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Building up biogeography: Pattern to process

Abstract
Linking pattern to process across spatial and temporal scales has

been a key goal of the field of biogeography. In January 2017, the

8th biennial conference of the International Biogeography Society

sponsored a symposium on Building up biogeography—process to pat-

tern that aimed to review progress towards this goal. Here we pre-

sent a summary of the symposium, in which we identified promising

areas of current research and suggested future research directions.

We focus on (1) emerging types of data such as behavioural obser-

vations and ancient DNA, (2) how to better incorporate historical

data (such as fossils) to move beyond what we term “footprint mea-

sures” of past dynamics and (3) the role that novel modelling

approaches (e.g. maximum entropy theory of ecology and approxi-

mate Bayesian computation) and conceptual frameworks can play in

the unification of disciplines. We suggest that the gaps separating

pattern and process are shrinking, and that we can better bridge

these aspects by considering the dimensions of space and time

simultaneously.

1 | INTRODUCTION

Linking pattern to its underlying process has long been the Holy

Grail of macroecology. However, mechanistic and process-based

models are often formulated at small spatio-temporal scales, whereas

biogeographical patterns usually emerge at broader scales. Histori-

cally, statistical models have offered a unifying, predictive framework

that can operate across scales, but to do so often requires that we

sacrifice explicit consideration of ecological and evolutionary mecha-

nisms (see McGill, 2010). For example, while regional variation in

species richness is often readily predicted by environmental condi-

tions (Currie, Francis, & Kerr, 1999), the precise evolutionary and

ecological processes underlying such relationships remain unresolved.

It is often difficult to understand any kind of pattern in a biogeo-

graphical context because it is impossible to conduct experiments at

the appropriate temporal and spatial scales, such that we biogeogra-

phers (unlike other biologists) are often limited to correlative and

observational studies. New approaches offer possibilities to integrate

evolutionary and biogeographical processes of dispersal, speciation

and extinction into dynamic models of community structure (such as

the “DAMOCLES” approach described by Pigot & Etienne, 2015; see

Figure 1). Scaling up such models to encompass regional biodiversity

gradients is an important next step (Cabral, Valente, & Hartig, 2017).

In this and many other cases, we believe that it is possible to better

link underlying processes to emerging patterns, and our symposium

on Building up biogeography—process to pattern held at the 8th

biennial conference of the International Biogeography Society in

Tucson, Arizona, described recent progress in this direction. Here,

we summarize these advances. Three themes emerge throughout

this discussion: (1) the importance of incorporating data from multi-

ple sources and disciplines (e.g. behavioural observations and mini-

satellites), (2) the need to move beyond “footprint measures” by

incorporating historical processes into models of contemporary data

and (3) the power of recently developed models to address biogeo-

graphical questions across spatial and temporal scales. We address

each of these themes in the sections below. Our intention is not to

provide a thorough review of all the ways in which biogeographical

processes act across scales (c.f. Cabral et al., 2017; Cavender-Bares,

Kozak, Fine, & Kembel, 2009; Chave, 2013; Levin, 1992), but within

Figure 1 we show how these concepts fit within the broader bio-

geography framework linking the drivers of biogeographical patterns

and processes. We focus on how processes interact across different

spatial and temporal scales, not on ascribing processes to particular

spatio-temporal scales (c.f. Cavender-Bares et al., 2009; Swenson,

Enquist, Thompson, & Zimmerman, 2007; Weiher & Keddy, 2001),

and we believe focusing in this way holds promise in making practi-

cal progress fitting mechanistic models to data. We conclude that

we are moving towards a productive synthesis of pattern- and pro-

cess-based methods that will provide new and more generalizable

insights into the spatial and temporal distributions of biodiversity.

