
UNrvpRsrDADE np Évona
Iusrrruro DE INvosrrcaçÃo p FoRURçÃo AvaNÇADA

Distributed Knowledge Bases: A Proposal
f or Argumentation-based Semantics

with Cooperation

Iara Carnevale de Almeida

orientador: Prof . Doutor José Julio Alferes

co-orientador: Prof. Doutor Luis Arriaga da Cunha

Janeiro de 20lL

Doutoramento lRamo de Conhecimento em Informática.

§R

rnl,Ttr

--)



RS

IJNrvensrDADE op Évone
INstruuro DE IxvBsrrceçÃo p FonuaçÃo AveNçe»a

Distributed Knowledge Bases: A Proposal
for Argumentation-based Semantics

with Cooperation

Iara Carnevale de Almeida

orientador: Prof. Doutor José Júlio A/feres

co-orientador: Prof. Doutor Luis Arriaga d,a Cunha

Janeiro de 2011

Doutorarnento/Ram.o cle Conhecirnento etn Informática.

)1 ) )'l +)

E

rnh
-l

.tr*,{rôi. ., 'ri'
q\, 

i 
'

{-t



Autor
Título

Orientador
CeOrientador
Instituição

Palavras Chave

Endereço

E-mail
Copyright
Local
Data

Iara Carnevale de Almeida
Distributed Knowledge Bases: A Proposal
for Argumentation-based Semantics
with Cooperation
Prof. Doutor José Júlio Alferes
Prof. Doutor Luís Arriaga da Cunha

Universidade de Élroru
Departamento de Informática
Artificial Intelligence,
Extended Logic Programming,
Knowledge Representation,
Distributed Knowledge Bases,
Pa,raconsistency,
Incomplete knowledge,
Cooperation,
Negotiation Argument-based Semantics.
Departamento de Informática
Universidade de Él oru
Rua Romão Ramalho, 59

7000-671 Érro.a, Portugal
ica@di.uevora.pt
Universidade de Érroru

Éroru
Janeiro de 2011



ll



Acknowledg*ents

In writing this dissertation, I have received the help and encouragement of many
people. I would certainly fail in trying to enumerate them all. Therefore, I will
only mention a few that have had a particular impact on my work, directly or
indirectly.

I want to thank particularly:

o my supervisor José Júlio Alferes, for all the support given throughout the
elaboration of this dissertation, for his critical and objective views during
the discussions we had, and for particularly his careful and critical reading
of the final version;

. my cesupervisor Luís Arriaga, for all the support given throughout the
elaboration of this dissertation;

r CAPES in Brazil, for the funding of my research activity during its first
years;

o the University of Évora, for all institutional support, logistic and scientific
support. For all my colleagues from University of Evora, for their encour-

agement. Special thank you to Paulo Quaresma and Luis Rato;

o For all my colleagues at FCT/UNL, especially those from the CENTRIA
research group. Special thank you to Luís Moniz Pereira and Ca.rlos Damásio;

o Special thank you to Vasco Pedro for reviewing both English and formalism
of this dissertion;

o Laura Semini and Stephan Reifi-Marganiec for their omnipresent optimism;

o Patrícia Moita, Pedro Madureira and the lovely Tiago for the reinvigorating
meetings;

o Paulo and Cati Quaresma, for the great support they gave me during my
stay in Portugal;

lll



o Fernando Moura Pires, a very special colleague who I had the chance to work
with, for the priúlege of his friendship and for his wise advice.

Last, but not the least to:

o Teresa and Antonio, Constança, Isabel, Fernanda and Anjo, Paula, and
Maria José for giving me a great support outside of the University;

o Mariana and Vasco, very special children. I feel very sorry for being absent
for some important periods of their lives;

o Grandma Ermelinda, for the example of strength and perseverance (perhaps
it would better to say, "stubbornness") in her life, although she is not with
us any more, she will always be present in my heart;

o Grandma Juracy, for her care and attention during my infancy. I am grateful
for her example of the desire to keep on living, in spite of her 93 years. I feel
very sorry that our "old lady" wasn't able to wait a little longer to witness
the conclusion of this extra stage in my life;

o Grandpas Eurico and Manuel, for the love they always have offered me during
my infancy and my rebellious adolescence;

. my parents Rita and Paulo, for the education and gúdance in the my career
choices and for their constant encouragement;

. my sisters and brother, Isabela, Júlio and Jussara, for every interesting talk
that we have had about choices that we have made in both personal and
professional life. Quite different from each other;

o the remaining family for all the support, love and care that they have always
shown towards me;

o Finally, to my daughter Helena, an adorable 2-years old child who has taught
me how life can be beautiful with simple and small things.

É.roru, Janeiro de 2011
Iara Carnevale de Almeida

lv



Abstract

"Distributed Knowledge Bases: A Proposal for
Argumentation-based Semantics with Cooperation"

The main objective of this dissertation is to define an argumentation-based nego.
tiation framework for distributed knowledge bases. Knowledge bases are modelling
over a multi-agent setting such that each agent possibly has an independent or
overlapping knowledge base. The minimum requirement for a multi-agent setting
negotiation is that agents should be able to make proposals which can then either
be accepted or rejected. A higher level of sophistication occurs when recipients do
not just have the choice of accepting or rejecting proposals, but have the option
of making counter offers to alter aspects of the proposal which a,re unsatisfactory.
An even more elaborate kind of negotiation is argumentation-based.

The argumentation metaphor seems to be adequate for modelling situations
where different agents argue in order to determine the meaning of common beliefs.
In an argumentation-based negotiation, the agents are able to send justifications
or arguments along with (counter) proposals indicating why they should be ac-

cepted. An argument for an agent's belief is acceptable if the agent can argue
successfully against attacking arguments from other agents. Thus, agent's beliefs
are characterized by the relation between its "internal" arguments supporting its
beliefs and the "externâI" arguments supporting the contradictory beliefs of other
agents. So, in a certain sense, argumentative reasoning is based on the "external
stability" of acceptable arguments in the multi-agent setting.

This dissertation proposes that agents evaluate arguments to obtain a consen-
sus about a common knowledge by both proposing arguments or trying to build
opposing arguments against them. Moreover, this proposal deals with incomplete
knowledge (i.e. partial arguments) and so a cooperation process grants arguments
to achieve knowledge completeness. Therefore, a negotiation of an agent's belief is
seen as ân argumentation-based process with cooperation; both cooperation and
argumentation are seen as interlaced processes. F\rthermore, each agent Ag has
both set Argue of argumentative agents and set Cooperate of cooperative agents;

v



every Ág must reach a consensus on its arguments with agents in Argue, and Ag
may ask for arguments from agents in Cooperaúe to complete its partial arguments.

The argumentation-based negotiation proposal allows the modelling a hierar-
chy of knowledge bases representing, for instance, a business's organization or a
taxonomy of some subject, and also an MAS where each agent represents "acquired
knowledge" in a different period of time. Furthermore, any agent in an MAS can
be queried regarding the truth value of some belief. It depends on from which
agent such a belief is inferred, and also what the specification in both Argue and
Cooperate is, given the overall agents in the MAS. However, such an answer will
always be consistent/paraconsistent with the agents' knowledge base involved.

This dissertation proposes a (declarative and operational) argumentation se-

mantics for an agent's knowledge base. Furthermore, it proposes a declarative
argumentation-based negotiation semantics for a multi-agent setting, which uses

most of the definitions from the former semantics.

vl



Resumo

"Bases de Conhecimento Distribuídas: Uma proposta para Semânticas
baseadas em Argumentação com Cooperação"

O objectivo principal desta dissertação é definir um ambiente de negociação,
baseada em argumentação, para bases de conhecimento distribuídas. As bases

de conhecimentos são modeladas sobre um ambiente multi-agente tal que cada
agente possui uma base de conhecimento própria. As bases de conhecimento dos

diversos agentes podem ser independentes ou podem incluir conhecimentos co-

muns. O requisito mínimo para haver negociação num ambiente multi-agente é

que os agentes tenham a capacidade de fazer propostas, que poderão ser aceites
ou rejeitadas. Numa abordagem mais sofisticada, os agentes poderão responder
com contra-propostas, com o intuito de alterar aspectos insatisfatórios da pro-
posta original. Um tipo ainda mais elaborado de negociação será o baseado em

argumentaçõ,o.

A metáfora da argumentação parece ser adequada à modelação de situações em
que os diferentes agentes interagem com o propósito de determinar o significado
das crenças comuns. Numa negociação baseada em argumentação, as (contra-

)propostas de um agente podem ser acompanhadas de argumentos a favor da sua
aceitação. Um agente poderá, então, ter um argumento aceitável para uma sua
crença, se conseguir argumentar com sucesso contra os argumentos, dos outros
agentes, que o atacam. Assim, as crenças de um agente caracterizam-se pela
relação entre os argumentos "internos" que sustentam suas crenças, e os argumen-
tos "externos" que sustentam crenças contraditórias de outros agentes. Portanto,
o raciocínio argumentativo baseia-se na "estabilidade externa" dos argumentos
aceitáveis do conjunto de agentes.

Neste trabalho propõe-se uma negociação baseada em argumentação em que,

para chegarem a um consenso quanto ao conhecimento comum, os agentes con-
stroem argumentos que sustentam as suas crenças ou que se opõem aos argumentos
dos agentes que as contradizem. Além disso, esta proposta lida com conhecimento
incompleto (i.e. argumentos parciais) pela definição de um processo de cooperação
que permite completar tal conhecimento. Assim, a negociação entre agentes é um

vll



processo argumentativo-cooperativo, em que se podem alternar os argumentos con-
tra e a favor das crenças de um agente. Para a formação das suas crenças, a cada
agente Ag está" associado um conjunto Cooperaúe de agentes com quem coopera e
um outro Argue de agentes contra quem argumenta.

A negociaçáo proposta permite a modelação de bases de conhecimento hierárquicas,
representando, por exemplo, a estrutura de uma organização ou uma taxonomia
nalgum domínio, e de ambientes multi-agente em que cada agente representa o
conhecimento referente a um determinado período de tempo. Um agente também
pode ser inquirido sobre a verdade de uma crença, dependendo a resposta do
agente em questão e de quais os agentes que com ele cooperam e que a ele se

opõem. Essa resposta será, no entanto, sempre consistente/paraconsistente com
as bases de conhecimento dos agentes envolvidos.

Esta dissertação propõe semânticas (declarativa e operacional) da argumentação
numa base de conhecimento de um agente. Partindo destas, propõe, também,
semântica declarativa da negociação baseada em argumentação num ambiente
multi-agente.

vlll



Contents

Acknowledgments

Abstract

Resumo

Contents

List of Figures

List of Tables

I Introduction
1.1 Main Contributions of this thesis
I.2 Thesis Structure.

2 Background on Defeasible Argumentation
2.1 Extended Logic Programming with Denials
2.2 Fixpoint Approach of Argumentation
2.3 Argumentation for Logic Programs

2.3.1 Dung's Argumentation Flamework
2.3.2 Prakken and Sartor's Argumentation Framework

3 A Proposal for Self-Argumentation
3.1 "Privacy and Personal Life", an example
3.2 Declarative Semantics

3.3 Proof for an Argument
3.4 On the implementation of the proposed semantics

4 A Proposal for Argumentation-Based Negotiation
4.1 Flom Centralized to Distributed Argumentation
4.2 "Reaching a Verdict", an example .

lll

v

vii

lx

xi

xll

I
15

27

25

26

27

35
37

47

76

85

87
89

92

1

4

5

lx



Declarative Semantics
Properties
Other Illustrative Examples
4.5.I Representing Hierarchy of Knowledge
4.5.2 Obtaining Conclusions at Different Periods of Time

4.6 On the implementation of the proposed semantics

5 Related Work
5.1 Semantics of Abstract Argument Systems .

5.2 Defeasible Reasoning
5.3 Argument-based Negotiation
5.4 Some conclusions

6 Conclusions and F\rture Work
6.1 Future Work

Bibliography

4.3
4.4
4.5

96
172
115

116

119

t23

r49
161

139
. 140

. r43

163
. L67

170

x



List of Figures

Attacking relation of Example 6
Defeating and Strictly defeating relation in Args

The knowledge of agent Ág about "Privacy of Personal Life"
The conclusions over the set of rules PPL
Proponent strong arguments and opposing weak arguments of Ex-
ample 13 . .

Proposed weak arguments and opposing strong arguments of Ex-

2.7
2.2

3.1

3.2
3.3

3.4

28
31

ample 13 . .

3.5 Acceptableu,u arguments in Args-(P)
3.6 Acceptable,,,,@ arguments in Args-(PPL)
3.7 Acceptables,u arguments in Args(P)
3.8 Acceptable"'' arguments in Args(PPL)
3.9 Acceptables,s arguments in Args"(P)
3.10 Acceptable"," arguments rn Args"(PPL)
3.n Df;': i, {p <- not a; a <- not b,not c; a <- not d; b; d

not e; c <- not g; g\
(-

39
40

49

56

62

63
65

66

67

68

80

82
83
84

86

91

92

94
177

120
130

r37
138

3.12 Some DT"i; in {p +- not a; a <- not b,

c <- not g; g; rn <- not l; I + not m\
not c; b +- not c;

3.13 DTX: in {a <- not b; -a; bi -b; c; L +-
3.L4 DfX: in {o <- not b; -a; b) -b; c; L +
3.15 A Dialogue \\ee DTfftr, from Example 9

4.7 An example of a Multi-agent Setting
4.2 A : {< pa, Kbpo, {po}, {po]; >, 1 ?r, Kbw, {yr}, {pr,po} >}
4.3 "The inconvenient witness"
4.4 "Business Process Management"
4.5 Hamlet's knowledge in periods of time
4.6 An Architecture for Argumentation-based Negotiation
4.7 PullPushAdapter
4.8 Interprolog as a middleware for Java and Prolog

c\....
c\....

xl



xll



List of Tables

Ways of interacting arguments .

The status of arguments w.r.t Args(PPL) and Args"(PPL). .

The status of arguments w.r.t Args'(PPL)
The truth value of. PPL's conclusions

3.1
3.2

3.3

3.4

48

71

72

73

xlll



xlv



Chapter 1

Introduction

Negotiation is a key mechanism of interaction in a multiagent setting. In such

environments, agents often have no inherent authority over each other, and the
only way they can influence the behavior of others is to persuaded them to act in
particular ways. In some cases, the persuade may require little or no be convinced
to effort to act in the way desired by the persuader. However, in other cases, the
persuaded may be unwilling to accept the proposal initially and must be persuaded

into changing its beliefs, goals, or preferences so that the proposal is accepted. In
either case, the minimum requirement for negotiation is for the agents to be able

to make proposals to each other which can then either be accepted or rejected.
Another level of sophistication occurs when recipients do not just have the choice

of accepting or rejecting proposals, but have the option of making counter offers to
alter aspects of the proposal which are unsatisfactory. An even more elaborate kind
of negotiation is argumentat'ion-based. In argumentation-based negotiation, the
agents are able to send justifications or arguments along with (counter) proposals
indicating why they should be accepted. In fact,

"While negotiation can be viewed as a process to find a solution, argu-
mentation is needed to justify a proposed solution. Hence, it is clear
that there is no negotiation without argumentation. In other words,
argumentation is an integral part of negotiation" [Dun95].

The goal of argumentation-based negotiations semantics for a multi-agent set-
ting is to deal with situations where different agents argue in order to determine
the meaning of common beliefs. A belief of an agent is acceptable if the agent
can argue successfully against attacking arguments from other agents. In other
words, whether or not an agent believes in a proposition depends on whether or
not at least one argument supporting this proposition can be successfully defended
against the counter-arguments. Thus, the agent's beliefs are characterized by the

1



2 CHAPTER 1, INTRODUCTION

relations between its "internal" arguments supporting its beliefs and the "external"
arguments supporting the contradictory beliefs of other agents. So argumentative
reasoning can be viewed as based on the "external stability" of acceptable argu-
ments in a multi-agent setting. If one views the distributed knowledge as coming
from various agents in a multi-agent setting, it may happen that:

o Agents negotiate by exchanging parts of their knowledge (i.e. arguments) to
obtain a consensus concerning their beliefs. In other words, in an argumenta-
tion-based negotiation, the agents evaluate arguments to obtain a consensus
about a common knowledge by both proposing arguments and trying to
build opposing arguments against them. Moreover, a set 

^9 
of agents' knowl-

edge bases is very often inconsistent if we consider the 'overall knowledge' of
,S. So, an argumentation-based negotiation should deal with contradictory
arguments and also with the presence of falsi,ty in S.

o An argumentation-based negotiation should deal with incomplete knowledge
(i.e. partial arguments), and so a cooperation process is necessary to grant
arguments to achieve knowledge completeness. Moreover, cooperation could
be 'direct' between cooperative agents or 'indirect' between argumentative
agents. The latter presumes that a proposed argument could be used to built
a counter-argument against it.

o If we assume that every agent argues and cooperates with all agents in an
argumentation-based negotiation process, the results of such a process and
of the argumentation-based process (over the set of all agent's knowledge
bases) should coincide. However, there are cases where these proposals do
not coincide because an agent does not need to argue and/or to cooperate
with all agents. This is the case, for instance, when a multi-agent setting
represents a kind of hierarchy of knowledge where each agent has a partial
knowledge of the overall process.

In logic programming, several ways to formalize argumentation-based seman-
tics have been studied for a single logic program (e.g. [GDS09, arg10], and scientific
events such as "Conference on Computational Models of Argument (COMMA)",
"Conference on Principles of Knowledge Representation and Reasoning" (KR),
"Argument, Dialog and Decision" ât the International workshop on Non-Monotonic
Reasoning (NMR), and the "Workshop Argumentation and Non-Monotonic Rea-
soning" (ArgNMR)). Intuitively, argumentation-based semantics treat the evalua-
tion of a logic program a,s an argumentation process, i.e. a goal G is true if at least
one argument for G cannot be successfully attacked. The ability to view logic pro-
gramming a,s a non-monotonic knowledge representation language, in equal stand-
ing with other non-monotonic logics, brought to light the importance of defining



3

clear declarative semantics for logic programs, for which proof procedures (and
implementations) are then defined (e.g. [Dun93, Dun95, PS97, BDKT97, Vre97,
Lou98, SS02b, DMT02a, Pol01, DMT02b, GS04, Pra09l).

Note that a precise meaning (or semantics) must be associated with any logic
program, in order to provide a declarative specification. Declarati,ue semantics
provide a mathematically precise definition of the meaning of a program, which
is independent of its procedural executions, and is easy to manipulate and reason
about. In contrast, an operat'ional semanti,cs is usually defined as a procedural
mechanism that is capable of providing answers to queries. The correctness of
such a mechanism is evaluated by comparing its behavior with the specification
provided by the declarative semantics. Without the former, the user needs an
intimate knowledge of the procedural aspects in order to write correct prograrns.

The main goal of the proposal presented in this dissertation is to define a declar-
ative semantics for Argumentation-based Negotiation for "distributed knowledge
bases", following the work in progress [dAA06, dAMA9Sa, dAMAg8b, dAMA99,
SdAMA97, dAMAS97, dAMA97]. The set of knowledge bases is viewed as a
multi-agent setting (MAS) where each agent has an independent or overlapping
knowledge in the MAS. Moreover, every agent Ag in an MAS argues and cooper-
ates with a subset of the agents in the MAS, i.e. Ag has a set of argumentative
agents and a set of cooperative agents. In general, little is assumed about these
sets. We only impose that every agent argues and cooperates with itself because
it would make little sense for an agent neither to access its own knowledge nor to
obtain a consensus based upon its own knowledge. Moreover, argumentation and
cooperation are viewed as "interlaced processes". The argumentation imposes the
restriction that every agent should argue with other agents to evaluate its knowl-
edge. The cooperation allows an agent to handle its incomplete knowledge with
the 'help' of other agents.

The ability of associating argumentative and cooperative sets to each agent
provides a flexible framework which, besides reflecting the possibly existing phys-
ical network, may serve for different purposes from the ones above. For example,
for modelling knowledge over a hierarchy where each node of the hiera.rchy is rep
resented by an agent that cooperates with all its inferiors, and must argue with
all its superiors. Another example is modelling knowledge that evolves. Here, the
"present" can use knowledge from the "past" unless this knowledge from the past
is in conflict with later knowledge. This can be modelled by allowing any present
node to cooperate with its past nodes, and forcing any past node to argue with
future nodes. In both cases, it is important that the knowledge is not flattened, as

in the union of all knowledge bases, and that the semantics is parametric on the
specific Kb. Le. it may happen that an argument is acceptable in a given (agent6)

Kbi, and not acceptable in another (agentT) Kbi of the same system. Therefore,



4 CHAPTER 1. INTRODUCTION

a truth value of an agent's belief depends on which agent such a belief is inferred
from, and also what the specification of both sets of cooperative and argumentative
agents is, given the overall agents in the MAS.

Besides this distributed nature, the Argumentation-based Negotiation seman-
tics also allows for paraconsistent forms of argumentation. In fact, we also have
the goal to be able to deal with mutually inconsistent, and even inconsistent,
knowledge bases. Moreover, when in presence of contradiction we want to obtain
ways of agent reasoning, ranging from consistent (in which inconsistencies lead
to no result) to paraconsistent. For achieving this, we focus on the properties
of declarative semantics in what regards paraconsistency which are interesting by
themselves, and independent from its distributed nature.

With this purpose, we first restrict our attention to the special case of the
distributed semantics where only a single logic program is in the set of programs,
i.e. we propose a semantics for an extended logic program with denials (ELPd)
which represents the knowledge base of an agent. This semantics is argumentation-
based, in the line of the work developed by [Dun95, PS97] for defining semantics
of single extended logic programs. We propose two kind of arguments, strong
argument and a weak version of the strong argument. To distinguish between
them, a strong argument for a literal ,L will be denoted bV AL and its weak version
bV A'í,. The weak version Ai is built by adding default literals to the rules of Al,
thus making the rules weaker (more susceptible to being contradicted/attacked).
Intuitively, if there is a potential inconsistency then the weak argument is attacked,
whereas the strong one is not. As such, the semantics succeeds in detecting conflicts
in a paraconsistent ELPd, i.e. it deals with contradictory arguments. We also

improve the notion of [PS97]'s status of an argument, and so an argument of an
agent Ág is deduced as justified, overruled or defensible with respect to the Ag's
set of arguments. Since the semantics deals with paraconsistency, if there exist
contradictory arguments in a set of justified arguments ,S, a justified argument can
in turn be contradictory, based on contradiction or non-contradictory w.r.t. ,S.

1.1 Main Contributions of this thesis

o We define a declarative semantics for Argumentation-based Negotiation for a
multi-agent setting (MAS). Every agent Ag in a MAS argues and cooperates
with a subset of agents in the MAS, i.e. Ag has a set of argumentative agents
and a set of cooperative agents. The semantics for Argumentation-based
Negotiation is composed by argumentation and cooperation. The former
imposes the restriction that every agent should argue with other agents to
evaluate its knowledge. The latter allows an agent to handle its incomplete
knowledge with the 'help' of other cooperative agents.



1,2, THESIS STRUCTURE

o We extend [PS97]'s argumentation-based semantics for extended logic pro-
grams to deal with denials. We further propose two kind of arguments, strong
arguments and weak arguments. Then, the declarative semantics for (Self-)
argumentation succeeds in detecting conflicts in a paraconsistent extended
logic program with denials, i.e. it deals with contradictory arguments.

o We improve the notion of [PS97]'s status of an argument, so that an argument
of an agent Ag is justified, overruled or defensible with respect to the Ag's set

of arguments. Since our argumentation proposal deals with paraconsistency,
if there exist contradictory arguments in a set of justified arguments ^9, a
justified argument can in turn be contradictory, based on contradiction or
non-contradictory w.r.t.,S.

o The truth value of an agent's belief may not always be the same depending
on which kind of interaction between (strong and weak) arguments is chosen.

According to the choice of interaction, we may obtain different well-founded
semantics, viz. WFSXo semantics [ADP95], Grounded extension [Dung5],
WFSX [P492], or WFS semantics [Prz90]. Since our ârgumentation is pa-

rameterized by the kind of interaction between arguments, we obtain results
from a consistent way of reasoning to a paraconsistent way of reasoning.

o We develop a proof procedure for both declarative and operational (Self-)
argumentation semantics.

L.2 Thesis Structure
Besides the present chapter, this dissertation comprises the following parts

o Chapter 2 presents background material on the usage of defeasible argumen-
tation for logic programming. This background is essential to understand our
argumentation-based semantics with cooperation. We briefly present the
Extended Logic Programming with denials language (denoted by ELPd),
since it is the representation language for modelling the knowledge bases

that we use in the remainder of the dissertation, and recall the work of

[Dun95, PS97]'s argumentation semantics as a basis for attributing a mean-
ing to the language. Since their work follows a fixpoint approach [Pol87], we

first present the definitions of such an approach applied to argumentation.
Then, both argumentation semantics for logic programming are presented.

o Chapter 3 presents an ârgumentation semantics which involves a "single"
extended logic program, named self-argumentati,on semantics. We focus on
the properties of a declarative semantics in what regards paraconsistency

5



6 CHAPTER 1. INTRODUCTION

which are interesting by themselves, and independent from its distributed
nature. With this purpose, we restrict our attention to the special case

of the distributed semantics, where only a "single" extended logic program
with denials (ELPd) is in the set of programs. The self-argumentat'ion se-

mantics is inspired by two well known argumentation semantics, viz. [Dun95]
and [PS97]. W" redefine [PS97]'s definition of argument and other [PS97]'s
definitions are simplified, the goal being to obtain a semantics for extended
logic program with denials which represents the knowledge base of an agent.
Furthermore, v/e propose a parameterized characteristic function so that our
argumentation semantics obtains different levels of acceptability of an ar-
gument. With such a differentiation, we go through the properties of both
conflict-free and contradictory sets of acceptable arguments. Therefore, we

obtain both paraconsistent and consistent ways of reasoning. According
to [PS97]'s definition of the status of an argument, the argument may be
justified, overruled or defeasible. On top of that, we propose that a justified
argument can be contradictory, based on contradiction, or non-contradictory.
We then present a definition of the truth value of a conclusion G such that
G is true (and contradictory, based-on-contradiction, or non-contradictory),
false or undefined. Finally, we present a proof procedure for such a declara-
tive semantics.

o Chapter 4 presents the main contribution of the dissertation: an argumenta-
tion-based negotiation semantics for distributed knowledge bases represented
as extended logic programs. Such a semantics extends the argumentation se-

mantics presented in the previous chapter by considering sets of (distributed)
logic progrâms, rather than single ones. For specifying the ways in which
the various logic programs may combine their knowledge we make use of
concepts that have been developed in the areas of defeasible reasoning and
multi-agent settings. In particular, we associate to each program P a coop
eration set (the set of programs that can be used to complete the knowledge
in P) and an argumentation set (the set of programs with which P has to
reach a consensus). In this chapter, we first define a declarative semantics
for argumentation-based negotiation. Then, some illustrative examples are
presented. Finally, we present a general architecture for implementing the
semantics.

o Chapter 5 compares related work in the areas of Defeasible Reasoning and
Argumentation-based Negotiation.

o Finally, Chapter 6 goes back to the objectives drawn in the introduction,
synthesizing the way how the work which unfolded throughout this disserta-
tion has fulfilled them. Then, it outlines some future research aspects that



1.2. THESIS STRUCTURE

emerged from the work presented herein.

7



8 CHAPTER 1, INTRODUCTION



Chapter 2

Background on Defeasible
Argumentation

This chapter presents background material on the usage of defeasible argumen-
tati,on for logi.c programming. Thi,s background is essential to understand our
argumentati,on-based semantics with cooperation. We briefly present the Ertended
Logic Programming with denials language (denoted by ELPI), s'ince it is the repre-

sentation language for modelli,ng the knowledge bases that we use in the remainder
of the d'issertation, and recall the work of [Dun95, PS97]'s argumentation seman-

tics as a basis for atributt'ing a meaning to the language. Since thei,r work follows
a firpoi,nt approach [Pol87], we first present the definitions of such an approach

applied to argumentat'ion. Then, both argumentati,on semant'ics for logi,c prograrn-
mi,ng are presented.

"When a rule supporting a conclusion may be defeated by new infor-
mation, it is said that such reasoning is defeasible. rvVhen we chain
defeasible rea,sons to reach a conclusion, we have arguments, instead of
proofs. It makes sense to require defeasible reasons for argumentation.
Arguments may compete, rebutting each other, so a process of argu-
mentation is a natural result of the search for arguments. Adjunction
of competing arguments must be performed, comparing arguments in
order to determine what beliefs are justified. Since we arrive at conclu-
sions by building defeasible arguments, and since mathematical argu-
mentation has so often called itself argumentation, we sometimes call
this kind of reasoning defeasi,ble 0,rgunxentat'ion." [CML00]

I



10 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

The field of defeasible argumentation is relatively new 1 and researchers disagree
on many issues, while the formal meta-theory is still in its early stages.

A much-discussed issue is whether logics for non-monotonic reasoning should
have a model-theoretic semantics or not. T[aditionally, model theory has been used
in logic to define the meaning of logical languages. Formulas of such languages
were regarded as telling us something about reality (however defined). Model-
theoretic semantics defines the meaning of logical symbols by defining what the
worlds looks like if an expression with these symbols is true, and it defines logical
consequence, entailment, by looking at what else must be true if the premises are
true. For defaults, this means that their semantics should be in terms of what the
world normally, or typically, looks like when defaults are true. Logical consequence
should, in this approach, be determined by looking at the most normal worlds,
models or situations that satisfy the premises.

However, [Pol91, Vre93, Lou98] have argued that the meaning of defaults
should not be found in a correspondence with the reality, but in their role in di-
alectical inquiry. Then "a relation between premises and conclusions is defeasible"
means that a certain burden of proof is induced. In this approach, the central
notions of defeasible reasoning are notions like attack, rebuttal, and defeat among
arguments, and these notions are not 'propositional', for which reason their mean-
ing is not naturally captured in terms of correspondence between a proposition and
the world. This approach, instead, defines 'argumentation-theoretic' semantics for
such notions. The basic idea of such a semantics is to capture sets of arguments
that are as large as possible, and adequately defend themselves against attacks on
their members. [PV02] states that systems for defeasible argumentation contain
the following five elements (although sometimes implicitly): an underlying logical
language .C, definitions of how to build arguments over L, of conflicts between
arguments, and of defeat among arguments and, finally, a definition of the status
of arguments which can be used to define a notion of defeasible consequence. The
notions of underlying logic and argument still fit with the standard picture of what
a logic system is. The remaining three elements are what makes an argumentation
system a framework for defeasible argumentation.

Argumentation systems are defined on top of an underlying logical language
and an associated notion of logical consequence, defining the way an argument is
built. The idea is that this consequence notion is monotonic: new premises cannot
invalidate arguments as arguments, but only give rise to counter-arguments. Some
argumentation systems assume a particular logic (e.g. Frzzy logic [SS02a] and Ex-
tended Logic Programming [PS97, SdAMA97, dAMAS97, dAMAgSa, dAMAgSb]),

lThe argumentation-based approach which was the first logical formalization of defeasible ar-
gumentation was initiated by the philosopher John Pollock, see [Pol87, Pol92]. Pollock's proposal
was initially applied to the philosophy of knowledge and justification (epistemology) [Pol7a]. The
first artificial intelligence paper on argumentation systems was proposed in [Lou87].



11

while other systems leave the underlying logic partly (e.g. [BDKT97)2 and [Pol95]3)
or wholly unspecified (e.g. [Dun95]). These later systems can be instantiated with
various alternative logics, which became frameworks rather than systems.

The notion of an argument corresponds to a proof in the underlying logic lan-
guage. As for the layout of arguments, in the literature of argumentation systems,
three familiar basic formats can be distinguished. Sometimes arguments are de-
fined as a tree of inferences grounded in the premises (e.g. [Nut94, Vre97]), and
sometimes as a sequence of such inferences (e.g. [PS97, dAMAg8b, SS02a]), i.e. as

a deduction. Some systems simply define an argument as a premises-conclusion
pair [BDKT97], leaving implicit that the underlying logic validates a proof of the
conclusion from the premises. The argumentation system proposed by [Dun95]
leaves the internal structure of an argument completely unspecified. Dung treats
the notion of an argument as a primitive, and exclusively focuses on the ways
arguments interact. Thus, Dung's framework is the most abstract.

In the literature, the notion of a conflict between arguments (the terms "attack"
and "counter-argument" are also used) is discussed referring to three types. The
first type is when arguments have contradictory conclusions, as in the well known
example of Tweety: "Tweety flies because it is a bird" and "Tweety does not fly
because it is a penguin". Clearly, this form of attack, which is often called rebutting
an argument, is symmetric. The other two types of conflict are not symmetric.
One is where one argument makes a non-provability assumption (as in default
logic) and another argument proves what was assumed unprovable by the first.
For example, an argument "Tweety flies because it is a bird, and it is not provable
Tweety is a penguin", is attacked by any argument with the conclusion "Tweety
is a penguin". This kind of attack is called assumption attack. The third type of
conflict (proposed by [Po187]) is when one argument challenges not a proposition,
but a rule of inference of another argument. After Pollock, this is usually called
undercutt'ing an i,nference. Moreover, such type of conflict occurs only if the rule
of inference is not deductive. To consider an example, the argument "raven1s1 is
black since the observed ravens râ,v€rr1, . . . , râvêrr1ss wêr€ black" is undercut by
an ârgument "I saw râv€tr1s2 which was white".

Furthermore, all these kinds of attack have a direct and an indirect version:
an indirect attack is directed against a 'sub-conclusion' or a 'sub-step' of an argu-
ment Á (also known as szà-argument ,Í A). The notion of conflicting or attacking
arguments does not embody any form of evaluation; evaluating conflicting pairs
of arguments or, in other words, determining whether an attack is successful,
is another element of argumentation systems. It has the form of a binary r+

2They propose to reformulate existing non-monotonic logics in their general framework, for
instance, in applications of preferential entailment or default logic.

3The underlying logic is standart first-order logic.



72 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

lation between arguments, standing for 'attacking and not weaker' (in a weaker
form) or 'attacking and stronger' (in a strong form). The terminologies vary.
Some terms that have been used are: 'defeat' [Nut94, Pol95, PS97, SS02a], 'at-
tack' [Dun95, dAMAg8b, BDKT97], and'inference' [SL92a, Loug8]. Moreover,

[PS97] uses 'defeat' for the weak notion and 'strict defeat' for the strong, âsym-
metric notion; [Dun95] uses 'reduction ad-absurdum attack' and 'ground attack',
respectively. Other systems do not explicitly name this notion of conflict but leave

it implicit in the [BDKT97]'s definitions. Unless indicated otherwise, we will use

the term 'defeat' in this section.

The several forms of attack, rebutting vs. assumption vs. undercutting, and
direct vs. indirect have their counterparts for defeat. The notion of defeat is a
binary relation on a set ,S of arguments. It is important to note that this relation
does not yet tell us which arguments are acceptable with respect to S; it only tells
us something about the relative strength of two individual conflicting arguments.

The ultimate status of an argument depends on the interaction between all
arguments of S. In the following, three examples from the literature of semantics of
argumentation systems viz. "Reinstatement", "Even Cycle" and "Self Defeating"
are presented. These examples illustrate typical cases under which conditions
of acceptability of an argument should be defined. For the moment, we do not
specify the structure of an argument nor the precise definition of defeata. Assume,
as background, a set of arguments with a binary relation of defeat defined over
it such that "Á defeats B" mea,ns "Á conflicts with B and Á is not weaker than
,B". Moreover, in some cases it may happen that Á defeats B and B defeats A.
Assume that arguments are either 'acceptable' or 'not acceptable': an argument
is acceptable if all arguments defeating it (if any) are not acceptable; otherwise,
such an argument is not acceptable.

Example 1 (Reinstatement) Consider three arguments A, B and C such that
B defeats A and C defeats B. C 'is acceptable si,nce it is not defeated by any
other argument. Thi.s makes B not acceptable, si,nce B i,s defeated by C. Thi,s i,n
turn makes A acceptable: although A i,s defeated by B, A i,s reinstated by C . The

figure below i,llustrates the aboue descri,ption; a round node represents an acceptable

argument and a squo,re node represents a not acceptable argument.

ADTA,17. n \J

Of adeats --------+<- delut s 1

- 'ftinstotes' -

aFor simplicity we use the terminology of [PS97]'s proposal. As remarked above, [Dung5] uses

'attack' instead'defeat'.



13

The key observation is that an argument that is defeated by another argument
can only be acceptable if it is reinstated by a third argument, i.e by an acceptable
argument that defeats its defeater. In case of 'undecided conflicts', a situation may
be circular or ambiguous. It is not clear which argument should remain undefeated,

especially when arguments of equal strength interfere with each other.

Example 2 (Even Cycle) Consi,der the arguments A and B such that A defeats

B and B defeats A. Intuitiuely, A is acceptable i,f B is not acceptable- Howeuer,
B can also be acceptable if A i.s not acceptable. Thus, both cannot be acceptable at
the same ti,me.

AB
l..{-deJeots------{

Finally, there is the problem of self-defeating arguments, i.e. arguments that
defeat themselves.

Example 3 (Self Defeating) Consider 0,n argument A suchthat A defeats itselt.
If we assun'te that A i,s not acceptable, then all arguments deJeating A are not
acceptable, and thus 'it should be acceptable. This i,s a contrad'iction. If we assume

that A'is acceptable, then A i,s defeated by an acceptable argument. Thi,s is another
contradicti,on.

deÍeotg

What is also needed is a definition of the status of arguments on the basis of
all the ways in which they interact. Besides reinstatement, this definition must
also capture the 'compositional principle' [Vre97], in which an argument cannot be
acceptable unless all its sub.arguments are acceptable. There is a close relationship
between these two notions, since reinstatement often proceeds by indirect attack,
i.e. attacking a sub-argument of the attacking argument. The definition of the
status of arguments by [Dun95] produces the output of an argumentation system,
which typically divides arguments in to at least two classes: acceptable arguments,
and arguments defeated by at least one acceptable argument. Sometimes a third
intermediate category is also distinguished, e.g. the arguments that leave the
acceptability undecided [PS97]. The terminology varies here also: terms that have
been used are justified vs. defensible vs. defeated (or overruled) [PS97, dAMAg8b,

A



74 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

SS02a], defeated vs. undefeated [Pra93, Pol95, Vre97, Loug8], preferred vs. not
preferred [BDKT97, PS97], etc.

Furthermore, the status of arguments might be obtained by either a consistent
or a paraconsistent way of reasoning. When faced with an unresolvable conflict
between two arguments, a 'consistent reasoner' would refrain from drawing any
conclusion, while a 'paraconsistent reasoner' would choose one conclusion at ran-
dom (or both alternatively) and further explore its consequences. The consistent
approach is often defended by saying that, since in an unresolvable conflict, no
argument is stronger than another, neither of them can be justified; the para-
consistent approach has sometimes been defended by saying that the practical
circumstances often require a decision about which conclusion is the best for the
moment. Thus, a parâconsistent rea,soner might deal with contradictory conclu-
sions through an argumentation process. For instance, consider the arguments
from the well-known "Nixon Diamond" problem: "Nixon was a pacifist because
he was a quaker" and "Nixon was not a pacifist because he was a republican". A
consistent reasoner neither concludes that "Nixon was a pacifist" nor that "Nixon
was not a pacifist"; a paraconsistent reasoner may choose one of them at random.

The general features of argumentation-based systems can be organized along
two main approaches: unique-status-assignment and multiple-status-assignment.
The unique-status-assi,gnment basically comes in two variants. The first variant
defines status assignment in terms of a fixpoint operator which for each set of
arguments returns the set of all arguments that are acceptable to it, e.g. [Pol87,
Pol92, SL92a, Vre97, Dun95, dAMAgSb]. The second variant involves an explicitly
recursive definition of justified arguments, reflecting the basic intuition that an
argument cannot be justified if not all its sub-arguments are justified, e.g. [Nut94,
Pra93]. The multiple-status-assi,gnment deals with competing arguments of equal
strength by letting them induce two alternative status assignments, in both of
which one is justified at the expense of the other(e.g. [Dung5, Pol95]); in this
approach, an axgument is 'genuinely' justified iff it receives this status in all status
assignments. A full discussion of these approaches is beyond the scope of this work

- see details in e.g. [PV02].

