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Abstract MicroRNAs (miRNAs) are a class of 22-nucleotide endogenous noncod-
ing RNAs, plays important role in regulating target gene expression via repress-
ing translation or promoting messenger RNAs (mRNA) degradation. Numerous re-
searchers have found that miRNAs have serious effects on cancer. Therefore, study
of mRNAs and miRNAs together through the integrated analysis of mRNA and
miRNA expression profiling could help us in getting a deeper insight into the can-
cer research. In this regards, High-Throughput Sequencing data of Kidney renal
cell carcinoma is used here. The proposed method focuses on identifying mRNA-
miRNA pair that has a signature in kidney tumor sample. For this analysis, Ran-
dom Forests, Particle Swarm Optimization and Support Vector Machine classifier
is used to have best sets of mRNAs-miRNA pairs. Additionally, the significance of
selected mRINA-miRNA pairs is tested using gene ontology and pathway analysis
tools. Moreover, the selected mRNA-miRNA pairs are searched based on changes
in expression values of the used mRNA and miRNA dataset.
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1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 19-22 nu-
cleotides act as post-transcriptional gene expression regulators, bind with comple-
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mentary messenger RNAs (mRNAs) for stimulating their degradation or repressing
translation. In this regards, innovation of Next-Generation Sequencing (NGS) [6]
technology provides improved solution to the understanding of an entire human
genome sequence than compared to the previously used technologies, i.e., Sanger
sequencing or Capillary sequencing. Next-Generation Sequencing technologies can
also be applied to the RNA sequencing (RNA-seq) to directly sequence complemen-
tary DNAs (cDNAs). RNA sequencing permits the quantitative analysis of gene ex-
pression and transcript variant discovery. The primary aim of RNA-sequencing is to
find out differentially expressed genes when applied to multiple samples at different
biological conditions.

Numerous statistical approaches have been proposed over the years to analyze
differentially expressed RNA-seq data, e.g., edgeR [15], DESeq [1], and sSeq [20].
In this connection, algorithms like [14, 17] can be used to rank and select the differ-
entially expressed miRNAs. Apart from this, hypothesis test [10], classifier based
method [7] and information theory based measures [13] are used in gene ranking
as well as in miRNA ranking. Parametric method like [18] is developed by using
the expression overlapping between different classes. Nonparametric ReDiscovery
Curve (RDCurve) based method [12] study the stability of various ranking methods.

Reviewing all these methods, here we have proposed an integrated analysis of the
gene expression profiling of both mRNAs and miRNAs by using Kidney renal clear
cell carcinoma data that includes tumor and control samples. The proposed method
is a feature selection wrapper, consisting of Random Forests [5], Particle Swarm
Optimization (PSO) [8] and Support Vector Machine (SVM) [4] classifier. More-
over, emphasis is given here to identified the differentially expressed mRNAs and
miRNAs in-order to find out mRNA-miRNA pairs. In particular, this kind of obser-
vations might be significant in the cancer diagnosis. Moreover, we validate some of
our most interesting findings in different biological significance analysis.

The paper is organized as follows: Section 2 briefly describes the proposed
method. Section 3 shows the empirical results. Finally, Section 4 concludes this
paper with an additional note of future work.

2 Proposed Method

The proposed wrapper based feature selection method starts with 1135 number of
samples having 20,531 mRNAs. The mRNA sample includes 534 tumors and 601
control patients whereas miRNA include 254 tumor and 455 control sample. Since
this experiment is an integrated analysis of mRNA and miRNA data. Hence, com-
mon tumor and control samples among mRNA and miRNA data are considered here,
that consist of 186 tumor and 71 control samples. Steps of the proposed method are
described below:

The primary goal of feature selection is to avoid any kind of over fitting as well
as to improve the model performance. To gain a deeper insight into the underlying
processes of feature selection Random forest is used here. Several measures of vari-
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able importance can be identified by Random forest. Hence, by iteratively fitting
Random Forest at each iteration smallest set of informative mRNAs are identified.
In this regards, smallest OOB error rate is considered to be the underline criteria.
Because of the iterative approach, the OOB error is biased down and mRNAs with
smallest OOB error are selected as the reduced set of features. For this analysis,
normalized transcript reads of mRNAs are considered.