2 | NON-TRADITIONAL DATA IN
BIOGEOGRAPHY

2.1 | Targeted collection of observational data

While macroecology has traditionally advanced through drawing

inference from pre-existing data (i.e. data the researcher did not col-

lect themselves), it is increasingly recognized that experiments can

also be placed within a macroecological context (Alexander, Diez,

Hart, & Levine, 2016; Paine, 2010). Such experiments form one non-

traditional source of data in biogeography, but we (uncontroversially,

we hope) suggest that macroecologists should not forget the impor-

tance of collecting new, carefully considered, observational data. Col-

lecting data that directly address a question or mechanism of

interest is a more efficient way to understand a problem than imple-

menting post-hoc statistical corrections. For example, Keith et al.

(2016) collected data on the timing of coral spawning in 34 reefs

throughout the Indian and Pacific Oceans and, through a combina-

tion of careful site selection and the collection of relevant explana-

tory data, identified the likely cues of coral spawning (namely,

seasonal rise in ocean temperature). These data move us closer

DOI: 10.1111/jbi.13242

Journal of Biogeography. 2018;45:1223–1230. wileyonlinelibrary.com/journal/jbi © 2018 John Wiley & Sons Ltd | 1223

http://www.wileyonlinelibrary.com/journal/JBI


towards an understanding of the ecological and physiological pro-

cesses behind spawning through the explicit collection of small-grain

large-extent data, which in turn can shed light on the spatio-tem-

poral biogeographical distribution of corals. Moreover, this work uses

traditional biogeography to set the agenda for future experimental

tests (e.g. temperature manipulations)—an approach that is poten-

tially fruitful across biogeography more widely. Such precise data on

the timing of coral spawning could (almost certainly) not have been

collated from existing sources: testing different mechanisms often

requires targeted data collection, not simply the collation of ever-lar-

ger data that elucidate general patterns.

2.2 | Behavioural data

One type of data that has been incorporated only rarely in biogeo-

graphical studies is behavioural observations. While behavioural data

might be measured on very different spatial scales to the data usu-

ally included in biogeographical models, such data could provide

invaluable insight into the link between pattern and process. Individ-

uals make cognitive decisions to enact particular behaviours given a

combination of external stimuli and internal motivation. For instance,

the presence of food and motivation of hunger could initiate forag-

ing behaviour. However, these behaviours, and their underlying deci-

sion-making processes, can become suboptimal in novel

environments because of an inability to accurately process novel

external information (such as mistaken mate identification as

described by Gwynne & Rentz, 1983; see also Whitehead, Rendell,

Osborne, & W€ursig, 2004). Sub-optimal behaviour at the individual

level could feasibly scale up to cause population level declines and

subsequent shifts in biogeographical patterns such as species’ distri-

butions. Using, for example, coupled dynamic individual-based and

species distribution models it is possible to propagate the outcomes

of such local-scale behavioural dynamics to produce biogeographical

patterns (see “behavioral dynamics” in Figure 1). For example, indi-

vidual-based models can be used to generate decision rules that can

inform about species’ environmental preferences and tolerances,

which can be propagated through distribution models to improve

predictions, and to test whether behaviour is constant through space

and time (reviewed in Keith & Bull, 2017). The kinds of behavioural

data to best inform such models will depend on the particular ques-

tion and study system, but as we discuss in targeted collection of

observation data above, these data may be best gathered specifically

to shed light on, for example, the dispersal mechanisms for the clade

of interest. Data on phenology or other physiological responses to

changing environmental stimuli are already informing the study of

biogeography in organisms other than animals (Chuine, 2010).

2.3 | Emerging data sources

There are perhaps three additional kinds of data that, we believe,

have the potential to fundamentally change the way in which bio-

geography operates, but it is of course too soon to be certain. The

first is ancient DNA: DNA extracted and sequenced from historical

specimens (Gugerli, Parducci, & Petit, 2005; P€a€abo et al., 2004). Such

data form a natural bridge between phylodynamic models commonly

used to infer historical population size (Archie, Luikart, & Ezenwa,

2009; Lemey, Rambaut, Welch, & Suchard, 2010; which are com-

monly used in epidemiology) and the fossil data whose use we advo-

cate below. The second is intraspecific trait variation; advances in

automated image analysis and measurement protocols (Bucksch

et al., 2014; Pearse et al., 2018) allow researchers to collect more

data than previously thought possible. This has given biogeographers

the data to move beyond the simplifying assumption that variation

within a species is negligible and random with respect to environ-

ment (Bolnick et al., 2011). It is difficult (but, of course, not impossi-

ble) to extend modelling approaches to incorporate variation of

species traits in response to environmental conditions; it may be

more straightforward to do so by collecting data on how species’