We are in line with the proposals of [Dun95] and [PS97]. Since both work with
the fixpoint approach, we have paid special attention to it. In a declarative form
with fixpoint definitions, certain sets of arguments are just declared as accept-
able (given a set of premises and evaluation criteria) without defining a procedure
for testing whether an argument is a member of this set. The procedural form
amounts to defining such a procedure. Thus, the declarative form of an argumen-
tation system can be regarded as its (argumentation-theoretic) semantics, and the
procedural form as its proof theory.



2.1. EXTENDED LOGIC PROGRAMMING WITH DENIALS 15

In the remainder of this chapter, we briefly present Extended Logic Program-
ming (ELP) u"d so an extension of ELP, vtz. Ertended Log'ic Programming wi,th

denials (ELPd). The ELPd is the representation language for modelling the knowl-
edge bases that we use in the remainder of this dissertation. Then, we present the
definitions of fixpoint approach applied to argumentation. Finally, both [Dun95]'s
and [PS97]'s argumentation semantics for Iogic programming are presented.

2.t Extended Logic Programming with Denials

Due to its declarative nature, as well as its procedural implementations, logic
programming is a good language for knowledge representation. In fact, much
work has been devoted to the use of logic programs for knowledge representations,
and their relation to other well-known non-monotonic formalisms for knowledge
representation and defeasible reasoning, such as default logics [Rei80] and auto-
epistemic logics [Moo85]. Default logics draw plausible inferences in the absence

of information, it is like arguing with Nature where a conclusion supported by
argument can be drawn in the absence of any counterargument. Auteepistemic
logics reasoning about one's ov/n knowledge or beliefs, which is much like arguing
with oneself.

Normal logic programs use a non-monotonic form of "default negation"G whose
major distinction from the classical negation is that it can be assumed in the
absence of evidence to the contrary. Default negated literals are viewed as hy-
potheses which, under certain conditions, can be assumed. For instance, we can
express default-statements of the form

Normally, unless something abnonnal holds, then A i,mpli,es B

A typical example for such a statement is "Birds, not shown to be abnormal,
fly" and it can be represented by the following rule:

Íla6) +- bird(X),not abnormal(X)

We can further represent "Let's go swimming if it is not known to be raining
and the water is not known to be cold" as follows

sw'immi,ng <- not ra'in'ing,not coldWater

sSee either proceedings of the "International Conference on Principles of Knowledge Repre.
sentation and Reasoning" (KRR) (in http://www.kr.org/) or "International Conference on Logic
Programming and Non-monotonic Reasoning" (LPNMR).

60r "negation as failure" as it is also usually called in the literature of logic programming.



16 CHAPTER 2. BACKGROUIVD ON DEFEASIBLE ARGUMENTATION

Although default negation is quite useful in various domains and application
frameworks, it is not the only type of negation that is required in non-monotonic
formalisms. Indeed, while default negation not p of an atom p is always assumed

'by default', we often need to be more careful before jumping to negative con-
clusions. For example, it would make little sense to say guiltE <- not 'innocent
to express the fact that being guilty is the opposite of being innocent, because

it would imply that people could be considered guilty 'by default'. Moreover, in
normal logic programs, the negative information is implicit, i.e. it is not possible

to explicitly state falsity; propositions are assumed false if there is no reason to
believe they are true. Though this is what is required in some cases, having this
single form of (implicit) negation is a serious limitation in other cases. In fact, in
various situations one may want to explicitly declare that something is false. In
the example of being guilty we can say that "Everyone is not guilty by default".
Furthermore, "someone is guilty if there is evidence for it (e.g. the crime has been
witnessed)". There is no way of doing this with normal logic programs. This is
the main rea,son for the generalization of language of logic programs to include
an explicit form of negation. An extended logic program, which is introduced
by [GL90], distinguishes the two types of negation, viz. default and explicit, and
enable us to deal with negation as well as default negation in program. The gener-

alízed language used is called Ertended Logic Programming lP&9z| In Extended
Logic Programming, we can express the above example by

-gu'ilty <- not gui,lty
gui,lty + seenDoing.

The above rules illustrate that explicit negation is useful to represent negative
information, in such a case by having a rule with explicit negation at its head.

However, explicit negation may also be needed in the body of a rule. To illustrate
more about the use of extended logic programming we will now present some

examples extracted from [GL90, AP96].
Consider the statement "A school bus may cross railway tracks under the con-

dition that there is no approaching train". It would be wrong to express this
statement by the rule cross <- not train. The problem is that this rule allows the
bus to cross the tracks when there is no information about either the presence or
the absence of a train. The situation is different if explicit negation is used, i.e.

cross <- -tra'in

Then the bus is only allowed to cross the tracks if the bus driver is sure that there
is no approaching train.

The difference between not .L and -L in a logic program is essential whenever

we cannot assume that available positive information about ,L is complete, i.e. we



2,1. EXTENDED LOGIC PROGRAMMING WITH DENIALS 17

cannot assume that the absence of information about L cleaily denotes its falsity.
Moreover, the use of explicit negation in combination with the existing default
negation allows for greater expressivity. As an illustration of this improvement,
consider the following rule for representing statements like "If the driver is not
sure that a train is not approaching, then he should wait"; in a natural way it is
depicted as

wai,t <- not -train.
Furthermore, general conflicts can be caused by non-complementary informa-

tion, i.e. neither .L and not L nor .t and --L. Consider the following statements

"Let's go hiking if it is not known to be raining. Let's go swimming if it is not
known to be raining and the water is not known to be cold. We cannot go both
swimming and hiking". These statements can be represented as follows:

hi,king +- not rai,ning.
suimm'ing <- not raini,ng,not coldWater
L <- hiking,swimming.

such that the symbol I denotes falsi.ty. In such a case, if it is neither raining
nor the water is cold, it might possible to do both activities, i.e to swim and
to hike. Nevertheless, it causes a conflict because both cannot be done at the
same time. Thus, if both hi.king and sw'immi,ng hold, then falsity follows. We

choose to represent this kind of contradiction by using the notion of integrity con-
straints. The basic idea on integrity constraints is that only some prograrn states
are considered acceptable, and the constraints are meant to enforce these accept-
able states. Integrity constraints can be of two types, viz. static and dynamic. In
static constraints, the enforcement of these constraint depends only on the current
state of the program, independently of any prior state. The example above of
hiking/swimming is one such an example. In dynamic constraints, these depend
on two or more program states. One example is "employee's salaries can never

decrease". Since it is not a purpose of this work to deal with the evolution of a
program in time, dynamic integrity constraints are not addressed. We only want
to deal with the problem of conflicts caused by differences between conclusions.
Therefore, it is enough consider only static constraints in the form of denials.

In the remainder of this section we present the language's definition for normal
logic program in order to present both definitions of Extended Logic Program and
Extended Logic Program with denials.

Definition 1 (Language) An alphabet B of a language L i,s a fi,ni,te disjoint set

of constants and predi,cate symbols. Moreouer, the symbol L I B. An atom ouer
B is an erpressi,on of the form p(fi, . . . ,tn) where p is a predicate symbol of B and
the ti's are terms. Á term ouer B 'is either a uariable or a constant. An objective



18 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

literal ouer B is either an atom A orits erpli,cit negati,on'-A. ,4 default literal
ouer B i,s of the form not A where A 'is an objectiue l'iteral. ,4 literal i,s ei,ther an
objecti,ue literal or a default literal. By not {Lr, . . . , Ln} we n'Leo,n the set of default
l'iterals {not L1, . . . ,not L"}. BA (negatiue) hypothesi,s of an objecti,ue l'iteral L we

nxean not L. By erplicit complement of an objecti.ae li,teral L we mean -L i,Í L is
an atom, or A i,f L: -A. A term (resp. atom, li,teral) i,s called ground i,f it does

not contai,n aariables. By the Ertended Herbrand Base?l of B, H(B), we nxean

the set of all ground objecti,ue literals of B.

The purpose of logic programming semantics is to determine from a program
P the set of literals which should hold or not, according to some logical, intu-
itive, or commonsensical principles. These sets of literals form interpretations. An
interpretation expresses the intended meaning of the program P. For the above
language, several declarative semantics have been defined, e.g. the answer-sets
semantics [GL90] (which is a generalization of the stable models semantics of nor-
mal logic programs), the well-founded semantics with explicit negation (WFSX)
[PA92], and the well-founded semantics with "classical" negation [Prz90]. W FSX,
unlike W F S with classical negation, considers the so-called coherence requirement
relating the two form of negation: "if L i,s erplicitly false then L must be assumed

false by default". In other words, in extended logic programs, default literals can
be viewed as hypotheses, where an objective literal .L inhibits the hypothesis not L
and -.L makes the assumption of hypothesis noú tr imperative.

A paraconsistent extension of. W F S X (W F S X) has been defined in [ADP95]
for Extended Logic Programs, presented below. InWFSX,, unlike in the others
mentioned above, contradictory information is accepted and dealt with by the
semantics. The main idea of WFSX. is to obtain, always in keeping with co.
herence, all consequences of the progrâm, even those leading to contradiction, as

well as those arising from contradiction. Then, anWFSX, interpretation of an
extended logic program P is a set of literals of the form 7 U not F, where 7 and
F are subsets of ?l(P), and such an interpretation is coherent iff for every .L in
? we have -.L in .F,. Moreover, objective literals and their explicit negation are
viewed as independent identities, except for the fundamental notion of coherent
interpretation. This allows a pair of default contradictory literals .L and -L to
belong simultaneously to 7. In this case it is said that such an interpretation is
contradictory or inconsistent.

Definition 2 (Extended Logic Program) An extended logic program (ELP)
over a language L i,s a (fini,te) set of (ground) rules of the form

Lo <- Lr,. . ., Ll,TLot L+r,. . . ,not L" (0 < I < n)



2.1, EXTENDED LOGIC PROGRAMMING WITH DENIALS 19

where each Li (0 < i < n) is an object'iue li,teral of L. A rale i,s ground if all
literals are ground. As usual Ls 'is called the head, and Lr,. . .,not Ln the body
of the rule. If n:0 the ru,le i,s called a f.act and the aryou symbol is omi,tted

The usual reading of an extended logic program rule is that, whenever the body
is true, then the head must be true. The comma "," in the body of the rule has

a conjunctive flavor. For simplicity we use non-grounded rules in the remainder.
Variables are denoted with letters X,Y and Z , and constants with any other letter
or with words. These rules simply stand for the ground version, i.e. ground rules
are obtained by substituting in all possible ways each of the variables by elements
of the Herbrand Universe.

Definition 3 (Extended Logic Program with Denials) Let L be a language
oaer an alphabet B. A derrtal (or integrity rule) i.s a rule of the form

L <- L1,.. ., Lt,not L1a1,. . . ,not L" (0 < I < r)

where each Li (l < i,< n) is an objectiue l'iteral of L, and the symbol L stands for
falsity. Án extended logic program with denials (ELPd) ouer L is a (finite) set of

furound) rales of the form L * Body such that L is e'ither an objectiue literal or
the symbol L, and Body i,s a finite set of literals.

Let P be an ELPI oaer L. The Extended Herbrand Base ?l of. P i,s

Tt(P):7{(B) u u}
Because more adequate for our purposes, here we present WFSX andW FSXoin

a distinctly different manner with respect to its original definition. This presenta-
tion is based on alternating fixpoints of Gelfond-Lifschitz f-like operators [GL90],
and follows the presentation of [ADP95]. W" begin by recalling the definition of
the f operator:

Definition   (The f-operat or) Let P be an ertend,ed, progranx, I an'interpre-
tat'ion, and let P' (resp. I') be obtai,ned from P (resp. I ) bA denot'ing eaery literal
-A by a new atom, so,! --/. The GL-transformation f, ls the program obtained

from P' by remouing all ru,les containing a default literal not A such that A e I',
and bg then remoui.ng all the remaining default li,terals from P. Let J be the least
model ,Í f lI is obta'ined, from J by replaci.ng the introduced atoms --A by -A.

To impose the coherence requirement [ADP95] introduces:

Definition 5 (Semi-normal version of a program) Thesemi-normaluersion
of a program P i,s the program P" obtai,ned from P by addi,ng to the (possiblg empty)
Body of each rule LlBodg the default l'iteral not -L, where -L i,s the complement
of L wrt. erpli,c'it negation.



20 CHAPTER 2, BACKGROUND ON DEFEASIBLE ARGUMENTATION

Below we use f(^9) to denote f"(S), and f"(S) to denote fp"(S).

Definition 6 (Partial stable model) A set of objecti,ue literals T generates a
parti,al stable model (PSM) of an ertended progranx P i.ff:

1. T:ll,T; and,

2. T ç1"7.
The parti,al stable model generated by T is the interpretati,on

T u not (71(P) - r"7)

Programs without partial stable models are said contradictory. It turns out
that non-contradictory programs always have a least PSM. The WFSX semantics
is determined by that least PSM:

Theorem 1 (WFSX semantics) Euery non-contradi,ctory prograrn P has a least
(wr-t. Ç) partial stable model, the well-founded model of P (WFM(P)).

To obtain an i,teratiue "bottom-up" definition forWFM(P) we define the fol-
lowi,ng transfi,nite sequence U"),

Io: {}
Ia+7 : ffrlo

Is : U {/" I " < á} for li.mit ordinal 6

There eri,sts a smallest ordinal \ for the sequence aboue, such that Is i,s the
smallest firpoint of ll", and

WFM(P):1.r U not (?l(P) - f"1^)

WFSX, generalises the WFSX semantic for the case of contradictory prc-
grams. WFSX is not defined for contradictory programs because such programs
have no PSMs. By definition of PSM, a program has none if either it has no fix-
points of ff" or if all fixpoints 7 of ff" do not comply with 7 Ç f"7. The next
theorem shows that the first case is impossible, i.e. all programs (contradictory or
otherwise) have fixpoints of ff,.
Theorem 2 The operator lf" is monoton'ic, for arb'itrary sets of li,terals.

Consequently every program has a least fixpoint of lf". If, for some program
P, the least fixpoint of ff" complies with condition (2) of definition 6 then the
program is non-contradictory and the least fixpoint is the WFM. Otherwise the
program is contradictory. Moreover, the test for knowing whether a program is

contradictory, given its least fixpoint of ff,, can be simplified to: "the program
is non-contradictory iff its least fixpoint of ff" has no pair of --complementary
literals".



2.2, FIXPOINT APPROACH OF ARGUMENTATION 2L

Theorem 3 LetT be the least firpoint of ll" for a prograrn P. Then:

T çl"T ifÍ 1L eTl, {L,-L) çT

So, if one is interested only in the WFM, the condition 7 Ç f"7 can be
replaced by testing whether 7 has --complementary literals. Note that, in fact
this condition guarantees that literals cannot be both true and false by default.
By removing the condition this guarantee is no longer valid. But this is precisely
what is wanted in the definition of the paraconsistent WFSX.

Accordingly, the definition of WFSX. is one where the construction of the
WFM given by the least fixpoint of ff" is kept, condition 7 Ç f"7 is removed,
and where contradictory progrâms are those that contain a pair of complementary
Iiterals in the WFM:

Deftnition 7 (Paraconsistent WFS$ Let P be an ertended prograrn whose
least firpoint of ll 

" 
,is T . Then, the paracons,istent well-founded model of P i,s

W F Mp(P) : T U not (7{ - I "T)

This definition is a generalisation of WFSX in the following sense:

Theorem 4 (Generalisation of WFSX) Let P be such thatW FMo@) : TU
not F. P is non-contradi,ctory i,ff for no objecti,ue li,teral L, {L,-,L} çT. More-
ouer, if P is non-contrad'ictory thenWFMo(P) : WFM(P).

2.2 Fixpoint Approach of Argumentation
The fixpoint approach applied to argumentation, followed by e.g. [Pol87, Pol92,
SL92a, Dun93, Dun95, PS97], can be best explained with the idea of reinstatement
(cf. Example 1): if an argument Á is defeated by an argument B, A can still be
acceptable if and only if B is defeated by an argument that is already known to be
acceptable. Such an idea is captured by [Dun95]'s notion of acceptability 7, which
defines how an argument that cannot defend itself can be protected from attacks
by a set of arguments:

Definition 8 (Acceptable Argument) An argument Á 'ds acceptable w,ith re-
spect to a set S of arguments i,ff each argument defeati,ng A i,s defeated by an
argument in S

TUnless indicated otherwise, the other definitions in this section follow from [Dun95]



22 CHAPTER 2. BACKGROU]VD ON DEFEASIBLE ARGUMENTATION

[Dun95] also defines a characteristic function that returns, for each set S of
arguments, the set of all arguments that are acceptable with respect to ^9. More-
over, the intuitive idea of the characteristic function is that the set of acceptable

arguments is constructed step-by-step. First, an empty set is assumed to be the
initial set of acceptable arguments. Then, all arguments which are directly accept-

able are collected into a set, ,S1, by their own strength: these are the ones which

are not defeated by any argument. After that, all arguments that are reinstated
by arguments in ,Sr are added in ,S2. More generally, each defeated argument is
added in Si+r if it is reinstated by an argument in ,S'. This step is repeated until
a set ,S) is obtained to which no new argument can be added.

Definition 9 (Characteristic function) Let Args be a set of arguments, and

S Ç Args. The characteristic function F 'ds

F(S) : {A e Args | Á is acceptable w.r.t. S}

[Dun95] proves that the characteristic function .F, is monotonic, and so it has

a least fixpoint. In such a case, if an argument is acceptable with respect to S,

it is also acceptable with respect to any superset of ,S. Furthermore, the even

cycle (illustrated in Example 2) is avoided by stating that the set of acceptable

arguments is the least fixpoint of F. In Example 2, the sets {Á} and {B} are

fixpoints of F but none of them is a least fixpoint of F, which is the empty set. In
general, we might say that .F,(0) : 0, if all arguments in the set of arguments are

defeated. Based on the notion of the least fixpoint, [Dun95] proposes a skeptical

semantics as follows:

Definition 10 (Grounded Extension) The Grounded extension is the least fin-
poi,nt of F

The idea of the least fixpoint is also captured by [PS97] and justified arguments
are defined as follows:

Definition 11 (Justified Argumenl) An argument is justified iff it is a n'tern-

ber of the least firpoi,nt of F

Proposition 5 Consi,der the follow'ing sequence of arguments.

O

. Fi+r : {A Ç Args | ,4 is acceptable with respect to Fi}

Then the followi,ng obseraations holds [Dun95]:

0po



2.2. FIXPOINT APPROACH OF ARGUMENTATION 23

1. AU argunxents i,nl)io(Fi) are justi,fied

2. If each argument is defeated by at most a finite number of arguments, then
an argunxent is justi,fi,ed iff it is i,n UEo(Fu)

A peculiarity of Definition 11 is that a distinction between arguments that are

non justified is allowed. Then, [PS97] also defines two intermediate statuses for
non-justified arguments.

Definition 12 (Overruled and Defensible Arguments) An argument is over-
ruled ffi it is not justi,fied, and it i,s defeated by a justifi,ed argument. An argument
is defensible i,ff it i,s neither justifi,ed nor oaerru,led

The decision on how to deal with defeasible arguments is quite controversial.
The well-known semantics for non-monotonic reasoning [PP90, vRS91, PA92] con-
clude that a self-defeating argument (and every argument defeated by it) is de-
fensible. In Example 4, argument B is defeated by A which is a non-justified
argument because it is defeated by B (i.e. there is an even cycle between Á and
B). Since there is no justified argument defeating one of them, both arguments are
defeasible. Furthermore, C is defeasible because it is defeated by a non-justified
argument. Other solutions are possible, e.g. both [PS97] and [Vre97] distinguish
a special 'empty' argument which is not defeated by any other argument and, by
definition, defeats any self-defeating argument. In such a case, the argument C of
Example 4 is justified because an empty argument reinstates it; A and B are still
defensible.

Example 4 (Zorrrrbie arguments) Consider three arguments, A, B and C such
that A defeats B, B defeats A, and B defeats C . Neither of the three are justified.
B is consi,dered, a zombie argument because B is neither'aliue' (i.e. justified) nor
'fully dead' (i.e. ouerntled); i,t has an'intermedi,ate status (i.e. defensible) in which
i,t can sti,ll i,nfl,uence the status of other arguments.

ABC
W-deÍears+ del*ts$

So far, we have presented the fixpoint approach and the grounded (skeptical)
extension proposed by [Dun95]. Our proposal is based upon such a grounded exten-
sion. However, Dung has also defined three other extensions, ü2. stable extension,
preferred extension and complete extension. Since such extensions are very well



24 CHAPTER 2. BACKGROUIVD ON DEFEASIBLE ARGUMENTATION

accepted by the scientific community, we briefly present them here. These exten-
sions are based on the notion of admissible set. Intuitively such a set represents
an admissible, or defendable, point of view. It means that the set of all arguments
accepted is a set ^9 of arguments which can defend itself against all attacks on it.
Furthermore, it is based on the presumption that S is conflict-free:

Definition 13 (Conflict-free Set) ,4 set of arguments,S is conflict-free iff there
'is no argument'in S that defeats an argunxent in S

Definition 14 (Admissible Set) ,4 confl,ict-free set S of argumenús is admissi-
ble z/ each argument in S i,s acceptable w.r.t. S

In Example 1, the sets 0, {C} and {A,C} are admissible but all other subsets
of {Á, B,C} are not.

Definition 15 (Stable Extension) ,4 confi,i,ct-free set S of arguments i,s a stable
ertens'ion iff euery argument that i,s not i,n S, is defeated by sonxe argument in S

In Example 1, the set of arguments {A,C} is the only stable extension. Since
a stable extension is conflict-free, it reflects in some sense a coherent point of view,
i.e. each possible argument is either accepted or rejected. In fact, a stable extension
defeats every argument not belonging to it, whether or not that argument is hostile
to the extension. Thus, Dung concludes that stable extension does not capture
the intuitive semantics of every meaningful argumentation system. However, the
preferred extension exists for every argumentation framework:

Definition 16 (Preferred Extension) ,4 preferred extension is a mari.mal (w.r.t.
set i,nclusi.on) admi,ss'ible set of arguments

Example 5 Consi,der three arguments, A, B and C such that A defeats B and
uice-uersa, and C defeats B. The admiss'ible sets w.r.t. {A,B,C} are 0, {A},
{B}, {C} and {A,C}. The only preferred ertensi,on i,s {A,C}.

ABC
!..ft deleats 1lÇ deleats ------l

The stable extension is more skeptical than the grounded extension, the pre-
ferred extension is more credulous than the grounded extension, and the complete
extension provides a link between credulous and skeptical semantics, i.e. between
preferred and ground extensions. [Dun95] proves that each preferred extension is
a least complete extension, and the grounded extension is a least (w.r.t. set of
inclusion) complete extension.



2,3. ARGUMENTATION FOR LOGIC PROGRAMS 25

Definition 17 (Complete Extension) An adm'issi,ble set S of arguments is a

complete ertens'ion i.ff each argument which is acceptable w.r.t. S, belongs to S

Preferred and stable extensions are an instance of the multiple-status-assignment
approach. The unique-status-assignment approach is also explored with the notion
of a grounded extension, already presented above. [DMTO2a] has understood non-
monotonic reasoning as extending theories in some monotonic language by means
of sets of assumptions, provided they are 'appropriate' with respect to some re-
quirements. These are expressed in argumentation-theoretic terms, as follows. Ac-
cording to the semantics of admissible extensions, a set of assumptions is deemed

'appropriate' iff it does not attack itself and it attacks all sets of assumptions which
attack it. According to the semantics of preferred extensions, a set of assumptions
is deemed 'appropriate' iff it is maximally admissible, with respect to a set of in-
clusion. According to the semantics of stable semantics, a set of assumptions is
deemed 'appropriate' iff it does not attack itself and it attacks every assumption
which it does not belong. Given any such semantics of extensions, credulous and
skeptical non-monotonic reasoning are defined as follows. A given sentence in the
underlying monotonic language is a credulous non-monotonic consequence of a
theory iff it holds in some extension of the theory that is deemed 'appropriate' by
the chosen semantics. It is a sceptical non-monotonic consequence iff it holds in all
extensions of the theory that are deemed 'appropriate' by the chosen semantics.

2.3 Argumentation for Logic Programs

[Dun95] and [PS97] use argumentation to give a declarative semantics for logic pro-
grams. Dung says that logic programming with negation as failure can be viewed
as a special form of argumentation. The results of his proposal show that logic
programming is a good tool for implementing argumentation systems, e.g. [AP96,
PS97, BDKT97, dAMAS97, dAMAg8a, SPR98, SS02b, PV02, DMT02b]. [PS97]
follows Dung's idea but the declarative semantics is refined and a status Jor ar-
guments is defined, viz. justified, overruled or defensible. The basic idea of both
proposals is, based on a logic program, to build the set of arguments and so

to define the attack relation between those arguments. [Dun95] also shows that
argumentation itself can be "viewed" as logic programming by introducing a gen-

eral method for generating meta-interpreters for argumentation systems. Instead,

[PS97] has a proof proposal for such a semantics based on "dialogue trees". The
former is a generalized proposal, but the latter goes into detail and so it is easier
to develop a prototype of self-argumentation. We will present only the latter.

*#&,{,.?,
:do'- ' ,'i''\9
-.I.. \ ;.

ii,,,','.'11.'. 
i:''r,i , .. .t ..:: ..-

,.roii'.' . ":



26 CHAPTER 2. BACKGROUI\ID ON DEFEASIBLE ARGUMENTATION

2.3.L Dung's Argumentation Flamework
This section presents [Dun95]'s grounded semantics. The general idea is that an
argument for a certain proposition is a defeasible proof of that proposition in the
Iogic of an underlying language. In this case, the proposition is seen as an objective
literal in an extended logic program P (see Def. 2).

Definition 18 (Defeasible Proof) Á defeasible proof of an object'iue li,teral L
'is a sequence rürú. . .,rn oÍ ground rules of an ertended logi,c progranx P such

that

. head(rn): L

o for all i, 0 < i < n, 'if L' 'is an objecti,ue literal in the body of ri, then there
is a j f i suchthatL':head(ri)

The set of default literals supporting a proof for an objective literal .L is defined
as an argument for L.

Definition 19 (Argument) ,4n argument is a set of ground default I'iterals. Let
L be an object'iue literal and rs;...irn be a defeasible proof for L. A set A Ç

{not L' I not L' e Body(r6)} i,s an argument for L

Definition 20 (Support) An argument A is a support for an objecti,ueli,teral L
i,ff all default literals in a defeasi,ble proof of L are contai.ned i,n A

F\rrthermore, every ground literal .L has an argument of the form ({n oú L} , not L) ,

which captures the idea that L would be concluded false if there is no acceptable
argument supporting .L; otherwise, .L is true. Finally, the set of all arguments of
P is called Argumentation set of P.

Definition 21 (Argumentation set) Let P be an ELP and L an objecti,ue lit-
eral, then

AR(P) : {(A, L) | Á is an argument for .L} U

{({not L},not L}) I L is a ground atom}

is the argumentation set o/ P

An argument Ais sound, if there is no objective literal ,L such lhat Asupports
both ,L and -tr; otherwise, it is self-defeati,ng. Based on such notions, viz. sound
and self-defeating, two kinds of attack are defined: RAA-attack (or Reducti,o Ad
Absurdum-attack) and g-attack (or ground-attack). An argument attacks another
argument via RAA-attack if both arguments together support an objective literal
and its explicit negation. Stronger than this is a g-attack because it refutes a given

argument directly: an argument Á1 is g-attacked by an argument A2Lf. A2 is an
argument for .L and there is a default literal not L in 41.



2.3. ARGUMENTATION FOR LOGIC PROGRAMS 27

Definition 22 (RAA- and g-attack) Let A1 and A2 be sound arguments. The
argument A2 i,s a RAA-attack against A1 (and ui,ce-uersa) i,f A1 U A2 i,s self-
defeati.ng; and A2 i,s a g-attack aga'inst fu iÍ there'is an assunxption 'not L' i,n A1

such that L i,s supported by 42.

The argumentation framework of program P is presented in the following def-
inition. Then, Example 6 illustrates [Dun95]'s argumentation proposal.

Definition 23 (Argumentation framework) Let P be an ELP, AR be the set
of arguments of P, andattacks C ARx AR, then AF(P):< AR,attacks > is
called on argumentation framework.

Example 6 Let P : {a <- not b; b <- not a; c <- not b; -a;d <- not e;e}.
The sequence 'a <- not b' is a defeasible proof for a, and {not b} is an argument

for a. Since -a 'is a fact in P, a defeasible proof for -a is the fact itself and so

the empty set i,s o,n argun'Lent for -a. The argumentation set of P i,s

AR(P): { (0,-a),({not a},b),({not b},o),({not b},"),(lnot e},d),(0,e) } u
{ ({not -a),not -a),({not b},not b),({not a},not a),

({not c},not c),({not d},not d),({not d},not d) }

Figure 2.1 illustrates the attacking relation between arguments in AR(P). Con-

forming to defi,ni,ti,ons of Firpoi,nt operator F oÍ the argumentati,on framework
AF(P) and Grounded Ertension (Def. I and Def. 10 i,n Section 2.2, respectiuely),
we obtai,n the following:

a ^90:0
. sr : r(so) : {(0,e)}

. 52 : F'(Sr): {(0, e),({not d},not d)}

. 
^93 

: F(S')

So, 53 is the least firpoint of F, and the set of acceptable arguments of AR(P).
The arguments in 53 are then justified (cf. Def. 11 in Secti,on 2.2). Moreouer, e

is tr"ue and d is false.

2.3.2 Prakken and Sartor's Argumentation Flamework

[PS97]'s proposal is somewhat different from the previous one. An argument is
seen as a sequence of rules that can be chained together, and it is grounded on the
facts.



28 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

Figure 2.1: Attacking relation of Example 6

(\not e\, d) (0, 
")

g-attack

g-attack g-attack

I
a

II
({not d},not d) ({not e},not e)

({not c\
I

t

not c)

g-attack

({not b},c) I

/
({not b},not b)

g-attack g-attack

( {not b), o)
({not a}, b)

RAA-attack g-attack

/ T
(4,-a)

I
g-âttack

({not a},not a)

II
({not -A ) ) not -O, )



2,3. ARGUMENTATIAN FOR LOGIC PROGRAMS 29

Definition 24 (Argument and Sub-argument) Let P be an ELP. An argu-
ment/or a conclusi,on L i,s afini,te sequence A:lrn;...ir^) otru,lesrt€ P such

that

o for euery i (n < i a *), and Jor eaery object'iue literal Li in the body of ri
there i,s a k < i such that Li is the head of r1

o L i,s the head of some rule of A

o No two disti,nct rules in the sequence haae the same head

An argument A' (for some conclusion L') is a sub-argument o/ the argument A
(possibly for some other conclus'ion L) i,tr A' is a subset of A.

An argument attacks another argument via rebut or undercuú. The difference
depends on whether the attacking argument contradicts a conclusion or an as-

sumption of another argument.

Definition 25 (Undercut, Rebut, Attack) Let Ar anil A2 be arguments, then

o Á1 undercuts A2 itr (ü A1 is o,n argunxent for L and (ii) A2 is an argument
with assumpti,on not L, i.e. there i,s o,n r i Lo ? Lt, ..., Lt, not L7q1, ...,
not L* Ç A2 and, a j (l+1 < j < m) such that L : Lii

o Ár rebuts A2 ,tr (i) A1 is an argunxent for L and (ii) A2 is an argument for
-L;

o Ár attaclçs Á, iff A, undercuts or rebuts 42.

The notions of coherent argument and confli,ct-free set of arguments deal with
the self-defeating problem:

Definition 26 (Coherent, Conflict-free) An argument is coherent iJ it does

not contai,n sub-arguments attacking each other. A set of arguments Args i,s called
conflict-free i,f no two arguments in Args attack each other.

Defeat of an argument can be direct, or indirect, by defeating one of its sub-
arguments. In particular, any incoherent argument is defeated by an empty a,rgu-

ment.

Definition 27 (Defeat, Strictly Defeat) Let A1 and A2 be two arguments. A1

defeats Az iff (i) A, i,s empty and A2 i,ncoherent, or (i,i) A1 undercuts A2 or A1

rebuts A2 and A2 does not undercut A1. Á1 strictly defeats Az iff Ar deÍeats Az
but not uice uersa.



30 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENT,ATION

Note that restriction (ii) of the above definition allows that an undercutting
attack is stronger than a rebutting attack. For instance, consider the following
two rules:

innocent <- not -'innocent.
-'innocent.

Although argument 1: li,nnocent <- not -'innocentl rebuts B : l-innocent),
Á does not defeat B since B undercuts Á. So, B strictly defeats Á. [PS97]
imposes such a restriction motivated by the legal principle that "the law should
be interpreted as coherently as possible".

The definition of acceptable argument is quite different from Definition 8 in
Section 2.2:

Definition 28 (Acceptable) An argument A i,s acceptable w.r.t. a set of argu-
ments Args i,ff each argument defeating A i,s stri,ctly defeated by an argument in
Args.

This proposal follows the fixpoint operator [Dun93], which captures the set of
acceptable arguments:

Definition 29 (Characteristic F\rnction) Let P be an ELP and S be a subset
of arguments of P. The characteristic function of P and S i,s

fb(S) : 1A€ S I A is acceptable w.r.t. S)

The conclusion of the status of arguments is based on the ways in which they
interact. The characteristic function takes as input the set Args of all possible

arguments and their mutual relations of defeat, and produces as output the set of
acceptable arguments w.r.t. Args. Then all arguments in Args split into three
classes:

Definition 30 (Justified, Overruled, Defensible) Let P be an ELP and Fp
be the characteristic function of P then A'is justified i,ff A is in the least firpoint
of Fp (called JustArgs); A i,s overruled i,ff A i,s not justified and, it is attacked bg

a justi,fied argument; and A is defensible iff A i,s nei,ther justi,fied nor ouerru,led.

The proposal requires that JustArgs is conflict-free; otherwise, every argument
(including the empty argument) attacks itself.

Proposition 6 The set of justi,fied arguments is confi,i,ct-free. Otherwi,se, eaery
argument i,s defensi,ble for any Fp.



2.3. ARGUMENTATION FOR LOGIC PROGRAMS 31

Definition 31 (Conclusion) For any l'iteral L, L i,s a justified conclusion 'if iÍ
i,s a conclusi,on of a justi,fied argument; a defensible conclusion i,ff it is not justi,fi,ed

and, it is a conclusi,on of some defensible argument; and an overruled conclusion
i,ff i,t is not justifi,ed nor defensi,ble, and i,s a conclusion of an oaerntled argument.

Example 7 illustrates [PS97]'s argumentation framework.

Example 7 Let P : {a <- not b; b <- not a; c <- not b; -a; d <- not e; e} -

The argumentati,on set Args of P i,s

Args: { [o <- not b], lb<-not al, lc<-not b], [-r], ld<-not t], [e] ]

or Args : {Ao, Aa, A", A-o, Aa, A"}. The Figure 2.2 'illustrates both defeat and

lc <- not bl [-']
I

t T
undercuts/strictly defeats

undercuts

lb <- not al la +- not bl

}* undercuts/strictly defeats --{

ld <- not el [']

Figure 2.2: Def.eating and Strictly defeating relation ir Args

strictly defeat relation between arguments i.n Args. We then obtain the follouing
results from Fp(A):

. ^90:0

. 
^91 

: F(so) : {A"}

. ,S2: F(Sr)



32 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

52 i,s the least firpoint of Fp(A) and so it is the set of acceptable arguments w.r.t.
Args. Thus, A" 'is a justified argument, A6 i,s an ouerntled argument and the
defensible arguments are A6, A., Ao and A-o. Fur-thermore, e is a justi'fied con-

clus'ion, d i,s an ouerntled conclusion and the defensible conclus'ions are b, c, a and

-4.

[PS97] also formalises an argumentation process using extended logic programs

augmented with priorities, by extending [Dun93]'s grounded semantics to incor-
porate such a priorities. In alternative, [PS97] defines a more credulous semantics
in which defensible arguments can be defended together. In both proposals, it is
assumed that there is a fixed and undisputed ordering of the rules. Since we will
not deal explicitly with preferences rules, we do not present that proposal.

A proof for an argument

A proof for an argument is a dialogue tree where the root of the tree is an argument
for L, and each branch of the tree is a dialogue between a proponent P and an

opponent O. A moue in a dialogue consists of an argument attacking the last
move of the other player. The required strength of a move depends on who states
it. Since the proponent wants a conclusion to be justified, a proponent's argument
has to be strictly defeating. The opponent simply wants to prevent the conclusion
from being justified. Thus there is no need for its move to be strictly defeating; it
is enough for it to be defeating.

Definition 32 (Dialogue) ,4 dialogue is a finite nonempty sequence of moues

trlou€i : (Playern, An)(i > 0), such that

1. Playeri: P iff i is odd; and Plageh: O iff i, is even

2. If Playeri: PlaA€rj : P and i,+ i, then Ai I A1

3. If Playari: P(i,> 7), then Ai i,s a mi.ni,mal (w.r.t. set inclusi.on) argument
strictly defeat'ing A;-1

l. If PlaYer6: Q, then A; defeats Ai-1

The first condition says that P begi,ns and the players take turns. The second

condition preuents the proponent from repeating its attacks. The rema'ini,ng two
condi,t'ions forrn the core of the definition: they state the burd,ens of proof for P
and O. The mi,ni,mally condi,ti,on on P's moue malees 'it impossible to make argu-
ments triuially di,fferent by combini,ng them wi,th some other, i,rreleuant argument.

A dialogue tree considers all possible ways in which an opponent can attack an
argument:



2.3. ARGUMENTATION FOR LOGIC PROGRAMS 33

Definition 33 (Dialogue TYee) ,4 dialogue tree 'ds a fi,nite tree of moues rrlo,üe6 :
(Playeri, A), Playeri Ç {P,O} such that

1. Each branch i,s a dialogue

2. If Playeri: P then the children of mouei are all defeaters of Ai

A player w'ins a d,ialogue tree i,ff i.t wi,ns all branches (i,.e. dialogues) of the tree
and a player wi,ns a dialogue if the other player cannot nxoae (i.e. counter-argue).

This definition also marks dialogues tree candidates for being proofs: it says
that the tree should consider all possibly ways in which O can attack an argument
P.

Definition 34 An argument'is provably justified argument iff there is a dialogue
tree with A as its root, and won by the proponent. And a strong literal,L ,is provably
justified conclusion iff it i.s a conclusi,on of a prouably justi,fied argument.

Proposition 7 All prouably justi,fied arguments are justified.

Proposition 8 For finitary ordered theories each justi,fi,ed argument i,s prouably
justified.

Proposition 9 f all argument is prouably justi,fi,ed, then all i,ts subarguments are
prouably justifi,ed.

Example 8 Let P be the program in Erample 7. The fi,gure below illustrates a

di,alogue tree DT for lc <- not bl- The proponent plager does not wi,n DT because
there is a last mouement (O,lb <- not a)) in the first di,alogue (from left to right
side) that cannot be counter-attacked. Thus, lc <- not bl is not justifi,ed. We
should then eualuate (O,lb <- not al) to determi,ne i,f i,t i,s justified, or not. Note
that the argument lb <- not a) occurs twice in the first di,alogue as the opponent's
n1,oaes. We can say the second nl,oae is to reinstate the argument itself. So, the
argument for c is not justifi,ed.



