A Case-Based Reasoning Approach to GBM Evolution ``` Ana Mendonça¹, Joana Pereira¹, Rita Reis¹, Victor Alves², António Abelha², Filipa Ferraz^{1,2}, João Neves³, Jorge Ribeiro⁴, Henrique Vicente^{2,5}, and José Neves^{2(\improx)} ``` Departamento de Informática, Escola de Engenharia, Universidade do Minho, Braga, Portugal {a70606, a73302, a71983}@alunos.uminho.pt, filipatferraz@gmail.com ² Centro Algoritmi, Universidade do Minho, Braga, Portugal {valves, jneves}@di.uminho.pt ³ Mediclinic Arabian Ranches, PO Box 282602, Dubai, United Arab Emirates joaocpneves@gmail.com ⁴ Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal jribeiro@estg.ipvc.pt ⁵ Departamento de Química, Escola de Ciências e Tecnologia, Centro de Química de Évora, Universidade de Évora, Évora, Portugal hvicente@uevora.pt **Abstract.** GlioBastoma Multiforme (GBM) is an aggressive primary brain tumor characterized by a heterogeneous cell population that is genetically unstable and resistant to chemotherapy. Indeed, despite advances in medicine, patients diagnosed with GBM have a median survival of just one year. Magnetic Resonance Imaging (MRI) is the most widely used imaging technique for determining the location and size of brain tumors. Indisputably, this technique plays a major role in the diagnosis, treatment planning, and prognosis of GBM. Therefore, this study proposes a new Case Based Reasoning approach to problem solving that attempts to predict a patient's GBM volume after five months of treatment based on features extracted from MR images and patient attributes such as age, gender, and type of treatment. **Keywords:** Artificial Intelligence · GlioBlastoma Multiforme Logic Programming · Knowledge Representation and Reasoning Case Based Reasoning