate OD < 4 X negative control
OD) and strong biofilm formation (isolate OD > 4 X negative control OD).

2.4  Effect on biofilm formation

Isolates were grown overnight at 37°C in 3 ml TSBg and 5 x 10° CFU/mL suspensions were prepared. One hundred
microliters of these suspensions were added to 100 pL of half minimum bactericidal concentration (1/2 MBC) from each
PEE (diluted in TSBg) into each well of 96- well polystyrene flat-bottomed microtiter plates. The bactericidal activity of
the extracts towards the different isolates was previously determined (see Chapter “Antimicrobial action of propolis
extracts against staphylococci” in this book) and half MBC was used in this assay, so that bacteria wouldn’t be inactivated.
Non-inoculated TSBg was used as sterility control. After incubation for 24 h at 37°C, plates were washed and stained as
for the biofilm production assay. Absorbance was determined at 620 nm and the formation of biofilm was determined as
described previously. Each assay was performed in triplicate and repeated three times. These results were compared with
the results of the biofilm formation assay and the PEE inhibitory action on the biofilm formation was established as a
percentage of inhibition.

2.5 Effect on established biofilms

To evaluate the PEE ability to eliminate established biofilms, the same isolates were grown as biofilms using polystyrene
flat-bottomed microtiter plates. After 24 h of incubation at 37°C, the wells were washed three times with distilled water
and 200 pL of the corresponding half MBC of PEE were added. Non-inoculated MBC of each PEE for each isolate and
TSBg were used as sterility controls. After incubation on the regular conditions, microplates were again washed and
stained following the described procedure. Absorbance was determined at 620 nm and the formation of biofilm was
determined as described previously. Each assay was performed in triplicate and repeated three times. These results were
compared with the results of the biofilm formation assay and the PEE activity on the biofilm disruption was established
as a percentage.
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3. Results

3.1 PEE effect on biofilm formation

Nine PEE showed the ability to inhibit or stop biofilm-formation in 74.4% of the isolates analysed. The mean inhibition
for each PEE, varied between 52.6 and 86.1%. Brownl, 2 and 3 Brazilian PEE showed higher activity compared to the
Brown5, 6 and 7 Portuguese PEE, but Brown4 Brazilian PEE showed no activity against any of the tested isolates (Fig.
1).

0,0
Brown4
52,6
Brown6

71,0
76,2 Brown7
Redl
® Brown5
® Brownl

® Brown3

’ ‘ m Green
= Brown2

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0 mRed2
Inhibition Percentage

Fig.1 Mean inhibition percentage for each propolis ethanol extract.

Twenty-six S. aureus isolates were biofilm producers and only Brown2 PEE showed to inhibit biofilm formation of all
isolates. The percentage of biofilm inhibition for each S. aureus isolate ranged from 54.4 to 88.8%. Biofilm of S.
epidermidis ATCC 35984, used as a positive control, was susceptible to eight PEE and its percentage of inhibition varied
between 62 and 96.3% (Table 1).

Table 1 PEE effect on biofilm formation: number of isolates, and respective percentage, and mean inhibition percentage by species
for each PEE.

@ S 2 S

Isolates/Species 5 § g § § S g E 5

3 S 3 3 S 3 b ES 4

“ S Y “ S ) ; “ =

2 Y “ ]

=

N 26 3 1 7 1 2 4 45

Inhibited by PEE Green (N) 20 3 1 5 1 2 3 35
Inhibited isolates (%) 76.9 100.0 100.0 0.0 714 1000 100.0 75.0 779
% of Inhibition 88.8 73.6  100.0 0.0 854 65.1 569 764 683

Inhibited by PEE Red1 (N) 24 3 1 0 5 1 2 4 40
Inhibited isolates (%) 92.3 100.0 100.0 0.0 714  100.0 100.0 100.0 83.0
% of Inhibition 85.7 59.3 80.3 0.0 56.8 62.0 855 540 60.5