After feature selection using Random forest, in the next step of this work t-test
and fold change concepts are applied in order to segregate differentially expressed
mRNAs from normal and malignant samples. For this purpose, cut-off like p-value
< 0.05 and the fold change > 1 or < —1 are used as in [21]. In particular, change in
expression profile is considered to be the underline criteria to find out differentially
expressed mRNAs. Moreover, the differentially expressed mRNAs are mapped to
their normalized mRNA expression dataset of tumor and control samples.

The Particle Swarm Optimization (PSO) and Support Vector Machine (SVM)
provide a wrapper based approach for feature selection. It can effectively identify
significant mRNAs associated with Kidney renal cell carcinoma. For that, initial
particles of PSO are created using mRNA indices. Thereafter, the swarm is pre-
pared from a number of such particles. Moreover, encoded indices of these particles
are used to make a subset of data that are taken part during classification by SVM.
Here 5 Fold Cross Validation (FCV) is applied and accuracy is considered to be the
underline criteria for fitness evaluation. Block diagram of the proposed approach
is presented in Fig. 1. Moreover, the optimal signature refers to be the best set of
differentially expressed mRNA that provides highest classification accuracy. In this
regards, most appeared mRNAs concerning all runs of the proposed methods are
considered.

In this experiment, the expression datasets comprising the profiles of mRNAs and
miRNAs are considered. For this analysis, expression values of 1047 miRNA in 186
tumor and 71 control sample are used. The selected mRNAs by PSO+SVM are con-
sidered to find their corresponding miRNA targets. For this validation miRDB [19]
database is used. Shortlisted target miRNAs are used to find their expression profiles
from the normalized miRNA expression dataset of 186 tumor and 71 control sam-
ples. Any further analysis of miRNA is done using this reference expression vector
in-order to find out differentially expressed miRNAs.

Likewise, the mRNAs, based on p-value and fold change in expression levels, up
and down regulated miRNAs are identified. The miRNAs are known for suppressing
the expression level of mRNAs. Hence, our method selected up and down regulated
mRNAs and miRNAs are used to make mRNA-miRNA pairs. For that, combination
of up-regulated mRNAs with down-regulated miRNAs and vice versa are used.

Map the target
Selection of miRNAs to the Selection of

Initial Feature Up and Down PSO + Optimal Finding the Normalized Up and Down mMRNA-
Selection using [—] sl > O F—»! List of target | - >

Randonm Forest Regulated SVM Signature RNAL miRNA Regulated miRNA pairs
* mRNAs s Expression miRNAs

Dataset

257 Samples
with 20,531
mRNAs

Fig. 1 A block diagram representation of the proposed workflow
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3 Experimental Results

3.1 Datasets

The dataset comes from The Cancer Genome Atlas (TCGA)'. It features mRNA
and miRNA expression levels for Kidney renal cell carcinoma (KIRC) of different
tumor, and control samples. For KIRC, normalized expression mRNA and miRNA
datasets consisting of 186 common tumors, and 71 common control samples are
considered.