traits vary and modelling those data themselves. Finally, drones

(Anderson & Gaston, 2013; Linchant, Lisein, Semeki, Lejeune, & Ver-

meulen, 2015) and small satellites (Baker & Worden, 2008; Sandau,

2010) are expanding both the temporal and spatial grain across

which we can measure biogeographical patterns. If we are to truly

bridge spatial scales and wish to model uncertainty in species’ distri-

butions (particularly using quantum approaches—see below), then

the increased resolution provided by these new tools will be critical.

3 | BEYOND “FOOTPRINT MEASURES” OF
PAST DYNAMICS

3.1 | Integrating phylogenetic information

Biogeographers often try to infer underlying processes from station-

ary present-day patterns, but it is increasingly clear that deep-time

history is important (Ricklefs, 2004; Wiens & Donoghue, 2004). Such

deep-time history has been accounted for in two key ways: by mea-

suring (1) species’ shared evolutionary history (Webb, Ackerly,

McPeek, & Donoghue, 2002), or (2) past environmental change and

dispersal lags (e.g. Kissling, Blach-Overgaard, Zwaan, & Wagner,

2016; Sandel et al., 2011). Yet in both of these cases, biogeographi-

cal history, macroevolutionary processes or past environmental

dynamics are reduced to footprint measures that sum up accumulated

change (see “beyond footprint measures” in Figure 1). Thus, for pur-

poses here, we consider any metric that sums across an entire time

series or phylogeny and reduces it to a single datum as a “footprint

measure.” Historical data have transformed our understanding of re-

cent environmental change (Foley et al., 2005; Parmesan, 2006) and

species’ invasions (Dehnen-Schmutz, Touza, Perrings, & Williamson,

2007; Duncan, Blackburn, & Sol, 2003), but new data and methods

mean there is no need to limit ourselves to historical footprints

when addressing processes operating over longer time-scales (Hunt

& Slater, 2016). For example, Fritz et al. (2016) use long-term

palaeontological datasets to show a consistent diversity–productivity

relationship within North American and European mammal and plant

fossil records between 23 and 2 million years ago. Present-day data

do not match this relationship, likely because Pleistocene climatic
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oscillations and human impacts reduced mammalian diversity and

terrestrial primary production (Barnosky, 2008; Doughty, Faurby,

Wolf, Malhi, & Svenning, 2016; Faurby & Svenning, 2015). Similarly,

Pearse, Jones, and Purvis (2013) used information from phylogeny to

show a tendency for members of younger clades to co-occur with

one-another more often than older clades, even millions of years

after the clade originated. This perhaps reflects rapid niche evolution

of diversifying clades, and, by examining the interaction between

evolutionary history and community structure, exposes an observ-

able link between niche evolution and ecological assembly (see “uni-

fying models” in Figure 1). More work is needed to see whether

younger clades that have diversified more rapidly in the recent evo-

lutionary past, in terms of both number of species and traits, co-

occur more frequently or form more/less stable assemblages in the

present day. Both these examples show how general ecological rules

ought not to be inferred exclusively from past or extant data, but

rather from the mapping of past onto extant data.