Inhibited by PEE Red2 (N) 23 2 1 1 6 1 1 3 38
Inhibited isolates (%) 88.5 66.7 100.0 100.0 857 100.0 50.0 75.0 83.2
% of Inhibition 85.8 92.1 81.0 80.3 91.0 95.1 98.5 71.7 86.9

Inhibited by PEE Brownl1 (N) 24 3 1 0 7 1 2 3 41
Inhibited isolates (%) 92.3  100.0 100.0 0.0 100.0 100.0 100.0 75.0 834
% of Inhibition 82.6 97.1 98.9 0.0 72.9 96.3 682 628 724

Inhibited by PEE Brown2 (N) 26 2 1 0 7 1 2 3 42
Inhibited isolates (%) 100.0  66.7 100.0 0.0 100.0 100.0 100.0 75.0 80.2
% of Inhibition 88.6 86.4 79.9 0.0 85.9 79.0 91.6 621 717

Inhibited by PEE Brown3 (N) 25 3 1 1 7 1 2 3 43
Inhibited isolates (%) 96.2 100.0 100.0 100.0 100.0 100.0 100.0 75.0 964
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% of Inhibition 78.5 91.5 99.5 82.9 83.3 69.9 83.8 778 834
Inhibited by PEE Brown4 (N) 0 0 0 0 0 0 0 0 0
Inhibited isolates (%) 0 0 0 0 0 0 0 0 0.0
% of Inhibition 0 0 0 0 0 0 0 0 0.0
Inhibited by PEE Brown5 (N) 23 1 1 0 7 1 0 1 34
Inhibited isolates (%) 88.5 333 100.0 0.0 100.0  100.0 0.0 25.0 559
% of Inhibition 842 48.0 90.7 0.0 64.5 89.8 0.0 50.5 535
Inhibited by PEE Brown6 (N) 16 1 1 0 5 0 2 3 28
Inhibited isolates (%) 61.5 333 100.0 0.0 714 0.0 100.0 75.0 55.2
% of Inhibition 544 85.2 81.1 0.0 47.2 0.0 40.0 40.6 43.6
Inhibited by PEE Brown7 (N) 21 1 1 0 6 1 2 2 34
Inhibited isolates (%) 80.8 333  100.0 0.0 85.7 100.0 100.0 50.0 68.7
% of Inhibition 78.4 34.5 61.2 0.0 53.9 63.5 759 672 543

3.2 PEE effect on established biofilms

All ten PEE showed to partially or totally destroy the biofilm produced by 45 staphylococci isolates. The mean PEE
activity percentage on biofilm disruption varied between 51.4 and 92.0% (Fig. 2).

51,4
53,6

Brownl1

69.8 Brown3

71,3 Brown5
Red2
m Redl

® Brown6

® Green

| | | | | | | |

‘ ® Brown4

= Brown7

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0 mBrown2
Disruption percentage

Fig.2 Mean activity percentage on biofilm disruption for each propolis ethanol extract.
The percentage of biofilm disruption ranged from 0 to 100% (Table 2). Propolis Ethanol Extract Brown 2 showed
biofilm disruption activity against 88.4% of S. aureus isolates but did not affect biofilm from S. epidermidis and S. capitis.

Table 2  PEE effect on established biofilms: number of isolates, and respective percentage, and mean activity percentage on biofilm
disruption by species for each PEE.

2 % 2 °\°

s| S| s | g| & F| 8| %8| §

| S - - I O I

Isolates/Species S § 3 S § 3 H $ S

3 3 Q 2]

Y g ra “ S $ “ “ =

“ Y% ] s

2

N 26 3 1 1 7 1 2 4 45

Affected by PEE Green (N) 19 3 1 1 6 1 2 3 36
Affected isolates (%) 73.0 | 100.0 | 100.0 | 100.0 | 85.7 | 100.0 | 100.0 | 75.0 | 91.7
% of Disruption 934 | 233 | 58.6 | 100.0 | 95.5 | 100.0 | 100.0 | 68.9 | 80.0