3.2 Results

Here, the problem is to identify mRNA-miRNA pairs for the investigated dataset.
For this purpose, the expression profiles of 20,531 mRNAs over 186 kidney renal
cell tumor samples and 71 control samples are considered. In order to find reduced
set of features, Random forest is used here. Because of it’s iterative approach, the
OOB error is biased down and mRNAs with smallest OOB error are selected as the
reduced set of features. This has been shown in Fig. 2 (a). By this process, 511 infor-
mative mRNAs are selected. In order to identify the up and down regulated mRNAs,
significant changes in the expression profiles are measured. For this analysis, the
volcano plot in Fig. 2 (b), illustrate the differentially expressed mRNAs among the
511. By this process, 242 up and 191 down regulated mRNAs are identified. Now,
these shortlisted mRNAs are process, using PSO+SVM. For this process, the pa-
rameters used in the proposed method are summarized in Table 1. Here, PSO+SVM
executed 30 times (N,..) on these differentially expressed mRNAs. According to the
experimental results, PSO+SVM achieved 92.60% average classification accuracy
for mRNA data. The average values of precision, sensitivity, specificity, F-measure
and MCC are 92.57%,92.58%,92.62%,92.58% and 0.920, respectively. For this
process, 10 mRNAs are considered by PSO+SVM during each run. Moreover, as
PSO+SVM was executed 30 times hence, in each run of the proposed method a new
set of differentially expressed mRNAs are identified. After the end of 30 executions,
one list is prepared that include all the appeared mRNAs. Thereafter, from that list
most appeared mRNAs covering all the runs of the proposed method are identified.
These mRNAs are considered to be optimal up and down regulated mRNAs associ-
ated with Kidney renal cell cancer subtypes.

Thereafter, these selected mRNAs are used to find their corresponding miRNA
targets and for this validation miRDB [19] database is used. Moreover, these short-
listed target miRNAs find their expression profiles from the normalized miRNA
expression dataset of 186 tumor and 71 control samples. A total of 450 miRNAs tar-
gets are identified from the miRGate database. Out of which, 417 miRNAs matches
their expression profile in the normalized miRNA expression dataset. Hence, the

! https://tcga-data.nci.nih.gov/tcga/
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miRNAs for which expression profile information is known are only taken at this
stage. Therefore, out of the 450 miRNAs in the list, 33 have been excluded because
they did not have the expression profile information in our used normalized miRNA
expression dataset. Thereafter, p-value and fold change analysis of the shortlisted
417 differentially expressed miRNAs, identified the up and down regulated one.
By this process 14 informative miRNAs are identified, that includes 12 down reg-
ulated and 2 up regulated miRNAs. Method selected down regulated miRNAs are
hsa-mir-200c, hsa-mir-181a-2, hsa-mir-196a-1, hsa-mir-183, hsa-mir-194-2, hsa-
mir-196a-2, hsa-mir-10b, hsa-mir-138-1, hsa-mir-182, hsa-mir-192, hsa-mir-135b,
hsa-mir-199b whereas hsa-mir-141, hsa-mir-196b are up regulated miRNAs.

Studies on miRNAs found that it can suppress the expression level of mRNAs.
As miRNAs and mRNAs belonging to same sample (Tumor and Control) of KIRC
dataset is used in this experiment. Hence, differentially expressed miRNAs and mR-
NAs of the same sample (Tumor and Control), can be paired. Moreover, up regulated
miRNAs can be mapped with down-regulated mRNAs and vice versa. In the pro-
cess, many of the selected mRNAs have been excluded from the list while miRNAs
remain same. Final list of mRNA-miRNA pair include 98 up-regulated mRNA and
12 down-regulated miRNA pair and 62 down-regulated mRNA and 2 up-regulated
miRNA pair. Details of which are given in Table2.
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Fig. 2 (a) Variation of OOB errors with the number of grown trees in Random forest, (b) Volcano
plot depicts 242 up and 191 down regulated mRNAs

Table 1 Parameters used in the experiment

Symbol Value Description Symbol Value Description
Npar 50  Number of Particles © 2 Social Constant
Nis 50 Number of Iterations w 0.9 Inertia Weight

L 10 Length of a Particle C 0.01 SVM C Constant
@1 2 Cognitive Constant | Ny 30 Number of Executions
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Table 2 Method selected up and down regulated miRNA and mRNAs