34 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

P:lc<-not bl

O:lb<-not al

P:la<-not b) P : l-a)

O:lb<-not al



Chapter 3

A Proposal for
Self-Argumentation

Thi,s chapter presents an argunxentati,on semant'ics which inuolaes a "single" efr-
tended logi,c program, named self-argumentation semantics. We focus on the pr-op-
ert'ies of a declarat'iue semant'ics i,n what regards paraconsistency wh,ich are interest-
i,ng bg themselues, and'independent from its distributed nature. Wi,th this purpose,
we restrict our attenti,on to the special case of the di,stributed semantics, where only
a "single" ertended log,ic program wi,th denials (ELP[) is i,n the set of prograrns.
The self-argumentation semantics i,s inspi,red by two well known argumentation
semant'ics, u'iz. [Dun95] and [P597], oaera,iewed in the preu,ious chapter. We rede-

fine [PS9ZJ's definition of argument and other [PS9TJ's defini,ti,ons are simpli,fied,.
The goal bei,ng to obtain a semanti,cs for ertended logic prograrn uith denials which
represents the knowledge base of an agent. Furthermore, ue propose a parameter-
'ized characterist'ic funct'ion so that our argunxentation semanti.cs obtains different
leuels of acceptabi,lity of an argument. With such a di,fferentiation, we go through
the proper-ti,es of both conflict-free and contradictory sets of acceptable arguments.
Therefore, we obtai,n both paraconsistent and consistent ways of reasoning. Ac-
cord'ing to [PS?7J's definiti.on of the status of an argument, the argument may be
justified, oaerntled or defeasible. On top of that, we propose that a justi.fied argu-
ment can be contradictory, based on contradi,ction, or non-contrad,ictory. We then
present a defi,niti,on of the truth aalue of a conclusi.on G such that G i,s true (and
contradi,ctory, based-on-contradi,ction, or non-contradictory), false or undefined.
F'inally, we present a proof procedure for such a declaratiae semantics.

35



36 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

In logic programming, several ways to formalize argumentation-based seman-

tics have been studied for a single logic program (e.g. [RS09, arg10], and scientific

events such as "Conference on Computational Models of Argument (COMMA)",
"Conference on Principles of Knowledge Representation and Reasoning" (KR),
"Argument, Dialog and Decision" on International workshop on Non-Monotonic
Reasoning (NMR) and "Workshop Argumentation and Non-Monotonic Reason-

ing" (ArgNMR)). Intuitively, argumentation-based semantics treat the evaluation
of a logic program as an argumentation process, i.e. a goal G is true if at least

one argument for G cannot be successfully attacked. The ability to view logic pro-

gramming as a non-monotonic knowledge representation language, in equal stand-

ing with other non-monotonic logics, brought to light the importance of defining

clear declarative semantics for logic programs, for which proof procedures (and at-
tending implementations) are then defined (e.g. [Dun93, Dun95, PS97, BDKT97,
Vre97, Lou98, SS02b, DMTO2a, Pol01, DMTO2b, GS04, Pra09]), as overviewed in
the previous chapter.

The main goal of the thesis is to propose an argumentation-based semantics for
sets of logic programs that are able to cooperate and argue with each other, named

distributed semantics. In it each program relies on a set of other programs with
which it has to agree in order to accept an argument, and a set of programs with
which it can cooperate to build arguments. Besides this distributed nature, the
distributed semantics also allows for paraconsistent forms of argumentation. In
fact, it is also a goal of this proposal to be able to deal with mutually inconsistent,

and even inconsistent, knowledge bases. Moreover, when in presence of contra-

diction, we want to obtain ways of agent reasoning, ranging from consistent (in
which inconsistencies lead to no result) to paraconsistent. For achieving this, we

consider strong and weak arguments. The paraconsistency in the argumentation
also yields a refinement of the possible status of arguments: besides the justified,

overruled, and defensible arguments as in [PV02], justified arguments may now

be contradictory, based on contradiction, or non-contradictory. Moreover, in some

applications it might be interesting to change easily from a paraconsistent to a
consistent way of reasoning (or üce'versa).

In this chapter we focus on the properties of that declarative semantics in what
regards paraconsistency which are interesting by themselves, and independent from
its distributed nature. With this purpose, we restrict our attention to the special

case of the distributed semantics where only a single logic program is in the set of
programs, i.e. we propose a semantics for an extended logic program with denials

(ELPd) (see Def. 3) which represents the knowledge base of an agent. The seman-

tics is argumentation-based, in the line of the work developed by [Dun95, PS97] for
defining semantics of single extended logic programs. As described in Chapter 2,

in these argumentation-based semantics, the rules of a logic program are viewed



3.1. "PRIVACY AND PERSO/VAL LIFE", AN EXAMPLE 37

as encoding arguments of an agent. Therefore, the basic notion of argumentation
systems is not that of a defeasible conclusion, but that of a defeasible argument
for this conclusion. By defeasible conclusion (or argument) we mean that it "is
reasonable" and it is supported by some sort of argumentation process. Although
the construction of arguments is monotonic, i.e. arguments remain if more rules
are added to the program, in practice, the defeasibility is explained in terms of the
interactions between conflicting arguments. Non-monotonicity arises from the fact
that new conclusions may give rise to stronger counter-arguments, which might
defeat previously built arguments. Moreover, the truth value of a conclusion is
determined by whether its arguments, depending on the specific semantics, can or
cannot defend themselves from the attacks of other arguments. In the remainder
of this chapter we first motivate and illustrate our proposal with an example. Then
we define a declarative semantics for self-argumentation and, afber that, we present
a proof procedure for such a declarative semantics. Finally, some conclusions are
presented.

3.1 ttPrivacy and Personal Life" , àfr example

We are going to motivate and illustrate our proposal of self-argumentation for an
ELPd with the help of the following example. It describes, in an informal way,
how arguments are built from an ELPd that models a knowledge base of an agent.

Example 9 (Privacy of Personal Life - PPt) Usually, any person deserues
priuacy with respect to her personal li.fe. Howeuer, when such a person behaues in
o, uay that is not acceptable (e.g. selli.ng drags), she will suffer the consequences.

The first consequence is the focus of media attention on her personal life and
consequent loss of priuacy. The personal li,fe of such a person mi,ght be exposed by

the "results" oÍ medi,a attenti,on (e.g. photos, reports, and so on) when there is
no law that protects her against it. The aboue description can be etpressed by the

follouing ertended logic programm'ing r-ules.

f ocu s O f M ed'ia Attenti, an(X ) <- per s on(X), -acceptabl e B ehaui,or (X) .

-accept abl e B ehau'i ar (X ) <- eu ent (X, Y ), ag ain st S oci,ety (Y ) .

-ha s P r iu acv 6 ) <- f oca s O f M edi a Att enti, on (X ) .

per s onal Li, f e E rpo s ed(X ) <- -has P r iu acA (X), not pr otected B g Law (X )
hasPriaacy(X) <- person(X), not -hasPriuacy(X).

In contrast, it i,s consi,dered an absurdi,ty that sorneone mag lose her priaacy
when she i,s i,naolued in some euent tor which there is no eui,dence that i,t should be

made public (e.g. someone starting a long-term treatment for drugs dependency).



38 CHAPTER 3, A PROPOSAL FOR SELF-ARGUMENTATION

The absurdity in the rale below 'is represented as a denial, and the symbol L denotes
i,t (cf. Def. 3).

I <- -hasPri.uacg(X), euent(X,Y), not publicEuent(Y).

Moreoaer, modemr, society normally tries to protect chi,ldren, and so their pri-
uacy is guaranteed until eai,dence appears of some unusual behauior (".g. by hauing
un a ccept abl e b eh au'i or ) .

hasPriuacy(X) <- chi,ld(X), not unusualC hi,ld(X).
unu sualC hil d(X) + chil d(X ), -acceptabl e B ehau'ior (X) .

person(X) <- child(X).

Howeuer, famous persons are inherently the focus of media attenti,on:

f ocusO f M ediaAttenti,on(X) <- f amou,s P er san(X).
person(X) <- f amansPerson(X).

Assume an agent Ag wi,th the knowledge aboue, plus some facts about three
persons: Apuõ,, Poti, and luoti, I such that Ag knows that Poti i,s a famous child,
Apuõ, uas seen selling drugs - a criminal behau'ior against soci,ety -, and luoti,
is a famous soccer player in treatment for drags dependency:

chi,ld(poti).
f amousPersan(poti.).
person(ayua).
ea ent (apua, s ell s D r u g s) .

ag ainst S ocietg (s ell s D ru g s) .

f amousPerson(iuoti).
eu ent(ia oti, tr eatment F or Drug s D ependency) .

Fi,gure 3.1 i,llustrates, with obui,ous abbreuiati,ons, the set of ru,les PPL whi.ch

wi,ll be used for i,llustrati,on i,n the remainder ol thi,s chapter. Figure 3.2 simply
clarffies the notation of the objectiue literals ouer PPL.

Following [PS97]'s definition, an argument for an objective literal Á is a se-

quence of rules that "proves" A if all default literals (of the form not B) in the
body of those rules are assumed true. For instance, the following sequences of rules
are arguments of Ag for conclusions related to Poti over PPL Each argument
is presented in the form ".L - A7:1r1,;...;rrf", which means "a conclusion.L is
supported by an argument Á7, composed by the sequence of rules lrr.,;...;r")".
FurthermoÍe, "L- At : A7,,llrt,;...;rr)" means "an argument A7 is built based

on some previous argument 47,,".
lThe following names are from Native South Americans, more specifically from the T\rpi-

Guarani family. Aprálapu'al means "t5rphoon", and Poti and Ivoti lpoty and gooúg] both mean

"flower" . For details see http : / / en. wiki.ped,ia. org /wiki/ Tupi-people.



3,1. "PRIVACY ÁAID PERSO/VAL LIFE", AN EXAMPLE 39

PPL:

Í O M A(X) +- pe(X), -acB (X)i
-acB (X) <- eu(X,Y), aS (Y);
-hP(x) <- f oMA(x);
eLE(X) <- -hP(X),not pBL(X);
hP(X) * pe(X),not -hP(X);
L <- -hP(X),eu(X,Y),not pE(Y);
hP(X) +- ch(X),not uC(X);
uC (X) +- ch(X), -acB(X);
pe(x) +- ch(X);
ÍoMA(x) <- f P(x);
pe(x) <- f P(x);
ch(p); ÍP(p);
pe(a); eu(a,sD); oS(sD);
ÍP(t); eu(i,tFDD)

Figure 3.1: The knowledge of agent Ag about "Privacy of Personal Life"

Poti is a child - Ach@) : fch(fl)
Poti is a famous person - ArrOt , lÍ p(p))

Poti is a person -
Ap"(p) : A.h@) + b"(p) <- ch(p))

1"@) : Are@) + b"(P) <- ÍP(P))
Poti is the focus of media attention -

AÍoruA@) : Arp@) + lÍOMA(P) <- ÍP(P)l
Poti has no privacy - A-np@) : AÍo^,r,a@) + l-hP(p) <- f OMA(fl1

Poti has her personal life exposed -
ApLE(p) : A-np@) + fpLE(fl <- -hP(p),not pBL(p))

Poti has privacy -
Ane@) : 4"@) + lhP(p) <- pe(p),not -hP(p))
A'nr(r) : Ach@) + lhP(d <- ch(p),not uC(p))

[PS97]'s argumentation semantics determines the acceptability of arguments
based on certain definitions, viz. attack, defeat, strictly defeat and acceptable ar-
gument (for details, see Section 2.3.2). Differently, we introduce a new kind of
argument and so simplify some of these definitions. We call the above arguments
strong arguments, and we propose a weak uers'ion of a strong argument. To distin-
guish them, a strong argument for ,L will be denoted bV AL and its weak version by



40 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.2: The conclusions over the set of rules PPL

ch(p)
pe(p)
hP(p)
ÍP(p)

_np(p)

f oMA(e)
pLE(p)
pe(a)

eu(a, SD)
-acB(a)

f oM A(a)
-hP(a)
pLE(a)
aS(SD)
hP(a)
Í P(i)

ÍoMA(i)
-hP(i.)
pLE(i)

eu(i,tFDD)
pe(i.)

"Poti is a child"
"Poti is a person"
"Poti has privacy"
"Poti is a famous person"

"Poti has no privacy"
"Poti is the focus of media attention"
"Poti has her personal life exposed"

"Apuã is a person"

"Apuã is involved in selling drugs"

"Apuã has unacceptable behaviour"
"Apuã is the focus of media attention"
"Apuã has no privacy"
"Apuã has his personal life exposed"

"Selling drugs is against society"
"Apuã has privacy"
"Ivoti is a famous person"

"Ivoti is the focus of media attention"
"Ivoti has no privacy"
"Ivoti has his personal life exposed"

"Ivoti is in treatment for drugs dependency"

"Ivoti is a person"

"Ivoti has privacy"hP i



3.2. DECLARATIVE SEMANTICS 4L

Ai. For every rule for tr (denoted by rr,) from Ai, Af is built by adding not -L
and not L in 17, thus making the rules weaker (more susceptible to being contra-
dicted/attacked). Intuitively, if there is a potential inconsistency, be it by proving
the explict complement of a rules head or by proving I, then the weak argument
is attacked, whereas the strong is not. For instance, the arguments below are the
weak version of A:-nrç1, ALrOI and A'frror, respectively.

Poti has no privacy -
A!,ner,el , ATouerot+l-hP(p) <- f OMA(p),not hP(pt),not L)

Poti has privacy -
^u.^unt p(p) ' ^p"(p)atru Â1n

"hP(p) ' ".h(p)

+ lhP(d <- pe(p),not -hP(p)2,not Ll
+lhP(d <- ch(qt),not uC(p),not -hP(p),not L)

For simplicity, not every argument involved is show, viz. Aioueç,yt $açoy and
ATnOy Assume they are built in the same way as the above arguments.

Finally, we showed that an argument of an agent Ag for L ís

. a sequence of ground rules started by a rule r with .L in its head (i.e. r :
L <- Body);

o the rules are chained together and based on facts; and

o all negative literals not L'in the rules of the resulting sequence are hypotheses
that there is no evidence for L' in Ag

Therefore, every not L'in the sequence can be attacked by some argument for
L', i.e. the hypothesis noú .L' is attacked by the evidence of. L'. For instance, the
weak arguments for "Poti has privacy" can be attacked by both strong and weak
arguments for "Poti has no privacy", i.e. both A"_neO and A\o"*, can attack the
hypothesis not -hP(r,) il A\n"to,. A similar reasoning, by both ÀírO and Aff"rr,
they can attack not hP(p) in lnpO.

3.2 Declarative Semantics

We illustrated and motivated our self-argumentation proposal on the previous
section. Now, we present the formal definitions. First, assume that the knowledge
base of an agent Ag is an Ertended Logic Program with denials P over a language
(.f. Def. 3 and Def. 1, respectively), and an atom L of an agent3 Ag rs in the
Ertended Herbrand Base of the program P (cf. Def. 3).

2We suppress the other not -hP(p) because it is already in the original rule for hP(X).
3To simplify the notation, we will refer, in the sequel, to the logic program that represents an

agent's knowledge base simply as an "agent".



42 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

As already mentioned in the previous section, both strong and weak arguments
are sequences of rules. Nevertheless, it is implicit that these sequences of rules

should be complete and well-defined. By complete we mean that all required rules

are in the sequence. By well-defined sequence we mean a (minimal) sequence of
rules for some -L. Since a well-defined sequence is based on a set of rules of an

agent Ag,we first define what we mean by seús of rules oÍ Ag. A strong set of
rules is defined for building strong arguments, and it is the set of rules of Ag. The
definition of. a weak set of rales is slightly different. For every rule of .L (denoted

by r) within the set of. Ag's rules, a'weak version'of r; is built by adding not L
and not I in the body of r1. The resulting set of rules is used for building weak

arguments.

Definition 35 (Strong and Weak Sets of Rules) Let L be a language, and P
be an ELPL ouer L. The strong set of rules of P is

Rr: P

and the weak set of rules of. P is

Hfl: {L+-Body,not -L,not LIL+-Body €P}
We say Rp i,s a set of rules, if i,t is e'ither a strong or a weak set of rales of P.

Remark lO In the remai,nder, wheneuer the language i,s clear from the contert,

we omit it, and si,mply say "Let P be an ELPI' 'instead of "Let L be a language,

and P be an ELPí ouer L".

Instead of using an example where rules and predicates have "real meaning",

as in Example 9 for motivating the proposal, here we use an example tailored to
illustrate the technical details of some of definitions.

Example lO Let P be an ELPt as follows

{ o; -o; b <- a; c <- not a; d <- not a,not e; e <- not f ;

e<-not g; Í; g; g<-not c; h<-not g; i<-not i; i<-not i\

Then R*: P and, Hi it

{ o <- not -d,not L; -a 1- not a,not L;
b <- a,not -b,not L; c <- not a,not -qnot L;

i <- not j,not -'i,not L; i <- not i,not -i,not L \
The Rff presented aboue has a subset of the rules of P, s'ince the ai,m is si'mply

to eremplify the method of rule-bui'ld,i,ng.



3.2. DECLARATIVE SEMANTICS 43

A well-defined sequence for an objective literal .L is then built as follows: the
last rule is a rule for .L (i.e. L <- Body) and the previous âre rules for the objective
literals Li in Bodg. This procedure is recursive, i.e. for each literal ,La there must
exist a rule r Íor Li (and so a sequence of rules for each objective literal in the
body of r). F\rrthermore, the sequence is built by chaining rules together, only
using those that are strictly necessary and ignoring default literals. Moreover, the
sequence must not be circular. Finally the first rule in the sequence for a complete
well-defined sequence should be either a fact or a rule whose body only has default
literals.

Definition 36 (Well-defined and Complete Sequence) Let P be an ELPL,
and L €?l(P). ,4 well-defined sequence for L ouer a set of (ground) rules S is a
finite sequence [rr; . . . ;r*] oÍ rales ri from S of the form Li +- Bodyi such that

1. L is the head of the rule r*, and

2. an object'iue literal L' 'is the head of a rale rt (l 3 i < *) only if L' is not
in the body of 0,n! r7" (7 < k < i) and L' 'is i,n the body of some rule ri
(i<j<m).

We say that a well-defined sequence for L'is complete if for each objectiue
l'iteral L' 'in the body of the ntles ra (l S I 3 m) there ,is a rule ro (k < i) such
that L' is the head of rp.

Example ll Assume Rlp and R? oÍ Erample 10, a (non-complete) well-defined
sequence for the objectiue li,teral b ouer R" (resp. R:il i.t [b e a] (resp. [b <-
a,not -b,not L)). A complete well-defined sequence forb ouer R:, (resp. Hil it
fa;b <- a) (resp. la <- not -a,not I;b <- a,not -b,not fD. ld <- not a,not e)

i,s a complete well-defined sequence for the objectiue li,teral d oaer R!r, and it is
only composed by the rule for d (ra) si.nce there i,s no objecti,ae li,teral in the body of
ra. A similar situation arises in a complete well-defined sequence for the objectiue
literal o, oaer R"r, whi,ch is lal. The objectiae li.teral e has two complete well-defined
sequences ouer R'", uiz. le t- not f) and le <- not g); a similar situation for the
object'iue li,teral g is ld and lg <- not cl.

Definition 37 (Strong and Weak Arguments) Let P be an ELPL, L e ?l(P),
and Ri (resp. Hí) b, the strong (resp. weak) set ol ru,les of P. A strong (resp.
weak/ argument of P for L, AL (resp. Ai), is a complete well-defined sequence

for L ouer R!, (resp. R:fi).
Let Af and Ai be two arguments of P. Ai i,s the weak argttment corresponding

to Ai, and u'ice-uersa, if both use eractly the same rales of the origi,nal program P
(the former by haui,ng i,nstances of r-ules Hfl and, the latter from P':r).



44 CHAPTER 3, A PROPOSAL FOR SELF-ARGUMENTATION

We say that Ar, i,s an argttment o/ P for L iÍ it i.s ei.ther a strong argument or
a weak one of P for L. We also say that A! ls a k-argument of P for L (where k
i,s ei,ther s, for strong arguments, or u), for weak ones).

Remark ll S'ince th'is chapter proposes self-argumentation, whi,ch always'inuolues
a si,ngle agent alone, we will say "argument for L" 'instead of "argument of Ag for
L". Furtherrnore, we also say "weak argument for L" 'instead of "weak argument
correspondi.ng to a strong argument for L".

Example 12 Followi,ng Erample 11, the strong (resp. weak) argument for the
objectiue li,teral b is the complete well-defined sequence for b ouer R, (resp. Rfl).
Si,nce the objectiue li,teral e has two complete well-defined sequences oaer R:, (resp.

Rfl), the literal e has tuo strong (resp. weak) arguments.

The set of arguments of an agent Ag is obtained by building every strong
argument, and the corresponding weak one, for every L in Ag's knowledge base

(cf. Def. 3). Note that if some objective literal .L does not appear in the head of
some rule, the well-defined sequence for L is empty and so there is no argument
for L.

Definition 38 (Set of Arguments) Let P be an ELPL. The set of k-arguments
of P i,s

Aresk(P) : U AbQ,u)
L;. e '17(P)

where A:r(Ln) (resp. AH@)) denotes the set of all strong (resp. weak) arguments
of P for L6. We denote by Args(P) the set of all s-argurnents and w-arguments
of P, i.e.

Ar g s(P) : Ar g s" (P) U Ar g s- (P).

Example 13 Assume the R, and Rfr of Erample 10. The set of s-arguments of
P i.s

Args"(P) : { [o], [-r], la;b <- al,lc <- not a),fd <- not a,not el,

le +- not Í),1" <- not g), [/], [g], lg <- not cl,lh <- not g),

li, <- not j),U <- not i.l )
i.e. {Ai,A'_",Aí,Az,A"d,Az,A'i,A:r,A:n,A',;,Aí,A:,A;}. The set of u-arguments
ofPis
Args*(P): { la <- not -a,not t], [-, <- not a,not L),

la <- not -alnot l;b <- a,not -b,not L),

lc <- not a,not -c,not I], [d <- not a,not e,not -d,not L),

le <- not f ,not -e,not l], [e <- not g,not -€tnot L),

lf +- not -f ,not f], [g <- not -g,not L]1

lg <- not c,not -g,flot I], [h <- not g,not -h,not L),

li +- not j,not -'i,not I], [f <- not i,not -j,not L] ]



3.2. DECLARATIVE SEMANTICS 45

i,.e. {A!, A!", AY , A? , AY, A! ,A'! , A? ,A3 ,A'f , Aff , AT ,,ry}. Finally,

Ar g s(P) : Ar g s' (P) u Ar g s- (P)

At this point we have defined how arguments are built. We now move on
to defining the attacking relation between these arguments. Instead of [PS97]'s
definition of attack, with undercut and rebut (see Def. 25), our definition is as

follows. If an argument for an objective literal .L (denoted by Ar,) has a default
negation not L'in it, any argument for L' attacks (by undercú) A7. The other
attacking relation (named rebut) states that an argument also attacks another
one when both arguments have complementary conclusions (i.e. one concludes .L

and the other -tr). With strong and weak arguments, rebut can be reduced to
undercut. So, we can say informally that "an argument for a conclusion L attacks
an argument with an assumplion not -L". Such a "notion of attack" shows that
we need to make both the conclusions and the assumptions of an argument precise
before defining an attack.

Definition 39 (Conclusions and Assumptions) Let Ar, be an argument for
L. The conclusions of A1, Conc(A), is the set of all objectiue literals that appear
'in the head of rales 'in A7. The assumptions o/ A1, Assump(Ar), is the set of all
default literals appearing in the bod'ies of rules in Ay.

Example L4 Assume the R:, and Hf of Erample 10. The strong and the weak ar-
gument for b are, respecti,aely, Al : la;b <- a) and AT : la + not -,o,,not I;b +-
a,not -b,not f]. The conclusions and assumpt'ions for both arguments are as

follows
C onc(Ai) : C onc(Af) : {o, b}
Assump(Aü) :0
Assump(A|) : rot {-4, -b,I}

Intuitively, both strong and weak arguments can be attacked in the same way.
Since a (weak or strong) argument may make assumptions, other arguments for
the complement of one such assumption may attack it. In other words, an argu-
ment with not L can be attacked by arguments for ^L. This definition of attack
encompa,sses two cases:

o arguments that are directly conflicting, e.g. an argument for.L (with not -L)
can be attacked by an argument for -tr, and

o âny weak argument Af (and also a strong argument Ái which verifies not L e
Assump(Ai)) can be attacked by every argument for I.



46 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

However, it does not make sense to attack arguments for objective literals if they
do not lead to falsi,ty. By "an objective literal tr leads to falsi,ty" we mean that
there is an argument ,4; such that A1 is built based on such an argument, e.g.

A1: A7 + [I <- L,not .L']a . However, this proposal considers only the objective
Iiterals that are in the body of the rule for I (called ra) because these literals
immediately lead to falsity. We assume the involvement of other objective literals
is not so strong as those in the body of 11. To clarify the above description,
see Example 15. (We further assume they can be detected in a process of "belief
revision", e.g. [DP97, DPS97]. A full discussion of this issue is beyond the scope of
this proposal.) We define objective literals di,rectly confl,icti,ng wi,th Al as follows:

Definition 4O (Directly Conflict with A) Let Al be 0,n argurnent for I, 'I <-
Body'be the rule for L i,n A1, and {L1,...,Ln} be the set of all object'iue l'iterals
in Bodg. The set of objecti,ue litemls directly conflicting with ,41 is

DC(Ai : {r} u {r,,..., Ln}.

Definition 41 (Attack) Let P be an ELPL. An argument A7 of P for.L attacks
an argum,ent A7, of P for L' iff

o L i,s the symbol L, not L e Assump(A",), and L' € DC(A1); or

o L is an objectiue literal different from L, and not L e Assump(A",).

Example l5 Consider the prograrn {a; b <- c; c; d; e * not L; L <- a,b}. The
strong argument for L i,s A\: lc b <- c;a; L <- a,b] and so DC(A",) : {1, a, b}.
Although a rule for c belongs to the sequence oÍ Ai, its inuoluement'is not so strong
as a andb. Furthermore, d does not lead to falsity. Despi,te of the lact that 'not I'
i,s in the sequence oÍ A., the literal e Ç DC(A\). Thus, A\ can attack both A!
and, Aff , but mag not attack AY , AY, Ai, and A! .

Based on the simplifications that we have performed in Prakken's definitions,
we can further say that the evaluation of a strong argument for an objective literal
.L does not consider the existence of arguments for -tr, nor the presence of. falsity.
However, a weak argument for .L is evaluated by looking at both of them. Moreover,
if a strong argument is attacked, then the weaker version of it is also attacked.
Given that Args(P) contains strong arguments for a given objective literal and
also contains the weak corresponding arguments for it (cf. Def. 38), the following
holds:

4'A+B' means to concatenate the arguments 'A' and 'B' in terms of well-defined sequences.

Since the operator '*' is only refereed in examples, we do not define it yet. The next chapter
has a formal definition of such an operator (see Def. 58).



3.2. DECLARATIVE SEMANTICS 47

Proposition 12 Let A'7 be an argument, and Af be its weak cotrespond'ing ar-
gument. If a (strong or weak) argument Aa, attacks AL, then A7, also attacks
Ay.

Proof. Assume, by contradiction, that there is an argument 47, that attacks
Ai and does not attack Ai. lf. A1, attacks Ái then there exists a not L' e.

Assump(Ai). Given that Ásszn'Lp(AL) Ç Assump(Ái) then there also exists
not L' € Assump(A'í,). So A7, also attacks A'í,, and we have a contradiction I

Note that the converse is not necessarily true. I.e. it may happen that an
argument attacks Ai and does not attack Ái.

Since attacking arguments can in turn be attacked by other arguments, com-
paring arguments is not enough to determine their acceptability w.r.t. the set
of overall arguments. What is also required is a definition that determines the
acceptable arguments on the basis of all the ways in which they interact. In other
words, the acceptability of arguments is obtained through the interaction of a"r-

guments, by proposing arguments and opposing them. A subset ^9 of proposed
arguments of P is acceptable only if the set of arguments of P, Args(P), does
not have some valid opposing argument attacking the proposed arguments in ,S.

As in [Dun93, PS97], we demand acceptable sets to contain all such arguments.
Two questions remain open: how to obtain opposing arguments and, among these,
which are valid?

An opposing argument for a proposed argument which makes an assumption,
say not .L, is simply an argument for conclusion .L in Args(P). For an opposing
argument Ao to be valid for attacking a proposed argument Ap in ^9, ,S should
not have another argument that, in turn, attacks Á" (i.e. another argument that
reinstatess ,#). ln this case, we say that S cannot defend itself against Á'. This
motivation points to a definition of acceptable sets of arguments in P such as a set

S is acceptable tf. it can attack all opposing arguments from Args(P). So, we can
say that

A proposed argument Ap is acceptable w.r.t. a set ,S of acceptable
arguments if and only if each opposing argument Ao attacking ,N is
(counter-)attacked by an argument in ,S.

This notion of acceptable argument has been introduced without considering
two of [PS97]'s definitions, viz. defeat and strictly defeat, because both of them
are based on definitions of undercut and rebut. However, it is still necessary to
determine how strong arguments and weak arguments should interact w.r.t. such a
set ,S of arguments. Based on the idea of reinstatement, both attacked and counter-
attacking arguments should be of the same kind. For instance, if a proposing

sFor details, see Example 1.



48 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

argument is strong (resp. weak) then every counter-attack against its opposing
argument should be strong (resp. weak). A similar reasoning can be applied to
opposing arguments. Therefore, proposed (resp. opposing) arguments should be
of the same kind.

Remark L3 In the remai,nder of thi,s dissertation we will use the notation p and

o to di,sti,ngui,sh the proposed argument lrom the opponent one, i.e. p (resp. o) is
a (strong or weak) proposed (resp. opponent) argument.

In what concerns the kind of arguments, there are four possibilities of interac-
tion between a proposed argumenl Ap and an opposing argument Ao as represented
in Table 3.1. The first mode of interaction considers a set of weak arguments only.
The second mode considers a set with strong arguments. The third/fourth consider
a set with both strong and weak arguments. (In the following, these interactions
are discussed in detail.) Then the definition of arguments' acceptability (and the
corresponding characteristic function) is generalized by parameterizing with the
possible kinds of arguments, viz. strong arguments and weak arguments.

AO\A" s u
s S,S S,U
u U,S U,U

Table 3.1: Ways of interacting arguments

Definition 42 (Acceptable Argument) Let P be an ELPL, p (resp. o) be the
kind (strong or weak) of the proposed (resp. opposing) argument oÍ P, and S Ç
Arsse(P).

An argument Ay € Argse(P) is an acceptableo,, argument w.r.t. S i,ff each

argument Ar,, e Args"(P) attacki,ng Aa i,s attacked by an argument A7,, Ç §.

Example 16 Followi.ng Erample 13, Figure 3.3 illustrates the attacking relation
between proposed strong arguments and oppos'ing weak arguments (see Remark 1l
to understand better the notati,on used'in the figure). Acceptable",. arguments

w.r.t. Args(P) are Af,, A"o, A:., A:n, A';, A"t, A"-, and Ai.

Remark 14 (Notation used in the Figures) Let A and B be arguments of an
ELPI P. Arguments are represented as nodes. A solid l'ine from A to B rneo,ns

"A attacks 8", a dotted li,ne from A to B nl,eans "A is bui,lt based on 8", and a
li,ne w'ith dashes n'Leans "A rei,nstates 8". A round node means "'it'is an acceptable

argument" and a square node means "'it is not an acceptable argument", which are

w.r.t. the set of arguments of P.



3.2, DECLARATIVE SEMANTICS 49

A'; AY 4""

A': A; Ai
3

A"d Ay A7 A': A3

A: A"-"

Aí A';

AZ

A2 A? A:q

A; AY

Figure 3.3: Proponent strong arguments and opposing weak arguments of Exam-
ple 13



50 CHAPTER 3, A PROPOSAL FOR SELF-ARGUMENTATION

[PS97]'s proposal is in accordance with the'Compositional Principle' of [Vre97]:
"If an argument A7, is a sub-argument of argument A7, ànd A1, is not acceptable
w.r.t. a set of arguments ,S, then Á1 is also not acceptable w.r.t. 

^9 
". Furthermore,

[PS97] imposes the rule that an argument and its sub-arguments have the same
rules in their sequence of rules (cf. Def. 24). However, we could define sub-
arguments based on definitions of both conclusions and assumptions. Nevertheless,

[Vre97]'s principle is respected by our proposal, and the following holds:

Proposition 15 Assume two arguments .Al and Ap", such that

Conc(Aer,) Ç Conc(Aer) and Assump(,{1,) ç Assumn(A\.)

If Ao", i,s not acceptableo,o w.r.t. a set of arguments S then #, it also not acceptabler,o
w.r.t. S.

Proof. Assume, by contradiction, that there is an argument A"r,, in ,S that attacks
Ap", and does not attack Ae". lf. AL,, attacks Ap", then not L" €. Assun'LpçryL,).
Given that Assump(Apr,) C Assump(Áer) then not L" € Assumpç$ So Aor,,

also attacks Ae". Contradiction r

The acceptability of an argument is local to Ag, since this argument depends
on the set P of rules of Ag from which the argument is built. Even when handling
the presence of. falsity in Ag (i.e. Ás) or contradictory arguments (e.g. Á1 and
A-r,), these arguments are always built over P. Similarly to [Dun93, DungS],
we formalize the concept of acceptable arguments with a fixpoint operator. The
intuitive idea of the characteristic function is that the set of acceptable arguments
is constructed stepby-step. First, an empty set is assumed to be the initial set of
acceptable arguments. Then, all proposed arguments which are acceptable w.r.t.
to the empty set (i.e. which are not attacked by any opposing argument) are
collected into a set, ,S1. After that, all proposed arguments that are acceptable
w.r.t. arguments in 51 are added in ,S2. More precisely, each argument that
has attacking opposing arguments is added if all those opposing arguments are
attacked by an argument already in ,Si. The resulting set is ,S'+1. This step is
repeated until a set ^9) is obtained to which no new proposed argument can be
added.

Definition 43 (Characteristic F\rnction) Let P be an ELPL, and p (resp. o)
be the ki,nd (strong or weak) of the proposed (resp. opposing) argument of P, and
S c Argsp(P). fhe characteristic functionp o of P and ouer S i,s:

ç,P'o . lArss(P) -+ 2Arss(P)tP .-

FF"6) : {Arg e Args(P) I Arg rs acceptabler,o w.r.t. S}



3.2. DECLARATIVE SEMANTICS 51

F\rrthermore, if an argument Ae, is acceptableo,o w.r.t. ,S, then Áe, is also
acceptabler., w.r.t. any superset of ,S. In fact:

Proposition L6 Fp"'o is monotoni,c-

Proof. Assume that ,Sr and 52 are subsets of Args(P) We have to prove that
VS1,S2 : if ,Sl c ,S2 then.Fp'"(S') q FF"@'). I.e. if, assuming Sr ç 52, an
argument A7 e Fer''(Sr) then A, e FY''(S2). If Al is acceptablep,o vr.r.t. 

^91 
then

(1) A, has no argument in Args(P) that attacks it; or (ii) there is an argument
Au e Args(P) that attacks Ap bttt there is an argument A7,, in ^9r that attacks
Ay,. If. Ayis acceptableo,o w.r.t. ,Sl because of (i), lhen A7 is also acceptableo,o

w.r.t. 52 because there is still no argument in Args(P) that attacks AL. lf At is
acceptableo.rw.r.t.,Sl becauseof (ii), thenA7,, €S2,since,S1 Ç52, andso Ayis
also acceptabler,o w.r.t. 52 t

Being monotonic, it is guaranteed that Fer'" always has a least fixpoint (accor-
ding to the set inclusion ordering over sets of arguments):

Proposition I-7 Define for any P the followi,ng sequence oJ sets of arguments

. ,So: 0

o Si+l : Fop"(Si)

Giuen that Fe"'" 'is monotonic, there must eri,st a smallest À such that S^ 'is a

firpoint oÍ FFn, and S^ : lÍp(Fop'").

Proof. The result follows immediately from the monotonicity of. Fe;o, given the
well-known Knaster-Tarski Theorem [Tar55] I

The following example shows that lfp(Fer'") is well-behaved, i.e. arguments in
it are acceptabler., w.r.t. the set of all arguments of. P. By definition lf p(FP'")
is minimal, which guarantees that it does not contain any argument of which
acceptance is not required.

Example 17 Assume the Args(P) presented i,n Erample 13. The iteratil)e con-
str"uction of the set of acceptable",u) argun'Lents w.r.t. Args(P) 'is as follows:

a ^90:0
. ^gr: r;l-(so) : {A'n,A'r,Az,A"_,,Ai}

. 52 : fÊ'(Sr) : {Aí, A"f , A",, A"_", Al, Aà, AZ, A,;}



52 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

o ,S3 : F"d*@,) : 52 : lf p(Fi;*)

Similarly to [PS97], we formalize the status of an argument. By knowing the
set of a1l acceptablep,o arguments of. P, the arguments from "Args(P) are split
into three classes, viz justifiedfio, overrulede;' and defensibl$'. Nevertheless, our
definition of overruled is different from [PS97]'s proposal. In their proposal, the
restriction applies that overruled arguments cannot be also justified (see Def. 30)
and so [PS97]'s argumentation semantics is always consistent. Since we aim to
obtain a paraconsistent way of reasoning, the status of an argument is defined as

follows:

Definition 44 (Justified, Overruled or Defensible Argument) Let P be an
ELPL, p (resp. o) be the kind (strong or weak) of an argument of P, and Fp"'' be

the characteristic functionp o oÍ P and ouer Args(P). An argument Ae, i,s

o justifiedlo iff Ao, i,s in lf p(Fp'')

o overruledoi' 'i,ff the Ai corresponding to it is attacked by a justifieff;" argument

o defensibl€;" lff i,t i,s nei,ther a justi,fi,eff;o nor an ouerntleff;o argument.

Remark 18 (JustArg§i") We denote the lf p(Fer'") bg the sel of justifiedep" ar-
guments, JustArg§;o.

We may deduce overruled arguments of. Args(P) based on the greatest fixpoint
of the characteristic function. We obtain the greatest fixpoint in a similar way to
the least fixpoint, i.e. constructed stepby-step. However, Args(P) is assumed to
be the initial set of arguments. Then, all proposed arguments which are acceptable
w.r.t. Args(P) are collected into a set, ,S1. After that, all proposed arguments
that are acceptable w.r.t. ,S1 are added in ,S2. In other words, every proposed

argument which is attacked by opposing arguments in ,Si and is not reinstated by
arguments in ^9i, is not added into set,Si+l. This step is repeated until a set,SÀ
is obtained to which no proposed argument can be deduced, i.e every attacked
argument in SÀ is reinstated by an argument in ,SÀ. Intuitively, we can assume

that all acceptable arguments in ,SÀ are either justified or defensible arguments.
Thus, every argument which does not belong to ,S) is an overruled argument.

Since Fer'" always has a greatest fixpoint (according to the set inclusion ordering
over sets of arguments), the following holds:

Proposition 19 Define for any P the following sequence of sets of arguments:

o ,So : Argse(P)

o Si+1 : FF"G')



3.2. DECLARATVE SEMAN?ICS

1. G,iaen that Fer'" is monotoni,c, there must erist a smallest À such that S^ i,s

a firpoint oÍ F'ro, and S^ : gÍp(FY").

2. Moreouer, gfp(Fer'o) - ,o'*- .

Proof. The result follows immediately from the monotonicity of FY'o, again given

the well-known Knaster-Tarski Theorem [Tar55] I

Then we relate both greatest fixpoint and least fixpoint as follows. The gf p(Fí;e)
contains both justifiedlp and defensiblele arguments w.r.t. Args(P), and the
lÍp(FY") contains the justifiedlo arguments w.r.t. Args(P).

Lemma 20 gfp(Fpe): {A"",1-()Aey, ç lÍp(FF") I Aor, attacks A"rr)}.

Proof. Let S : {Aor, 1-(lAeq e lfp(Ferp) I Aor, attacks A"r)).We prove that
(1) S is a fixpoint of. Fle, and that (2) S is the greatest fixpoint of. FPe'

L F?e@): ^9. By definition, ATr is acceptableo,p w.r.t. S iff it is not attacked
or it is attacked by Aor, and)A"r, € ,S attackirr1 A1,r. So, Aor, is acceptable,,
w.r.t. S if for VAp", that attacks Ai, then 1Aor,, e ,S attacking A1,,. By
definition of Air,7f ApL, attacks Ai, then A'r, # lÍp(Fo;"). Therefore, Ê", i,
attacked by Aor,, that is not attacked by any argument in lf p(Fp'"). But in
this case, by definition of ,S, A?,, e,S. Thus, A"rrisacceptableo,p w.r.t. S. We

have proven that S ç Fí;o(S). Now, we have to prove that S 2 I!p(,S). Let
A"r. € F?o(S). We must show that -(1N1, e lfp(Ferp) I Aor, attacks Ai)'
Assume, by contradiction, lAerrlfp(Fe"'") such that Apr, attacks Á1. By
hypothesis , A", ís acceptableo,p w.r.t. ,S so there exists an AL, € ^9 

attacking
Aob. Given that Ai, e S, -1/e"^ e lfp(Fer'o) attacking A"nr. So, Ap", Ç
lÍp(F*r") q.e.d.