Affected by PEE Red1 (N) 20 1 1 0 5 1 1 3 32
Affected isolates (%) 769 | 333 [100.0| 0.0 | 714 |100.0 | 50.0 75.0 | 633
% of Disruption 70.7 | 549 | 98.0 | 0.0 | 97.1 | 79.3 | 100.0 | 96.3 | 74.5

Affected by PEE Red2 (N) 19 3 1 1 5 1 2 4 36
Affected isolates (%) 73.0 | 100.0 | 100.0 | 100.0 | 71.4 | 100.0 | 100.0 | 100.0 | 93.1
% of Disruption 628 | 742 | 85.6 | 73.1 | 66.9 | 100.0 | 98.7 90.1 81.4
Affected by PEE Brownl (N) 12 2 1 0 6 1 2 2 26
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Affected isolates (%) 46.1 | 66.6 | 100.0 | 0.0 85.7 | 100.0 | 100.0 | 50.0 | 68.6
% of Disruption 32.0 | 86.2 | 83.6 00 | 659 | 87.2 | 70.3 36.8 57.8
Affected by PEE Brown2 (N) 23 2 1 0 7 0 2 3 38

Affected isolates (%) 88.4 | 66.6 {1000 0.0 |100.0| 0.0 | 100.0 | 75.0 | 66.3
% of Disruption 944 | 522 | 81.3 00 | 91.5 0.0 | 100.0 | 100.0 | 64.9
Affected by PEE Brown3 (N) 16 2 1 1 6 1 2 3 32

Affected isolates (%) 61.5| 66.6 | 100.0 | 100.0 | 85.7 | 100.0 | 100.0 | 75.0 86.1
% of Disruption 409 | 814 | 759 | 29.1 | 71.0 | 62.4 | 84.3 45.6 | 61.3
Affected by PEE Brown4 (N) 17 1 0 0 3 1 1 1 24

Affected isolates (%) 65.3 | 333 0.0 0.0 | 42.8 | 100.0 | 50.0 25.0 | 39.6
% of Disruption 84.1 | 100.0 | 0.0 0.0 |100.0 | 100.0 | 73.6 95.9 | 69.2
Affected by PEE Brown5 (N) 14 1 1 0 7 0 2 3 28

Affected isolates (%) 53.8| 333 | 1000 0.0 |[100.0| 0.0 | 100.0 | 75.0 57.8
% of Disruption 52.7| 432 | 97.7 00 | 982 | 0.0 98.9 64.0 56.8
Affected by PEE Brown6 (N) 14 1 1 0 7 0 2 4 29

Affected isolates (%) 53.8| 333 [100.0] 0.0 |100.0| 0.0 | 100.0 | 100.0 | 60.9
% of Disruption 70.8 | 41.3 | 99.8 0.0 | 99.1 0.0 | 100.0 | 91.5 62.8
Affected by PEE Brown7 (N) 20 2 1 1 6 0 2 4 36

Affected isolates (%) 769 | 66.6 | 100.0 | 100.0 | 85.7 | 0.0 | 100.0 | 100.0 | 78.7
% of Disruption 88.3 | 69.2 |1100.0 | 76.8 | 92.5 0.0 | 100.0 | 874 | 76.8

Antibiofilm activity is summarised in Fig. 3.

45
40
w35
o
S 30
2
= 25
)
= 20
2
g 15
=
Z 10
5
0
Green Redl Red2 Brownl Brown2 Brown3 Brown4 Brown5 Brown6 Brown7
B Biofilm inhibition 35 40 38 41 42 43 0 34 28 34
Biofilm destruction 36 32 36 26 28 32 24 28 29 37

Propolis Ethanol Extracts

Fig.3 PEE effect on biofilm formation and on established biofilms: number of isolates affected by each PEE.

Generally, PEE are more effective in inhibiting biofilm formation, than in destroying the formed biofilm, with the
exception of Green, Brown4, Brown6, and Brown 7.

PEE Brownl, Brown2 and Brown3 were able to inhibit more than 40 out of 45 isolates (88.9%). However, these were
not the best PEE in disrupting the established biofilm. Brown7, Green and Red were the most effective PEE in destroying
biofilm.