3.2 | Modelling processes using fossil data

Another aspect of biogeography that is being revolutionized by mov-

ing beyond footprints is the evolution of species’ geographical

ranges, where (unlike the examples given above) process-based mod-

els are increasingly being fit to data. While methodological develop-

ment in this field has been tremendous (e.g. Matzke, 2014;

Tagliacollo, Duke-Sylvester, Matamoros, Chakrabarty, & Albert,

2015), the ability of purely phylogenetic methods to reliably infer

rates of dispersal and extirpation remains limited, even when we

simulate data under very simple models (e.g. constant and symmetri-

cal rates). Fossil occurrence data provide an alternative source of

information about the evolution of biogeographical ranges through

time, and arguably represent the most direct evidence of the pro-

cesses under study, but fossil data are notoriously incomplete. Silve-

stro et al. (2016) have shown that dispersal and extirpation rates can

be accurately estimated from fossil lineages if fossil preservation is

explicitly modelled, and that dispersal rates are more variable

through time and between geographical areas than commonly

assumed in purely phylogenetic models. Perhaps most importantly,

Silvestro et al. also show that fossil-estimated extirpation rates are

much higher than the near-zero estimates typically obtained from

neontological data. Thus fossil data need not only be used to

improve the dating of phylogenetic trees (as is common; reviewed in

Donoghue, Doyle, Gauthier, Kluge, & Rowe, 1989; Rutschmann,

2006), but can also be used to augment phylogenetic inferences of

F IGURE 1 Conceptual overview of the processes involved in the assembly of biogeographical patterns. We focus on how data (rounded
corners) integrate with biological concepts (square corners) through modelling approaches (labelled arrows) that we describe within the text.
Although numerous previous reviews of spatial scaling biogeography have focused on mapping processes onto particular spatial and temporal
scales (e.g. Cavender-Bares et al., 2009; Chave, 2013; Levin, 1992; Weiher & Keddy, 2001), here we represent the mapping between each
process. This allows scale-dependent processes to interact across different scales simultaneously, and provides more information than the
traditional placement of processes within a two-dimensional space–time mapping allows. As discussed in the text, approximate Bayesian
computation has the potential to incorporate all these processes, and each modelling arrow represents, to some extent, an over-simplification
of the processes captured by that model. The dashed lines represent an approach that, as we discuss in the text, we believe the field is
currently moving beyond. We emphasize that each label is intended to direct the reader towards the relevant section of this essay, and the
intention of this diagram is not to outline all, or even necessarily the most important, patterns, processes and approaches in biogeography. An
example of such a missing link might be the study of fossil assemblages (e.g. Gill, Williams, Jackson, Lininger, & Robinson, 2009; Goldberg, Roy,
Lande, & Jablonski, 2005; Williams et al., 2013). There are many potential missing links that could be placed linking “communities” to
“biogeography,” such as environmental filtering (reviewed in Kraft et al., 2015) and character displacement (reviewed in Dayan & Simberloff,
2005). *DAMOCLES is a method developed by Pigot and Etienne (2015), and is described in the introduction [Colour figure can be viewed at
wileyonlinelibrary.com]
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historical biogeography and more accurately measure variation in

dispersal and extinction through time. Fossils provide data that shed

light on the processes that affect diversification (of species and of

traits) and range evolution, providing information on both time and

place that can inform models fit jointly to phylogenetic and fossil

data (Hunt & Slater, 2016). Many open access databases of fossils

that contain data on location, age and morphology/traits are now

available (e.g. Goring et al., 2015, and PaleoDB—https://paleobiodb.

org/), making this a rich seam for biogeographical analysis.

4 | UNIFYING MODELS AND CONCEPTS

4.1 | Maximum entropy theory in ecology

The integration of mechanism into statistical models has long been a

major challenge in macroecology. Rapid progress means that we now

possess conceptual frameworks that combine the explanatory power

of statistical tools with the biological insight that mechanistic models

can provide. Starting only with a small number of measured state

variables and no parameters, the maximum entropy theory in ecol-

ogy (METE; Harte, Rominger, & Zhang, 2015; see also “METE” in

Figure 1) predicts the functional form of multiple macroecological

patterns, such as the species abundance distribution and variation in

individual body size. These statistical insights have informed debates

that have raged for decades within ecology, such as what underlies

variation in the species–area curve (Harte, Smith, & Storch, 2009).