2. lf S' : F?o(S') then,S'Ç S. We have to prove thatYAi €,S': -(1,#L2 e
lÍp(For") | ,#r, attacks Ái), assuming that ,S' : F?o(S'). In other words,

we have to prove that, for every AL e ,S', every argument .Al, attacl<tng
Ai does not belong to lfp(Ffi'"). Since lÍp(Fí") can be obtained by the
iteration of. Fer'", we prove this by induction on the iteration. More precisely,

let A"" € ,S' and C : {4,, I Ae, attacks Ái}. We prove by induction that
VnFFn ti nC : A.

Base: Trivial, since 0 ) C : A.

Ind,uction: Assume lhat Ferpri íl C : A. FF'o ti+1 - {Aer, : i,ÍAL,,attacks
Ae,, then )Ap,,,, € FF" tn thut attacks AL,,\. We have to prove that any such

A'r, lC,r.e. Ap, does not attack any Ao" e ,S'. If Ae, attacl<s some Ál e,S'

53



54 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

€ ,S' attackrng fi,. But, in this case, there does
attacking Aor,, becanse, by induction hypothesis,

Lemma Zt lfe@fi'"): {Ao", . -(1AL, e gÍp(Fí) I AL, attacks Arr,)}.

Proof. Let S : {A1,, : -(lAoL, e gÍp(Fí;o) I AL, attacks Ao",)} We prove that
(1) S is a fixpoint of. Ffl'o, and that (2) S is the least fixpoint of. Fp;'.

l. Fep'"@) : S. By definition, Ap", is acceptabler,o w.r.t. S itr it is attacked
by AL, and 1Ap"" € ,S attacking Air. So, N", i, acceptabler,o w.r.t. S
if for YAi, that attacks Ap", then )Apr,, €. ^9 attacking A?.,. By definition
of. Aerr, A"r, # gÍp(Fí;'). So, if A"r, attacks Aor,, then Ai, # gÍp(Fí;').
Therefore, Ao1, rs attacked by ff,, that is not attacked by any argument
h gfp(Fí;e). But in this case, by definition of S, Ae",, e. S. Thus, Apr, is
acceptableo,, w.r.t. S. We have proven that S ç Fe"p(S). Now, we have
to prove that S )_ Fr"'"(S). Let Ap, Ç FY$). We should also prove that
-(1AL, e gÍp(Fí;o) I A"", attacks Áer). Assume, by contradiction, AL, e
gÍp(Fí;o) and A"", attacks Aor. By induction hypothesis , if ,ry" is acceptabler,,
w.r.t. ,S then there exists an Apr, € ^9 attacking A?r.Given that Ap", e S,

-)ALn e sÍp(Fí;') attacking Apr,. So, AL, ç gÍp(Fí;,) q.e.d.

2. If. S' : FF"(S') then S g S'. We have to prove thatV,{, # S' , )Aor, e
gÍp(Fí;o) | Ái, attacks Áer, assuming that S' -- FF''6'). In other words, we
have to prove that for every Ao" # S' there exists an argument Ai, attacking
Áe, belonging to g f p(Fí;o). Since g Íp(Fí;o) can be obtained by the iteration
of. Fpe, we prove this by induction on the iteration. More precisely let
ç : {Aor, I Ai, attacks ,ryr];. We prove by induction that YnFpot't n C + 0.

Base: Clearly, Args(P) ) C : C. Since ,S' is a fixpoint of Fe"p and ,{" ( S'
then there must exist some argument attacl<tng Aer, t.e. C cannot be empty.

Induction: Assuming that FSp ti n C + g. F''p b+r n g : {Aor, :

7f ApL,, attacks A"", then 1Aoy,,, e F?o J' thut attacks ApL,,). We have to prove
that Ai, e C, i.e. 1Ao", attacking Ae". lf Vt (=A?, e F?o u*' 

I AL, attacks
Aer) then (3A"", e F?o +o 

I A?, attacks Aprr) becarse, by induction hypothe.
sis,,F!'elinC*0 t

Then, the following holds:

Theorem 22 AeL i,s ouerru,letri' 1,ff the corresponding Ai i,s not in gÍp(Fí;')

then there exists an Aor,,

not exist APtr,,, e F'"'" ro

FF,oriÀC:A. I



3.2. DECLARATIVE SEMANTICS 55

Proof. If ,ryL, ts ouerntlede;' then there exists an Apr, e lfp(Fer'') attacking the

correspondingÁi, to frr,,. Based on Lemma 20, AL, # gÍp(Fí;o_). If. A"L, #
gÍp(Fí") then, básed on Lemma 21, there exists an Ap", e lf p(Fer'') attacking
A"rr. So, by Definition 44, #", i, overrulede;' I

Example 18 AssumeArgs'(P) : {,41, A"-",Al,A2,A"d,A2,A'i,A?,A"n,A';,A"h,Aí,
A]\ from Erample 13, and tf p(Fí;-) : {A",, A!-", A"u, AZ, A'd, A';,A'n,A}) Írom E-
rample 17. Figure 3.1 ,illustrates the attacki,ng relation between proposed weak

arguments and oppos'ing strong ones (see Remark 1l to understand better the no-

tation used in the figure). Then, the gf p(Fff'') is obtained as follows:

. ,90: Args-(P)

. ,s1 : fÉ'"(so) : {AT,A'i,A?,A,:, AT}

. s2 : fÉ,"(st) : {A3 ,A? ,Ay ,ry}

. ,s3 : Fi"6r): s2 : gÍp(Fi'")

Both A"n and, A", are justi,fieff;- arguments, and both Ai and Aj are defensible"i-

arguments. The ouerru,leff;- argurnents are A2, A': and Ai. The other arguments

i,n Args(P) are both justi,fi,eff- and ouerruled;-, uiz. AZ, A!-o, Ai, Ai, Aio and

A';.

Not all sets of justified arguments have the same "level of acceptability". It
depends on the kind of both proposed and opposing arguments. Most of these

sets do not have a justified argument attacking another justified one, i.e. they
do not accept conflicts between justified arguments. On the other hand, some

of them might have contradictory arguments, i.e. they may have an argument
for L and another for -.L. So, we first define what we mean by confi,i,ct-free and

by contradi,ctorg sets of arguments. Then establish the relation between justified

arguments and a contradiction: every justified argument is either contradictory,
based on contradiction, or non contradictory w.r.t. Args(P).

Definition 45 (Conflict-free Set of Arguments) ,4 set of arguments S'ds con-

flict-free i,ff there 'is no argument in S that attacks an o,rgun'Lent i,n S.

Definition 46 (Contradictory Set of Arguments) ,4 set of arguments S is
contrad'ictory w.r.t. L i,ff

o L'isthe symbol L, andthere etist an argurnentfor falsity i,n S; or

o L 'is an objecti,ue li,teral di,fferent from L, and there etists both an argument

for L and an argument for -L in S.



56 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

A',f A'. A: A:_"

AY A"Í

}H)

Ay

A': A;
a

A': A:g

Ay AZ Ay

a

Ay," AZ AH A';

Ay Ay Aj AT Aí
I<-----------{ I<-){

Figure 3.4: Proposed weak arguments and opposing strong arguments of Exam-
ple 13



3.2, DECLARATIVE SEMANTICS 57

We say that S is non contradict ory i,ff there i,s no li.teral L in S such that S i,s

contradi,ctory w.r.t. L.

We define three sub-statuses for relating justified arguments with contradiction

- contradictory, based-on-contradiction, or non-contradictory - as follows:

o Intuitively, justified arguments are contrad'ictory if. lhey are related to a

contradictory set of arguments, i.e. if a set S of justified arguments is con-

tradictory w.r.t. an objective literal -L, then every justified argument for
such .L is contradictory w.r.t. ,S.

Another condition is based on objective literals directly conflicting with Á!,
which means that if Ál is a justified argument then, by the first condition, it
is also contradictory. Thus, every justified argument for an objective literal
in DC(,{r) is contradictory because it immediately causes falsi'ty.

o An argument ts based on contrad'iction if one of the following conditions is

satisfied: (1) Ao" is reinstated by a contradictory argument or a based-on-

contradiction ârgument, or (1i AeL is built based on a contradictory argu-

ment.

o An argument rs non contrad'ictory otherwise, i.e. if it is not involved at all
with any contradiction.

We say that an argument that reinstates another argument is its counter-attack

Definition 47 (Counter-Attack) Let P be an ELPL, S C Args(P), A, be an

argument i,n S, and Ar., be an argument'in Args(P) attacki'ng A1. ,4 counter-
attack for A1 aga'inst Ar,, 'is an argunlent i,n S that attacks A7,. C A,q,t(A1,, S) is
the set of all counter-attacks for A1 against A1, i,n S.

Definition 48 (Relation to Contradiction) Let P be an ELPL. A justifieff;'
argument Aer'is

o contradictorf;" i,ff

- JustArgsp;' 'is contradictory w.r.t. L, or

- there erists anpio argument #, in Justarg{;" and L e DC(Aet);

o based-on-contradiclione;o iff

- Íor all Al, attacki,ng ,{, there eri,sts a contradictorf;" or based-on-

contrad'ict'iorf;o argument 'in Ç Aar.(Aor,, JustArgse;o), or



58 CHAPTER 3, A PROPOSAL FOR SELF-ARGUMENTATION

- there elists an L' e Conc(Aer), di,fferent from L and L, such that
JustArgse;o 'is contradr,ctory w.r.t. L' ;

. non-contradtclorf;' i,ff

'it'is n either contra dt ct o rf;' n o r b as ed- on- contra di, cti orf;'

Proposition 23 Let L be an objecti.ue literal dzfferent from L. A justifieff;'
Ae" argument is non-contradi,ctorf;" i,f and only i,f there does not enist an L' Ç

Conc(.{r) such that JustArg§;o is contradi,ctory w.r.t. L', and eaery counter-
attack Ío, tr. 'is a non-contradictorf;o argument.

Proof. We have to prove that ,{" is non-contradictory}'itr (1) -1L' € Conc(,{r)
such that JustArgse;o is contradictory w.r.t. L' , and (2) VAL, attacking Apr, every
Ap",, e ÇAer.(A"",, JustArgspi") is a non-contradictorf;' argument.

1. We a,ssume, by absurdum, that Áe, is non-contradictorf;" andlL' e Conc(Ae")
such that JustArg§;" is contradictory w.r.t. L'. If. L : -L' then, by def-
inition, Ê" it contradictorye;"; otherwise, #" i, based-on-contradictionf'.
Absurdum.

2. We assume, by absurdum, that #r. i, non-contradictorye;" and 1Ao, at-
tacking 4, l1Ao",, Ç CAn"(Ai,,JustArg§i") such that Ap",, is not a non-
contradictorf;' argument. If Apr,, is either a contradictorf;" or a based-on-
contradictione;' argument then, by definition, ,{" is based-on-contradiction}'
Absurdum r

Example 19 Followi,ng Erample 18, since JustArgs';- ,is contrad,ictory w.r.t. -a
and a. Then A"-" and Ai are contradi,ctory";- arguments. Arguments Ai, A"., A"d,

A'f are bas ed- on- contradi,cti,on";- .

Note that Ai is built based on the contradictorA argurnent A"", i.e. a e Conc(A).
A"-* i,s i,n both sets of counter-attack:

ç Ae4(A! , JustArgsT-) and C An, (A!, JustArgs\-)

Figure 3.3 i,llustrates that both arguments A"o and Ai are re'instated bg Ai-"
agai,nst A!. Similar to the preui,ous case, A'j ,is re'instated by Ai.

In the following we present properties of the resulting set of acceptable ar-
guments, i.e. JustArgse;o. Given that there are four possibilities of interactions
between proposed and opposing arguments, the following holds:



3.2. DECLARATIVE SEMANTICS 59

Theorem 24 Let P be an ELPd, L e 7{(P), p (resp. o) be the ki,nd - i,.e. strong
or weak - oÍ a proposed (resp. opposi,ng) argument oÍ P, and So,o be a set of
arguments such thatYAe": Ao" € lÍp(For"). The sets Sr,o ftf justi,fied arguments)
h au e p re- firp o i,nt rel ati, o n s :

i. S.,," C S-,-

ii. ,s_," g s","

iii. ,s-,_ C s",_

ir. S"," C S,,-

Proof. Given that (i) and (iv), and also (ii) and (iii), have similar kinds of
proposed arguments and opposing arguments (i.e. p and o, respectively), we prove
(i-iv) by proving that:

1. Sr," Ç ,Sr,-

2. S-,x Ç S",r

for k e {",r}.
1. Let S : tf p(F!''). W" first prove, by contradiction, that ,S is a pre-fixpoint6

of. F!'- , i.e. for every L if AL e ,S then el e f!'-(S). Assume, by contradic-
tion, that AL e S and Al is not acceptableT,,. w.r.t. ,S, i.e. Ai, ç F!'-(S).
So there exists an argument Af, attacking Al fhat it is not attacked by any
argument in ,S. But in this case there also exists an A, attacking Al that,
based on Prop. 12, is not attacked by any argument in ^9. Thus ál is not
acceptableT,," w.r.t. ,S, i.e. Al, ç S Contradiction. So ,S is a pre-fixpoint of
F!'-(S) Given that F!'- is monotonic (cf. Prop. 16), and that, as is well
known, pre-fixpoints of monotonic operators are included in all fixpoints,
S Ç tf e@!,-), i.". tf p(F!'") Ç tf e@!,-1.

2. Let,S be the set of the strong arguments corresponding to the arguments in
tÍp(Fi'n), Aibe an argument in,S, and Ai be its weak corresponding argu-
ment. Given that Assump(Ail ç Assump(Afl) and that Ai is acceptable-,p
w.r.t. tÍp(Fi'o), clearly also Ái is acceptable",6 w.r.t. ,S. So, if A"" e S,
Ái also belongs to fÊk(S), i.e. ,S is a pre-fixpoint of FPk. So, similarly to
point (1), ,S ç lf p(Fí'r). Accordingly, if there is an argument for tr in S (i.e.
L e S-,ç) then there is also an argument for Linlfp(Ff;*) (i.". I e ,S",r) r

6A set S is a pre-fixpoint of a function g itr S Ç e(S)



60 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

The resulting set of acceptable arguments from an argumentation process over

a set ,S of arguments with just weak arguments is always consistent. I.e. neither
weak arguments for I (called Af ) nor contradictory arguments (i.e. both weak

arguments for -L and tr) are considered acceptable w.r.t. ,S. Intuitively, if there
is an argument Áf (with a rule I <- Body) such that ,L is in Body, we can

deduce fhat A\ was built based on A!. If we accept A?., we also accept Áf , then

falsi.ty follows. Therefore, both arguments Ai and Áf are not acceptable. So, the
following holds:

Proposition 25 JustArgsfr'- i,s confl,ict-free.

Proof. Given that JustArgs?'- : lf p(Fi'-), we prove ihat lf p(Ff'-) is conflict-
free. Let F;'-(So) c ...Fi'-(s') Ç ... ç Fí'-(s') : lÍp(Fi'-) we prove, by
induction, that al1 ,9t in the sequence are conflict-free.

Base: Clearly, since ,S0 : 0, ^90 is conflict-free.
Induct'ion: Assume that ,Si is conflict-free. By contradiction, further assume

that ,Si+1 is not conflict-free, i.e. there exists {AYr, A'í,r} ç ^9i+1 such that Ai,
attacks Áfr. Since Ai, attacks A'f,, then, given thal Ai, is acceptable-,-, w.r.t.
Si (i.e. A?, €,Si+r), there must exist AT,, e ,Si such that Ai, attacks Af,. Given
that, by induction hypothesis, ,S'is conflict-free, no argument in S'attacks,Afr.
So Ai, is not acceptable-,., w.r.t. .9', i.e. Ay,, ç,Si+1. Contradiction r

Proposition 26 JustArgsi'-'is non-contrad'ictory

Proof. Given lhat JustArgs?'- : lÍp(Fi'-), *" prove that lf p(Fff'-) is non-
contradictory. Let Fi'-6o) c ... Fi'-60) c ... c Fi'-(S') : lÍp(Fí'-). W.
prove, by induction, that all Si in the sequence are non-contradictory.

Base: Clearly, since ,S0 : A, So is non-contradictory.
Induct'ion: Assuming that ,St is non-contradictory, we must prove that (1)

Ai#,Si+r and (2) there exists no,L such thar {Ai,A\r} c So*'.

1. By induction hypothesis, Ai ç Si. If there is no argument in ,Si attacking
Áf and since Áf attacks itself, Áj is not acceptable-,- w.r.t. ,Si and so

Ai # Si+1. If there is an argument Ai € ,Si attacking Á1, and since ,Si is

conflict-free (cf. proof of proposition 25), Áf is not acceptable-,- w.r.t. ,Si,

i.e. A\ # So+'.

2. Since, by induction hypothesis, Si is non-contradictory, then for every literal
,L either there exists an argument for Ai e Si and no argument f.or A\" e Si,
or there are no arguments in Si for neither Ai nor A\":



3.2, DECLARATIVE SEMANTICS 61

(") A'í, e Si and Ay,r,#,Si. Since Ai attacks A!,r and, by proof of propo-

sition 25, Ay is not attacked by any argument in ,Si, lher. A\" is not

acceptable-,- w.r.t. ,Si, i.e. Ay," 4 Si+l' or

(b) A'í, f ,Si and A\ I S'. If there is no argument in ^9i attacking neither

Ai rror A\" then none of them is acceptable-,- w.r.t. ,Si because they

attack each other. So Ai I Sn+' and A-," # So+' ' If there is one such

argument A?,, €,Si attackingsay Af then Ai is not acceptable.,- w.r.t.

,9i because it is attacked by Ai, which in turn is not attacked by any

argument in,9i (cf. proof of proposition 25). Thus Áfl # Sn*'.

In any of these two cases, (2.a) and (2.b), at least one of Ai ot Á1, does

not belong to ^9i+1 and so, since this was proven for every L, 5;+t is non-

contradictory r

To better understand the properties of JustArg§;' consider the following ex-

ample (a smaller P example than that of Example 10, tailored to illustrate the

properties):

Example 2O Assume the ertended logi,c program

P : {a <- not b; -a) b; -b; c; I <- c}

The weak arguments of P are as follows:

Ay : [a <- not b,not -a,not L)
AY,, ' [-o <- not a,not L]
Ay : [b <- not -b,not L)
A!.a ' [-b <- not b,not )-)
Ay : [c <- not -c,not L)
Ai : Ay + [-L <- c,not -L,not I)

The argument A! (resp Af ) attacks AY,, (resp. A!,u), and u'ice-uersa. Moreouer,

A\ is self-d,efeat'ing. F'inally, A! (resp. A! ) r,s attacked by AY (resp. Ai) and

there is no argunxent to rei,nstate i,t. Thus, no o,rgurnent belongs to JustArgs?'- .

Figure 3.5 i,llustrates the aboue descripti,on based upon the acceptabi,l'ity argument.

See Remark 1l to understand better the notati'on used i,n the figure.

The acceptability of arguments of "Privacy of Personal Life" (PPL) is illus-

trated in Figure 3.6. See Remark 14 on page 48 to understand better the notation
used in the figure. Every argument from Args-(PPL) is in the figure. The figure

depicts the attacking relation between those arguments and also the building de-

pendencyT of such arguments. Some comments about the attacks rn Args-(PPL)
are as follows:

7By "building dependency" we mean that an argument is built based on other arguments



62 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

la <- not b,not -a,not lf lb <- not -b,not L) lc <- not -c,not I)

[-r<- not a,not I) [-b<- not b,not L) Ay + [-|- +- c,not L,not -.L]

Figure 3.5: Acceptable-,- arguments in Args-(P)

o the arguments AHf, and A\1,r1ry (resp. AHr67 and A\nr1,;) attack each
other. Every weak argument foi hP(p) is attacked by A\n'"fr>, and vice-
versa. Moreover, none of those arguments is reinstated by other argument
in Args-(PPL);

o both conclusions -hP(i) and eu(i,,tFDD) lead to falsi,ty in ppL. Then, the
weak argument for I attacks both arguments Aln",r; and A?u(t,troe. More-
over, Al attacks itself. Thus, none of the these argúments is acceptabl"?,í"
(w.r.t. Arss-(PPL));

o the arguments for pLE(i), pLE(a) and pLE(p) are buiit based on a previous
argument that is not acceptablefl'f , which is A\nrror, A\nr1o1, or A?,1,p1e1,

respectively. So, the former arguments are also not accept ablei:f 
" 

because
they are attacked by exactly the same attacking argument as the latter ar-
guments;

o finally, the other arguments in the figure are acceptablei,ffr.

Given that JustArgsH'" C JustArgsfl'- (cÍ. Theorem 24), the foliowing holds:

Proposition 27 JustArgsi'" i,s confiict-free and non-contradr,ctory.

Proof. Since lÍp(Fi'") Ç lfe@ff'-) ("f. Theorem 24) and rhat tfp(Fff'-) it
conflict-free and non-contradictory (cf. Propositions 25 and 26, respectively), then
JustArgsi'" is conflict-free and non-contradictory r

Note that .Ffr'" does not consider [ADP95]'s 'coherence Principle': "If ,L is
explicitly false then tr must be assumed false by default". Given that every op-
posing argument is a strong one, it cannot be attacked by any argument for its
explicit negation. In Example 20, the argument A! is attacked by both Áf and



A?rot 4.<a ^u^neç1
a.- }{

\ ^unpLE(i)

A\o*o<ot A?,npQ) "'

A!,1o,rroo1 Ai
Á'u)
"aS(SD)

a.

A
,U) ^u..- á-acB(o) A?o*o(") ^u^-hp(a)

AIrr61eu(a,S D)

.------------ -§. >.-

a. 'lt)
hP(a)

A It)

ÍoMA(e) A\n (o)
Á1!
''pLE(p)

AUnÍp(p) !í"rol
a É

Aun"h(p) Áu
^p.(p)
H

Á11)
"hP(p)

A I t,tn
hP(p)

^tunt p(p)

3.2. DECLARATIVE SEMANTICS 63

Figure 3.6: Acceptable-,- arguments h Args-(PPL)



64 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Áf, and so it is not acceptablep'' w.r.t. Args(P). However, there are arguments
tn Args(P) that could reinstate such an argument, viz. arguments for both a and

-b. Furthermore, we can say that Fff'- has more defensible arguments than trí'".
In other words, 7f,'' has more overruled arguments than F;'-.

Proposition 28 sÍp(Fi'") c gÍp(Fi'-).

Proof. Let S : gÍp(Fi'-). We first prove, by contradiction, that S is a pos-

fixpoints of Ff'", r.e. for every L rt AY € fÉ''(.9) then Áf e S. Assume, by
contradiction, that Ay, # ^9 and Aiis acceptable-," w.r.t. ^9, i.e. AY, e IH'"(S).
So there exists an argument Ai, attacking Af that it is attacked by an argument
in ,S. But, in this case, there also exists an Af, (corresponding to Ái,) attacking
Aithat, based on Prop. 12, is also attacked by an argument in S. Thus,4f e S.

Contradiction. So ,S is a pos-fixpoint of. Fff§. Given that Ff'- is monotonic (cf.

Prop. 16), and that, as is well known, pos-fixpoints of monotonic operators include
all fixpoints, gfp(Fí'") c^9, i.e. sf p(Fi'") Ç sfp(Fi'*) r

At this point we have illustrated that the resulting set of acceptable arguments
w.r.t. a set of weak arguments is always consistent. To handle paraconsistency,

the set of arguments should have both strong and weak arguments. To evaluate

the acceptability of arguments without considering the presence of inconsistency,

the proposed arguments should be the strong ones. The weak arguments are

used to attack, and so, to guarantee the rebuttal. Note that strong arguments also

counter-attack (or reinstate evaluating strong arguments). BV defining this attack-
ing relation between strong arguments and weak arguments, we respect [ADP95]'s
'Coherence Principle'. Given that every opposing argument is a weak one, it can

be attacked by any argument for its explicit negation. Figure 3.7 illustrates the
possible attacks of arguments in Args(P). Consider Example 20: Ai is attacked
bV AT but it is reinstated by Ái6. Thus, every argument is acceptable|- w.r.t.
Arss(P).

Figure 3.8 illustrates the possible attacks of arguments in Args(PPL). The
argument Aírç*1is not acceptable';i, (w.r.f. Args(PP.L)) because it is attacked

by A\np@) and the only counter-attack is ,4[",,, (in such â case the argument
cannot reinstate itself). Moreover, the argument A\nrro, attacks two arguments
for hP(p), vrz. A'io@) and A"norrr. However, A'l,iol reinstates both arguments by
attacking A\ne@,. fhus, the three strong arguments Íor hP(p) are acceptable';i"
while A"-np@ is not. The other strong arguments are acceptablefi, because they
are not attacked by any argument in Args(PPL).

Finally, it is possible to have an argumentation process with just (attacking
and counter-attacking) strong arguments. Looking at Figures 3.9 and 3.10, it is

8A set S is a pos-fixpoint of a function 9lfr 9$) c S



3.2. DECLARATIVE SEMANTICS 65

[-b] la +- not b) tbl [-r]
ao

Ái + [-]- <- cl [.]
a o

lb +- not -b,notll

Figure 3.7: Acceptable",- arguments in Args(P)

possible to verify that some arguments are not acceptable because there is no
argument to reinstate them.

Given that JustArgs\'- and JustArgs?'" âre non-contradictory sets (by Prop.27
and Prop. 26, respectively), every argument in both of them is non-contradictory.
Nevertheless, JustArgs!- and JustArgs';' -uy have contradictions.

We may conclude that a justified!- argument is based-on-contradiction!- if
the following holds:

Proposition 29 An argument Ai, wi,th L d'ifferent from L, 'is based-on-contradic-
ti,on";- i,tr AL zs 1usti,fieff.- , there does not erist a justi.fieff;- argument for -L and
Ai i,s also ouerruleffo- .

Proof. + Assuming AL is based-on-contradiction!-. We have to prove that (1)

Ai is justified|- , (2) ÊA"-" e JustArgs!- and (3) Ái is also overruled!-

1. By definition, any based-on-contradiction!' argument is justified!'.

2. Assume, by contradiction, that Ai is based-on-contradiction|- and 3á1, e
JustArgs";-. By definition, Ai e JustArgs";-. Given that {Ai, A:-"} Ç
JustArgs";-, JustArgs";- is contradictory w.r.t. .L. Therefore, Ai is contra-
dictory|-. Contradiction.

3. We have to prove that Ai is overruled!-. From Theorem 22, AL is overruled!-
if the corresponding Af does not belong to gfp(Ff'"). By Lemma 20,
A?, # gÍp(S'") when 

=AL, 
e lf p(Fi;-) that attacks Ai.

By definition, an argument Ái is based-on-contradiction!' iff (a) YAi, al-
tacking Ái there exists a contradictory!- or based-on-contradiclioni{ Ai,,
argument in CAar(Ai,, JustArgsT-), or (b) 1L' e Conc(Ai), different from
L, such that JustArgs\- is contradictory w.r.t. L'.



A?oo Aí"ot Aí"
)

^u^-hP(i) I

I

I

I

Às,'-hP(i)

\ 'o.--- 
-------- - ------o Aí"u«ol

As

ÍoMA(i)

a-----------------
AZ,ç,rrr11 AL

Ás
"aS(SD)

a.

ÁS

- fl-acBas
"eu(a,SD)

(r) A"yoroç"1 Ást r-hp(a) Ás
"pLE(a)

§a P----- ------------á-----------------){

Aí"<,t Às
"hP(a)

a.
Á1x, ,_hp(a)

A"trt l A'iqrt Áts
''hP(n\

AZnrr, As Ás
"p"(p) "hP(p)

A\ne,o, \
\

I

I

I
/I

I^llsnt p(p)

66 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.8: Acceptable''- arguments in Args(PPL)

a---------- - - - - - - - - >a---- -



3.2. DECLARATIVE SEMANTICS

[-b] la <- not bl tbl [-o]
a ]<--------------- a

Ái + [.]- <- cl trl
a o

Figure 3.9: Acceptable"," arguments in Args"(P)

(a) cf. Prop. 12, lf.1Af, attacking Ái then Ai, attacks the correspond-

ing Ai. Moreover, 11, corresponding to Ai, also attacks Ai. We

have to prove lhal Ai, e lfp(F];'). By definition, Ássun'Lp(A'í,,) -
Assump(AL,) : S : not{L,-L',-L1,. . .,-Li\ such that Lt <- BodE e

AL, 0 < i Sj). Assuming that Ar,, is contradictory!-, then l--Lt € ,S

such that L" : -trr. So, there does not exist any Af,, attacking Ai,'
Consequently, AL, e lfp(Ff;-). Thus, A'í, # gÍp(Fi'") and so Ái is

overruled!- . lf. AL,, is based-on-contradiction!- then we use the previ-

ous deduction the necessary number of times q.e.d.

(b) Assume, by hypothesis,

1L' e Conc(Ai) such that JustArgs";- is contradictory w.r.t. L'

Accordingly, {AL,,Ai-r,,} Ç JustArgs}-. By definition, there is a rule

'L' <- Bod"y,not -L',not L'in Ai. Therefore, A"-r,,Ç l/p(fp-) such

that A"-", attacks Ai, and so Ái is overruledi;- q.e.d.

C Assume that there does not exist a justified!- argument fot -L, and 4",

is both justified!- and overruled!;-. We have to prove that Ai is based-on-

contradiction!-. By definition, A"y,, is either contradictory!' or based-on-

contradiction!-. lf. AL,, is contradictory!- then 3Á1, e lf p(Ff;-) attack-

ing Af,,. Ay 4 gÍp@i'") and so Ái is overruled!-. If. AL,, is based-on-

contradiction!- then we use the previous deduction the necessary number of

times q.e.d. !

As in [PS97], we may also define lhe truth ualue of a conclusion as foliows:

Definition 49 (Tfuth Value of a Conclusion) Let P be an ELPí, and L e

?1(P). A literal L ouer P 'is

b/



As
ÍP(i) Aí.(ol Aí"rol

H

\ -o Air,eç.1
AS
" Ío M A(i)

§
A"L

Ás
''aS(SD)

a.

ÁsAs , r-acB(a)
"eu(a,SD) A"ro*o(") A"-ne61 Às

'LpLE(a)
a á

Aí.@t

a= Aír<,t

Ás
' 'f oM A(p) A"-n (o)

as
''pLE(p)

-?a >o

Alrrol li.@t AIS
hP(p)

a H

AZnot Aí.@t A"nrrr,

a.- H

^ 
llsone(p)

----------->a

68 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.10: Acceptable"," arguments rn Args"(PPL)



3.2. DECLARATIVE SEMAAI"ICS

. falsd;" i,ff euery p-o,rgument for L 'is ouerruleff;o;

o tru{io i,ff there ensts a justi.fieÊ;o argument for L;

o undefined'i" 'i,ff L i,s nei,ther tru*;" nor fals*;" (i.r. there i,s no justi,fi'eÊ;'

argument for L and at least one p-argunlent for L 'is not ouerruleff;').

First let us define the status of a literal w.r.t. contradiction, something that
follow in the obvious way that of arguments (cf. Definition 48).

Definition 50 (Literals' relation to contradiction) Let P be an ELPL, and

let L Ç Tt(P) be a tru*;". We say that:

o L is contrad'ictorfi' 1,ff there i,s an argun'tent Ae" which 'is contradictorf;o;

o L 'is based-on-contrad'icti,orfi" 1.ff it is not contradi,ctorf;' and there is an

argum ent -#" whi, ch'i s b a s ed- o n- contra di, cti orfr" ;

o L i,s non-contradi,ctorf;o, otherwi,se.

Given that every JustArgsfr'- and JustArgsfl'" arguments are non-contradictory
(cf. Prop26and 27),if,Listruefl'r (tre{r,r}) then-Lisnon-contradictory. The
same does not hold for JustArgsT- and JustArgsT". However,in the case of
JustArgs"{ , it is easy to check when a literai is contradictory, based on contra-
diction, or non-contradictory.

Proposition 30 A li,teral L ouer P is

o contradi,ctory";- i,f L i,s the symbol L or -L is true!;- ;

o based-on-contradicti,on';- i,f i,t i,s also false"'-;

. non- contradi,ctory";-, otherw'ise.

Proof.

contradictory";*

The case f.or L : I is trivial, by definition. If tr is true|- and --L is also

true|-, then by definition of true!;" and of contradictorfi" arguments, there exists

an argument A!, which is contradictorf;' q.e.d..

based-on-contradict ion!-

If L i,s true";- then Ai i,s iustifieff{, by defini,ti,on. If, furthermore, L 'is

f alse"{ , then, by defini,ti,on, euerA A"o i,s ouerruleff{ . Sr,nce, by assumpt'ion i'n

69



70 CHAPTER 3. A PROPOSAL FOR SELF-ARGUAIENTATION

thi,s proposit'ion L is not contrad,ictoryi;- then -1A_r, € JustArgs";-. So, ue are
i,n the cond'iti,ons of Proposition 29, and can conclude that there i,s an Ai whi,ch
i,s based-on-contradr,ctionl;-, and so L rs based-on-contradi,ction";-, by definition.
q.e.d.

non-contradictory!-

Otherw'ise, L can only be non-contrad,ictory";- I

Example 2L Followi,ng both Eramples 17 and 19, whi,ch present the status of
arguments i,n Args(P) and the relati,on to contradi,ction of the justified arguments,
respecti,uelE, the objecti,ue li,terals a, -a, b, c, d, f and g are true!{ . Moreouer, a
and -a are contradi,ctory";-, b, c and d are based-on-contrad,iction";-, and f and
g are non-contradi,ctory";- . Si,nce euerA argument for a, -a, h, e, c, d, and b is
ouerruleff;- , these object'iue l'iteral are false!;- . The undefi,nefr- objecti,ue l,iterals
are i, and j.

If we look at Figures 3.6, 3.8 and 3.10 we get both the status of the arguments
and the truth value of the conclusions of. PPL. The results obtained from this
proposal are presented in Tables 3.2, 3.3 and 3.4 (see Remarks 31 and 32).

Remark 31 (Notation for Tables 3.2 and 3.3) Let p (resp. o) be the ki,nd
(strong or weak) of proposed (resp. opposi,ng) arguments. C, BC, NC, OV and
D denote, respecti,uely, the status of an argument Á: 'contrad,ictory', 'based on
contrad'iction', 'non-contradictory', 'ouerruled' and 'defensible'. By "Aor is N!"
we rnean "the status of Aor, is N i,n a set of p- proposed arguments and o-oppos,ing
argurnents".

Remark 32 (Notation for Table 3. ) Let p (resp. o) be the kind (strong or
weak) of proposed (resp. opposing) argument. C, BC, NC, F, and U denote
the trrth value of a conclusion .L: 'true and contrad,ictory', 'true and based on
contradi,ct'ion', 'trlle and non contrad'ictory', 'false', and 'undefined', respectiuely.
BA "L is ,ny'f; " u)e Tnean "the truth ualue of L i,s N i,n a set of p- proposed arguments
and o- opposi,ng arguments". S'ince columns Ufl and U"" would haue no elements,
we om'it them from the table.

In the remainder of this section, we relate our semantics to W F S Xe [ADP95],
the grounded (skeptical) extension [Dun95], W FSX [P492], and W FS [Prz90].

A paracons'istent way of reason'ing is obtained through fp- and we proceed by
deducing the same truth value of objective literals as the W F S Xe semantics:



3.2. DECLARATIVE SEMANTICS

Table 3.2: The status of arguments w.r.t Args(PPL) and Args"(PPL)

77

C:,, BCí NCí OV; Dí c: BC: nc; ov: D:
A'trfol
Aí"u)
A"ro*o(o)
Âsnneç1
Ás,,_hp(i)

Ai
AZ,ç.,tro»1
Ás
''pLE(i\
Ás
"aS(SD)
Às
"eu(a,SD)
Aí"<"1
Ás
"-acB(a)
A?o*o(,)
Ás
''pLE(a)
A"-np@)
as
"hP(a)
Aí,,,,
A"np,@)
Às, thP,r(p)

Atrto>
AZn<ol
as
"f oM A(p)
Aí"<ol

^ls^p.(p)
Ás, ,_hp(p)

^s"pLE(p\



72 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

cx BCH NCx OV# DX
ÁlJ)
" Í P(i)

4.(»
all)
"JOM A(r)
At"ot

^1D^-neçt1Ai
ÁL,)
"eu(i,tFDD)
^u^eLE(i\
^uâaS(SD)

^uneo(a,SD)
Á1x
''p.(o)
Áw, ,-acB(a)

A?o*a@)
Àu
"pLE(a)
Áu/1-hp(a)
Áu

^np@)
Au

hP(p)
A1J)

hP'(p)
au
' 'hP,,(p)
aw
" Í P(p)
Àu
""h(p)
^u^1out1p1
^unp.(p)

Hí"<o>

^un-np@)
Á1x

''nLE(o\

Table 3.3: The status of arguments w.r.t Args-(PPL)



3.2. DECLARATIVE SEMANTICS

Table 3.4: The truth value of. PPL's conclusions

73

Cil BCL NCí Fi c: BC: ncj r,* UX NCH

Í P(i)
pe(i,)

ÍoMA(i)
hP(i)
-hP(i)
I
eu(i,tF DD)
pLE(i,)
aS(SD)
eu(a, SD)
pe(a)

-acB(a)
foMA(a)
-hp(a)
hP(a)
pLE(a)
hP(p)
ÍP(p)
ch(p)

f oMA(p)
pe(p)
_nP@)
pLE(p)



74 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Theorem 33 (WFSX, semantics.r" FÊ'-) Let P be an ELP such that L Ç
11(P), and let L be an object'iue li,teral in ?l(P).

c L e WFSX,(P) ttr f, i,s truel;-;

o not L çWFSX\@) i,ff L is falsei;-;

. {L,not L} aWFSX.(P) :AffLi,sundefinedi;-.

Proof. We have to prove that (1) L e WFSX.(P) iffI is true|-, and (2)
not L ÇWFSX\(P) itr -L is false!-.

1. We prove, by induction on the iteration of both ff" and F"r'-, that

Yn: L € ff,1"(0) e=AL Ç F"i- Í"(o)

Base: Clearly, since n : 0, there does not exist neither an I e ffJ0 nor
A7 e F|- ro.

Inducti,on: Assume there exists a rule L <- not L1,. . . ,TLot Li in P and
Y,n<n: ,L e ff"t"(0) if AL : lL <- not Lr, . . . ,not Li) e F"i- ," @).

+ Assume further lhat L € ff,t-+1(0). We have to prove that Ái e
Fpu rm+t (0). If tr € ff"t-+l(0) then there does not exist any tri € ff"1;(0)
(1 < , < j), i.". there does not exist a rule .L; <- Body € P such that
Body c ff"t-(0). lf L € ff]-(0) then Ái e F;,-r^(U.So, there does not
exist any AL" e F?- r* Q). Therefore , AL e F;'- t^+l(A)

ê Assume further fhat Ai € F;'- t-*'(0). We have to prove that,L €
ff,'r-+'(0). If. AL e F;'-J^*'(A) then (1) there does not exist any A?,, e
Args(P), i.e. there is no rule I; <- Body in P, or (2) there exists an
Ay,, Ç Args(P) attacking Ai thaf it is attacked by an argument Ai, e
F"p'-r*(A), i.e. there is an noú L' e Assu p(A?,r). \f AL e F|-r^Q)
then.L € ff"t-(O). So, there does not exist any L6 Çll"r*(0). Therefore,
tr € ff,t-*r(0).

By definition not L e wFSXoe) ff L # f"(l/p(ff,)). since, âs proven
in point(1) , the lf p(lf") exactly corresponds to FE'-, this amounts to prove
that -L is false!- iff there is an argument in F]'- altacking Ái. But this
means that Ai is overruled!-, and so, by definition.L is false!- I

A cons'istent wag of reasoning is obtained through Fi'-. When considering a
consistent logic program, Ff'- coincides with both WFSX semantics [PA92] and

[Dun95]'s grounded (skeptical) extension.

