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Abstract 

Robot mapping is the basic work for robot navigation and path planning. Static map is also 

important to deal with dynamic environment. Occupancy grid maps are used to represent the 

environment. This paper focuses on the dependence between grid cells. We assume that if one 

point of the map is free, then the neighbors are likely to be free. This knowledge is encoded in a 

Markov random field (MRF) that is used as our prior belief about the world. Data from range 

sensors will then update our knowledge. By maximizing the posterior distribution of MRF 

model, a linear filter is generated. It can be used to filter the noise in observations or static maps. 

This linear filter can be implemented online. It is also additive if the sensor model is in the log 

odds form. 
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Introduction 

Occupancy grid maps represent the environment as grid cells. They are convenient for 

robot navigation and path planning and occupancy grid mapping (1) has been developed in robot 

mapping problem by many researchers. 

Normally the robot mapping and robot localization are considered at the same time in the 

simultaneous localization and mapping (SLAM) problem. In probabilistic form, the SLAM 
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problem requires the joint probability distribution of the map and robot pose. But the joint SLAM 

state may be factored into a localization problem and a conditional mapping problem (2). The 

robot mapping with known pose is a subtask in SLAM problem and can be considered 

individually. 

In the earlier research, the expectation maximization (EM) algorithm is used to maximize 

the data likelihood (3). It calculates only a single map and the uncertainty is lost. Most of the last 

researches deal with the observations from the sensors directly to extract information for 

dynamic environments. Bayesian occupancy filtering (BOF) (4) considers the sensor observation 

history, in order to get robust perception in dynamic environments. Because of the noise of the 

sensor, the dependence between grid cells in occupancy grid maps should be considered.  

Even thought the real world is dynamic, static map is also important. Normally the method 

dealing with the dynamic environments is based on the static map. Static occupancy grid maps 

and dynamic grid maps are maintained in parallel and the current dynamic map is based on the 

previous dynamic map and the previous static map (5). The static map is also used to construct a 

semi-static map (6). If the static map is very noisy, it will also influence the performances of the 

dynamic mapping methods. Particle filter is applied widely in SLAM problem. A particle map is 

built for every particle. The particle maps may also be noisy (7).  

In this paper range sensors are used to perceive the environment and a MRF model is 

applied to consider the dependence between grid cells in occupancy grid map. The linear filter is 

generated by maximizing the posterior distribution of the MRF model. It is an online, additive 

method and can be applied to deal with the noise in observations or static map. The rest of the 

paper is structured as follows. First we assume the grid cells are dependent and formulate the 

standard occupancy grid mapping in Section II. In Section III, based on the result of standard 
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occupancy grid mapping, the MRF model of the map is built. In Section IV, we describe how to 

generate the linear filter based on the MRF model. Finally, a small simulation is done for the 

linear filter in Section V.  

Materials & Methods 

A. The standard occupancy grid mapping 

In this part, we do not consider the dependence between grid cells. We assume 

observations of grid cells are independent of each other and the current observation of the map is 

independent of the previous observations. In a grid map, each grid cell has two possible states: 

occupied and free. They are labelled as { }  0,  1X =  respectively. This work will build a grid 

map with range finders. The robot can only observe a small part of the map once. If the grid cell 

is inside the measurement range, we can know the probability.  When the cell is outside the 

measurement range, the value should be 0.5. As time goes, the robot gets a lot of observations. 