Brown4, while completely unable to inhibit biofilm formation, was still able to disrupt the established biofilm in more
than 50% of the isolates.

4. Discussion

Nine PEE showed ability to prevent biofilm formation and all the tested PEE revealed biofilm disruption aptitude. It
should be noted that the concentration of PEE used in these trials was half the minimum bactericidal concentration for
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each bacterial isolate. The dosage of PEE to be used in clinical situations should be at least the MBC, therefore twice the
amount used here, hence the antibiofilm activity should be better than the one here presented.

The need to control biofilm associated with mammary infection seems to be of major importance. As revised by
Melchior ef al. (30) several researchers have shown that bacteria growing in a biofilm can become 10 to 1000 times more
resistant to antimicrobials than planktonic growing bacteria of the same strain. Concerning the pathology of the mammary
gland, although some authors refer that the in vitro biofilm-forming ability of a given strain was not related to its clinical
origin, considering cows with persistent and non-persistent intramammary infection (39), others mention that S. aureus
strains persisting in the bovine mammary gland through the dry period produced significantly more biofilm i vitro than
strains that do not persist after calving (33). Furthermore, mice inoculated with a bovine mastitis strong biofilm forming
S. aureus isolate produced marked acute mastitis lesions while the damage was significantly less severe in mammary
glands of mice infected with a weak biofilm-forming S. aureus strain (40). Results from a study on staphylococci causing
subclinical mastitis in sheep confirmed the significance of slime producing strains in the aetiology of this affection, with
80.4% of all cases of staphylococcal subclinical mastitis caused by slime producing strains (26).

A key aspect to keep in mind is to ensure that the PEE has antimicrobial activity. Since an action on the disassemble
of biofilm without the concomitant bacterial inhibition would be responsible for the release of living bacteria that would
colonise additional body parts (34). All ten PEE are bactericidal in appropriate concentrations (see Chapter “Antimicrobial
action of propolis extracts against staphylococci” in this book).

Other studies have shown that propolis extracts were able to inhibit Pseudomonas aeruginosa biofilm formation (41)
and stated an inhibitory effect of propolis extracts on biofilm formation by Streptococcus mutans (42) with some propolis
components displaying a potent inhibition of glucosyltransferase activity, which is an enzyme that catalyses the formation
of biofilm (43). Biofilm formation ability by Staphylococcus epidermidis strains in the presence of PEE was significantly
inhibited by incubation time and was observed after 12 and 24 hours of incubation (3).

Furthermore, some investigators showed quorum sensing inhibitory activity of distinct propolis samples (9,44).
Quorum sensing (QS) is the phenomenon through which bacteria, within a biofilm, use signalling molecules,
autoinducers, that when accumulate to a threshold concentration activate a transcriptional regulator, which in turn
regulates the expression of various genes, including virulence factors and thus is one of the essential factors that regulate
bacterial virulence and pathogenicity (45,46). This plays an important role in biofilm development, resistance, and
virulence. Therefore, the interruption of QS can be an effective strategy to control disease-causing pathogens.

Biofilm formation is accompanied by significant genetic and subsequent physiological changes in the microorganisms
resulting in a loss of sensitivity to virtually all classes of antibiotics (30). As mostly studied in S. aureus and to some
degree in S. epidermidis, quorum sensing is achieved by activating the accessory gene regulator (agr) that results in the
production of a regulatory mRNA molecule termed RNAIII, which activates multiple toxin genes (47).

Biofilm production ability can greatly hinder conventional antimicrobial therapy suggesting the need of alternative
control approaches such as the use of propolis. According to our results some PEE have antibiofilm activity against small
ruminants’ mastitis causing Staphylococcus spp. biofilm and might, therefore, be a promising approach for disease control
either as alternative to antibiotics or in combination with antibiotics taking advance of synergistic effect (48).

Studies to isolate and identify the specific propolis compounds responsible for the bioactivity are needed.
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