2



3.2. DECLARATIVE SEMANTICS 75

Corollary 34 Let P be a consi,stent progranx result'ing from a un'íon of ertended

logi.c programs. S'ince W FSX coi.nc'ides wi,th W FSXo for cons'istent programs,

thenWFSX also co'inc'ides wi,th the results of Ff'- t

To show that Fi'- and [Dun95]'s grounded (skeptical) extension coincide, we

first relate [Dun95]'s definitions of both RAA-attack and g-attack to our definition
of attack as follows:

Lemma 35 Let P be an ELP such that L # ?{(P), {(A", L), (A",, L'), (A-",-I)} Ç
Args(P) be such thatnot L € A1,, and {Af,AY,,,A!r) Ç Args(P) be such that
not L e Assump(Ar,,). If (A",.L) g-attacks (A7,,L') then Af attacks Ai,. If
(A-",-I) RAA-attacks (A",L) then A\, attacks Ai-

Proof. This results follows directly from the construction of weak arguments r

Theorem 36 (Grounded extension vs Fl'-) Let P be an ELP such that L Ç

?l(P), and let L be an objectiue li,teral i,n ?l(P).

. an o,rsument (A7, L) e lÍp(F) itr 
=AY 

e lf p(Ff'-);

. an o,rsument ({not L}, L) e lf e@) iff -=AY e gÍp(Fi'-).

Proof. We have to prove that (1) an argument (Ay,L) e lfp(F) itrl-Af e
lf p(Fí'-), and (2) an arsument ({not L}, L) e lf p(F) ifr. -1A! # gÍp@H'-). W.
prove, by induction on the iteration of both F' arrd Fff'-, that

t. Yn : L e F r. ç )A?, e Fl,- r".

Base'. Clearly, since n : 0, there does not exist neither an ,L e It0(0) nor
an Ai e Fi'-'o(0).
Induct'ion: Assume that there exists a rule L <- not L1,. . . ,not L1 e P
and Vn : (A,L): ({not L1,...,not Li},L) e Fr"(A) ifr AY: lL +-

not -L,not L,not L1,. . .,not Lr) e Fl'- t"(0).

+ Assume further that (Á, L) e Ft"+l(A). We have to prove thar Af €.

Fi'-r"+1(A). 7f (A,L) e rt*çO) then there does not exist any (Ai,Li) e
Fr"@) (1 < , 1 j), r.e. there does not exist any (Ao,Ln) attacking (A,L)
because (1) there is no rule Lr. 1- Bodyi € P or (2) there is an (Á1, Ln) e
AR(P) that it is attacked by an argument in Ft"(0). lf (A, L) e fi"@) then
AT, e Fí'-r"Q). So, there does not exist any A?,,e FH'-t"(A). Therefore,

AT e 
'-'- 

t*+1(0)



76 CHAPTER 3. A PROPOSAL FOR SELF-ARGUNIENTATION

€ Assume further that Ai e Fi'- t"*t(0). We have to prove that (A, L) e
Frn+t (0). It AT, e ff 'u rn+r (0) then there does not exist any A,i,, € F;,- r" (A)
because (1) there is no ruie Lr <- Body e Args(P) or (2) there exist an
Ay,o e Fí,-r"(A). rf Ay € F;,- 1"10; th", (A,L) e rt^(D.so there does
exist any (Ao,Lo) e ft"(A).Therefore, (A,L) a pt"+1(0).

2. Given the results of Lemmas 20 and 21, relating greatest and least fixpoints
of. Fer'" , and given that in the case p : o: tu, the result follows similarly to
the proof in point (1) I

Finally, f$'" coincides with W F S with "classical negation" [Prz90].

Theorem 37 (W F S semantics vs FE'") Let P be an ELP such that f # He),
and let L be an objectiue l'iteral i,n Tl(P).

o L e WFS(P) iff L is truei;"

o not L e WFS(P) ,tr L ,is falsei;"

. {L,not L} a WFS(P):A tff L i,s und,efineff;'.

Proof. This proof is similar to that of Theorem 33. Note that the construction of
W F S is obtained by the iteration of the operator ff , where no semi-normality
(i.e. weak arguments) comes in place r

3.3 Proof for an Argument
"Something is proved (a literal, an argument, or something else) if
there exists at least one proof that succeeds. Something is not proved
if every proof fails. In other words, a proof of something fails if every
proof fails." [PS97].

Event though the declarative semantics just exposed relies on an iterative pro-
cedure, its usage for computing arguments may not always be appropriate. This is

especiaily the case when we âre only interested in the proof for a (query) argument,
rather than all acceptable arguments, as is obtained by the iterative process. Such
a query oriented proof procedure can be viewed as conducting a "dispute between
a proponent player and an opponent player" in which both proponent and oppo
nent exchange arguments. In its simplest form, the dispute can be viewed as a
sequence of aiternating arguments:

PRt,OP2, P Rs,. . ., PRo, Ok+r, P Ro*r, . . .



3.3. PROOF FOR AIú ARGUMENT 77

The proponent puts forward an initial argument PR1. For every argument P,B;

put forward by the proponent, the opponent responds with an attacking argument
OP,*, against Pft. For every attacking argument O;, put forward by the oppo-
nent, the proponent attempts to counter-attack with a proposing argument P;11.

To win the dispute, the proponent needs to have a proposed argument against

every opposing argument of the opponent. Therefore, a winning dispute can be

represented as a dialogue tree, which represents the topdown, step-by-step con-

struction of a proof tree. We follow [PS97]'s proposal, which defines a proof for an

argument Ay as a dialogue tree for ,41. However, our definition of dialogue tree is
in accordance with the acceptability of the arguments of an ELPd P (see Def. 42):

A proposed argument A7 e Argse(P) is acceptable if all of its opposing
arguments in Args'(P) are attacked by acceptable arguments from
Arsse(P).

To define a dialogue tree for an argument A7 we first need a definition of
di,alogue for an argument. A dialogue for Ay is a sequence of P,B and OP moves

of proposed and opposing arguments, such that the first PR move is the argument
AL. Each OP (resp. P,R) move of a dialogue consists of an argument from
Args"(P) (resp. Argse(P)) attacking the previous proposed (resp. opposing)
argument. Intuitively, we can say that every P,E move wants the conclusion of Á;
to be acceptable, and each OP move only wants to prevent the conclusion of 47,

from being acceptable. In the case of P.R moves) we can further say that if we

impose the restriction that proposing arguments cannot be used more than once

in a dialogue, then the dialogue will have a finite sequence of PR and OP moves.

While none of the proposed arguments can be used more than once in the same

dialogue, any of the opposing arguments can still be repeated as often as required
to attack proposed arguments.

Definition 5l (di.alog"{;i) Let P be an BLPd, p (resp. o) be the ki.nd (strong
or weak) of a proposed (resp. an oppos'ing) argument of P, and Argse(P) and

Args"(P) be the set of p-arguments and o-arguments of P, respectiuely. ,4 dialogue
p o (in P) for an argurnent A7 e Argse(P), denoted dialogufl"r,'is a fin'ite non-
empty sequence of m moues nloua; - Aro 0 < i < m) such that

1. mouel: Ari

2. for euerA 7 < i < 7h, ALn attacks Ayn-, o,nd.

o if i, i,s odd then A;n € Argse(P) and there 'is no odd i < i such that
lti A7r, or

o if i i,s euen then A7o e Args"(P).



78 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

We say that moue; i,s odd if i i,s odd; otherw'ise, mouei is euen.

A dialogue for A7 succeeds if its last move is a PrB move. In this proposal, we
want to guarantee that a dialogue tree for an argument Al is finitary, i.e. that the
iterative process above is guaranteed to terminate after an enumerable number
of steps. Note that we only consider grounded finite ELPd in the declarative
semantics (presented in the previous section). By considering this, every dialogue
in a dialogue tree finishes because there will always be a last move PÊ (resp. OP),
so no opposing (resp. proposed) argument against it exists.

Definition 52 (Completed, Failed and Successful Dialogue)
Let P be an ELPL. A dialoguep o (i,n P)for an argument A1 € Argse(P) is

completed i,ff i,ts last moue i,s m, and

o i,f m i,s odd then there 'is no argument in Args"(P) attack'ing A1^, or

o i,f m 'is euen then there is no argument 'in Argse(P) - S, attacktng A1*,
where So is the set of all Ay, i,n the sequence such that j i.s odd.

A completed di,alogue zs failed i,ff i,ts last moue i,s odd; otherwise, 'lú succeeds.

Remark 38 From nou) on, and unless otherw'ise stated, we refer to 'completed
dialogue' si,mply as 'd'ialogue'.

Note that a dialogud;i tn P and the lÍp(F'*'') "grow" in different ways. In the
former, an argument Á in the last move, moue,n) is not attacked by any argument
in Args(P). Since Á attacks the previous move, fiLo1)eq-1) we can say that the
argument B tn moueo,-2 wàs reinstated by A. Thus, each moue, (1 < i, < m-7) is
reinstated by moueia2. The latter evaluates argument Á as acceptable in the first
iteration of the characteristic function Fop". In the second iteration, Á reinstates
an argument B, so that B is acceptable and may reinstate other arguments in all
following iterations. We can further say that dialogudli decreases (in a top-down
way) and lÍp(For") increases (in a bottom-up way) the set of evaluated arguments.

Proposition 39 Let mouen : At be the last moue of a succeeded d'ialogu{Li, in
P. Then,fue FflPQ).

Proof. We have to prove thal At of the last move of a succeeded dialogu{", is an
acceptabler,, argument with respect to Args(P). Obvious, if Á1 is the argument
of the last move of a succeeded dialoglu€;or,, then ,41 is a pargument and there
is no o-argument attacking it. lf. AL is a pargument and there is no o-argument
attacking it, then Ay e FerP($) r



3,3. PROOF FOR ATú ARGUMENT 79

A dialogue tree DT f.or Á6 considers all possible ways in which A7 can be

attacked. The tree has root A7 and each brânch of DT is a dialogue for 47.
Furthermore, every single dialogue for A7 has a corresponding branch in the tree

because we must consider all the arguments in Args(P) to deduce the status of
A7. The dialogue tree DT for an argument A1 succeeds if every dialogue of DT
succeeds.

Definition $ @fi':) Let P be an ELPL, p (resp. o) be the ki'nd (strong or
weak) of the proposed (resp. opposing) argument of Args(P), and Argse(P) (resp.

Args"(P)) bethe set of p-arguments (o-argumentt) oÍ P. A dialogue treep o (in
P) for Ar, € Argse(P), denoted DTÂ':,i,s a fi'nzte tree of rn moaesrlaue; - Ah
(1< i S *) such that

1. each branch is a di,alogudli, and

2. for all i, i,f moue; is

. euen then'its ontg chi,ld is a p-argument attacki'ng A7n e Args"(P);

. odd then i.ts chi,ldren are all o-argunlents attacking Arn e Argse(P)

A branch of the tree succeeds i,f i,t corresponds to a succeeded d'íalogue. A DTi':
succeeds iff all branches (i..e. all dialogufli) of the tree succeed.

According to the second condition of Definition 53, we may obtain more than
one dialogue tree for an argument. This occurs because only one proponent's move

is considered for each opponent's move of a dialogue tree. The following Example
illustrates this.

Example 22 Let P be an ELPI as follows

{p+-not a; a<-not b,not c; a<-not d; b;d<-not e; c<-not g; g}

Fi,gure 3.11 presents the two possible DT)'I 'in P. The first di,alogue tree succeeds,

and the second one does not succeed because there 'is a fai,led di,alogue ('i.e. there is

a last moue w'ith an o-argunxent: mouea : ,l"n : lOD.

At this point ,ü/e cân relate the results from a DT'A': to the status of the argu-
ment Ay (see Def. 44), as follows:

Proposition 40 An argument Ae" i,n P i,s

o justi,fieff;" iff there eri,sts a successfut Ofi;
o ouerruletri" 1,ff for alt DTi': there eri,sts a rÍLou€2 : AL, such that Df;:,

succeeded;



80 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

o

P ,lp +- not a)

-/ 
--\

: la <- not b,not c) O : la <- not d)

--/ /
P:ld<-not elP:lb)

P 
'lP

<- not a)

\
O : la <- not b,not c)

--'P:lc<-not g) P

O:fa<-not d]

ld <- not e)

o ,lgl

Figure 3.ll: DT)"" i" {p <- not a; o. <- not b,not c; a <- not d; b; d <- not e; c <-
not g; g\

o defens,ibld;" iff i,t i,s neither justi.fietr;o nor ouerruleff;".

Proof. Below we need a notion of size of dialogue tree. The size of a dialogue
tree Dfi, si,ze(DTf;f), ir the maximum of the sizes of its dialogues. The size of
a dialogue is determined by the number of odd moves.

In the remainder of the proof, we denote by DTn" (resp. s,ize(DTar), A", Ar,
-Pp) the DfÂ': (resp. síze(DTfi), Aor, #,., Fo"").

Justified arguments for ,L

The proof for justif i,eff;o argrtments for .L follows by induction on the size of
DT,q.r. and the number of iterations of f,p starting from 0, needed to obtain Á1.

Formally, we prove by induction on n that:
(l) e" e F! iff there exists a successful DTAL such that

si,ze(DTn") 1"

Base: Ar, € 4'igthere is no Ao", attacking á1. So, (by Definition 53) there
exists a DTa, that has just one move) Tlol)e1 : AL, DTar. is succeeded, and
si,ze(DTar) : t.

Inducti,on: + Assume that A1 e F!+1, i.e. A7 rs acceptablep,o w.r.t. Fy
Then for every Ao, attacking A1 there rs a justi,fi,effo argument -#r,, in F!



3.3. PROOF FOR AI{ ARGUMENT 81

at\acktng Ai,. By induction hypothesis, all such Apy,, have at least a successful

dialogue tree DTa",, with size(DTar,,) ! n. So there is a successful DZi, with
si,ze(DTa,) < n* 1.

c Assume now that there is a successful dialogue tree DTt r. with si'ze(DTer) S
n*7. This means that each argument that attacks Alis attacked by some Áer",

each one with a successful DTer,, wrih size(DTe",,) 1 n. By induction hypothesis,

all such ,{",, belong to F!. So Ár is acceptabler,o w.r.L. F!, r.e. A1 e F!+1.
Clearly, where the fixpoint of. Fp is obtained in an enumerable number of

interactions, (1) implies that A7 e lf p(Fp) iff there exists a successful DTar.

Justified arguments for I
The proof f.or justi,fi,eff"o arguments for l- also follows by induction on the

size of the tree for Al and the number of iterations of .Fp starting from 0, needed

to obtain Ás.
Formally, we prove by induction on n that:
(l) ,qt Ç F! (" > 1) iffthere exists a successful DTA. such that

si,ze(DT6,) 3 "
Base: Let S be the result of 40. Assume that there are no default literals not L

in .41, r.e. Assump(Ár) : 0. At€ -Fp(S) iff all objective literals Li € BodA(Ar)
(i > 0) are in ^9, i.e. seen that all Lr e Bod,y(Ar) are acceptablep,o w.r.t. F! and

as Assump(Ár) : 0 then Á1 is acceptableo., w.r.t. .$1.
Ind,uction: + Assume that Á1 e F!+t, i.e. Á1 is acceptablep,o w.r.t. Fy

Then for every argument ,4i attacking Ár, there is a justi,f ieffp" argument Apy tn
F! afiacking A"". By induction hypothesis, all such Ap", have at least a successful

dialogue tree DTar, with s'ize(DTa",) S ,. So there is a successful DTn, with
si.ze(DTar) <n+1.

€ Assume now that there is a successful DTa, wtth si,ze(DTor) S n* 1. This
means that each argument that attacks Á1 is attacked by some Apr,, each one with
a successful DTa", and si,ze(DTor,) A n. By induction hypothesis, all such ,4e,

belong to F!. So Ar is acceptableo,o w.r.l,. F!, r.e. At e Fy*'.
Clearly, where the fixpoint of. Fp is obtained in an enumerable number of

iterations, (1) implies that Á1 e lf p(Fp) iff there exists a successful DTa'

Overruled arguments for -L

By Def. 42,thereis a justifiedff argument Ao", attacking ALitr Á7, is overrulede;".
As shown above in the proof for justifiede;' arguments for -L', for each such justifiede;"

argument Ar,,there is a successfil DTar,. So, if in the failed DTet, one of the
moves below Ay (i.e. one of the arguments attacking Á7,) has a successful dialogue
tree (i.e. it is justifi"d"{), then Á1 is overruled'f, q.e.d. I



82 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

The following two examples illustrate the concepts presented in Proposition 40.

Example 23 Let PI : {p +- not a; a <- not b,not c; b <- not c; c <-
not g; g; rn <- not l; I <- not m\. F,igure 3.12 presents some of the possible
dialogue trees i,n PL.

The last moue of nf)'l (in the centre right of the figure) is the p-argument
A"r. Since Df;:; succeeds, A:n i.s justified";"r. Therefore, DfÀ:: does not succeed
because 'it 'is attacked by the o-argument Ai. Thus, A", is justified";", and Ai ts
ouerruleff "r. Note that Ai and Ai are both defensi,blei;', because they are attacked
by a non-justi,f i,edi;", argument (i,n thi,s case because they attack each other).

P:lm<-notl)
I

O:ll<-notm]

P:ll<-notml
I

O:lm<-notl)

P ,lp <- not a)

I

O : la <- not b,not cl

I

P:lc<-not g)

I

o 'lg)

P tlp <- not a)

I

O : la <- not b,not cl

I

P:lb<-not cl

I

O:lc<-not g)

I

P ,lg)

P:lc<-not gl

o ls) P 'lsl

Figure 3.12: Some DT;:; in {p<- not a; a<-not b,not c; b<-not c;

c <- not g; g; rn <- not l; I <- not mj

Example 24 Let P2 : {, +- not b; -a; b; -b; c; I +- c} . F,igure 3.13 i,llustrates
the poss'ibl" DTX! i.n P2. Note that each di,alogue tree does not succeed because i,ts

last moue i,s an o-argument. Neuertheless, all arguments are defensi.blefl'f because
none of these last rnoues are justi,fiedi:f .



3.3. PROOF FOR ÁT{ ARGUMENT

Figure 3.73: DTfi in {o <- not b; -a; b) -b; c; I +- c}

83

P : la <- not b,not -a,not L)

O : lb <- not -b,not Ll
I

P : l-6 <- not b,not L)

I

O : lb <- not -b,not L)

O : l-0 <- not a,not L)

P : lb +- not -b,not Il
I

O : l-6 <- not b,not Ll

P : lc <- not -c,not Ll
I

O:A!+[I<-c not L,not -I)

not L,not -L)

P : l-6 <- not b,not Ll
I

O : lb <- not -b,not LlP:A!+[I<-c

O : A! + [I <- c,not L,not -Lf

P : l-q <- not a,not I)
I

O : la <- not -a,not Lf



84 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.11 illustrates the possi,ble DT;: i,n P2. In this case, all arguments
are justi,fieff;i.

P:la<-notb)
I

O : lb <- not -b,not L)

I

P : l-b)

P:lbl

P: [-b]

P:lcl

P : l-al

P:lc;I+-c]

Figure 3.14: DT)'! in {a <- not b; -a; b; -b; c; L <- c}

For justifiedfl'- arguments there are no contradiction. But for justified!fr ar-
guments there migth be. As in the previous section, here also it is easy to detect
the status of a literal w.r.t. contradiction for the case of justified|- literals:

Proposition 41 A justífiedi;- argument Ai in P is either

o contradictory!- iff L is the symbol I, or different from L and there eri,sts
at least a successfut DT)lr;

o based-on-contradiction|- itr AL ,is not contrad,ictoryi;- and

- there erists a contradi,ctoryT- Ai, with a rule L' <- ...,L,..., or

- there eri,sts an L' e Conc(Ai) such that A'r, i,s contrad,ictory";-, or

- Ío, all di,alogue";i i.n a successful Df)! : the argument of the last moue
i,s not non-contradictorf{; or

o non-contradictory!-, otherwise.

Proof. Follows directly from Proposition 40, Definition 48, and Proposition 29 I

To conclude about the truth value of an objective literal ,L we evaluate more
than one dialogue tree of each argument for such I:

Proposition 42 An objectiue l,iteral L is



3,4. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 85

o trueppo tff there eri,sts a successful Dfi':. Thus, L is

- contrad'ictory";- i,ff for all successful DT)'i: A', i's contradictorUlt , or

- based-on-contradi,cti,on!{ iff for all successful DT)i: Ai i's based-on-

contradi,cton";- , or

- non-contrad'ictory"{ iff there eri,sts a successful Df;: such that Ai i's

n o n - co ntra di, ct o ry';* ;

o f als*;' ffV Dfi':: AP" is ouern-r,leff;o;

o undef i,neff;" iffV Dfi: Ae" i,s nei,ther justi,fieff;' nor oaerruleff"".

Proof. Follows easily from the results above in the section I

Example 25 The truth ualue of li,terals of P7 from Erample 23 i's as follows:
g and p are true";"r, c i,s falsei;"r, and m and I are both undefinet "r. Follouing
Erample 21, all l'iterals of P2 are justi.fi,eff;i. Howeuer, all li,terals of PZ are

undefinedfl'{.

3.4 On the implementation of the proposed se-

mantics

For this proposal we have made two implementations, both in the XSB System (by
resorting to tabling) [SW07]. One is a bottom-up implementation of the semantics,

following closely its declarative definition, and the other implements query-driven
proof procedure for the semantics. The proof procedure has also been imple-
mented by using the toolkit Interprolog [Cal04], a middleware for Java and Prolog
which provides method/predicate calling between both. Since we also describe an

Argumentation-based Negotiation System, more complex than those implementa-
tion, we prefer to explain both XSB and Interprolog in the next Chapter.

The procedure can be viewed as building a di.alogue tree in which â pro-
ponent and an opponent exchange arguments. In its simplest form, each dia-
logue in such a dialogue tree is viewed as a sequence of alternating arguments:

Pr,Oz, Pz,. . . , P;,O+t, Pt+2,. . .. The proponent puts forward some initial argu-

ment P1. For every argument P, put forward by the proponent, the opponent
attempts to respond with an attacking argument O.;11 against Pi. For every at-
tacking argument Oi, p:ut forward by the opponent, the proponent attempts to
counter-attack with a proposing argumenl Pt+r. For the proponent to win a di-
alogue, the dialogue sequence has to end with a proposing argument. To win a



86 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.15: A Dialogue Tree DTirtr,, from Example 9

dialogue tree, the proponent must win every dialogue on it. The operational se-

mantics has been implemented by also using the toolkit Interprolog. Figure 3.15
presents a dialogue tree DTf,ff," for hP(p).

* usage:
true(Golo)
falseiGolo)
undeÍ(Golo)
DT(Golo)
dialogue
dialogue(p,o)
help
cle ar

exil

dialogue is P:s and O:w
A dialogue tree Í0r [ÍP(p); pp(p) :- ÍP(p); hP(p) :- pe(p),not-hP(p)] succeeds

rü

? ÍP(p); pe(p) :- Íp(p); hp{p} :- pe(p),not -hP{p)

I ÍP(p) :- not -lP(p»iol Íalsity; fOÍúA(p) :- not -fouÂ(p),not Íalstty,ÍP(p); -hP{p) :- not hP(p)Iot faBityÍOmÀ(p}
? ch(p); pe(p):- ch(p); hP{p):- pe(p),not -hPip)

q ÍP(pi :- nol -ÍP{pptot ÍalsÍty; foülA(p} :- nol -fottt(p),not Íalsity,ÍP(p» -hP(p) :- not hP{p),not Íalsity,fomÂ(p)
ch(p); hP{p):- ch(p},not uc(pl



Chapter 4

A Proposal for
Argumentation-Based
N

Thi,s chapter presents the main contri,bution of the di,ssertati,on: an argumentation-
based negoti,ati,on semantics for di,stributed knowledge bases represented as ertended

logi,c programs. Such a semant'ics ertends the argumentati,on semantics presented

i,n the preu,ious chapter by consi,dering sets of (di,stri,buted) logic prograrns, rather
than single ones. For speci,fyi,ng the ways i,n which the aarious logic prograrns rnaA

comb,ine the,ir knowledge we make use of concepts that haue been deueloped in the

areas of defeasible reasoning and multi-agent settings. In particular, u)e associate

to each prograrn P a cooperation set (the set of prograrns that can be used to

complete the knowledge i,n P ) and an argurnentation set (the set of programs wi,th

wh,ich P has to reach a consensus). In this chapter, u)e fi,rst define a declaratiue

semantics for argumentat'ion-based negoti,ati,on. Then, some'illustrat'iue eramples

are presented. Fi,nally, we present a general archi,tecture for implementi,ng the

semantics.

In this chapter we propose an argumentation-based negotiation semantics for
sets of knowledge bases distributed through a multi-agent setting (MAS). In it
different agents may have independent or overlapping knowledge bases Kb, each Kb
being represented by an ertended log'ic program wi,th deni,als (ELPd) over a language

(cf. Def. 3). If all agents have complete access to the knowledge bases of all other
agents, then they should be able to build arguments using rules from others (i.e.

egotiation

87



\SCHAPTER 4, A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATTOIú

to cooperate) and would have to defend their arguments against arguments build
by others (i.e. to argue). In this case, the semantics of argumentation-based
negotiation framework should coincide with the semantics of the union of the
knowledge bases, viewed as a single one. Here we want to deal with cases where
the semantics of multi-agent setting does not necessarily coincide with the union.
The basis of our proposal is that agents negotiate by exchanging parts of their
knowledge to obtain a consensus concerning the inference of an agent's beliefs.

Moreover, a multi-agent setting "4 might have an agent's knowledge base phys-
ically distributed over a computer network. Thus, an agent Ag of. "4 does not need
to, and sometimes cannot, argue and/or cooperate with all agents in A. In our
proposal, every agent Ag in.Á has associated two sets of agents: the set of agents
with which it can cooperate in order to build arguments, and the set of agents from
whose attacks it must defend itself (i.e. argue) in order to reach some consensus.
In general, little is assumed about these sets: we only impose that every agent
argues and cooperates with itself because it would make little sense for an agent
neither to access its own knowledge nor to obtain â consensus based upon its own
knowledge.

The ability of associating these sets to each agent provides a flexible framework
which, besides reflecting the possibly existing physical network, may serve for other
purposes than the ones above:

o For modelling knowledge over a hierarchy where each node of the hierarchy
is represented by a Kb that cooperates with all its inferiors, and must argue
with all its superiors.

o For modelling knowledge that evolves. Here the "present" can use knowledge
from the "past" unless this knowledge from the past is in conflict with later
knowledge. This can be modelled by allowing any present node to cooperate
with its past nodes, and forcing any past node to argue with future nodes.

In these cases, it is important that the knowledge is not flattened, as in the union
of al1 knowledge bases, and that the semantics is parametric on the specific Kb.
Le. it might happen that an argument is acceptable in a given (agent;) Kbi, and
not acceptable in another (agentr) Kb1 of, the same system.

As with other argumentation based frameworks (e.g. [Dun95, PS97, BDKT97,
Vre97, SS02b, Pol01, GS04]) the semantics is defined based on a notion of ac-
ceptable arguments, this notion being itself based on ân attacking relation among
arguments. Moreover, as in Chapter 3, based on these acceptability, all arguments
are assigned a status: justified argument are those that are always acceptable;
overruled arguments are those that are attacked by a justified argument; other
arguments (which may or may not be acceptable but which are not attacked by a
justified one) are called defensible.



4.1. FROM CENTRALIZED TO DISTRIBUTED ARGUMENTATION 89

It is also a goal of the proposed framework to be able to deal with mutually

inconsistent, and even inconsistent, knowledge bases. Moreover, when in presence

of contradiction, we want to obtain ways of multi-agent setting reasoning, ranging

from consistent (in which inconsistencies lead to no result) to paraconsistent. For

achieving this, the agents may exchange strong or weak arguments, as it is made

clear in the following. This also yields a refinement of the possible status of

arguments: justified arguments may now be contradictory, based on contradiction

or non-contradictory.
In the remainder of this chapter, we first present what it is necessary to extend

the Self-argumentation semantics from Chapter 3 to this Argumentation-based Ne'

gotiation proposal. Some definitions from the former will have to be reset from a

àentralized point of view to a distributed one. We then illustrate our ideas/proposal

with a multi-agent setting that models a trial which clearly represents the argumen-

tative dependency between a prosecuting lawyer (the prosecution) and a defending

lawyer (the defense), and a cooperative dependency between a lawyer and her/his

witness. After that we define the declarative semantics of the argumentation-based

negotiation framework. Then we show some properties of the framework, namely

prÀperties that relate it to extant work on argumentation and on other semantics

for logic programs. Finally, a couple of illustrative examples'

4.L Ftom centralized to Distributed Argumen-
tation

In the centralized proposall, a (strong or weak) argument oÍ Ag for some objective

literal ,L is a complete well-d,efined, sequence fot L over the set of rules of' Ag's

knowledge base (cf. Def. 37, Def. 36 and Def. 35, respectively). Since we are con-

cerned with modelling knowledge bases distributed through several agents, (strong

and weak) partial arguments of Ag for L will also considered in the distributed

proposal. By partial argument of Ag for L we mean a non-complete well-defined

i"qr".r"" for L, called Seqr., over the set of rules of Á9's knowledge base' It occurs

if there is no rule for at least one objective literal ,L; in the body of some rule in

5"q". Therefore, even if an agent Ag inas a rule f.or L in its knowledge base, a

complete well-defined sequence for ,L may not be built by Á9 alone, and so Ag has

only a partial argument f.or L. The (complete or partiat) arguments of Á9 built

only on its own knowledge base are called local arguments of Á9. Since we want to

deal with local partial arguments, an argumentation-based semantics with coop

chapter we will say "centralized proposal" instead

ibuted proposal" instead of "argumentation-based
lFor simplicity, in the remainder of this

of "self-argumentation proposal" and "distr
negotiation proposal"



qOCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED AIEG OTIA:IION

eration is proposed. By argumentat'ion, we mean the evaluation of arguments to
obtain a consensus about common knowledge; by cooperation, we mean obtaining
arguments to achieve knowledge completeness.

Intuitively, the distributed proposal coincides with the centralized one if every
agent argues and cooperates with all agents in a multi-agent setting (MAS). As has
already been said, we want to deal with cases where these proposals do not coincide,
i.e. when an MAS represents a kind of hierarchy of knowledge. Moreover, the
MAS might have the agent's knowledge base physically distributed in a computer
network. Therefore, an agent Ág does not need to argue and/or to cooperate
with all agents in an MAS. We associate with every agent in an MAS an unique
identifier o and two sets of agents' identifiers, corresponding to its argumentative
and cooperative agents (the former is denoted Argueo and the latter Cooperateo).
We further impose that every agent argues and cooperates with itself because it
would make little sense for an agent neither to access its own knowledge nor to
obtain a consensus based upon its own knowledge. Local partial arguments of agent
Ag can be completed with arguments fromCooperateo, and completed argumentsz
of Ag are evaluated with respect to arguments from Argueo. Furthermore, the
evaluation of. Ag's arguments is only with respect to arguments from agents from
both Argueo and Cooperateo.

Remark 43 For s'implicity, we will say "(a local partr,al argument is completed,)
u'ia cooperation w'ith Cooperateo" 'instead oÍ "(a local partial argument r,s completed,)
giuen a set of arguments from agents inCooperateo" and "an arg,trnent is eualuated,
by Argueo" instead of "an argument i,s eaaluated with respect to arguments from
agents 'in Argueo".

A multi-agent setting is seen as a set of agents such that each agent Ag is a
tuple

< a, Kbo, Argueo,Cooperateo >
with Á9's identity in the MAS (denoted by Id(Ag)), an extended logic program
with denials which represents the Ag's knowledge base (denoted by Kb1a1nn1), and
the sets of argumentative and cooperative agents (denoted by Arguelaçon1 und
Cooperateld(.4e), respectively). For instance, let Abe a multi-agent setting with
three agents: Agr, Agr, and Ags, such that Ág1 argues with Ag2 and Ags, and,
both Ag1 and Ag2 cooperate with ,4g3. The multi-agent setting for the above
description is written as follows:

A: { Ag, :< l, Kbr, {1,2,3}, {1,3} >,
Ag, :< 2, Kb2, {2}, {2,3} >,
Ag, :< 3, Kb3, {3}, {3} > }

2Here, we also consider local partial arguments that have been completed through cooperation.



4.1. FROM CENTRALIZED TO DISTRIBUTED ARGUMENTATION 91

where 1 (resp.2 and 3) is the identity of agent Ág1 (resp.Ag2 and Agi. For

faster understanding, the argumentation and cooperation relations are depicted in

a directed graph such as the one in Figure 4.1, representing agents Ag, Ag2, and

Ags Írom A.

ArgCoop

A!g

Figure 4.1: An example of a Multi-agent Setting

Remark 44 [Di,rected, graph illustrati,ng an MAS] Each node i,n a di'rected graph

'illustrati,ng an MAS represents an agent Ag. A dashed loop represents the fact
that an agent argues and cooperates wi,th i,tself. Furthemnore, a d'irected arc wi'th

label Arg, Coop, or ArgCoop li,nks an agent to i,ts argumentat'iue, cooperatiue, and

argumentat'iue/cooperati,ue agents, respect'iuely. A link Coop (resp. Arg) from Ag1

to Ag2 rneans that Ag1 asks for cooperat'ion (resp. to argue) ui,th Ag2'

The centralized proposal defines the status of an argument as justified, over-

ruled, or defensible based on its acceptability (see Def.4a). Moreover, a justified

argument can be attacked by the agent's arguments, but such arguments are ei-

ther overruled or defensible (i.e. "non-justified" arguments). This makes sense in

such a proposal, because it considers a knowledge base Kb of just one agent Ag,

and so âny argument over Kb is evaluated only by Ág itself. In the distributed
proposal, arguments of an agent Ag can be built by Ag alone or via cooperation

wilh Cooperater. However, it would make little sense for an agent to cooperate

with another one by giving the latter arguments that are overruled in the former.

We thus impose the idea that every argument Arg oÍ an agent Ag can be

used in a cooperation process if and only if Arg rs initially evaluated by Argue*
However, we consider that Argueo can evaluate Arg as defensible, and such an

argument might be evaluated as justified by other set of argumentative agents.

In other words, Agihas a defensible argument Arg with respect to Argueo, Arg
could be used by another agent Ag' (by considering that a € CooperaÚeo') and so

this argument might be justified with respect to Argueo,. Therefore, an agent can

cooperate with both justified and defensible arguments.



92 CHAP TER 4. A PROP OS AL FOR ARGU MEN TATION-B ASED N EG OTIATION

As presented in the centralized proposal, the truth value of an agent's belief
could be true (and either contradictory, based on contradiction, or non-contradic-
tory), false, or undefined (see both Definition 49 and Proposition 30). However,
in the distributed proposal, an agent's belief should only be deduced with respect
to both sets of argumentative and cooperative agents. Intuitively, we can deduce
that different truth values of a given literal tr over a multi-agent setting ,4 may be
obtained. It happens because it depends on which agent the literal tr is inferred
from, and also on what the specification of both sets of cooperative and argumen-
tative agents is, given all the agents tn A. For instance) assume a multi-agent
setting where each agent represents "acquired knowledge" in a different period
of time, namely past and present, such that Kbpo : {wai,t 1- not -train} and,
Kbp, : {-trai,n}, respectively, are the agents knowledge bases. Intuitively, present
may ask for cooperation with past btú not vice-versa. Figure 4.2 illustrates such a
description. The literal wai,t is true in pastbecatse the assumption 'not -tra,in'
is true. Since present asks for cooperation with past, the literal wai,t mrght also
be true in present However, such a result is different in present because it has
new knowledge (i.e. -trai,n) which causes the assumption'not -tra,ín'to be false.
Note that, if we want to obtain the same truth value of such a belief in both pasú

-----;JpBtl--c""o present

Figure 4.2: A: {< pa,Kbpo,{po},{po} >,qpr,Kbe,,{pr},{pr,po} >)

and presenú, then present should argue wtth past (but not vice-versa). This, how-
ever, will cause the truth value of any belief in "4 to correspond to its truth value
in present, i.e. in the "latest period of the time".

Finally, as in the centralized proposal, the distributed proposai may also define
ways of multi-agent reasoning ranging from consistent to paraconsistent. Since
these two approaches have been fully discussed in the centralized version, we will
focus our attention on the details related to distributed knowledge bases.

4.2 ttReaching a Verdict", an example
The following example, The Inconuen'ient Wtness, was extracted from a thriller.
We use this narrative to model a trial as a multi-agent setting when each agent
represents the knowledge of a trial of a different participant: a defending lawyer
(the defense), aprosecuting lawyer (the prosecution), and both the witness for the



4.2. "REACHING A VERDICT", AN EXAMPLE 93

prosecution (prosecuting witness) and the witness for the defense (defense witness).

For the sake of simplicity, we assume the accused is represented by his defense,

not being present at the trial.

Example 26 (The Inconvenient Witness) 1t was well after 3 a.m. when Emi-
ly Brown woke up, frightened. Oh, no. That nasty n'ightmare again. John Thorn,

her louer, was sti,ll fast asleep. She looked out of the wi,ndow at the enchanti'ng full
moon. Suddenly she noti,ced two rnen, apparently argui,ng 'in the garden outsi,de,

just a few metres under John's first floor wr,ndow. From behi,nd the curtains she

could clearly see the menaci,ng face of one of them, the one holdi,ng a long, shi,ning

kni,fe agai,nst the elegant ouercoat of the other. Suddenly, there was a suffocated

screan"L and the elegant man fell to the ground, stabbed twi,ce. The other quickly

opened a car, threw the body 'in, and sped off down the lane. She could read the

registrati,on number. In her head, the twisted face of the uictim, a face she already

knew, but who? John was st'ill peacefully at rest.

"It's h'im!", Em'ily mumbled, while a sharp shiuer went up her spine when,

two days later, she saw the photo under the Morni,ng Tri,bune headl'ine: "Body of
Ronald Stump, king of med,ia, found stabbed to death in stone-pi,t! Chi,nese suspect

i,denti,fied by Poli,ce." But she had seen the ki,ller. He was not Chinese! But how

could she erplain be'ing an eyewi,tness. ArA testimony would cost her marriage,
and her priui,leged li,festyle. She was faced wi,th a d'ilemma!

"Tell me, Mr. Thom", asked Dr. Willi,am Watson, the prosecution attomeE,

"do you sleep with gour contact lenses'in"? "No", repli,ed Paul. "I s'incerelE hope

you know what perjurA nteans. Do you want us to belieue that you put your lenses

'in, and take them out again, just to quench your thirst when you wake up i'n the

mi,ddle of the n'ight?", queri,ed Dr. Watson. An uproar spread in the crowded

Wi.mbledon Couri, when the judge brandi,shed h'is wooden hammer . . .

In any trial, the prosecution and the defense argue with each other, and both
prosecution and defense witnesses cooperate with, respectively, the prosecution and

the defense. Based on The Inconuen'ient Wi,tness description, John is the defense

witness because Emily cannot be in Court. Emily provides (i.e. cooperates with)
John with the necessary statement for his testimony. Therefore, the multi-agent
setting

T r i, al : {de f ence, pr o s ecut'i on, pol'i ceman ) 
j ohn, emi'ly}

represents the trial described in Example 26. Figure 4.3 illustrates both the arguing

and the cooperating dependency between the agents.

In the following, we present every agent's knowledge base, as an extended

logic program, and the corresponding tuple. Emily saw the murder and knows

that the culprit is not a Chinese man. The rules seen(murder,culprit) and

-Chi,nese(culpri,t) model her moral duty to testify.



q CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED A/EG OTIATION

defender A.g

Coop

Coop

Coop

prosecutor

Figure 4.3: "The inconvenient witness"

emi,ly :< ern, {se(mu, cu); -6fi(çu)}, {em}, {"*} >

The simplest âgent in Tri,al is John. He was sleeping when the murder oc-
curred, and so he has no knowledge himself about the crime. However, John is the
defense witness and so he needs cooperation from Emily.

john :< Jo,A, Uo), {jo, em} >

The prosecution witness is a policeman who identifies a Chinese man as respon-
sible for the crime. Since the description does not specify how the man was iden-
tified, we model such knowledge as'identi,f i,edResponsibleFor(culprit,murder).

pol'iceman :1 po, {idRF(cu,mu)}, {po}, {po} >

Both prosecution and defense should have acceptable arguments to support
their allegations. Under criminal law, people âre presumed innocent until proven
guilty of criminal action. To incriminate a culprit, the prosecution should have an
allegation of his criminal action and at least one piece of evidence to support it.
Evidence makes the culprit seem guilty of a crime. In this case, the evidence is
based on the identification of the person assumed to be responsible for the murder3.