Based on Bayes law, we obtain 
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where 0 1{ , , }nm m m m= ,  is the set representing all the grid cells and 1: 1 2{ , , }t tz z z z= ,  is the 

set representing all the observations. ( | )tp z m  is the measurement probability, ( )tp z  is the 

normalizer and 1:( | )tp m z  is the probability distribution over the map, conditioned on all past 

measurements tz . Since we have independence, we can do it for each cell individually.   
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Normally, this expression can be formulated as 

1: 1: 1
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where ()l  is the log odds representation, such as 0
( )( ) log

1 ( )
i

i
i

p ml m
p m

=
-

 is the log odds form of 

the initial belief of im . ( | )ti il m z  is the log odds form of the inverse sensor model ( | )ti ip m z . The 

log odds form not only avoids truncation problems that arise for probabilities close to 0 or 1, but 

also is additive (8). If ( )ip m  is 0.5, 0 ( ) 0il m = . Equation (4) can be formulated as 

1: 1: 1( | ) ( | ) ( | )t t t
i i i i i il m z l m z l m z-= + .                                     (5) 

B. The MRF model 

In this part, we start to consider the dependence between grid cells.  The map is regarded 

as a two dimension MRF. The random variables denoted by ( )il m  are the log odds forms of the 

occupancy probabilities. The current observation of ( )il m  is ( | )ti il m z . 

The MRF can be factorized according to the cliques. A clique c  is defined as a subset of 

grid cells. Second-order neighborhood system shown as Fig. 1 is considered in this paper. There 

are eight neighbors for every grid cells and the clique consists of a single-site and a pair of 

neighboring sites as shown in Fig. 2. Since single-site cliques are not useful in this task, they are 

not considered. The collection of pair-site cliques is denoted by 2C . The prior probability (9) is 

represented as equation (6). 
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Figure 1. Second-order neighborhood system 

 

Figure 2. Cliques in second-order neighborhood system 
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is the partition function, M  represents all the configuration and T  is a constant called the 

temperature, which shall be assumed to be 1. The prior energy function ( )U m  is a sum of 

clique potentials ( )cV m over all possible cliques 2C  and formulated as 

2

( ) ( )c
c C

U m V m
Î

= å .                                                     (8)  

The clique potential is based on the log odds form and defined to be 

2
'( ) ( ( ) ( ))c i iV m l m l m= - ,                                                (9)  

where	 'im  is the neighbor of im . 
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1: 1:
1 1{..., ( | ), ( | ),...}t t

i i i iZ l m z l m z- -=  contains the information of all the past observations of 

the map. The likelihood in MRF model can be formulated as 
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where 
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Based on Bayes rule, the posterior distribution is formulated as 
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where h  is a constant and the posterior energy 

'
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is the sum of likelihood energy ( | )U Z m  and prior energy ( )U m . If the noise distribution is 

homogeneous, the deviations is  are the same as s  for all grid cells.  

C. Mapping based on the MRF model 

The problem can be solved by maximizing the posterior distribution or equivalently 

minimizing the posterior energy. The derivatives of ( )E m  with respect to ( )il m 	are 
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where nn  is the number of considered neighbors. Let the derivatives d ( ) 0
d ( )i

E m
l m

= , a linear 

equation set is obtained and formulated as 
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T 1: 1: T
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The size of A  depends on the size of the map. When a robot walks in unknown environment, 

the robot does not know where it is and where the borders are. Here we assume the map is very 

big without borders. This means every grid cell has enough neighbors. A  is a circulant matrix 

and it is nonsingular. The mapping problem can be solved as 

T 1 1: 1: T
1 1 1[..., ( ), ( ),...] [..., ( | ), ( | ),...]t t

t i t i i i i il m l m A l m z l m z-
- - -= ,                       (16) 

where 1A-  is also a circulant matrix. This method can be regarded as a linear filter. The 

elements in one row are the weights for all the observations. The weights are reshaped and 

shown in the map as Fig. 3. Because the neighborhood is isotropy, the weights are also isotropy. 

Another property is that the sum of the weights in one row is 1. The neighborhood in this paper 

is very small, the weights for the observations that are enough faraway will be zeros.  Only 2
vn  

weights need to be considered. If a vector nv  containing these 2
vn  weights in 1A-  can be obtain 

by other way, we can obtain the same map. In order to do so, another circulant matrix 'A  

should be constructed. 'A  must satisfy the constraint that the middle row could be reshaped as  

2 2 2

2 2 2

2 2 2
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0 4 4 4 0
0 4 1 4 4 0
0 4 4 4 0
0 0 0 0 0

v v

n

n n

n
s s s
s s s
s s s

´

é ù
ê ú
ê ú
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ê ú- + -ê ú
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ê ú
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. 