Down Regulated |Up Regulated Up Regulated mRNA Down Regulated mRNA

miRNA miRNA

hsa-mir-200c  |hsa-mir-141 |ABCB7 ~ BCL2LI2 Corfll7 ~CHTF§ DUSP23 FGF2  HISTIH3E|B3GALTS CHURCI DNAHI7 GEMIN7 ID4

hsa-mir-181a-2 |hsa-mir-196b |[ABCD4 ~ BCL7C  CAll COL4A6 DUT FSTL5S HSPAI2A [BSND  CHTA  DPYSLS GINI  IDHI

hsa-mir-196a-1 ACADI1  BICCI ~ CACNA2D2 CPD EDEMI  FTL  IGSF3  [CCNT2 CKAP2L E2F3 GIPCI

hsa-mir-183 ADCY2  BMPRIB CALB2  CREG2 ENGASE FzZD3 ILI7REL |[CDC42 CLNK  ELL GIT2

hsa-mir-194-2 ADRA2C BPGM  CCDCI41 CRNKLI EPB4ILI GABRE IMMP2L |CDHI0 CLULI ENOSFI GLUDI

hsa-mir-196a-2 AHCYLI BRI3BP CCDCI52 CRTAM EPPKI  GALNT6 IMPAI  [CLNK  CNOT6L FAMI72A GNAS

sa ALCAM  BSTI  CCDC85C CRTAP EXTI GATM INCENP |DNAHI7 CNRI ~ FAMI9AS GNPTAB
ANKRDI3A BTBD2 CCDC88A CSF2RB FAIM2 ~ GDF2 IQSECI |DPYSLS CPEB2 FBX048 GPR37

- ANKRD34B BVES ~ CCND2  CYBRDI FAMI20C GLT8D2 E2F3  CPEB3 FCGR3A GRMS

hsa-mir-192 ARGFX  Cl70rfl07 CCNTI ~ CYLD  FAMI26B GPKOW ELL CWFI9LI FLRT2  GSTM2

hsa-mir-135b ARHGAP20 C19rf70 CDKI0 ~ CYP8BI FAMI89A1 GPRI6I ENOSFI CYPIA2 GAB2  HAGHL

hsa-mir-199b ARHGEFI8 Cdorf32 CGNLI  DIRASI FAMI96A GTPBPS EPNI  DAZAP2 GAL3STI HBSIL
ARMCIO  Cdorf45 CHML DNAIC14 FAM198B  H6PD GIT2  DISCI  GBP2  HEYI
ATG2A  CS5ARI  CHSTS ~ DPP9  FBXLI8 HACEL HDDC3 DKKI ~ GDFIl  HIVEP3
ATP2B2  C9orfll4 CHST6  DRP2  FCHSDI HEPH CHST7 DLG5S GDF7  ID3

3.3 Biological Significance

Table 3 Most significant Gene Ontology terms concerning selected genes for Biological Process
(P), Cellular Component (C) and Molecular Function (F) obtained through Enrichment analysis
via Enrichr [9]

Term P-value Genes
cellular iron ion homeostasis (GO:0006879) 3.68e-05 HEPH, ABCB7, GDF2, CYBRDI, FTL
N-acetylglucosamine metabolic process (GO:0006044) 5.16e-05 CHST6, CHST7, CHST5
GO Biological sulfur compound metabolic process (GO:0006790) 9.36e-05 CHST6, CHST7, CHSTS
Process (P) positive regulation of cyclin-dependent protein serine (GO:0045737) 4.64¢-04 CCNT2, CCND2, CCNT1
negative regulation of cytoplasmic translation (GO:2000766) 8.66e-04 CPEB3, CPEB2
cyclin/CDK positive transcription elongation factor complex (GO:0008024) 1.60e-03 CCNT2, CCNT1
messenger ribonucleoprotein complex (GO:1990124) 1.60e-03 CPEB3, CPEB2
GO Cellular Golgi membrane (GO:0000139) 1.66e-03 EXT1, CDC42, GALNT6, CHST6,
Component (C) CHST7, HACE1, GNPTAB, EDEMI, CHST5
CCR4-NOT complex (GO:0030014) 6.59¢-03 CNOT6L, CPEB3
neuron projection (GO:0043005) 1.36e-02 CALB2, CDC42, CPEB3, CPEB2
N-acetylglucosamine 6-O-sulfotransferase activity (GO:0001517) 1.53e-05 CHST6, CHST7, CHST5
7SK snRNA binding (GO:0097322) 8.66e-04 CCNT2, CCNT1
GO Molecular mRNA 3’-UTR AU-rich region binding (GO:0035925) 2.55e-03 CPEB3, CPEB2
Function (F) transforming growth factor beta receptor binding (GO:0005160) 2.87e-03 GDF11, GDF2, GDF7
translation repressor activity, nucleic acid binding (GO:0000900) 3.10e-03 CPEB3, CPEB2