3For simplicity, we use P, E, C , and R instead of 'Person', 'Event', 'Culprit', and 'Reason' in
the remaining rules in this section. Moreover, we do not make explicit the witness in the rules
because both defense and prosecution have only one each. Furthermore, to the right of each rule
is the element in the trial which has such 'knowledge'.



4.2. -REACHING A VERDICT", AN EXAMPLE 95

gui,lty(P,, E) <- allegati,on(P, E) [prosecution]
allegati.on(P, E) <- occurs(E), eu'idence(P, E). [prosecution]
occurs(murd.er). [Prosecution]
eui,d,ence(P, E) <- i,d,enti,f i,edResponsi,bleFor(P, E), ch'ines"(P). [prosecution]
chi,nese(cutprit). [prosecution]

As has already been said, a culprit person is presumed innocent until proven

guilty. Since we want to deal with contradictory conclusions, we \ss -gui,lt!
instead oÍ i,nnocenT. $s -gui,ltE <- not gui'ltg expresses the idea that some person

is explicitly not guilty of a crime if there is no evidence that she/he is guilty of it.
For simplicity, we consider such a rule as part of the defense's knowledge, i.e. we

do not consider it as the prosecution's knowledge.

-gui,lty(P, E) <- not guilty(P, E) fdefence]

Even if there is evidence against her client, the defense may state the absurdity
of her client being guilty when the evidence is not admissible. In this case, the

inadmissibility is based on a testimony clarifying that the evidence was forged,

because the culprit is not a Chinese man.

I <- gui,ltA(P, E), -admissi'bleEui,dence(P, E, R) '

-ad,m'iss'ibleEui,dence(P, E,.R) <- eui.dence(P, E), f orgedÚui.dence(E, R)

f or gedEui.dence(E, C) <- seen(E, C), -chi'nese(C).

Idefence]
[defence]

Idefence]

On the other hand, the prosecution may defeat such a testimony by pointing

out the absurdity of accepting it, because the witness of the defense forged the

evidence and so is committing perjury. As described in Example 26, John has not

seen the culprita.

I <- f orgedEui,dence(E, R),per jury(E, R)
per jury(E, C) <- -seen(fl, C).

- s e en (mur d er, cul pr i,t) .

[prosecution]
fprosecution]
[prosecution]

Then the prosecution and the defense agents are as follows:

prosecut'ion:
defence:

q pr, Kbp,, {pr, de}, {pr, po} >
1 de, Kba", {de, pr), {de, j o} >

aFor simplicity, we do not represent the reasons for this conclusion, and so the prosecution's

knowledge about it is a fact.



96CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATIOAi

such that Kb* and Kb6" àre

Kbp, : { gu(P, E) <- al(P, E); al(P, E) <- oc(E),eu(P, E); oc(mu); ch(cu);
eu(P, E) <- idRF(P, E),ch(P); L <- f E(8, R),pe(E, R);
Pe(E,C) <- -se(E,C); -t"(*u,cu) )

Kbd. : { -gu(P, E) <- not gu(P, E); t <- gu(P, E), -aE(P, E,R);
-aE(P,E,R) +- eu(P,E),ÍE(E,R); f E(E,C) <- se(E,C),-ch(C) \

4.3 Declarative Semantics

As motivated in the introduction, in our framework the knowledge bases of agents
are modelled by logic programs. More precisely, we use Ertend,ed Log,ic Programs
wi.th denials over a language L (cf. Def. 3 and Def. 1, respectively), themselves an
extension of Extended Logic Programs [GL90], for modelling the knowledge bases.

As already motivated in the introduction we propose an argumentation-based
semantics with cooperation. By argumentat'ion, we mean the evaluation of argu-
ments to obtain a consensus about common knowledge, and by cooperation, we
mean the granting of arguments to achieve knowledge completeness. Then, be-
sides the knowledge base, in our framework each argumentative agent Ag rn a
multi-agent setting "4 must have a unique identity a tn A, and two sets of agents'
identifiers corresponding to argumentative and cooperative agents with Ag. More-
over, the identity of. Ag is in both sets of argumentative and cooperative agents
with Ag:

Definition 54 (Argumentative Agent) án argumentative agent (or agenl, for
shor"t) ouer a language L and a set of id,entifiers Ids i,s a tuple

Ag :< a, Kbo, Argueo, Cooperateo )
where a e lds, Kbo i,s an ELPI ouer L, Argueo C lds and Cooperateo Ç lds
such that a e Argueo and a e Cooperateo.

We denote by Id(Ag) (resp Kbra@s), Argue16ln6 and, Cooperatelaçnq), the
lst (resp. Znd, ?rd, and lth) position of the tuple Ag, and by ?{(Id(Ag)) (cf.
Def 1) the Ertended Herbrand Base of Kb1a1an1.

Hereafter, we sây 'arguments ftom Cooperatelala6 (or Arguela@d)' instead of
'arguments from agents whose identities are in Cooperatelaled (or Arguelalanl)'.

Definition 55 (Multi-agent Argumentative Setting) Let L be a lang,uage,
and Ids be a set of i,denti,fiers. ,4 Multi-Agent argumentative setting (or Multi-
Agent setting, for short) A r,s a set of agents

A:{Agr,...,Agn}



4.3. DECLARATIVE SEMANTICS 97

such that all of the Agis are agents ouer L and lds, and no two Agis haue the

same i,dentifier. The Ertended Herbrand Base oÍ A, 7l(A), 'is the un'ion of all

?1(oo) such that at e I d"s.

The (complete or partial) arguments of an agent Ag are built by Ag alone.

These are consid ered local arguments of Ag. Definitions of both local complete

argument and local part'ial argument of an agent Ag Íor a literal are very similar to
the definition of an argurnent oÍ an ELPd for a literal from the centralized proposal

(cf. Def. 37). Furthermore, we use the definitions of Set of Rules and Well-defined

Sequence from that proposal (cf. Def. 35 and Def. 36, respectively).

Since we are concerned with modelling knowledge bases distributed over a
multi-agent setting, partial arguments oÍ Ag for .L must be considered. In fact, an

agent alone may not have in its knowledge base enough rules to form a complete

argument, but may have part of an argument (a partial argument) that can be

completed with knowledge from other agents with which it is able to cooperate.

By a partial argument of. Ag for .L we mean a non-complete well-defined sequence

for L, called S"qr, over the set of rules of Ág's knowledge base. The complete and

partial arguments of. Ag built only with its own rules are called local arguments of
As.

Definition 56 (Local (Partial or Complete) Argument) Let A be a MAS,

Ag be an agentin A, a: Id(Ag), Kb, bethe ELP{ oÍ Ag, Ri ftesp. Rfl) bethe

strong (resp weak) set of rules of Kbo, and L Ç71(A).
.4 strong (resp weak/ local partial argument of a for L is a pai,r (a, Seqr,)

such that Seql i,s a well-defi,ned sequence for L ouer Ri (resp. RX,) .4 strong

(resp. weak) Iocal complete argument of a for L i,s ang strong (resp. weak)

parti,al local argument (a, Seqr,) such that Seql i,s complete and non-ernptY. We

say that (a, seq') is a k-local argument of a for L, LAx@) , i'f it is ei,ther a local

parti,al argument or a local complete argument ouer Rl of a for L (where k i,s

ei,ther s, for strong arguments, or u), for weak ones).

The seú of local arguments of. Ag contains all possibie local (complete and

partial) arguments over Ág's knowledge base.

Definition 57 (Set of Local Arguments) Let A be a MAS, a be an agent's

i,denti,ty in A, and k € {s, tr} . The set of k-local o,rgun'Lents of a is

r.t\(a): u LAx@)
L e ?1(A)

where LAX@) i,s the set of all (strong or weak) local arguments of a for L. The

Set of Local Arguments of a 'in A i,s

LAa@):LAo@)ULA\(a)



qSCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATIOIú

and we denote by LA(A) the union of all local arguments of agents in A.

An agent Ag in a multi-agent setting A may be able to build a (partial or
complete) argument for any objective literal L in 11(A) even though Ág has no
knowledge about such an L (i.e. there is no rule L <- Body in Kfu61nn). This
may be done through the introduction of an argument with an empty well-defined
sequence in the set of iocal arguments of Ág. From Definition 56, a local partial
argument for any L e ?1(A) of Ag is a pair (Id(Ag),Seqt), such that Seql is a
well-defined sequence f.or L over the set ,9 of rules oÍ Kfua1an;. If there is no rule
for such an -L in ^9, then SeqT : ll. Thus, [] is a well-defined sequence for any
literal L e 11(A) and (Id(A.q), []) might be completed with the "help" of some set
of (complete and partial) arguments from Cooperate161nn1. Example 27 illustrates
how the set of local arguments of Ag is built. After the example, we present the
way in which every local partial argument of. Ag may be completed.

Example 27 Let A: {Agr, Ag2} be a MAS such that

and wh'ich'is represented by the followi,ng di,rected graph (for details, see Remark /t/t)

Kbr:{b<-not f; c<-b}
i' 

- -' - 

";o-- 
C ooP---->$ ; 

"'' 
;

Kb2 : {b; a <- b, c,not d}

The set of local arguments of agent 1 i,s

LAA(7): { (1, [b <- not f)), (1, [b <- not f ,not -b,not L]),
(1, [c +- b]), (1, lc <- b,not -c,not L)),
(1, [b <- not f ; c <- b]), (1, l),
(1, [b <- not f ,not -b,not L; c +- b,not -c,not I)) ]

and the set of local arguments of agent 2 is

LAA(2): { (2,lbl),(2,1b <- not -b,not L)),
(2,1a <- b,c,not d)),(2,1a <- b,c,not d,not -a,not Ll),
(2 , lb; a +- b, c, not d)) , (2, l))
(2,1b <- not -b,not I; a <- b,c,not d,not -atnot f]) )

The set of local arguments of A is LA(A) : LAA(I) U LAA(2).



4.3. DECLARATIVE SEMANTICS 99

To complete a local partial argument of an agent Ag wrlh (partial or complete)

arguments from Cooperatelalanl, we need first to define an operator to concatenate
these arguments in terms of well-defined sequences.

Definition 58 ( + Operator) Let L < i, < n, Seqi be a well-defined sequence for
an objecti,ue li,teral Li, and, R" be the set of all rules 'in Seqi.

The concatenation S"ql, + . . .l Seqn is the set of all well-defined sequences for
Ln ouer UT:, Ro.

In short, several distinct well-defined sequences are obtained when concatenat-
ing two or more well-defined sequences. Furthermore, we can obtain well-defined

sequences that are not in fact complete. The operator * comprises all such ob-

tained sequences, as illustrated in the example below:

Example 28 Followi,ng Erample 27, Ag has a local complete argument (1, Seq")

and, Ag2 has a local parti,al argument (2, Seq") such that S"q. : lb <- not f ; c +- bl

and Seqo: lb;a <- b,c,not d) By concatenati'ng Seq" and Seqo we haae the

followi,ng set of well-defined sequences for the objecti,ue literal a ouer the set of
rules

{b <- not Í;b;c <- b;a <- b,c,not d}

S:Seq"lSeqo: { [], la<-b,c,not dl, fb;a<-b,c,not d),

lb <- not Í;a <- b,c,not d), lc <- b;a <- b,c,not d),

lb <- not Í;, <- b;a <- b,c,not d),

lb; c <- b; a <- b,c,not d) )
and so Ag2 mi,ght haue two complete local arguments for the literal a (i.e. the last

two well-defined sequences for a i.n S).

We introduce cooperation by defining a set of aua'ilable arguments of an agent

Ag given a set ,S of (compiete or partial) arguments. Every (complete or partial)
argument of Ag in,S is considered an available argument oÍ Ag. Moreover, if a

partial argument for an objective literal L of. Ag may be further completed with
arguments in ,S belonging to Cooperatelalae;, this further completed argument is
also available.

Definition 59 (Set of Available Arguments) Let A be a MAS and a be an

agent's identi,ty i,n A. The set of auai,lable argurnents gi,uen a set S of arguments,

Au(S), is the least set such that:

o i,f (a, S"q") e S then (a, SeqT) e Au(S), and

. 'iÍ={(Pl,Seq7,),...,(0r,5"q")} Ç Áu(S) and{131,...,13r} ÇCooperateothen
for any NSeql e Seql, +... + Seqr,, (a,NSeql) e az(S)



LOOCHAPTER 4, A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA"IOI{

where l3r, . . . , p; are o,gent's zdenti,fi,ers i,n A. Let LA(A) be the set of local argu-
ments oÍ A. We denote by Args(A) the set of available arguments of "4 giuen
LA(A), and dub,itthe set of all available arguments in "4. Members of Args(A)
w'ill, as usual, be called arguments.

As in the centralized proposal, also here we are concerned with obtaining ways
of reasoning, ranging from consistent to paraconsistent. For this, the agents co-
operate and argue by exchanging strong and weak arguments. Similarly to the
centralized proposal, we assume that every proponent (resp. opponent) agent in
a given multi-agent setting exchanges arguments in the same way, i.e. every prt>
posed (resp. opposing) argument is a strong or weak argument. The following
two propositions reinforce such an assumption. According to the first proposition,
every available argument is of the same kind, strong or weak, as the given set
of arguments. From the second proposition, we see that an agent might have all
arguments from its cooperative agents.

Proposition 45 If S i,s a set of strong (resp. weak) arguments, then Au(S) is
also a set of strong (resp weak) arguments

Proof. Trivial, since ,S contains only strong (resp. weak) arguments, we only
have a set of strong (resp. weak) rules and so we only build strong (resp. weak)
arguments I

Proposition 46 Any auai,lable argumert (P,S"q") of p for L i,s an aua,ilable ar-
gument (a, Seqy) of a for L ,Í P e Cooperateo

Proof. By Definition 57, (", [) is an avai]able argument of o for any literal in
11(B). Assume (0,5"q") is an available argument of p such that g e Cooperateo.
By Definition 58, we have SeqT e [)+Seq" and so we obtain the available argument
(a, SeqT) of a for L t

The following example illustrates how available arguments are built via opera-
tor -1_. This example also depicts available arguments built by agents that are not
directly interrelated, i.e. there is an "indirect cooperâtion" between such agents.

Example 29 Consi,der the followi,ng graph represent'ing a mult'i-agent sett'ing A.
Note that agent I may use argurnents from agent 3 because 3 e Cooperate2 and,

2 Ç Cooperatel.



4.3. DECLARATIVE SEMANTICS 101

Kb3 : {b; d <- 
lnt..iL___.--

Coop Kb2: {c <- not b)

CoopKbt : {i.f ?\--

The set of strong local arguments of A is

LA'(A): {(1, [), (1, [a <- b]), (2, []), (2,1c <- not b)), (3, [), (3, [b]), (3, [d <- not a])]

For si,mplici,tE, we call LA(A) os,9. Based on the first condi,ti,on of Def. 59, eaery

argument in S i,s an auai.lable argument, i,.e. S C Áo(S). Based on the second

condi,ti,on of Def. 59, we further obta'in the following auai,lable arguments:

o (1, [c +- not b)) because {(2,1, +- not b]), (1, U)} c Au(S);

o since {(3, [ó]), (2, [])] c Au(S), (2, [b]) e Au(S); s'imi,larlE Q,ld <- not al) e
Au(S), because { (3, [d <- not o,)), (2, t])] c Au(S);

. conselluentlg, (l,lb)) and (l,ld <- not a]) are auai'lable arguments because

{(2, [b]), (1, [)] c Áu(S) and {(2,1d <- not ,l), (1, U)} c Au(S), respect'iuety;

o because {(t, [o <- b]), (1, [b])] e Au(S), (t,lb; a ê bl) e Au(S) 5.

The least set of auailable arguments of A gi'uen LA" (A) i,s

Au(LA(A)) : LA"(A) u { (1, lc <- not b)), (2, [b]), (2, ld <- not a)),

(1, [b]), (1, [d <- not a)), (7,1b;a <- b]) ]

From Definition 59, Args(A) contains all available arguments of an agent Ag
built via cooperation with agents in Cooperatera@d. However, some of these ar-

guments might not be acceptable with respect to arguments rn Args(A) from
Arguelaçan1. We now describe how a negotiation process should be performed,

where cooperation and argumentation are interleaved processes. Initially, assume

that an available argument A of Ag is acceptable w.r.t. a set of arguments ,S if
every argument against Á from Arguela4o; is attacked by an âIgument in ^9. In-
tuitiveiy, if an agent Ág builds an available argument Aby concatenating its local
partial argument with arguments from Cooperatelalae;, then Á must be evaluated

t(t, 
[à; o <- b]) can also be obtained from the set of available arguments {(f , [o <- b]), (2, [b])]

Bothwaystocompletethelocalpartialargument(1,[a<-à])of agent Ag1 are correct.

SI
-\



TOZCHAPTER 4, A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA?IOIü

by every argumentative agent tn Argue1a1es1. lt means that each argumentative
agent ,49" should try to build an availabie argument C A against Á. Two situations
may occur:

l. Ag" argues and cooperates only with itself . If. Ag" cannot build a complete
argument C A by itself, and since there is no other agent to cooperate with
Ag", Ag" cannot argue against Á. On the other hand, if C A is built by Ag",
Ag" does not need evaluation of CA by any agent other than itself, and so
Ag" may use its argument against A; or

2. Ag" ârgues andf or cooperates with other agents. In such a case, building
CA may require the concatenation of arguments from Cooperatela(es, and
then the evaluation of CA by agents in Argueld(Asr. The argumentative
process Íor CA of. Ag" finishes when the acceptability of CA with respect to
arguments from Ar gu€ r a1es"1 is established.

Independently of which situation occurs for each Ag" e Arguela4ey, if there exists
at least one acceptable argument CAftom Arguerd@s) against the availabie argu-
ment Á oÍ Ag, then Á is not acceptable (with respect to Arguela@s))l otherwise,
,4 is an acceptable argument. The following example illustrates the above informal
description.

Example 30 Assume the multi-agent setting

A: {Agr, Agr, Agz, Agn, Ags, Agu)

and the figure below which represents the cooperatiue and, argumentatiue relatr,ons
between such agents. For s'impli,c,ity, we do not include in the graph the dashed
loops showing that each agent argues and cooperates w,ith i,tself.

Kbs: {b <- d}

Arg

Kbr: {o <- not b,c; c} Kbn: {f} Kbu : 1ny

Arg Coop

\/-o,n
not d, fj

Arg

Kb2: {b <- Kbs : {d <- not g}



4.3. DECLARATIVE SEMANTICS 103

To know about the acceptabili,ty of arguments for a 'in Ag1' Ah should haue

an argurnent for the objecti,ae l'iteral a that must be acceptable w.r.t. Arguel :
{1,2,3} ; si,nce Ag1 has an argument Ai@) : (1, [c; a <- not b,c]) we must check

whether Ag2 or Ags haue o,n o,rgun'Lent agai,nst Ai@).

. Ag, does not haue any argument against Ai@) because i't has only a parti,al

argument for b and there i,s no argurnent from Cooperatq to complete it-

. Ag, has a pari'ial argument for b that can be completed by Agn's argument

Íor Í, i,.e. Ai(b): (2,1Í;b <- not d, Í)) e (2,1b +- not d,/l) + (4,1Íl). Still
Ag5 rnay haae an argument against A)(b):

- Ag, has the argument A"r(d,) : (5, [d +- not g)), but now agent A96 has

an argument agai,nst A"r(d,)

* Agu has the argument Aàb): (6, [g]), whi'ch 'is acceptable because

there i,s no argurnent from Argue6 aga'inst it.

Thus, A:r(d) i.s not acceptable because'it i's attacked bg Ai@).

S'ince Ag5 has no acceptable argument against Ai(b), A;(b) is an acceptable

argument w.r.t. arguments from Argue2.

Finallg, Ai@) is not acceptable because there'is at least one acceptable argument

from Arguel aga'inst i,t, ui,z. A:r(b).

We proceed by exposing the required definitions supporting this informal de-

scription. First of all, it is necessary to determine the available arguments that
can be used to attack. As expected, only complete arguments in Args(A) should
be considered. These arguments are called attacki,ng arguments.

Definition 60 (Attacking Argument) Let A be a MAS, d an agent's identi'ty
in A, and S Ç Args(A). (a,Seq) i,s an attacking argument giuen S i'ff i't i,s a

complete argument and belongs to Au(S). IÍ (o, Seq) is e'ither an s-l,rgurnent or a
w-argument, we refer to i,t bg s-attack'ing or w-attacki,ng argument, respectiuely.

Example 3l Consi.der the multi,-agent setti,ng A i.n Erample 30. The least set of
auai,lable arguments of A g'iuen LA"(A) is

Au(LA(A)) : { (1, [), (1, [.]), (1, [o <- not b,.]), (1, lc;a <- not b,c)),
(2, []), (2,1ÍD, Q,lb <- not d, f)), (2,1Í;b <- not d, f)),
(3, []), (3, [b <- d]), (4, []), (4, [/]), (5, [), (5, ld <- not s)),
(6, []), (0, [g]) ]

and the set of attacki.ng arguments giuen LA (A) i,s

Atts: { (1,[.]), (1, !c;a<-not b,c)),(Z,lfD, Q,lf;b<-not d,f)),
(4, [/]), (5, [d <- not s)), (6, [g]) ]



|O CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATION

Intuitively, both strong and weak arguments can be attacked in the same way.
Since a (weak or strong) argument makes assumptions, other arguments for the
complement of one such assumption may attack it. In other words, an argument
wtth not L can be attacked by arguments for tr. This definition of attack encom-
passes the case of arguments that are directly conflicting, e.g. an argument for
I (with not -L) can be attacked by an argument f.or -L. Moreover, any weak
argument AY,(L) : (q, SeqY,) (and also a strong argument ALQ) : (a, SeqL)
which verifies not L e Assump(S"qil) can be attacked by every argument for I.
However, it does not make sense to attack arguments for objective literals if they
do not lead to falsi,ty. By "an objective literal tr leads to falsi,tE" we mean that
there is an argument A"(L) such that ABQ) is built based on such an argument,
e.g.

A;(r) : Ai@) + [I +- L,not L')

We only consider objective literals that are in the body of the rule for -.1- because
these literals immediately lead to falsi,ty and we say they are di,rectly confl,i,cti,ng
with Ap(L). We assume that the involvement of other objective literals is not as
strong as that of in the body of the denial6.

We adapt the definition of attack from the centralized proposal (see Def. 41)
by defining that an available argument of an agent Ág with an a,ssumption not L
can be attacked by an argument for L, only if that argument is from Arguerd@s).
For the following definition, we use the centralized proposal's definitions of Di,rectly
Confii,cting u'ia Al and Assumpt'ions (cf. Def. 40 and Def. 39, respectively). These
sets are denoted by DC(SeÇr,) and Assump(Seq1), where Seql is a well-defined
sequence for a literal .L. We want to define attack in terms of both attacking
and available arguments. However, we still need to determine which attacking
arguments can be used to attack available ones. Care must be taken to prevent
cycles between these definitions.

Definition 61 (Attack) Let A be a MAS, a and B be agents i,dentifiers ,in A,
and Argueo the a's set of argumentati,ue agents. An argument (0,Seq;) [of B
for LBI attacks an argunxent (a, Seqr..) [of a for L"] i,ff

. p e Argueo,

. SeÇlB i's a well-defined sequence ouer RB, or Seqlu e Seqy- I Seq'"u where
Seq'rB is a well-defined sequence for LB ouer Rp, and,

o LB i,s the sEmbol L, not L e Assump(5"q"-) and Lo e DC(Seqr.r), or LB
i,s an objecti,ue li,teral different from L andnot LB € Assump(Seq7.).

6We further assume they can be detected in a process of "belief revision", e.g. [DPSg7,
FKIS09]. However, a discussion of this issue is beyond the scope of this proposal.



4.3. DECLARATIVE SEA,TANTICS

Recali that, as with other argumentation based frameworks the semantics is

defined based on a notion of acceptable arguments, where a set of arguments is

acceptable if any argument attacking it is itself attacked by the set. Now, in
this distributed setting, care must be taken about which arguments can be used

to attack a set of arguments, and which arguments are availabie for being used

to defend the attacks. Before presenting the definition of acceptable arguments

we motivate for the definition in such a distributed setting. Moreovet, note that
the above definition of attack has a condition that foresees cases where "indirect
cooperation" between argumentative agents is needed. The following example

illustrates such a situation.

Example 32 Consider the followi,ng graph represent'ing a multi-agent setting A
and assume that eaery argument in LA(A) 'is a strong argument.

Kbt: {c;a <- c,not b}

t' 
- -' - ;o<- Ar g ----*:: - - - -'-)

Kb2 : {b <- c; z <- not a}

The set of auai,lable argun'Lents of A gi,aen LA(A) I's

Arss(A):{ Ái(.):[c],
Ai@) : lc;a <- c,not b),

Aí(b) : [b <- c],
AiQ) : lz <- not a) )

Moreouer, from Defini,tion 61, the complete argument Al(a) attacks A:r(r) andthe
par-tial argument Ai(b) attacks Ai@). Howeuer, we only want attacki,ng arguments

(i.e. complete arguments) to be used to determi,ne the acceptabili,tE of an argument

w.r.t. Args(A). Then, Ar(b) wi,ll not be used and, consequentlg, Aí(r)'is not
acceptable. Neuertheless, Al(a) has a rule for c that can be used to complete A"r(b)

If agent Ag2 may ',use', such a rule from Al(a) to complete i'ts partial argument

A?r(b), Ag2 has an argument
(2,1c;b F c])

that can be used agai,nst Ái(r) . Therefore, Aí(r) i,s acceptable w.r.t. Args(A).

At this point, it is quite clear that we should evaluate available arguments of a

multi-agent setting ,4 to conclude which of them are acceptable with respect to a
set ,S of arguments (that are already considered acceptable with respect to a set of

arguments from "4). However, should an argument of an agent a be acceptable in

105



106CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATIOAT

Argueo if such an argument is to be used in a cooperation process? For instance,
consider the following graph representing a multi-agent setting ,4 and assume that
both proposed and opposing arguments in LA(A) are strong.

Kbr: {q * 0'; c\
--.;o* C ooe ------.4 : : - ---'.)

Kb2: {o <- not b;b <- not a,not c}

To have an acceptable argument for e, Ah must complete its available argu-
ment for q, vtz. PAí(q) : (1, [q <- o]). Agent Ag2 has an available argument
for a, Ai@) : (2,1a <- not ô]) However, Ag2 has also an attacking argument
Ai(b) : (2,1b <- not a,not c]) against Aí(") Two possible approaches can deal
with this situation:

1. since both arguments attack each other, neither Aí(") nor Ái(à) are accept-
able in Argue2, and so Aí(") cannot be used to complete PAi@); or

2. since there is no acceptable argument in Argue2 attacking Ai@), it is defen-
sible. Furthermore, Ai@) is used to complete PAj(q) and so the resulting
available argument is

aik): (1, [a <- not b;q <- a))

However, AiQ) should be evaluated by Arguel. Via cooperation, ,4g1 has
an attacking argument

Ái(b) : (1, [b <- not a,not c))

against ei@) Bú Ag also has an attacking argument Ái(.) : (1, [.])
against Ai@) which no argument attacks. Thus, Aik) : (1, [c]) is acceptable
and, consequently, Ai(b) is not acceptable (both with respect to arguments
from Arguel). Therefore, ei@) is acceptable with respect to arguments
from Arguel.

Intuitively, the second approach allows us to draw more acceptable arguments
than the first one. Therefore, we follow the latter and define that for a given
agent a in a multi-agent setting A, an agent p e Cooperateo cooperates with an
available argument Á under one of the following conditions: (i) ,4 is not attacked by
any argument from Arguep, or (ii) ,4 is attacked, but every attacking argument
B against Á is attacked by some argument from ArgueB. In both cases, Á is
considered a defensi,ble argumenú. The following operator defines which are the
defensible arguments, given a set of available arguments of a multi-agent setting.



4.3. DECLARATIVE SEMANTICS r07

Remark 47 As in the central'ized uers'ion, uJe use the notat'ion p and o to di.stin-
gu'ish the proposed argument from the opposi,ng one, 'i.e. p (resp. o) i,s a (strong
or weak) proposed (resp. opposi,ng) argument.

Definition 62 (Operator Defr,,(S)) Let A be a MAS, Args(A) be the set of
aaailable arguments of A, and S C Args(A) be a set of p-ar-gunxents. Defo,,(S)
i,s the set of all o-arguments of Args(A) that are not attacked by any attacking
argument gi,uen S. Arguments i.n Defo,"(S) are called defensible arguments.

Assume that arguments in the set of defensible arguments are opposing argu-
ments, and every argument in a set of available arguments is a proposed argument.
Now we can determine how available parguments are acceptable with respect to a
set ,S of parguments from Args(A), such that ,S is a pre-defined set of acceptable

arguments. In order to determine the set of acceptable arguments with respect to

^9, the following steps must be performed:

1. obtain the opposing arguments via Def : Defo,"$). This encompasses the
following two sub-steps:

(a) get the set Atts of. pattacking arguments given ,S, i.e. the complete
arguments in Áo(S). This sub-step also allows ppartial arguments in
,9 to be completed by arguments in ,9 and so new parguments are built;

(b) reject o-arguments in "4,rgs("4) that are attacked by arguments in Áúús.

2. obtain the proposed (partial or complete) arguments given,S, i.e. Au(S).
This sub-step also allows ppartial arguments to be completed by arguments
in ,S and so new trarguments are built.

3. determine which are (i) the opposing arguments attacking some proposed

argument and (ii) the opposing arguments attacked by arguments in ,S.

Definition 63 (Acceptable Argument) Let A be a MAS, Args(A) be the set
of arguments of A, S Ç Args(A) be a set of p-arguments, and d, 0, and 1 be

agent's identifiers i,n A. A p-argument (a, Seqr,) for a l'iteral L 'is acceptableo,o

w.r.t. S xtr (x) i,t i,s ei,ther a local argument, orit belongs to the set of auai,lable

arguments gi,uen S; and (ii,) for any o-attacking argument (0,5"qr.,) for a l'iteral
L' gi,uen Defr,"(S): iÍ (l3,Seqr,) attacks (a,Seq1) then there eri'sts a complete
p-argunlent (1,5eq1,,) for a li,teral L" 'in S that attacks (0,S"qr,).

Similar to the centralized proposal, we formalize the concept of acceptable
arguments with a fixpoint approach and also define a characteristic function p o
of multi-agent setting A over a set of acceptable arguments ,S as follows:



LO\CHAPTER 4. A PROPOSAL FOR ARGUMENTA"IOAI-BASED NEGOTIA?IOAT

Definition 64 (Characteristic F\rnction) Let A be a MAS, Args(A) be the
set of aua'ilable arguments of A, and S C Args(A) be a set of p-arguments. The
characteristic function p o of A ouer S i,s:

pP,o . 2Arss(-a) _+ 2Arss(A).êt-,

Fi"6) : {A e Args(A) | A is acceptableo,, w.r.t. S)

We can see that, if an argument Á is acceptabler,o w.r.t. S, Á is also acceptableo,o

w.r.t. any superset of ,S. In fact, it can be shown lhal Defr,,(S) is anti-monotonic,
and so F)P rs monotonic.

Lemma 48 Defr,,(,S) zs ant'i-monotonic

Proof. Let ,Sl and ,S2 be two sets of arguments of a multi-agent setting .4, such
that Sr Ç S', and let Arg € Defo,"(Í2). By definition of DeÍe,o, Arg is not
attacked by any attacking argument given ,S2, i.e. by any complete argument in
Au(52). Clearly, Au(52) I ,Au(Sr), and so Arg is not attacked by any complete
argument in Áll(Sr), r.e. Arg e Defo,"(Sr) I

Proposition 49 Fef i,s monotonzc

Proof. Let Arg' be an arbitrary argument that attacks Arg and belongs to
Defo,"(Í2), and S' ç 52. By Lemma 48, Arg' e Defo,.(Í1) and so, since,4rg
is acceptableo,o w.r.t. ,S1, there exists Arg" e ^91 attacking Arg'. Since, by hy-
pothesis, ,9'Ç,S', Arg" e ,S2. Thus, every argument in Defo,.(Í2) attacking Arg
is attacked by an argument in ,S2, i.e. Arg e FeA''62) t

Being monotonic, it is guaranteed that Fft" always has a least fixpoint (accord-
ing to the set inclusion ordering over sets of arguments):

Proposition 5O Define for any A the follouing sequence of sets of arguments:

So :A
si+l : Fx"6o)

F)p i,s monoton'ic, and so there must eri,st a smallest À such that S^ ds a firpoi,nt
of F'Á", and, S^ : lÍp(F|') : F'oo'- .

Proof. The result follows immediately from the monotonicity of Fel', given the
well-known Knaster-Tarski Theorem [Tar55] I

Example 33 Consi,der the followi,ng graph represent'ing a multi-agent setting A



4.3. DECLARATIVE SEMANTICS 109

Kbr : {o * b;d <- not b;e +- not f}
.ri Kbr: {c <- not b}

Coop
Arg

Kb2 : {b <- not c; Í <- not g; g}

In th,is erample we show how to obtainlf e@)"(A)). First of all, we determi,ne the

set of strong local arguments of A:

+- bl), (1, [d +- not b)),(L
<- not cl),(2,1f <- not 9
<- not b))\

and the set of auai,lable arguments of A gi'uen LA (A):

Arss(A): LA(A) u
{(1, [b <- not c]), (1, lb <- not c; a +- bl), (1, lf <- not gl), (t, [s])]

o Let,SO:0. Si,nce Attso:4, the set of opposi,ng arguments'is

DeÍo:DeÍ","(So) :{ (1, [d <- not b)),(1, [e <- not f)),
(1, [b <- not c])., (1, [b <- not c;a <- b])

(1, [/ <- not s)),(1, [g]), (2,1b +- not cl

(2,1Í <- not el),(2,lgl),(3, [c <- not b)

,i.e. all complete arguments i,n Args(A). The set of proposed arguments'is

LA(A), resulti,ng from Au(so). Then ue determi,ne the followi,ng attacks

opposing argument proposed argurnent
1, b <- not c)) 1, d +- not b))

(1, [/ <- not s])
(3, [c <- not b))

(2,1s))

(1, [e <- not f))
(2,1b <- not c))

(2,1Í <- not sl)
(2,1g)

(3, [c <- not b))

(1, [a +- b])

(1, [])
(2, [])
(3, [])

(2,,1b <- not c))

(1, []), (1,{A"(LA
(2,1), (2,

(3, []), (3,

a
'b

C

le <- not fl),
), (2, [g]),

),
))

,So Sr : r:"(so) -- {(2, [g]), (1, [o <- b]), (1, [), (2, []), (3, [)];



TTOCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED AIEG OTIATION

. s'ince Attsr: {(z,lgD}, Q,lf <-not g)) e Args(A) i,s rejected, and, so

Deft : Del","(.9r) : { (1, [d +- not b)),(1, [e +- not f]),
(1, [b <- not c]), (1, [b +- not c;a <- b)),
(1, [/ <- not e)),(1, [g]), (2,1b <- not cl),
(2,lgD, (3, [c <- not b))]

The set of proposed arguments i,s Au(S') : ,S, U {(t, [g])] There i,s no
argument'in Deft against (1, [g]), so 52: fi"(S,) :,Sr U {(t, [g])];

o s,ince Atts2 : {(2, [g]), (1, [g])],

D"Í' : Arss(A) - {(2,1f <- not sl),(t,lf <- not s))}

The proposed arguments are obtai,ned by Au(52) : 52. Despite the fact the
opposi,ng argument AiU): (1, ["f <- not g)) attacks the proposed argument
(1_, [e +- not f]), AiU) i,s attacked bE the acceptable argument (1, [g]). So
,S' : fa"( S') : 52 u {(r, [e <- not f))] ;

o s'ince f,l"(S') - S', we can say that the acceptable arguments of A are i,n

tf p(F)"@)) : { (2,lgl), (1, [o <- à]), (1,
(2,1), (3, []), (1, [g]), (1,

By knowing the set ,S of all acceptable arguments of. A, we can split all com-
plete arguments from Args(" ) into three classes: justified arguments, overruled
arguments or defensible arguments. An argument A rs justi,fied when ,4 is in S. An
argument A ts ouerruled when Á is attacked by at least one argument in ,S. Finally,
an argument Á is defens'ible when Á is attacked by an ârgument B e Args(A),
and neither Á nor B are attacked by acceptable arguments.

Definition 65 (Justified, overruled, or Defensible Argument) Let A be a
MAS, Args(A) be the set of auailable arguments of A, and Ffl'" be the character-
'istic functi,on p o of A. A complete p-argument for a li,teral L of an agent with
i,dent'ity a 'is:

o justifiedrÀ' ,i,ff i,t i,s,in lÍp(FX,');

o overruleüÀ" 1,ff there eri,sts a justi,fi,eff o-argument for a li,teral L' of an agent
B in A attacki,ng it;

o defensibl{f iff r,t ts neither justi,fiefflo nor ouerruleffl".

We denote the lf p(Feo'") by JustArgsel".

[)
[e ))<- not fl



4.3. DECLARATIVE SEMANTICS 111

Example 34 Consi,der the followi,ng graph represent'ing a multi-agent setti,ng A

Kbl : {o * not b\

ur
Kb"r: {c <- not a}

Arg
Arg

Kb2: {b <- not c}

In th'is erample we show how to obta'inlÍp(F|"). Fi,rst of all, we determine the

set of strong local arguments of A:

(1, [a <- not b)),

(2,1b <- not c)),

(3, [c <- not a))

:{ii u)

[)
u)

LA"(A)

and, the set of auai,lable arguments of A gi'uen LA(A), i'.e Args(A): LA(A)

o let So:0. Since Attso:4, the set of opposi,ng argurnents is

D"Ío : Def 
","(So) 

: {(1, la <- not b)), (2,1b +- not t]), (3, lc <- not a))}

The set of proposed, arguments i.s LA(A), resulti,ng from Au(so). Then we

determi,ne the followi,ng attacks

oppos?, argument proposed argument
(2, b<-not c (1, [a <- not b

(3, [c +- not a)) (2,1b +- not c))

(3, [c <- not a])
(1, il), (2, []), (3, ü)

,go ,Sr : f?'(So) : {(3, lc <- not ,]), (1, []), (2, []), (S, [)];
o s,ince Attsr: {(3, lc <- not a))},

D"Í' : Def 
","(S') 

: {(1, la <- not b]), (3, lc <- not a))}

The set of proposed arguments i,s Au(S') : ,St. Despi,te the fact that the

opposi,ng argument A"r(b) : (2,1b <- not c)) attacks the proposed argument

(1, [a <- not b)), A"r(b) i,s attacked"bE the acceptable argument (3, [c <- not a]),

so 
s2 : Ftr"(s') : s1 u {(t, la <- not b])}



TI2CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATIOIú

. s'ince f,q'(^g') - S', the set of iustifietrl" arguments,is

JustArgs"l" : {(3, lc <- not ol), (1, la <- not b]), (1, [), (2, []), (3, [])]

Argument (2,1b <- not cl) 'is ouerruledl" because it i,s attacked by the justifieffl"
argument (S, [c +- not a)). No argument in Args(A) u defensible\" .

4.4 Properties
Here we assume very little about the sets of argumentative and cooperative agents
of an agent. By imposing some restriction on these sets different properties of the
whole setting can be obtained. In particular, as expected, if all agents in a mult!
agent setting "4 argue and cooperate with all others, then the result is exactly the
same as having a single agent with the whole knowledge, i.e. we obtain the same
results of the centralized proposal:

Theorem 5L Let A be a MAS ouer L and lds such that for euery agent Ag e
A: Cooperatelaça6: Ids and Arguerd.(As): Ids, and Feo'" be the characteristi,c
functi,on p o oÍ A. Let P : {< 0, KbB, {P} , {P} >} such that

Kbp: u 1{ba;
at € ld's

and F$'' be the characterist'ic function p o of P.
Then, for euery agent a6 e Ids: (aa, Seq) e lf p(Ff,p) ,ff (0, Seq) e tÍp(For")

Proof. The proof of this theorem follows easily from the very form of the defini-
tions. In fact, it is easy to see that all the definitions in this Chapter collapse into
the corresponding ones in the previous Chapter in case the agents only agree and
cooperate with themself I

corollary 52 If A'is as in Theorem 51 then for anE pai,r of agents ,in A, u,ith
identi,fiers a; and, ai :, (di, Seq) e lÍp(Fi") iff (oi,Seq) e lÍp(Fon").