The middle row in 1'A -  is nv . The centre weight in nv  is for the observation of im , the other 

weights are for the corresponding observations of its neighbors. When a new observation of a 

grid cell is obtained, only 2
vn  grid cells, which consist of itself and its 2 1vn -  neighbors, should 
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be updated. In other words, when a grid cell needs to be updated, 2
vn  observations are needed. 

The estimation of ( )il m  at time t  given all the past observations is denoted by ( )t il m  and can 

be achieved as equation (17). When we get new observations 1 1
1 1{ , ( | ), ( | ), }t t

i i i il m z l m z+ +
- - , 

this equation is also additive. Based on equation (5), we have equation (18) and the recursive 

algorithm to update the map is formulated as equation (19).  

 

Figure 3. The weights of linear filter 
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Results 

Before simulation or experiments, the number of the neighbors in MRF model is fixed. 

The weight vector nv  does not change any more. It can be processed ahead. In order to make 

sure that the weights are symmetric, vn  should be odd. In this paper, second-order 

neighborhood system is considered. When vn  is 3 and 2 0.25s = . The middle row in the 
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constructed matrix 'A  is [-1, -1, -1, -1, 9, -1, -1, -1, -1] and the weights vector nv =[ 0.1,  0.1,  

0.1,  0.1,  0.2,  0.1,  0.1,  0.1,  0.1] can be reshaped as 

0.1 0.1 0.1
0.1 0.12 0.1
0.1 0.1 0.1

é ù
ê ú
ê ú
ê úë û

. 

When vn  becomes 5, the middle row in the constructed matrix 'A  is [ 0,  0,  0,  0,  0, 0, -1, -1, -

1,  0,   0, -1,  9, -1,  0,  0, -1, -1, -1,  0,  0,  0,  0,  0,  0] and nv  can be reshaped as 

0.028 0.030 0.032 0.030 0.028
0.030 0.044 0.048 0.044 0.030
0.032 0.048 0.152 0.048 0.032
0.030 0.044 0.048 0.044 0.030
0.028 0.030 0.032 0.030 0.028

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

. 

The added weights are about 0.03 and it is not important to consider them. vn  is chosen as 3.  

The true map is shown as Fig. 4(a). It simulates a corridor with an open door. The robot 

runs from the left side to the right side, the trajectory is shown as Fig. 4(b). At a position, there 

are four measurement directions: / 2p±  and / 4p± . They are relative to the robot direction.  

 
                                         (a)                                                                    (b) 

Figure 4. The true map and the trajectory of the robot 
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The robot equips a laser sensor. The beam of the laser sensor has the same width with the grid 

cell and maximum range is 9 grid cells. Following along a line in the measurement direction, 

the observations of the cells are log 2(0.1/ 0.9) 3.17= - , at least until the measured distance. At 

the distance, the observation of the cell is log2(0.9 / 0.1) 3.17= . Because of the noise of the 

sensor, the measured distance may be different from the true distance.  

The result of the standard occupancy mapping is shown as Fig. 5(a). It is a noisy map. 

After applying the linear filter, the result is shown as Fig. 5(b). The noise in the vacant region is 

filtered out and the map becomes smoother.  

	  
(a)                                                                    (b) 

Figure 5. The result of the standard occupancy mapping and the result of the linear filter 

Discussion 

In this paper, we presented a linear filter to deal with the noise in observations or static 

map by applying the MRF model. It is very simply to be implemented. It can be applied in the 

algorithms for robot mapping problem, no matter these algorithms are proposed for static 

environment or dynamic environment. In future work, we will explore the dynamic 

environment based on this work.  
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