Biological significance analysis of the mRNAs-miRNAs pairs have been car-
ried out by KEGG pathway enrichment and Gene ontology analysis. In this re-
gards, miRSystem ver. 20160502 [11] and Enrichr [9] helps is finding the as-
sociated pathways of the significant mRNA-miRNA pairs. For the Gene enrich-
ment analysis, the biological process (P), cellular component (C) and molecular
function (F) hierarchies in gene ontology (GO) are considered. The most signif-
icant GO terms, with lowest p-values (< 0.001) for the biological processes (P)
associated with mRNA data are cellular iron ion homeostasis (GO:0006879), N-
acetylglucosamine metabolic process (GO:0006044), sulfur compound metabolic
process (GO:0006790), positive regulation of cyclin-dependent protein serine (GO:
0045737), negative regulation of cytoplasmic translation (GO:2000766) etc. Signif-
icant top 5 Gene Ontology terms concerning selected genes for Biological Process
(P), Cellular Component (C) and Molecular Function (F) are reported in Table.3.
This table also includes a list of associated genes corresponding to each ontology
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term. Association of the obtained mRNAs with different biological pathways are
been identified by KEGG pathway enrichment analysis. It has been observed that,
significant mRNAs are associated with many KEGG pathways. Among them, only
10 significant pathways with lowest p-values are presented in Table.4. For this anal-
ysis, 98 up-regulated mRNA and 62 down-regulated mRNA are considered. Overall,
the results signify the importance of selected mRNA-miRNA pairs.

Table 4 Top 10 KEGG pathways associated with the selected up and down regulated mRNAs

Term P-value Genes

TGF-beta signaling pathway: hsa04350 0.0040 ID4, ID3, BMPR1B, GDF7

Signaling pathways regulating pluripotency of stem cells: hsa04550 0.0049 FZD3, ID4, ID3, BMPR1B, FGF2
Salivary secretion: hsa04970 0.0050 BSTI1, GNAS, ADCY2, ATP2B2
Pancreatic secretion: hsa04972 0.0065 BSTI1, GNAS, ADCY2, ATP2B2
Mineral absorption: hsa04978 0.0071 HEPH, CYBRDI, FTL

Retrograde endocannabinoid signaling: hsa04723 0.0077 GRMS, CNR1, ADCY2, GABRE
Dorso-ventral axis formation: hsa04320 0.0182 CPEB3, CPEB2

Rapl signaling pathway: hsa04015 0.0238 CDC42, CNR1, GNAS, ADCY2, FGF2
Phospholipase D signaling pathway: hsa04072 0.0253 GRMS5, GNAS, ADCY2, GAB2
Adrenergic signaling in cardiomyocytes: hsa04261 0.0277 GNAS, CACNA2D2, ADCY2, ATP2B2

4 Conclusion

In this paper, the integrated analysis of mRNA and miRNA expression data identi-
fied a number of mRNAs and miRNAs that are differentially expressed in control
and tumor samples. For this analysis, Random Forests is used as initial feature se-
lector. Thereafter, with the help of Particle Swarm Optimization and Support Vector
Machine classifier the proposed method is optimized to have best sets of mRNAs.
In addition to that, functional miRNA targets of selected mRNAs are also identi-
fied for the expression data of Kidney renal cell. Finally, differentially expressed
mRNA-miRNA pair are prepared. These selected mRNA-miRNA pairs are proven
to be relevant according to gene ontology and pathway analysis tools. Hence, these
mRNA-miRNA pairs are the potential biomarkers for the Kidney renal cell cancer
type. In conclusion, this analysis is proven to be helpful for the joint mMRNA-miRNA
biomarker identification and could also be used as miRNA marker [3, 16] and gene
selection [2].
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