However, if not all agents cooperate and argue with other, the semantics at
one agent can be different from that of the union, as desired:

Example 35 Consi,der A: {Agr, Agz, Ags} such that each agent ,is



4,4, PROPERTIES 113

Def","(A): { (1, il), (2, []), (3, []), (1, [a +- not b]),

(2,1a <- not b)),(3, [a <- not b)),(1, [b <- not c)),(2,1b <- not c)),

(3, [b <- not c]),(1, [c <- not a)),(2,1c <- not a]), (3, [c <- not a)))

The arguments A"(a), A"(b), and A"(c)) are attacke{. As there'is no "cou,nter-

attack" to any of those attacks, lfe@)"@)): JustArgs"lf : g. No argument

i,n Args(A) i,s ouerruleffl" , and, all of arguments are concluded to be defensible"l'.

Howeuer, we obta'in a di,fferent result if we consi,der that

Def 
","(A) 

: { (1, [), (2, []), (3, []), (1, [o <- not b)), (1, [b <- not c]),

(1, [c <- not a)), (2,1b <- not c)), (2,1c <- not a)), (3, [c +- not a))]

andtf p(F)"(0)) : JustArgs"l" : {Ai@),4ã(.)}. Note here how the result differs

also from agent to agent.

In the centralized version, a justified pargument might also be related to a

contradicti,on (cf.. Def.  8). From such a definition, an argument can be con-

tradictory, based on contradiction, or non-contradictory with respect to the set

of justified arguments of an extended logic program with denials P, i.e. with
JustArg§;" : tÍp(FF'"). However, both JustArgsi'- and JustArgsi'' are both
conflict-free8 and non-contradictorye (see proof of propositions 25, 26 and 27).

Thus, every argument in both JustArgsi'- and JustArgsi'" is non-contradictory,
i.e. it is not related to a contradiction at all. Furthermore, Fff'- has more defensi-

ble arguments than Fl,'" (cf.. proof of Prop. 28). Therefore, we obtain a consistent

way of reasoning in a multi-agent setting,4if we apply Fft'- ovet Args(A).
In contrast , JustArgs',i" and JustArgs"f may be contradictory, i.e. they might

have arguments related to a contradiction. However, to evaluate the acceptability
of available arguments without considering the presence oÍ falsi'ty or both argu-

ments Íor L and -tr, the proposed arguments should be strong ones, and every

opposing argument is a weak argument. Since fi- respects the 'Coherence Prin-
ciple'of [PA92, ADP95], i.e. given that every opposing argument is a weak one,

TFor simplicity, since every agent argues with every other, we omit agent identity of the

arguments.
8A set ,S of arguments is conflict-free if there is no argument in S attacking an argument in

S (cf. Def. a5).
eA set S of arguments is non-contradictory if neither an argument for falsi,ty nor both

arguments for -L and -L are in S (cf. Def. 46).

{1,2}, {
2,3j, {2
{3}, {3}



II4CHAPTER 4. A PROPOSAL FOR ARGUMEN]H?/OIú- BASED NEGOTIA"IOIú

it can be attacked by any proposed argument for its explicit negation. Therefore,
we obtain a paraconsistent way of reasoning in a multi-agent setting .Á if we âpply
F)- over Args(A). Moreover, a justified)- argument of an agent in ,4 is related
to a contradiction with respecl to JustArgs"l-:

Definition 66 (Relation to a Contradiction) Let A be a MAS, a and B be

agents' ident'ity in MAS, p e Argueo, and JustArgsT be the lÍp(F|\. A
justi,fietrf s-l,rgument AL@) : (a, SeqT) ,is:

o contradictory"f if L is the symbol L, or there erists a justifieÊf s-argument
(0,5"q) such that L e DC(Seq1), or there errsts a justi,fieffli s-argument
(lj, Seq-1); or

o based-on-contrad'ictioü ,Í AL@) is justifietr)f , tt does not erists a justi,fieffl-
s-ar-gun'Lent (p,Seq-1) and AL@) ,is also ouerrulefff ; or

. non-contrad'ictory"f , otherw,ise.

As already said, any agent's belief should be concluded only with respect to
both sets of argumentative and cooperative agents with such an agent. Intuitively,
we can conclude that different truth values of a given literal .L over a multi-agent
setting "4 might be obtained. It happens because it depends on which agent
the literal tr is inferred from, and also on what the specification of both sets of
cooperative and argumentative agents is, given the overall agents in A. Then,
a truth value of an agent's conclusion in a (consistent or parâconsistent) way of
reasoning is as follows:

Definition 67 (Truth value of an Agent's Conclusion) Let A be a MAS, a
'is an agent's i,dentity of A, k e {s,'u}, and L be an objecti,ue literal or the sEmbol
L. L ouerAi.s:

o false[,- iff for all argument of a for L: i,t ,is ouerrut"ú-

o true[,- iff there erists a justi,fiefi- argument of a for L. Moreouer, L ,is

- contradictory[,- if L i,s the sEmbol I or there erists a justi.fiedfi- argu-
ment of a for -L

- based-on-contradiction!,- if it i,s both true\,- and false\,-

- non-contradictory|,-, otherw,ise.

o undefined|,- i,ff L ,is neither true!,- nor false!,-.

Note at this point that truth is defined parametric of the agent. So, it is only
natural that the truth value of a proposition may differ from agent to agent.



4,5, OTHER ILLUSTRATIVE EXAMPLES

Proposition 53 Let k e {s,tr}. L is und,efi,nedL,- iff there'is no jusffiefi-
argiment of a for L and, at least one argurnent of ã 7o, L i's not ouerr-ulefi-.

This paraconsistent semantics for multiple logic programs is in accordance with

the paraconsistent well-founded semanticsWFSX, [ADP95]. In fact, both coin-

cide if there is a single program (or a set, in case all cooperate and argue with all

other, cf. Theorem 51):

Theorem 64 (WFSX. semantics rs F1-) Let P be an ELP such that L (
?t(P), and, let L be an objecti,ue li,teral i,n ?1(P). L e W F SXe(P) xtr L i,s truelf ,

,o,t L eWFSXee) i.tr L i,s fatsdf , and {L,not L} À wFsxe(P) : 0 tff t tt
undefinefff.

Proof. Follows directly from Theorem 51 and Theorem 33 above I

Moreover, there is a relation between the consistent reasoning obtained with
Ffl'- ard [Dun95]'s grounded (skeptical) extension:

Theorem 55 (Grounded extension vs Ffl'-) Let P be an ELP such that L Ç

?t(P), L be an objecti,ue li.teral in?t(P), B be the Ground Ertens'ion's characteristic

functi,on of P, (A',L) be 0,n argurnentfor L, anda be an agent's i,denti'ty of A.
An arsument (A7, L) e lf p(B) i,ff 1(a, S"qT,) e lf p(Fi'-).
An arsument ({not L}, L) e tf p(B) iff -)(a, S"q?,) e gf p(Fi'-)'

Proof. Follows directly from Theorem 51 and Theorem 36 above I

4.6 Other Illustrative ExamPles

As put forth, the ability to associate argumentative and cooperative sets to each

agent provides a flexible framework which, besides reflecting the possibly existing
physical network, may serve for other purposes:

o For modelling knowledge over a hierarchy where each node of the hierarchy

is represented by a Kbthat cooperates with all its inferiors, and must argue

with all its superiors.

o For modelling knowledge that evolves. Here the "present" can use knowledge

from the "past" unless this knowledge from the past is in conflict with later

knowledge. This can be modelled by allowing any present node to cooperate

with its past nodes, and forcing any past node to argue with future nodes.

115



TI,CHAPTER 4, A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA?IOIü

In these cases, it is important that the knowledge is not flattened, as in the union
of all knowledge bases, and that the semantics is parametric on the specific 1(b.
I.e. it might happen that an argument is acceptable in a given (agent;) Kb;, and
not acceptable in another (agenti) Kfu of the same system. This section shows
that our proposal allows the modelling of a multi-agent setting with those different
kinds of representation.

4.5.L Representing Hierarchy of Knowledge
This example is derived from both the ADEPT project [JFJ+96] which devel-
oped negotiating agents for business process mânagement and the argumentation
framework [Sch99].

Example 36 (Business Process Management) One process deals with the pro-
u'ision of customer quotes for networks adapted to the custorner's needs. Four
agents are'inuolued in this process: (i) the customer service division (CSD), whi,ch
makes the initial contact wi,th the customer and deliuers the quote euentually, (,i,i)
the vel customer (VC) agent, which determ'ines whether the customeris credit-
worthy, (ii'i) the design department (DD), whi,ch does the desi,gn and costing of
the requested network r,f it is not a por-tfoli,o item, and (iu)úàe surveyor department
(SD), which may haue to suruey the customer s,ite for the d,esi,gn d,epar-tment.

Initially, a customer issues a request. The CSD gathers some data for this
request, such as requirements, the equ'ipment already i,nstalled at the customer site,
and how 'important that cl'ient'is. Before any act'ion ,is taken, the CSD asks the
VC to uet the customer. If the customeris not found credit-worthE, the process
term'inates and no quote 'is 'issued to the customer. If it is cred'it-worthy, the
CSD checks uhether the requi,red network'is a portfol'io item w,ith a preurous quote.
If posi,tiue, thi,s quote is sent to the customer; otherw,ise, the design depar-tment ts
contacted. The DD deuelops its desi,gn and cost'ing based on the information of
gr,uen equipment held by the CSD. In mang cases) this ,information may be out
of date or not auai,lable at all, so the s'ite has to be surueyed. In th,is case, the
DD contacts the surueyors to do a suruey. After the suraey ,is done, the DD can
design and cost the network. Then CSD can finally prouide the customer quote.

CSD must not quote if the customer is not credit-worthy, which should be
assumed by default. So, CSD should obtain an agreement with VC, which means
that VC may counter-argue and give evidence for the credit-worthiness of the
customer. In case credit is approved, if CSD does not have a portfolio item for
the solicited quote, it needs a quote for it from DD. DD might do this task if
SD does not argue that such a task is not important. If DD can do its task, it
needs information held by CSD. Figure 4.4 illustrates the arguing and cooperating
relation between such agents.



4.5. OTHER ILLUSTRATIVE EXAMPLES

Coop

Atg

Arg A.g

tt7

Figure 4.4: "Business Process Management"

In the following we present the corresponding âgents' knowledge base as ex-
tended logic program with denials. Considering first lhe Customer Seraice Di,u'i-

sion, rt, knows about the client's equipment (called eq) and its requirements (called
req). However, the description is not explicit with reference to them, so we a,s-

sume that CSD has requirements 2 and 3, and equipment 2 and 3. Furthermore,
CSD knows the customer is important. These can be represented as facts:

reqz. req3.
eqZ. eq3.

'ímportant.

Besides these facts about a particular client, CSD has general rules such as

requirements 7, 2 and 3 together making up a portfolio and being quotable if a

previous quote exists (otherwise, the DD has to prepare a quote).

portof oli,o *- req7,req2,req3.
quote <- port f ol'io, pr eu'íousQuote.

CSD does not provide a quote if the client is not credit-worthy, which is assumed

by default:

-quote <- not credi,tWorthE.

The Vet Customer knows the client is credit-worthy, i.e it has a fact

credi,tWorthg.

The Design Departmenú knows that there is no need to survey the client site
if the client has equipments 1, 2 and 3. It can be represented by the rule

-needZsuruey <- eq|, eq2, eq3.

In general, DD assumes that SD does a survey unless it is busy, which can be
represented by the rule

suruey <- not busySD

+

m]:{-.---'



TISCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATION

The quote of DD can be obtained by a simple design cost if there wâs no need to
survey; otherwise, it is obtained by a complex design cost:

quote <- -needZsurueA, s'impleDesi,gnC ost
quote <- suruey ) compler D esi,gC ost.
si,mpleDesi,gnCost.
complerDesi,gnCost.

Finally, the knowledge of Surueyor Departmenú is fairly simple, i.e. its domain
is its own business, and since it is lazy it derives that it is busy unless the customer
is important. The following rule represents such a belief:

busySD +- not 'important.

The multi-agent setting presented in Example 36 is defined as follows

BPM : {CSD,DD,VC,SD}

and the agents of BPM are represented as follows, with obvious abbreviations,

C SD : 1 csd, Kb""a, {csd,uc,dd}, {csd,dd} >
VC : < uc,{crWo},{uc},{ur} >
DD : < d.d., Kbaa, {dd, sd}, {dd, csd} >
SD: < sd,{bSD +- not imp},{sd,dd\, {rd} >

where the knowledge bases of CSD and DD are

Kb",a: { re(2); re(3); eq(3); eq(2); 'imp; por <- re(I),re(2),re(3);
\uo *- not crWo; quo <- por,preQuo )

Kb66: { -n2s <- eq(L),eq(Z),eq(3); sur <- not bSD; sDC; cDC;
quo <- -n2s,sDC; quo <- sur.,cDC )

Since such a system must have consistent conclusions we illustrate the re-
sults in a consistent reasoning, i.e. with weak proposing and opposing arguments.
The truth value of the main conclusions are as follows: i,mportant rs true!ff,
complerDesi,gnCost and suruey are true1à-, -credi,tWorthE rs trueff;-; busySD
rs f alse!;-; both quote arrf, -Quote are undef i,ned!$.

Finally, [Sch99]'s argumentation framework determines that an agent is defined
bV (i) a set of arguments, (ii) a set of predicate names defining the agent's domain
of expertise, (iii) a flag indication whether the agent is credulous or skeptical, (iv)
a set of cooperation partners, and (v) a set of argumentation partners. The above
example illustrate a multi-agent setting similar to [Sch99]'s proposal, which means
that our agents have (i), (iv) and (v).



4.5. OTHER ILLUSTRATIVE EXAMPLES

4.5.2 obtaining conclusions at Different Periods of Time

We use an example model elaborated by [SPR98] based on the following contra-

diction found in the third act of Shakespeare's Hamlet:

"Should Hamlet kill Claudius? Hamlet is unsure whether to kill Claudius

- the assassin of Hamlet's father - or not. He argues that if he does

kill him, Claudius, who is praying at that very moment, goes to heaven,

and if he does not kill him, Hamlet's father is not revenged. A contra-

diction."

The model was developed in an argumentation framework, Ultima Ratio10,

which aims to formalize and to visualize agents' argumentation. An agent is com-

posed of a set of arguments and assumptions. Facing a particular world, the

agent's beliefs may be inconsistent, triggering a rational monologue to deal with
the situation. Formally, [SPR98] defines a framework for argumentation based

on extended logic programming under well-founded semantics. Given the specifi-

cation, Ultima Ratio unfolds a process of argumentation in which arguments and

counter-arguments are exchanged to detect conflicts and remove them. Ultima
Ratio uses extended logic programming with denials, such that the denials charac-

terize contradictory situations. There is also a definition of revisable assumptions

in order to remove inconsistencies. Furthermore) Ultima Ratio is based on [PS97]'s
proposal, and this system also distinguishes two kinds of attacks: on the conclu-

sion of ân argument (rebut), or on the premises of an argument (undercut). The

system serves as decision support, and it is capable of detecting and removing

contradictions and of deriving conclusions from the agent's arguments.

Our aim in this section is to show that we can also detect the conflicts and

derive conclusions from the agent's set of arguments. This example illustrates

how we obtain conclusions from Hamlet's knowledge in a particular point in, i.e.

the conclusions of his beliefs in the past, in the present, and further in a possible

future. How can we do it? By building a multi-agent setting, dubbed ?{amlet,
where each agent represents a period of Hamlet's lifetime and the respective 'knowl-
edge'. Figure 4.5 illustrates the dependencies between those periods. To reach a

conclusion about something rt past, it is necessary to 'confirm' the truth value

of such a conclusion tL present, i.e. past should argue with present. However,

present might need some information from past to complete its incomplete knowl-

edge, i.e. present needs cooperation with past. The process of argumentation and

cooperation between present and future is the sâme as described above.

The following example is our proposal for modelling Hamlet's conflict:

119

10 See http : / /www. s abonj o. de / t erts. html.



1
Coop

Ia

a

I
ArB

I\OCHAPTER 4. A PROPOSAL FOR ARGUNIENTATION-BASED ATEG OTIATION

Figure 4.5: Hamlet's knowledge in periods of time

Example 37 (Hamlet Conflicts) Hamlet realizes that Claudius is prayi,ng. Thi.s
'is represented bE the fact

prayi,ng(claud'ius).

Hamlet has a belief that Claudi,us would go to heauen if he kills Claudi,us whi,le
Claud'ius'is praying:

'inH eauen(X) +- ki,lls(Y, X), pray'ing (X).

Hamlet states that killi,ng Claudi,us satisfies hi,s desire for reuenge:

takes ReuengeOn(X,Y) <- goal Reuenge(X,Y), kitls(X,Y).

Hamlets starts another li.ne of reason'ing bE ment'ion'ing the fact that Claudius ki,lled
Hamlet's father, when was the ki,ng:

ki,ll ed(cl audi,u s, ki,n g) .

Hamlet finds that he is not auenged if he send,s Claudi,us to heauen:

-takes Reu eng eOn(X,Y ) <- i,nH eau en(Y).

Besi,des this d'irect translat'ion, further facts and rules are added whi,ch are rnen-
ti,oned throughout precedi,ng scenes or whi,ch are g'iuen i,mpli,ci,tly. The rule

goalReuenge(X,Y) <- closeRelati.onshi,p(X, Z),ki,lled(Y, Z),not reason(ki,lled(Y, Z))

erpresses that someone wants reuenge: person X wants to take reuenge on person
Y xÍ Y ki,lled person Z who was close to X , and there was no reason for Y to ki,ll



4.5. OTHER ILLUSTRATIVE EXAMPLES 127

z. Left i,mpli,ci,tly i,n the play ,is the fact that Hamlet and his father had a close

relationshi,p:
cl o s e Rel ati, on s hi.p (my s el f , ki'n g) .

In thi,s scene) i,t is stated formally that Hamlet has a deni,al that he wants to take

reaenge and he does not take it

L <- goalReuenge(X,Y), not ki'lls(X,Y).

Fi,nally, Hamlet wants to ki,ll Claudi,us, 'i.e. to assurne the fact

ki,ll s (my s el f , cl audi'u s) .

The deci.sion wi;ll determi,ne whi,ch kind of confii,ct Hamlet will haue: a contradicti,on

betweentalçesReuengeOn(myself ,claudi,ous) and-takesReuengeOn(myself ,claud'im's),
or the presence o/ falsity.

The multi-agent setting presented in Example 37 is defined as

?lamlet : {past, pr esent, f utur e}

and each agent of ?lamlet should have some of the rules above. We consider most

of the general rules as Hamlet's knowledge acquired before his father died, i.e. in
the past. In the present, two events happen in a short period of time: Claudius

kills Hamlet's father and Claudius is praying. After these events, Hamlet starts to
be in conflict: "Does he take revenge on Claudius?" oI "Does he not take it?" We

consider such suppositions as events that might occur in the future. Nevertheless,

the future might have the fact ki,tls(myself ,claudi.us). Such a'decision'will derive

different conclusions from 'Jlamlet. So, we illustrate Example 37 with two versions

for the future's knowledge base, viz. Kbl, and KU;i The former version includes

the fact ki,(m,c) and the latter does not.

Kbpo : { g R(X ,y) <- cR(X, Z), ked(Y, Z), not re(ked(Y, Z)); cR(m, k);
L <- 7R(X,Y), not ki(X,Y); i,H(X) <- ki(Y,X), pra(X) j

Kbp,: { ked(c,k);pra(c) }

Kbj,: { |RO(X,Y) <- TR(X,Y), ki(X,Y);-tRO(X,Y) <- iH(Y); ki'(m,c) }

Kb]f : { |RO(X, Y) <- TR(X,Y), ki,(X,Y);-tRO(X,Y) <- iH(Y) }

By consequence, we have two versions for ?lamlet:



I22CHAPTER 4, A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA"ION

?lameltk -- { 1 pa, Kbpo, {po}, {po,pr}},
I pr, Kbp,, {pr,po}, {pr, Ír} >},
1 Íu,Kby,,{fu,pr},{Í"} >} }

'llamelt"k : { 1 pa, Kbpo, {po}, {po,pr} >},
I pr, Kb,p,, {pr, po}, {pr, Í r} >},
1 Íu, Ku?Í, {Íu,pr}, {Í"} >} }

We illustrated here a multi-agent setting where each agent argues (resp. co-
operates) with the next (resp. previous) agent. Nevertheless, it would possible to
obtain a conclusion in a period of time without considering what happens after
such a period. For instance, assume a multi-agent setting A : {Tr,72,. . .,7,}
where each Ti (7 < i.( n) represents a different period of time in ,4.. In the case
that we illustrate, if agent fr argues with agent Tt+r, à truth value of conclusion
.L in the period fr is obtained by considering what fr1i knows about .L (perhaps a
counter-argument against ân argument for I). On the other hand, if agent fl does
not argue with agent fr*1, the truth value of -L is obtained until period I without
considering the fact that the arguments for tr might be attacked by arguments in
Tr*r.

Finally, in the next example, taken from [ALP+00], note how the cooperation
is used to inherit rules from the past, and the argumentation to make sure that
previous rules in conflict with later ones are overruled.

Example 38 In th'is erample we illustrate the usage of the proposed framework
to reason about euoluing knowledge bases. Each argumentatiue agent represents
the knowledge (set of rules) added at a po'int of time. Moreouer, each agent can
cooperate wi'th all agents representi,ng past states, and has to argue wi,th all agents
representi,ng future states. Consi,der agent Aq:

sleep *- -tu-on.
tu-on.
u.satch-tu *- tu-on

It is easy to see that w,ith thi,s knowledge i,n Ag1, there is a justifi,efi,- argument
for watch-tu and there is only a part'ial argument for sleep. The knowled,ge i,s then
updated, i,n Ag2, by addi.ng the rules:

-tu-on <- power-f ailure.
pouer-f a'ilure.



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 123

The reader can check that, for Ag2 the preu'ious argument for uatch-tu is now

ouerru"leffo,-, and that the argument for sleep r,s justi,fi,ed)'-. Now if another up-

date comes, €.g stati,ng -Ftouer-f a'ílure, i,n Ag the argument for sleep'is aga'in

ouerruleffa'- , and for uatch-tu justr'fied)'- , as expected.

4.6 On the implementation of the proposed se-

mantics
Although the definition of a correct formal proof procedures for the declarative

semantics just exposed, and its corresponding implementation, is outside the scope

of this thesis, it is important at least to highlight how such a proof procedures

may be defined, and how an implementation for the semantics can be obtained.

In fact, we already have some preliminary results on the definition of the proof
procedures, and have made some experiments on the implementation of a system

for the semantics.
We start this section by providing some intuition on proof procedures for the

semantics just exposed, and continue with a sketch of an algorithm realizing such

a procedure. We then draw some consideration on the implementation that result

from the experiments made.
It is important to make clear from the beginning that we are interest in a

query-driven system in a multi-agent setting. The query should be any objective
literal ,L, and the system should return its truth value over a multi-agent system

,4 where each agent's knowledge base is represented as an extended logic program.

Furthermore, when the literal I is true, the system should be able to provide the
argument that supports Z.

For this distributed semantics, we do not follow the idea of the operational
semantics of the centralized proposal presented in Chapter 3, which defines a
dialogue as â Sequence of p and o moves of proposed arguments and opposing

arguments, respectively. Instead, we must rely on a system which deals with
negotiation processes.

A negotiation process for an objective literal L of. an agent o involves both argu-

mentative and cooperative processes. A cooperative process is started to complete

a local partial argument with arguments from cooperative agents. An argumenta-

tive process is started to evaluate the acceptability of a complete argument with
respect to arguments from argumentative agents. Both processes are interleaved,

i.e. an argument from a cooperative agent has to be evaluated in an argumentation
process, and a partial argument from an argumentative agent is completed by a
cooperation process. For doing so,

o we have to deal with the fact that an agent has both cooperative and argu-



T24CHAPTER 4. A PROPOSAL FOR ARGT]MENTATION-BASED AIEG OTIATION

mentative "behaviors" in â negotiation process. Moreover, the agent is either
a proponent or an opponent during the process. In other words, cooperative
agents have to complete either proponent or opponent partial arguments,
and argumentative agents have to evaluate both proponent and opponent
arguments;

o the (argumentative and cooperative) agents have to exchange messages and
so we have to define a communication protocol; and

o we have to define how to represent and control the negotiation process dis-
tributed through a set of agents.

For dealing with both argumentative and cooperative processes, we informally
define two kinds of agent's dialogue, viz. argumentative dialogue and cooperative
dialogue, as follows:

o during an argumentative dialogue the agents exchange proposes, opposes, and
agreements. A cooperative dialogue involves asks and repl,ies. A propose
(resp. an ask) is sent to every argumentative (resp. cooperative) agent.
However, the answer of such a message is only between the sender and a
recipient, i.e. between the proponent (resp. asking) agent and one of its
opponent (resp. cooperative) agent;

o an objective literal .L is represented as a tree such that the root node is an
empty argument for L, and left nodes are (partial or complete) argument for
I resulting from cooperation process. The branches represent all possible
ways to build such arguments.

. àn argurnentatiue di,alogue for an objective literal -L is seen as a set of both
p and o trees for building proposed arguments and opposing arguments,
respectively; à cooperati,ue di,alogue f.or an objective literal I is seen as a set
of p (resp. o) trees for building proposed (resp. opposing) arguments.

Therefore, a cooperative process for a partial argument PA of an agent a is
a set of cooperative dialogues started in every a's cooperative agent for every
"unknown" Li in PA; an argumentative process for a complete argument Á of
an agent o is a set of argumentative dialogues started in every a's argumentative
agent for every default literal in ,4. Moreover) a multi-agent negotiation process
is seen a forest of p and o trees distributed through the agents.

Given these general consideration, we can now start sketching an algorithm for
the negotiation process of an agent a. First, we present some definitions/operators
that we use in the algorithm:



4.6, ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS T25

. Á (resp. PA) denotes a local complete argument (resp. local partial argu-
ment) (a, Seql) of agent a f.or L (cf. Def. 56 in Section 3.2)

o plus((a, Seqr),,Seq) returns a set of (complete and partial) arguments of o
for ,L resulting from S"q, + Seq (cf.. Def. 58 on Section 4.3);

o player e {p, o} such that p denotes a proponent player whereas o denotes an

opponent player;

o k e {r, r} such that s denotes a strong argument whereas tl denotes a weak
argument;

o Kp(plager) returns lhe player's kind of argument, i.e. weak or strong argu-
ment. For simplification, we suppress the kind of the argument by assuming
that every argument oÍ a player agent is Kp(player);

o Op(player) returns the player's opposer, i.e. Op(p) returns o whereas Op(o)
returns p;

. Un(L,(a, Seq)) returns the set of "unknown conclusions" Li of (4, Seq), i.e.

every objective literal La € Conc(S"q) (cf. Def. 39 in Section 3.2) for which
there is no rule Lr *- Body rn Seq. {L} : Un(L, (", [));

o Assump is a set of objective literals such that not Assump : Assump§"q").
Assump(Seql) returns the set of all default literals appearing in the bodies
of rules tn SeqT (cf. Def. 39 in Section 3.2);

. Atts((a, Seqr,),plager) returns the set of a1l possible "conclusions" against
the argument for L. If Kp(player): s then Atts(A,player) : Assump else

Atts : {-L, Íalsity} t-t Assump;

o an argument CA attacks an argument Á (cf. Def.61 in Section 3.2);

o Á is acceptableo,, w.r.t. Argue, (cf. Def. 63 in Section 3.2).

A negotiation process starts when an agent o receives an ask(-L) for an ob-
jective literal tr from an external agent11. If a has only a local partial argument
PAfor.L then a starts a cooperative process for PA, as proponent, by send-

ing the message ask(a,Li,p) for every objective literal Li e Un(L,PA) to every
p e Cooperateo. When o has a complete local argument Á for L - built by itself
or via cooperative process for L - then a starts an argumentative process for
-4, as proponent, by sending the message propose(a, L, A,p) to every B e Argueo;

11An external agent does not belong to the Multi-agent Setting



I26CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATIOI{

otherwise, o sends to the external agent a replE(L,none). If the argumentation
process succeeds then a sends to the external agent a reply(L,Á); otherwise, it
sends a r eply (L , none) .

o Cooperative process (for a local partial argument PA for ,L in a as
plaEer)

A cooperative process succeeds when a obtain a local argument A for L.
A cooperative process finishes when there are no more replies from agents
in Cooperateo. A cooperative process fails when the cooperative process

finished and the agent a does not built any local complete argument f.or L.

- On receipt of an ask(1, L,player): 7 is sign as the aski,ng agent for
L. If o has only a local partial argument PA Íor L then a starts
a cooperative process for PA, as plaEer, by sending the message

ask(a,Li,player) for every objective literal Li e Un(L,PA) to every

B e Cooperateo. When a has a complete local argument Á for tr then
a starts ân argumentative process Íor A, as player, by sending to
every p e Argueo the message Wopose(a, L, A,player).

- On receipt of a reply(P',L,Seqr,player): The agent o tries to com-
plete the local partial argument PA (for L'), i.e. A e plus(PA,Seq1).
If the cooperative process succeeds, o starts an argumentative pro-
cess for A, as player, by sending the message propose(a, L' , A,player)
to every p" e Argueo. lf. the cooperative process fails, o sends to the
aski,ng agent a reply(a, L' ,none,player); otherwise, a waits for other
replies.

- On receipt of a reply(0",L,none)player): If the cooperative process

fails, a sends to the askzng agent a reply(a, L,none,player); otherwise,
o waits for other replies.

. Argumentative process (for a complete argument A in a as player)

An argumentative process succeeds when the argument Á rs acceptableo,o
w.r.t. Argueo. An argumentative process inishes when there are no more
answers from agents rn Argueo. An argumentative process fails when the
argumentative process finished and the argument Á is not acceptablep,o w.r.t.
Argueo.

- On receipt a propose('y,L,A), I is sign as propos'ing agent of Á, and
kp : Kp(o) For every Li e Atts(A,p), if o has only a local ky
partial argument PA f.or ,La then o starts a cooperative process for
PA, as opponent, by sending the message ask(a,Li,o) to every B" Ç



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 127

Cooperateo. When the cooperative process succeeds for PÁ (and so o
has a argument CAf.or Ltlhat attacks Á) then o sends to the proposing
agent an oppose(d, Lt,CA). If the argumentative process fails, a sends

to the proposing agent an agree(a, L, A).

- On receipt of an oppose(7, L, A): 7 is sign as opposing agent of. A,
and kp: l<p(p). For every Lr e Atts(A,o): if o has only a local
kppartial argument PA f.or L; then a starts a cooperative process
Íor PA, as proponent, by sending the message ask(a, L;,p) to every

B' e Cooperateo. When the cooperative process succeeds for PÁ (and
so o has an argument C A for L6 that attacks Á) then o sends to the
opposing agent apropose(d,, Lt.,CA). lfthe argumentative process fails,
a sends to the opposing agent an agree(a, L, A).

- On receipt an agree('y,L,A): If the argumentative process fails, a
sends to the proposing agent an agree(a, L, A); otherwise, waits for
other ânswers.

As already said, a negotiation in a multi-agent setting A: 1Agr,. . . , Agn\ rs

seen as a forest F of trees, where each involved agent ot (1 < i < n) has its own
forest of trees -Fi. Therefore, F : 7rl). . .Otn. Given the relation of our semantics
with the well-founded semantics, it is natural that the structure of these forests

are chosen to be similar to that of proof-procedures for the well-founded semantics
of normal logic program, that rely on tabling techniques [Swi99, APS04]. In these,

the nodes of the trees are either regular nodes of the form

N e g oti abl e Lit er al : - D el ay Li,stl Lit er al Li st

or failure nodes of the form f ail. A Negoti,able Literal of an agent a f.or L x ky
player is a tuple 1a,kp,L,Seq ) such that kp € {p,o}, and,Seq is an available
argument f.or L from a's set of available arguments (cf. Def. 59). Elements of
DelayL'ist arrd L'íteralLi,st arc either objective or default literals. The literals in
lhe Li,teralLi,st are the ones that are yet left to be resolved in order to determine
the truth value of the Negoti,ableLi,terals. The DelayLi,st is used to deal with
loops, in a way similar to that of tabling. This list contain literals whose evaluation
has been deiayed in order to avoid loops.

A negotiation of the truth value of an objective literal .L started by an agent
a is then represented by a tree 7 with root node ( a,kp,L.,l] >, -1tr where
kp e {p,o} indicates if o is a proponent or an opponent agent. We then say that
Tisa kptree for-Lof a. The negoti,ableli,teral reflectsnobindingsto.Lthen,Seq
is an empty argument for it, Lhe DelayLi.st ts empty, and the Li,teralLi.sú is the
corresponding literal. Therefore, a single kp tree T in a sets up the negotiation
process for tr where agent o is a kp-player.



T\SCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIATIOAT

To evaluate the truth value of the literal L in a NegotiableLiteral we must
evaluate all literals in both DelayL'ist and Li,teralLi,st. The evaluation consists
of starting either an argumentative or a cooperative dialogue for every literal in
Li,teralL'ist. When a literal is selected that has been called before, we are in
presence of a potential loop. In this case, as in tabling procedures, the literal is
delayed (and added to the DelagL'ist). Delayed literals can then either be solved
with solutions obtained in the corresponding tree with that literal as root, and
remain delayed until it is determined that no more solutions exist for that literals.
This determination can be obtained by so called "table completion algorithms"
that are well know for tabling procedures in logic programming [Swi99]. We rep-
resent a delayed literal as a tuple < 13, L ) such fhat 0 is the argumentative (resp.
cooperative) agent that will evaluate the truth value of the default literal (resp.
build an argument for the objective) ,L.

During the negotiation process, the agent o receives either opposes or âgrees
(resp. replies) for each default (resp. objective) Iiteral proposed (resp. asked) to
Argueo (resp. Cooperateo). In such câses, the answers will be evaluated and the
corresponding delay literal may be removed from DelayLi,st. A regular leaf node
N with an empty LiteralL'isú means that a1l literals were evaluated, and such a
node is called an ânswer. If the DelayLi,st of ,n/ is also empty, meaning that all
delayed literals were evaluated, ly' is called an uncond'it'ional ansuer; otherwise, .ôy'

is called a condi,ti,onal answer. In case of being a conditional answer, each tuple
< P, L > on DelayLi,st indicates that the argumentative (resp. cooperative) agent

B does not agree with (resp. reply) .L and so the next node will be a failure node.

On the implementation of the system

For implementing a system for the above sketched procedures, we propose an
architecture which is based upon on three toolkits, viz. JGroups lBea}2), In-
terprolog [Ca10 ], and XSB Prolog [SW07]. Since we have two kinds of groups
in a multi-agent setting, viz. argumentative agents and cooperative agents, the
corresponding argumentation-based negotiation system should deal with the cre-
ation and the control of both groups and their membership. Furthermore) the ex-
change of messages between either argumentative and cooperative agents should
be reliable. We choose JGroups [Bea02], a toolkit for building reliable group
communication for Java applications. JGroups permits agents' communication
in Local Area Networks (LAN) or Wide Area Networks (WAN), the delivery of
messages to every involved agent. New agents or crashed agents are handled re-
spectively in the sets of argumentative and cooperative agents. We implement
the argumentation-based negotiation framework in XSB Prolog [SW07]. XSB is
an open source logic programming system that extends Prolog with new semantic
and operational features, mostly based on the use of Tabled Logic Programming



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS I29

or tabling, see e.g. [CW96, Swi99]. The use of such a resource permits, during
a computation of a goal G, where G <- Bodg is a rule in a logic program, each

'subgoal' S e Body to be registered in a table the first time it is called, and unique

answers to S to be added to the table as they are derived. When subsequent calls

are made to ,S, the evaluation ensures that answers on ,S are read from the table
rather than being re-derived using program clauses. Thus, a first advantage of
tabling is that it provides termination to a logic program; more details about such

a toolkit will be presented in the remainder of this chapter. Since Jgroups is im-
plemented in Java language, we need an intermediate level between JGroups and

XSB, to map Java objects to Prolog terms (and vice-versa). Interprolog [Cal0a]
is a toolkit for developing Java * Prolog applications, which provides an applica-

tion program interface (API) for directly mapping Java objects to Prolog terms.
Furthermore, Interprolog supports a Prolog process through the API.

Therefore, the proposed architecture for the implementation of the argumenta-
tion-based negotiation system is composed of a network communication layer and

an inference engine. Figure 4.6 illustrates such an architecture. The network
commun'icati,on lager is based on the toolkit JGroups for building reliable group

communication. The i,nference engine is based on the toolkit Interprolog, the
middleware for Java and Prolog, which provides method/predicate calling be-

tween both. Finally, lhe goal-i,nterpreter is the XSB System, which computes the
argumentation-based negotiation's Prolog implementation over an agent's knowl-
edge base. In the remainder of this section we provide some details on the com-

munication layer, and its connection to the XSB inference engine.

A Network Communication Layer As already said, since the argumentation-
based negotiation system should deal with both groups of argumentative and co-

operative agents in a multi-agent setting, the network communication layer should
guarantee both creation and control of such groups. Furthermore, the exchange

of messages between group members should be reliable. We therefore propose a

communication network layer by using the toolkit JGroups. JGroups is a reliable
group communication toolkit written entirely in Java. It is based on IP multicast,
but extends it with reliability and group membershrp. Reliabi,l'dúgr includes (among

other things): (1) lossless transmission of a message to all recipients (with retrans-
mission of missing messages); (2) fragmentation of large messages into smaller
ones and reassemble at the receiver's side; (3) ordering of messages (FIFO order);
(4) atomicity, i.e. â message will be received by all receivers or none. Group
Membershzp includes (1) knowledge of who the members of a group are, and (2)

notification when a new member joins, an existing member leaves, or an existing
member has crashed



T3OCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA?IOAT

Figure 4.6: An Architecture for Argumentation-based Negotiation

Network Communication Layer

Application PrograD InterÍace

User Interface

Goal-IDterpreter

Argümenlrlion-bâsed Negotieliotr's Prolog Íules

Inference Engine

J
L ÍulasKtrowledge Bes's

Agent



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 131

Unreliable Reliable
Unicast UDP TCP

Multicast IP Muiticast JGroups

In unicast communication, where one sender sends a message to one receiver,

there is UDP and TCP. UDP is unreliable, packets may get lost, duplicated, may
arrive out of order, and there is a maximum packet size restriction. TCP is also

unicast, but takes care of message retransmission for missing messages, weeds

out duplicates, fragments packets that are too big and present messages to the
application in the order in which they were sent. In the multicast case, where one

sender sends a message to many receivers, IP Multicast extends UDP: a sender

sends messâges to a multicast address and the receivers have to join that multicast
address to receive them. Like in UDP, message transmission is still unreliable, and

there is no notion of membership (who has currently joined the multicast address).

JGroups extends reliable unicast message transmission (like in TCP) to multi-
cast settings. As described above it provides reliability and group membership on
top of IP Multicast. Since every application has different reliability needs, JGroups
provides a flexible protocol stack, which allows developers to adapt it to match
their application requirements and network characteristics exactly. Furthermore,
by mixing and matching the available protocols of JGroups, the requirements of
our argumentation-based negotiation system are satisfied. Moreover, since proto-
cols are independent of each other, they can be modified, replaced or new ones

can be added, improving the modularity and maintainability of our system. The
chosen protocol stack for the argumentation-based negotiation system is as follows:

o the transport protocol uses TCP (from TCP/IP) to send unicast and mul-
ticast messâges. In the latter case, each message to the group is sent as

multiple unicast messages (one to each member). Due to the fact that IP
multicasting cannot be used to discover the initial members, another mech-
anism has to be used to find the initial membership. The TCPPING uses

a list of well-known group members that TCP solicits for initial member-
ship. So, TCPPING determines the initial membership and denotes it as

the coordinator of the group. Every request to join will then be sent to the
coordinator;

o to add loss-less transmission) we choose the "Negative Acknowledgement
Layer" protocol (NACKAC). NACKAC ensures message reliability and "First
In First Out" (FIFO). Message reliability guarantees that a message will be

received. If not, the receiver will request retransmission. FIFO guarantees

that all messages from sender P will be received in the order P sent them;

o the "Group Membership Service" (GMS) provides for group membership.



|3ZCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA?IOIú

It allows the system to register a callback function that will be invoked
whenever the membership changes, e.g. a member joins, leaves or crashes;

o the "Failure Detector" (FD) and the "Distributed Message Garbage Collec-
tion" (STABLE) are needed by the GMS to announce crashed members.