From hundreds of empirical tests a generalization has emerged: in

ecosystems with constant state variables METE performs well, but in

ecosystems undergoing shifts METE fits data poorly. For those

ecosystems in which the state variables are changing, a hybrid

METE–mechanism-based approach (DynaMETE) might be more

appropriate, in which dynamic state variables are driven by explicit

mechanisms. This promising theory of ecosystems undergoing

change, either in response to human influence or to natural distur-

bance regimes, has the potential to unify statistical and mechanistic

approaches. More detail on the expanding range of METE-like mod-

els that can incorporate non-equilibrium dynamics can be found in

Rominger et al. (2017).

4.2 | Quantum biogeography

An alternative framework which, like METE, also draws from the

physics literature, is to treat species as analogous to quantum parti-

cles. As species distributions are dynamic, precise locations are only

known when they are observed and thus provide an incomplete por-

trait of the entire species’ distribution. Consequently, a species’ dis-

tribution may be better represented by a wave function, or an

analogous distribution function, that describes the relative likelihood

of presence at given locations (see “quantum biogeography” in Fig-

ure 1; Real, Barbosa, & Bull, 2017). Acknowledging that species’ like-

lihood of occurrence is continuous, not discrete, has advanced

prediction and inference of species’ distributions (Guillera-Arroita

et al., 2015) and assembly patterns (Karger et al., 2016) and

quantum-inspired approaches may continue this trend. A fruitful next

step may be to incorporate behaviour into similar waveform func-

tions, unifying uncertainty, behaviour and macro-scale distribution

data.

4.3 | Approximate Bayesian computation

METE and the frameworks developed from it have been criticized

for their mathematical complexity. For those who prefer to simulate

rather than to solve, approximate Bayesian computation (ABC) has

emerged as a way to contrast the influence of different mechanisms

(see Beaumont, 2010 for a thorough review; but also Robert, Cor-

nuet, Marin, and Pillai, 2011). Informally, ABC involves simulating a

system (e.g. populations migrating at specified rates) with existing

data as starting points under different parameters (e.g. migration

rates) and defined statistical metrics (e.g. average range size). ABC is

thus a model-fitting framework, like maximum likelihood, and not a

particular model formulation. An ABC model is declared a good fit if

the metrics of the simulations and data are similar, and so ABC does

require the careful selection of sensitive and appropriate summary

statistics. While ABC is computationally intensive, its flexibility

allows the testing of almost any model we can conceive and imple-

ment. Clarke, Thomas, and Freckleton (2017) used ABC to model

interspecific competition on phylogenies, addressing theory that has

proven difficult to test (Nuismer and Harmon, 2015; but see Drury,

Clavel, Manceau, and Morlon, 2016. There is a pressing need for

more such work, testing, for example, whether clades whose trait

evolution has been shaped by competition are still competing in the

present, or whether that past evolution has mitigated competition in

the present.

4.4 | Integration through concepts rather than
equations

Building cross-scale models that produce broad-scale patterns from

process-based models may seem challenging, but it can be done.

Alongside the approaches outlined above, Albert, Schoolmaster,

Tagliacollo, and Duke-Sylvester (2017) provide another excellent

example of cross-scale modelling. Focusing on a single process—the

effects of river capture in changing species’ geographical distribu-

tions—Albert et al. simulate realistic broad-scale diversification

dynamics using local-scale dispersal limitation. Such approaches that

connect disparate ideas and processes (in this case, dispersal limita-

tion and river capture) have more potential than approaches that

only connect to specific patterns (e.g. changes in diversification

rate). Scales and disciplines are united by concepts formalized as

equations, but even if two disciplines use similar terms it does not

necessarily follow that the processes are the same. For example,

Ornstein–Uhlenbeck (OU) models of trait evolution have a parame-

ter, a, that describes the tendency of evolution to remain near

some optimum. This parameter is often referred to as a “selection”

parameter, largely because OU models are used to represent con-

stant stabilizing selection in quantitative genetics. However,
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empirical studies have shown conclusively that the quantitative

genetics version of OU models differs from the macroevolutionary

version (e.g. Harmon et al., 2010, but see also Uyeda and Harmon,

2014). Shared terminology and models alone do not unify the two

fields of quantitative genetics and macroevolution: unification

comes not from models or equations, but from concepts. To give

another example, incorporating equations from quantum theory into

species distribution modelling, as proposed by Real et al. (2017),

may be a useful way to advance one field by borrowing concepts

from another, but does not reflect a meaningful unification of

quantum and biogeographical theory. Biogeography has greatly ben-

efited from the sharing of theory across disciplines, and we hope

that this continues, but such exchange will be more fruitful when

we consider whether not just mathematics but also concepts are

comparable across fields.

5 | CONCLUSION AND FUTURE
DIRECTIONS

We frequently consider biogeographical processes operating at dif-

ferent temporal and/or spatial scales, but it is often difficult in prac-

tice to “scale up” (or down). By including new data into process-

based models, especially those with a temporal dimension, we might

be able to better connect across scales. The palaeontological record

has always informed our understanding of species’ biogeographical

histories and can greatly enhance inference from phylogeny (Brewer,

Jackson, & Williams, 2012; Fritz et al., 2013; Jackson & Erwin, 2006;

Lieberman, 2002), but the integration of fossil data within newer

macroecological methods has tended to lag behind that of

phylogenetic data. Data not typically incorporated within biogeo-

graphical analyses, such as species’ behavioural responses, provide

information at a much finer temporal resolution, but can similarly be

used to construct scale-able process-based models. Despite recent

advances and exciting prospects for the future, the identification of

generalizable models that can improve the link from process to pat-

tern remains elusive (Cabral et al., 2017). However, the gaps that

artificially separate pattern and process in our concepts and analyses

are shrinking, and by considering the dimensions of space and time

simultaneously, we will be able to link them with stronger bridges.

The development of new methodological frameworks, such as METE

and ABC, provides the power and flexibility to move us towards a

more complete understanding of how processes produce patterns

across spatio-temporal scales. It is exciting to think that many of the

conceptual linkages we outlined in Figure 1 can now be explicitly

modelled, as we outline in Figure 2. What strikes us most when

looking at this figure is the linkages across data-types: it is now pos-

sible to integrating so many different kinds of data in a single model

that the range of questions we can now ask has increased substan-

tially.

We do not wish to suggest that the concepts we discuss here

encompass all the exciting new advances in the field of biogeogra-

phy, but throughout this essay we have articulated three areas that

we have focused upon in our own research and that inspired our

symposium at the International Biogeography Society meeting in Ari-

zona. (1) The collection or inclusion of non-traditional data, such as

the dispersal behaviours of species on a landscape, which has

improved our understanding of the mechanisms underlying biogeo-

graphical patterns. (2) Moving beyond “footprint measures” of deep-

time patterns to shed light on how past mechanisms have shaped

F IGURE 2 Questions that can be answered about the nature of spatio-temporal scaling using the approaches outlined in this essay. As an
accompaniment to Figure 1, we present here a figure with the same layout, only now each source of data has been replaced with a published
dataset (Breeding Bird Survey—Sauer, Hines, & Fallon, 1966; PaleoDB—https://paleobiodb.org/; global bird phylogeny—Jetz, Thomas, Joy,
Hartmann, & Mooers, 2012; global bird traits—Wilman et al., 2014) and each methodological arrow with a question that can be answered
[Colour figure can be viewed at wileyonlinelibrary.com]
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present-day ecological dynamics. (3) Utilizing empirical frameworks

such as METE and ABC to test specific hypotheses that, even a dec-

ade ago, were only conceptual frameworks (e.g. Figure 1). It is our

hope that these three avenues provide a way forward for biogeogra-

phers to continue to advance our understanding of how processes

vary across spatial and temporal scales.
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