The API of JGroups is very simple and is always the same, regardless of how
the underlying protocol stack is composed. To send/receive messages, an instance
oÍ Channel has to be created. Channels are the means by which member processes

in a group can communicate with each other; they are used to send and receive
messages and views of a group. A channel represents a single member process;
at any point only a single process can be connected to a channel. When a client
connects to a channel, it indicates the group address (usually the name of the
group) it would like to join. Thus, a connected channel is always associated with
a particular group. The GMS takes care that channels with the same group name
find each other: whenever a client, given a group name, connects to a channel,
then the GMS tries to find existing channels with the same group name and joins
them; the result is a new view being installed (which contains the new member).

The channel's properties are specified when creating it, and this causes the
creation of an underlying protocol stack. All protocol instances are kept in a linked
list (i.e. the protocol stack), where messages move up/down. The reliability of
a channel is specified as a string; we choose the transport protocol TCP with
TCPPING and so the channel's properties should look like as follows:

"TCP(start-port=7800) : " +
,'TCppING (initial_hosts=HostA [7800] , HostB [7900] ;port_range=S; ,r+

"timeout=5000 ; num-initial-members=2 ; up_thread=true ; "*
"down-thread=true) : " + . . .

which means that HostA and HostB are designated members that will be used by
TCPPING to look up the initial membership. The property start-port in TCP
means that each member should try to assign port 7800 to itself. If this is not
possible, it will try the next higher port (7801) and so on, until it finds an unused
port. TCPPING will try to contact both HostA and HostB, starting at port 7800
and ending at port 7800 + port-range (in the above example, it means ports 7800
- 7804). Assuming that at least HostA or HostB is up, a response will be received.
To be absolutely sure to receive a response, all the hosts on which members of the
group will be running should be added to the configuration string.

The state transition of a channel is described in the following. When a channel
is first created, it is in an unconnected state. An attempt to perform certain
operations which are only valid in a connected state (e.g. send/receive messages)

will result in an exception. After a successful connection by a client, the channel



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 133

status moves to a connected state. Then channels will receive messâges, views and

suspicions from other members; they may also send messages to other members
or to the group (getting the local address of a channel is guaranteed to be a valid
operation in this state). When the channel is disconnected, it moves back to an

unconnected state. Both connected and unconnected channel may be closed, which
makes the channel unusable for further operations. Any attempt at closure will
result in an exception. When the channel is closed directly from a connected state,
it will first be disconnected, and then closed. The basic methods to use a channel
is presented in the following:

To join a group, the method

public void connect(String groupName) throws ChannelClosed

should be called. It returns when the member has successfully joined the group,
or when it has created a new group (if it is the first member, it is denoted as

coordinator of such a group).
Then a message is sent using the method

public void send(Message msg) throws ChannelNotConnected,
ChanneICIosed

such that msg conlains a destination address, a source address and a byte buffer.
The destination should be either an address of the receiver (unicast) or null (mul-
ticast). When rt, rs null, the message will be sent to all members of the group
(including itselfl2). If the source address rs null, it will be set to the channel's
address, and so every recipient may generate a response and send it back to the
sender. A String object is set to be the message's contents and it is serialised into
the rnsg's byte buffer.

A channel receives messages asynchronously from the network and stores them
in a queue. When the method

public Object receive(Iong timeout) throws ChannelNotConnected,
ChannelClosed, Timeout

is called, the next available message from the top of the queue is removed and
returned. When there âre no messages in the queue, the method will be blocked.
If timeout is greater than 0, it will wait the specified number of milliseconds for a
message to be received, and throw a Timeout exception if none is received during
that time. If the timeout is 0 or negative, the method will wait indefinitely for the
next available message.

The member disconnects from the channel by using the method

l2Unless the channel option LOCAL is set to 'false'



IS4CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA?IO.NI

public void disconnecto

and the consequence is that the channel removes itself from the group membership.
This is done by sending a leave request to the current coordinator (e.g. the first
member of the group). The coordinator will subsequently remove the channel's
address from its local view, and send the new view to all remaining members of
the group.

Finally, to destroy a channel instance, the method

public void closeo

is used. It moves the channel to a closed state, in which no further operations are

allowed.
The following code illustrates how to use such methods:

String props="lJDP: FD: NAKACK : STABLE: GMS" ;

Message send_nsg;
Obj ect recv_rtrsg;

Channel channel=new JChannel(props) ;

channel connect ( "MyGroup" ) ;

send-msg=new Message (nuII, nuII , "Hello I'lorld" ) ;

channel . send (send-msg) ;

recv-msg=channel . receive (0) ;

System.out.println("Received " + recv-msg) ;

channel.disconnectO;
channel.closeO;

Channel provides asynchronous message sending/reception, somewhat similar
to UDP. A message sent is essentially put on the network and the metho d send)
will return immediately. Conceptual requests, or responses to previous requests,
ate received in an undefined order, and the application has to take care of matching
responses with requests. Also, an application has to retrieve messages actively from
a channel (pull-style), i.e. it is not notified when â message has been received. Note
that pull-style message reception often needs some form of event-loop, in which a

channel is periodically polled for messages. However, JGroups has a bui,ldi,ng blocks
package which provides more sophisticated APIs on top of a channel. Building
blocks either create and use channels internally, or require an existing channel to
be specified when creating a building block. Applications communicate directly



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 135

with a building block, rather than with a channel. Therefore, an application
programmer does not need to write, for instance, a request-response correlation.

The PullPushAdapter belongs to the building blocks package, and it is a con-
verter between the pull-style of actively receiving messages from the channel and

the push-style where clients register a callback, which is invoked whenever â mes-

sage has been received. Clients of a channel do not have to allocate a separate

thread for message reception, they have to implement lhe'interface MessageLi,s-

tener:

public interface Messagelistener {
public void receive(Message msg);
byte[l getStateO;
void setState(byte[J state) ;

)

whose method rece'iue) will be called when â message arrives. Both methods
getstate) and setstate) are used to fetch and set the group state (e.g. when
joining). Furthermore, clients interested in being called when a message is received

should register with the PullPushAdapter using the method

public void registerlistener(java. io. Serializable identifier,
Messagelistener I)

which sets a listener to messages with a given identifier; through this identifier,
the header will be routed to this listener. The Membershi,pLi,stenerinterface rs

similar to the above interface: every time a new view, a suspicion message, or
a block event is received, the corresponding method of the class implementing
Membershiplistener will be called.

public interface Membershiplistener {
public void viewAccepted(Viewnew-view) ;

public void suspect(0bject suspected-mbr) ;

public void blockO;
)

When a client is interested in getting a view, suspicion messages and blocks, then
it must additionally register as a Membershi,pLi,stener using the method

public void addMembershiplistener(Messagelistener 1)

and whenever a view, suspicion or block is received, the corresponding method will
be called. Often, the only method containing any functionality will be a'iewAc-

cepted), which notifies the receiver that a new member has joined the group



IS\CHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA?IOAI

or that an existing member has left or crashed. The suspect) callback is in-
voked by JGroups whenever a member is suspected of having crashed. The block
method is called whenever the member needs to stop sending messagesl3. FiS-
ure 4.7 illustrates how pullPushAdapter runs with both application and channel.
It constantly pulls messages from the channel and forwards them to the regis-
tered listeners. Thus, an application does not have to actively pull for messages;

the PullPushAdapter does this for it. However, the application has to access the
channel directly if it wants to send a message.

Connection to the Inference Engine Interprolog is a middleware for Java and
Prolog, providing method/predicate calling between both. Interprolog's innovation
is its mapping between (serialized) Java Objects and their Prolog specifications,
propelled by the Java Serialization API which does most of the work of the Java
side. The Prolog side is built upon a "Definite Clause Grammar" (DCG)14 that
analyses/generates (the bytes of) serialized objects (Figure 4.8 illustrates this).
Furthermore, InterProlog supports multiple Prolog threads and it is compatible
with ISO Prolog. Despite having such a feature, the proposed architecture for
argumentation-based negotiation has only one goal-interpreter and so only one
thread is needed.

Interprolog defines that each Prolog System has a specific PrologÜngine where
most system-dependent knowledge is. The PrologEng'ineis the'heart'of InterPro-
log, it represents a Prolog machine instance. Since PrologEngine is an abstract
class, we should choose one of its subclasses. Nati,ueUngine is a XSB Prolog en-
gine implemented using Java Native Interface; this subclass depends on the XSB
Prolog package, and so the file path to the directory containing the Prolog binary
must be specified. The following fragment allows a Java Progammer to use XSB
Prolog, consult a Prolog file, and perform a simple query:

PrologEngine engine = new NativeEngine( xsbD:.r );
if ( !engi-ne.counand(" ["+f i1e+"] ") ){

Systen.out.println( "ERROR: to read the Prolog prograln "+file );
) else try{

Object[J bindings =

engine.deterministicGoal( "father(X, john) ", " [string(X)] " ) ;

if( bindings!=nu1l ){
l3The block) callback is only needed by the Virtual Synchrony suite of protocols; otherwise,

it will never be invoked. For details see [Bea02].
14DCGs are a special notation provided in most Prolog systems which provide a convenient

way of defining grammar rules. The general form of each DCG clause is Head - - > Body
meaning "a possible form for Headis Body" such that both Head and Body are Prolog terms
and -- > is an infix operator.



4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS I37

Application

PullPushAdapter

Channel

Protocol Stack

Figure 4.7: PullPushAdapter

View ReceiYe

\

ê
ó

Send



T3SCHAPTER 4. A PROPOSAL FOR ARGUMENTATION-BASED NEGOTIA"IOAT

Figure 4.8: Interprolog as a middleware for Java and Prolog

String X = (String) bindings [0] ;

System. out.println( "The f ather of john is "+ X ) ;

)

The metho d command) exeoúes a Prolog predicate with no other result than suc-
cess/failure and the method determ'in'isticGoal) is useful when we are constructing
objects from Prolog, but do not need to pass any information to Java.

Jrvr

all
Serirlzrtior

lntôDroloB

ObiEtStresm byte§

Obiect

Nêtuork itr

- Mêmory
Prolog

Terh

obieú(clrss(...)...ditr)



Chapter 5

Related Work

According to The Uses of Computational Argumentati,on (2009), argumentation is
a form of reasoning in which explicit attention is paid to the reasons for the con-
clusions that are drawn and how conflicts between reasons are resolved. Explicit
consideration of the support for conclusions provides a mechanism, for example,

to handle inconsistent and uncertain information. Argumentation has been stud-
ied both at the logical level, as a way of modelling defeasible inference, and at
the dialogical level, as a form of agent interaction. Argumentation has long been

studied in disciplines such as philosophy, and one can find approaches in computer
science from the 1970s onwards that clearly owe something to the notion of an

argument. Work on computational argumentation, where arguments are explicitly
constructed and compared âs a means of solving problems on a computer, first
started appearing in the second half of the 1980s, and argumentation is now well
established as an important sub-field within Artificial Intelligence. According to
Argument, D'ialog and Deci,si,on (2070), since the work of John Pollock, Ronald
Loui and others in the eighties, argumentation has proven to be successful in non-
monotonic logic. In the nineties, Dung and others showed that argumentation
is also very suitable as a general framework for relating different nonmonotonic
logics. Finally, in recent years argument-based logics have been used to facili-
tate reasoning and communication in multi-agent systems. Argumentation can be

studied on its own, but it also has interesting relations with other topics, such as

dialogue and decision. For instance, argumentation is an essential component of
such phenomena as fact finding investigations, computer supported collaborative
work, negotiation, legal procedure, and online dispute mediation.

In the following we relate our work with proposals in semantics of abstract
argumentation systems, defeasible reasoning, and argumentation-based negotia-
tion. The section Semanti,cs of Abstract Argumentation SEstems evaluates some

extended-based semantics presented by a recent overview in [BG09]. The section
Defeasi.ble Reasoni.ng is related with work presented in Chapter 3. This section

139



140 CHAPTER 5. RELATED WORK

provides complementary information of Chapter 2, and our intention is to evaluate
approaches presented by [GDS09], a recent overview of Defeasible Reasoning and
Logic Programming. The last section, Argumentation-based Negoti,ation, rs related
with work presented in Chapter 4 and we focus our attention in preference-based
argumentation frameworks.

5.1 Semantics of Abstract Argument Systems

An abstract argumentati,on sEstem oÍ argunxentati,on framework, as introduced by

[Dun95], is simply a pair < A,R > consisting of a set "4 whose elements are called
arguments and of a binary relation R on "4 called attack relat'ion. Moreover, an
abstract argument is not assumed to have any specific structure but it is anything
that may attack or be attacked by another argument. Similarly, the attack relation
has no specific meaning: if an argument b attacks another argument a, denoted by
(Au,A"), this means that if ô holds then a cannot hold. Furthermore, given that
arguments may attack each other, it is clear that they cannot stand all together
and their status is subject to evaluation. The evaluation process (in abstract
argument systems) concerns the justification state of arguments. Intuitively, an
argument is justified if it has some way to "survive" the attacks it receives; it is
not justified (it is rejected), otherwise.

An argumentat'ion semantics is the formal definition of a method (either declar-
ative or operational) ruling the argument evaluation process. Two main styles of
argumentation semantics definition can be identified in the literature: ertens'ion-
based and labelli,ng-based. In an extension-based approach a semantics definition
specifies how to derive from an argumentation framework a set of ertens'ions. An
extension .E of an argumentation framework < A,R > is simply a subset of "4
representing a set of arguments which are "collectively acceptable". In â labelling-
based approach a semantics definition specifies how to derive from an argumenta-
tion framework a set of labelli,ngs. A labelling / is the assignment to each argument
in "4 of a label taken from a predefined set L, which corresponds to the possible
alternative states of an argument in the contex of a single labelling.

[8G09] shows that for a given argumentation framework one or more exten-
sions (labellings) may be prescribed by a given semantics. If a semantics ,S al-
ways prescribes exactly one extension (labelling) for any argumentation framework
(where the semantics is defined) then ,S is said to belong to the unique-status (or
single-status) approach; otherwise, it is said to belong to the multi,ple status ap-
proach. Furthermore, from an historical point of view, [8G09] distinguishes several
extension-based argumentation semantics as follows:

o Four "traditional" semantics, considered in [Dun95]'s argumentation pro-
posal, namely complete, grounded, stable, and preferred semantics. An over-



5.1. SENIANTICS OF ABSTRACT ARGUMENT SYSTEMS L4L

view of them is done in Chapter 2.

o Subsequent proposals introduced by various authors in the literature, of-

ten to overcome some limitations or improve some undesired behavior of
a traditional approach, namely stage, semi,-stable, 'ideal, CFZ, and prudent
semantics.

Grounded, i,deal, and prudent semantics belong to the unique-status approach.

Since our proposal follows the unique-status approach we will focus our attention
on these semantics.

Grounded Semantics As already said, we follow the grounded semantics. Our
results and comparison with such this proposal are presented in Chapter 3.

There, we relate our results to the grounded (skepti,cal) ertens'ion (cf. Theo-
rem 36).

Ideal Semantics The ideal semantics [DMT06] aliows the acceptance of a set of
arguments possibly larger than is case with grounded semantics, as shown

by Example 39 (adapted from [8G09]). First, the definition of the semantics

is presented:

Definition 68 (Ideal Semantics) Let AF :1 A,R > be an argunxen-

tati,on framework, EqR(AF) be a set of preferred ertens'ionsr of AF, and

S c A. S'is an ideal set i,ff S i,s admi,ssi,blez andvÜ e EqR(AF) S ç E.
The ideal extension i,s the marimal (w.r.t. set i,ncluston) ideal set.

Example 39 Let AF :1 A,R > be an argumentat'ion framework such that

A: {A", A6, A., Aa}
R : {(A", Ao), (Ao, A,), (A,, A.), (Au, A"), (A", Ao), (Ao, A.)}

The grounded ertension i,s A. S'ince EqR(AF) : {{A",Aa},\Ao,Ao}}, the

i,deal ertens'ion 'is {Ao}. As already proued, our (centrali,zed) argumentati,on

framework has the same results as the grounded semant'ics.

We then adapt the aboue AF to A: {Agr, Ag2) such that

1A preferred extension of Á is as large as possible and able to defend itself from attack. For
further details see Definition 16 on Section 2.2.

2For details see Definition 14 on Section 2.2.



142 CHAPTER 5. RELATED WORK

such that Ag cooperates w'ith Ag2 (and ui,ce uersa), and the arguments that
attack each other are'in the same agent. We show that any other d'istribution
of such arguments has the same result for thi,s "configuratr,on" of A. We
defined that, for a g'iuen agent a 'in a mult'i-agent setting A, an agent p e
Cooperateo cooperates wi,th an auai,lable argument A (rÍ. Def.59) under
one of the followi,ng condi,ti,ons: (i) A is not attacked bg anE argument from
ArgueB, or (i,t) A r,s attacked, but eaery attacki.ng argument (cf Def.60)
B agai,nst A i,s attacked by som,e argument from ArgueB. In both cases,

A is conszdered a defensible argument (cf. Def.62). Besi,des of the fact the
arguments for a, b, c, and d are'inuolued'in "mutual attack", those arguments
are used'in a cooperat'ion process. Then, the arguments for o", b, c, and d are
defensibleil! (k e {s,u}) i,n both agents.

Therefore, the ideal semantics allows the acceptance of a set of arguments
possibly larger that our (distributed) argumentation-based negotiation when
every agent cooperates with all agents rn A. However, we obtain different
results for any other configuration of sets of argumentative and cooperative
agents. In the conclusion of this chapter we present such configurations.

Prudent Semantics The family of prudent semantics [CMDM05] is introduced
by considering a more extensive notion of attack in the context of traditional
semantics. In particulâr, an argument Ao i,ndi,rectly attacks an argument Á6 if
there is an odd-length attack path from Ao to Á6. The odd-length path does
not need to be the shortest path and include cycles. A set ,9 of arguments
is free of indirect conflicts, denoted by i,cf (S),1Í EA.,A6e S such that Áo
indirectly attacks Á6. The prudent version of traditional grounded extension
is defined as follows:

Definition 69 Let AF :1 A,R > be an argumentat'ion framework. The

functi,on Ff,, : 2A -+ 2A such that for a gi,uen set S C A, FX..G) :
{A" I A" i,s acceptable w.r.t. S n icf (S U {Á"})} is called a p(rudent)-
characteristi,c function of AF. Let j be the lowest 'integer such that the
sequence (fl"(S))o(A) i,s stationary for i > j , (fi"(S))o(A) * the grounded
p(rudent)-extension of AF, denoted as GPE(AF).

As Feo, is more restrictive than Fap [Dun95], it follows that the prudent
version of grounded semantics (ÇRP) is a possible strict subset of the tradi-
tional grounded semantics (9r). This entails in particular that reinstatement
is given up by çRP as it can be seen in the following example (adapted from

[BGoe]):



5.2. DEFEASIBLE REASO.IüING 143

Example 4O Let AF :1 A,R > be an argumentat'ion framework such that
A : {A", Au, A., Aa, A.} and R : {(A", Au),(Au, A.),(A., A.),(A., Ao)}.
GE(AF): {Ao,Aa,A.} whereas GPE(AF): {Ao,A.} because Aa'is not
reinstated.

We do not deal with 'indirect attack', and so Fe-, is also more restrictive
than our characteristic function. Since we propose a distributed version of
argumentation, every agent would have to control the 'odd-length attack
path' to obtain similar results to centralized prudent semantics.

5.2 Defeasible Reasoning

According to [GS04], research in Nonmonotonic Reasoning, Logic Programming,
and Argumentation has provided important results seeking to deveiop more pow-

erful tools for knowledge representation and common sense reasoning. Advances in
those areas are leading to important and useful results for other areas such as the
development of intelligent agents and multi-agent system applications. Therefore,

"Defeasible Argumentation is a relatively young area, but already ma-
ture enough to provide solutions for other âreas. Argumentative sys-

tems are now being applied for developing applications in legal systems,

negotiation among agents, decision making, etc" [GS04]

Nute was the first to introduce the Logi,c for Defeasi,bLe Reasoning [Nut94]
(LDR), a formalism that provides defeasible reasoning with a simple representa-
tional language. Aithough LDR is not a defeasible argumentation formalism in
itself, its implementation - d-Prolog - defined as an extension of PROLOG, was

the first language that introduced defeasible reasoning programming with speci-
ficity as a comparison criterion between rules. The proposed language has no

default literals, only a literal and its strong negation3. In LDR there are three
types of rules: strict rules (e.g. eTnus are bi,rds), defeasible rules (e.g. b'irds usually

fly) and defeater rules (e.g. heauy ani,mals maE not fl,y). The purpose of defeater

rules is to account for the exceptions to defeasible rules and so they can only be

used to block an application of a defeasible rule. LDR also has defined strict and

defeasible derivations. The former only uses facts and strict rules; in the latter,
a more sophisticated analysis is performed such that if a literal has a defeasibie
derivation then no further analysis is performed. A defeasible derivation cannot

3The strong negation represents contradictory knowledge, and it was introduced by [GL90]
It is also known as "explicit negation".



144 CHAPTER 5, RELATED WORK

be considered as a single argument because it is related to a tree of arguments that
encodes the analysis of all possible attacks and counter attacks.

Pollock's proposal [Po174, Pol87] is another important work in Defeasible Rea-
soning. It introduced an important distinction between two kind of defeat, namely
rebutting defeat (attack on a conclusion) and undercutting defeat (attack on an
inference rule). In [Po195], Pollock has changed the way in which an argument
is warranteda adopting a mult'iple status ass'ignment approachs. Pollock has also
developted a computer progrâm in LISP - OSCAR [Pol96] - where arguments
are sequences of linked reasons) and probabilities are used for comparing compet-
ing arguments. In a way similar to Nute's defeater rules, explicit undercutting
defeaters can be expressed in his language. Differently from Nute's proposal, an
inference graph is used by OSCAR for evaluating the status of arguments.

Dung states that "there are interesting relations between argumentation and
logic programming" [Dun95], and he shows that logic programming can be shown as

a particular form of argumentation. He shows that argumentation can be "viewed"
as logic programming by introducing a general method for generating an interpreter
for argumentation. This method consists of a very simple logic program consisting
of the following two clauses:

acceptable(/) <- not def eated(A).
de f eated(A) <- attack s (A), acceptabl e(A) .

Inspired by legal reasoning, Prakken and Sartor [PS97] introduce an argument-
based formalism f.or ertended logi,c prograrnmi,ng with defeasr.ble pri,ori,ties, designed
as an instance of Dung's abstract argumentation framework with Grounded seman-
tics. In their formalism, arguments are expressed with both strong and default
negation. Conflicts between arguments are decided with the help of priorities on
the rules. These priorities can be defeasible derived as conclusions within the
system. Its declarative semantics is given by a fixed point definition. Since they
are inspired by legal reasoning, a proof of a formula takes the form of a diaiogue
between a proponent and an opponent: an argument is shown to be justified if the
proponent can make the opponent run out of moves in whatever way the opponent
attacks. Proponent and opponent have different rules for introducing arguments,
leading to an asymmetric dialogue. As already said, we follow Dung's and Prakken
and Sartor's proposal. An overview of these proposals is done in Section 2.3.2, and
our results and a comparison are presented in Chapter 3. Then:

o We generalize [PS97]'s definition of argument by proposing two kinds of
arguments, viz. strong ârguments and weak arguments. Having two kinds of

aThe terminology varies in the literat:ue: justified, vs warranted, ouerruled vs defeated, defen-
si,ble, elc.

5Uniqre- and multiple-status assignments for arguments are presented in Chapter 2, and
analyzed in depth in [PV02].



5.2. DEFEASIBLE REASONIIúG t45

arguments, attacks by rebut do not need to be considered. Simply note that
rebut is undercut against weak arguments. Therefore, rebut is not considered
in our proposal since, as already shown in [SdAMA97, dAMAg8b, SS02b], it
can be reduced to undercut by considering weaker versions of arguments.

o We extend [PS97]'s argumentation-based semantics for ertended logi,c pro-
grams to deal with denials.

o Similarly to [Dun95, PS97] we formalize the concept of acceptable arguments
with a fixpoint operator. However, the acceptability of an argument may
have different results and it depends on which kind of interaction between
(strong and weak) arguments is chosen. Therefore, our argumentation se-

mantics assigns different levels of acceptability to an argument and so it can
be justified, overruled, or defensible. Moreover, a justified argument can be

contradictory, based on contradiction, or non contradictory. Consequently,
the truth value of an literal can be true (and either contradictory, based on
contradiction, or non contradictory), false, or undefined.

Garcia's proposal of Defeasible Logic Programming [Gar00] (DeLP), is a for-
malism which combines results from Logic Programming and Defeasible Argumen-
tation. DeLP provides the possibiiity of representing information in the form of
"weak rules"6 in a declarative manner, ând a defeasible argumentation inference
mechanism for warranting the entailed conclusions. DeLP considers two kinds of
program rules, viz. defeasible rules and strict rules. A defeasi,ble rule express that
reasons to beli,eue i,n the antecedent (Body) proui.de reasons to bel'ieue i,n the conse-

quent (Head), and it is used as a tentative information that may be used if nothing
could be posed against it; and a strict rule is used to represent non-defeasible in-
formation. Therefore, defeasible rules are used for representing weak or tentative
information, like "a mammal does not fly" or "usually, a bird can fly"; and strict
rulesT are used for representing strict (sound) knowledge, like "a dog is a mammal"
or "all penguins are birds"

The DeLP language is defined in terms of three disjoint sets: a set of facts,
a set of strict rules, and a set of defeasible rules; and both strict and defeasible
rules are ground. A DelP-program [GS04] is denoted by a pair (n, A) such that
fI is a set of facts and strict rules, and A is a set of defeasible rules. A derivation
from (fI,0) is called strict deri,uation; otherwise it is a defeasi,ble deriuation. A
DelP-query for a ground literal Q succeeds if it is possible to build an argument
Á that supports Q, and A is found to be undefeated by a warranted procedure.
The warranted procedure evaluates if there are other arguments that counter-argue

6Weak rules were proposed by [Pol95] and they are used to represent relations between pieces

of knowledge that could be defeated after all things are considered.
TSyntacticly, strict rules correspond to basic ruleslL1f96l.



146 CHAPTER 5. RELATED WORK

or attâck Á (or a sub-argument of Á). In order to verify whether an argument
is non-defeated, all of its associated counter-arguments have to be verified, each

of them being a potential reason for rejecting Á. Then it is established an argu-
ment comparison criteri,on based on generalized specificity, e.g. a more "precise
argument" is preferred.

DeLP accepts that (II, A) can have contradictory information but it does not
derive contradictory literals, i.e. neither a literal nor its strong negation are war-
ranted. DeLP has four possible answers for a literal tr: Aesl no) undec'ided or
unknown. The first means that L is warranted; lhe second means the strong
negation of .ú is warranted; the third one is related with a contradiction detected
between both -L and its strong negation; and the last one is related with incomplete
information about I. Moreover, every literal in the Body of a defeasible rule may
be undecided if the Head is contradictory. Therefore, every literal involved with
some kind of contradiction ts undecr,ded.

According to [Pra09], in both [Nut9 ]'s and [Gar00]'s proposals - respec-
tively LDR and DeLP systems - the logic language is restricted in logic program-
ming. LDR is not explicitly argument-based but defines the notion of a proof
tree, which interleaves support and attack. LDR is proven to instantiate ground
semantics [Dun95]. In DeLP the only way to attack an argument is on a (sub-)
conclusion. DeLP's notion of argument acceptability has no known relation to any
of the current argumentation semantics. Nevertheless, we relate our work with
DeLP's proposal [Gar00] as follows:

o As in our proposal, no priority relation is needed for deciding between contra-
dictory literals in DeLP. However, DeLP distinguishes strict and defeasible
rules: only defeasible rules are evaluated. In some sense) it is a kind of
'weak' preference. The definition of a formal criterion for comparing argu-
ments is a central problem in defeasible argumentation. Existing formalisms
have adopted different solutions. Abstract argumentation systems usually
assume an ordering in the set of all possible arguments (eg. [Dun93]). In
other formalisms, explicit priorities among rules are given, so that the con-
flict between two rules can be solved. This approach is used in [Nut9 ]. In
[PS97] it is also possible to reason (defeasibly) about priorities among rules.
An alternative is to use the specificity criterion, and no explicit order among
rules or arguments need to be given. Finally, other formalisms use no pref-
erences [Gar00, GS04], as is also our case. However, it seems clear that the
flexibility offered by our proposal of sets of cooperative and argumentative
agents allows for giving priority to sets of rules over other sets of rules. This
is somehow similar to what is done in preferences in the context of logic pro-
grams. We have illustrated it in examples of Section 4.5, viz. how to model
knowledge over a hierarchy, and also how to model knowledge that evolves.



5.2. DEFEASIBLE REASOI\III\IG t47

Both cases specify priorities between agents' sets of rules.

o Since our ârgumentation is parameterized by the kind of interaction between
arguments, we obtain results ranging from a consistent way of reasoning to a
paraconsistent way of reasoning; the former is more sceptical than the latter
and it has similar results if applied to the DeLP's set of defeasible rules. The
major difference between DeLP and our approach is the way in which contra-
dictory conclusions are treated. DeLP concludes both contradictory literals
from defeasible rules as undec'ided. We assume) in a consistent way, that ev-
ery contradictory literal has to be undefin"ü'- . However, in a paraconsistent
way, we deal with contradiction and a literal may be true and contradictory,
based on contradiction, or non contradictory (for details see Def. 49). So we

may have contradictory literals as (true!- and) contradictory!-. We further
consider the literals that are involved with contradiction but in a different
way, every literal that is both true!- and false!- (and not contradictory?-)
is based-on-contradiction!-, whereas DeLP concludes them as undec'ided.

Undefined!- Iterals are only those which are neither true!- nor false!'
(k e {s,tu}). For better understanding see Example 41.

Example 4L [GDS09] presents the followtng DeLP-program (n,A) wherefl'is a

set of facts and strict rales, and A, 'is a set of defeasi,ble rules.

II : { swi,tch-on(a); swi,tch-on(b); -electrici,ty(b);
night; sunday; deadLi.ne;

-daA <- ni,ght;

-dar k (X) <- illuminated(X)\
A: { li,ghts-on(X) <- swi,tch-on(X);

-li. g ht s -on(X) <- -el ectrici,ta 6) ;

li. g ht s -on(X) <- - el ectr i' ci'ty (X), emer g encA -li, g ht s (X ) ;

dark(X) <- -daA;
i.llumi,nated(X) <- li,ght s -on(X), -doA ;

u or ki.n g -at (X) <- i,lluminated(X) ;

-u or k'ing -at(X) <- sunday ;

uor ki,ng -at(X) <- sunday, deadli,ne\

II has informati,on about tuo rooms, aiz. a and b. There are facts erpress'ing

that i,n both rooms a and b the li,ght swi,tch 'is on, and 'in room b there i,s no electri,c-

i,tg. There are also facts erpressi.ng that i,t'is SundaE ni,ght and that people worki,ng
there haue a deadli,ne. The last stri,ct rule erpresses that an i,llum'inated room i,s

not dark. L, has the defeasi,ble rules that can i,nfer, for instance, whi,ch room'is
'illum'inated orif someone 'is work'ing 'in a parti,cular room. The first rule states
that "reasons to belieue that the li,ght swi,tch of a room is on, prou'ide reasons to



148 CHAPTER 5. RELATED WORK

beli,eue that the li,ghts on that roorn are on". The second rule erpresses that "usually
'if there 'is no electri,c'itE then li,ghts of a room are not on". The thi,rd rule states
that "normally, i.f there is no electri.ci,ty but there are emergencA li,ghts, the li,ghts

w'ill be on". The last two rules state that "normally there 'is nobody work'ing in a

roont. on a Sunday", hoLueuer, "i,f they haue a deadli,ne, people may be work'ing on
Sunday".

In thr,s erample, the l'iterals i.llum'inated(a), worki,ng-at(a), -dark(a), and
dark(b) are warranted. In [GDS09] it is shown that two contrad'ictory l'iterals
triu'ially d'isagree. Thi,s'is the case of uorki.ng-at(a) and -worki.ng-at(a), how-
euer the defeasi,ble dertuat'ion of worki,ng-at(a) 'is consi,dered more precise than

-working-at(a) (it r,s easy to ueri,fy by comparing the bodies of the rules). It is
also shown that two l'iterals L and L' that are non-contradi,ctory can also d'isagree
'if there 'is a derzuat'ion for -L. This 'is the case of i,llumi,nated(a) and dark(a)
because -dark(a). In th'is case, i'llumi,nated(a) is consi,dered more preci,se than
dark(a). Howeuer, 'illumi,nated(b) is not warranted because ne'ither li.ght-on(b) nor
-li,ght-on(b) are warranted (si,nce they are contradi.ctory conclusi,ons). Therefore,
the DeLP-ansuers for i,llum'inated(a), work'ing-at(a), -4q7k(a), and dark(b) are

tnte, the DeLP-answers for -workirtg-at(a), dark(a), and -dark(b) are f.alse, and
the DeLP-answer for i,llum'inated(b), li.ght-on(b), and -li,ght-on(b) are undecided.

To compare DeLP with our proposal, we adapt the aboue erample by consi,deri,ng
that eaerE rule is a defeasible rule, i,.e. P: fI U A. We then show separately the
results for rooms a and b:

o The results of a consi,stent way of reason'ing Íor roorn o" are qu'ite s'imi,lar
to those of DeLP. The li.terals i,llumi,nated(a) and worki,ng-at(a) o,re non-
contradr,ctor#'- , whereas -uorki,ng-at(a) i,s falsei;-. Thi,s happens because

work'ing-at(a) has two arguments supporti,ng r.t, whereas -work'ing-at(a) has

only one. Howeuer, ue detect contradi,ct'ion between dark(a) and -dark(a),
and so both are undefinedi'-.

In a paraconsr,stent uay of reason'ing: 'illumi,nated(a) i,s non-contradi,ctoryP;- ,

whereas -dark(a), dark(a), -uorking-at(a) and worki,ng-at(a) are contra-
di,ctory";- . Therefore, s'ince we haue no comparison criterion as DeLP to
choose between contradi,ctory argurnents, we conclude both as undefinefi'-
or contradi,ctory";- .

o In a cons'istent uay of reason'ing, dark(b) 'is non-contradi,ctorfi'-, -dark(b)
i,s falsS'- , whereas i,llumi.nated(b), li,ght-on(b), -li,ght-on(b) are undefinedi'-
Those results are si,mi.lar to DeLP.

Howeuer, we present dzfferent results by applyi,ng a paraconsi,stent way of
reason'ing: dark(b) 'is non-contradr,ctorE';-. We detect contradi,ct'ion between

li,ght-on(b) and -li,ght-on(b) and so both are contradi,ctory";- . Consequently,



5.3. ARGUMENT-BASED NEGOTIA"IOA/

i.llum'inated(b) i,s based-on-contradi,cti,on";-. Note that such results may "s'ig-
nal" that something'is wrong wi,th roomb. Therefore,'in thi,s case of contra-
di,cti,on ue argue that we present results more'intui,ti,ue than DeLP.

5.3 Argument-based Negotiation

Negotiation has its origin in both Distributed Problem Solving (DPS), where the

agents are assumed to be cooperative, and Multi-agent Systems (MAS), where the
agents are supposed to be moved by self-interest. However, there are also proposals

in MAS of mechanisms for cooperative agents who need to resolve conflicts that
arise from conflicting beliefs about different aspects of their environment. In DPS,

negotiation is used for distributed planning and distributed search for possible

solutions for hard problems. In MAS, an abstract negotiation framework can be

viewed in terms of its negotiating agents (with their internal motivations, decision

mechanisms, knowledge-bases, etc.) and the environment in which these agents
interact.

The multi-agent paradigm offers a powerful set of metaphors, concepts, and

techniques for conceptualizing, designing, implementing, and verifying complex
distributed systems. An agent is viewed in [RRJ+04] as an encapsulated computer
system that is situated in an environment and is capable of flexible, autonomous
action in order to meet its design objectives. Most often, such agents need to
interact in order to fulfill their objectives or improve their performance. Gen-

erally speaking, different types of interaction mechanisms suit different types of
environments and applications. Thus, agents may need mechanisms that facilitate
information exchange, coordination (in which the agents arrange their individual
activities in a coherent manner), collaboration (in which agents work together to
achieve a common objective), and so on. One such type of interaction that is
gaining increasing prominence in the agent community is automated negoti,ati,ons.

Several interaction and decision mechanisms for negotiation in a multi-agent
setting have been proposed and discussed. The three major classes of approaches
applied to multi-agent settings âre game-theoretic analysis, heuristic approaches,

and argumentation-based approaches. A brief review and a comparison of these

three approaches is presented in [RRJ+04]. Those approaches consider the mech-

anism (or protocol), the agent strategies within the rules of the protocol, and the
outcome (i.e. a deal or a conflict over a negotiation set). The latter is the result of
the mechanism and the participant strategies applied in the negotiation process.

In most game-theoretic and heuristic models, agents exchange proposals (r.e.

potential agreements or potential deals). Agents are not allowed to exchange any

749

8In the following we write negotiat'ion for automated negotiation.



150 CHAPTER 5. RELATED WORK

additional information other than what is expressed in the proposal itself. An-
other limitation of conventional approaches to negotiation is that agent's utilities
or preferences are usually assumed to be completely characterized prior to the
interaction. Thus, an agent is assumed to have a mechanism by which it can
assess and compare any two proposals. In more complex negotiation situations,
such as trade union negotiations, agents may well have incomplete information
which limits this capability. Then, the agents might have inconsistent or uncer-
tain beliefs about the environment, have incoherent preferences, have unformed or
undetermined preferences, and so on. To overcome these limitations, the processes
of acquiring information, resolving uncertainties, or revising preferences often take
place as part of the negotiation process itself. A further drawback of traditional
models for negotiation is that agent's preferences over proposals are often assumed
to be proper (in the sense that they reflect the true benefit the agent receives from
satisfying these preferences). Finally, game-theoretic and heuristic approaches as-
sume that agent's utilities or preferences are fixed. One agent cannot directly
influence another agent's preference model, or any of its internal mental attitudes
(e.g., beliefs, desires, goals, etc.) that generate its preference model. A rational
agent would only modify its preferences upon receipt of new information.

We can conclude that the Game-theoreti,c approach and the Heuri,sti,c-based,
approach share some limitations such as (1) agents exchange proposals (potential
agreements or deals) but they are not allowed to exchange any additional infor-
mation to justify such proposals; (2) agent's utilities or preferences are assumed
to be completely characterized prior to the interaction; (3) agents' preferences are
assumed to be proper (i.e. they reflect the truth benefit the agents gets); ( ) both
approaches assume that the agents' utilities or preferences are fixed (i.e. agents
cannot influence on other agents'preference models or internal mental attitudes).
Argumentation-based approaches to negotiation attempt to overcome the above
limitations by allowing agents to exchange additional information, or to argue
about their beliefs and other mental attitudes, during the negotiation process.

An argument-based negotiation protocol [PSJ98] is basically based on the ex-
change of proposals, critiques, counter-proposals, and explanations. It usually
proceeds in a series of rounds, with every agent making a proposal - a kind of
solution to the problem - at each round. One agent generates a proposal and other
agents review it. If some agent does not like the proposal, it rejects the proposal,
and generates a kind of feedback, either as a counter-proposal (i.e. an alternative
proposal generated in response to the initial proposal) or âs a critique (i.e. com-
ments on which parts of the proposal the agents likes or dislikes). Then, every
agent, including the agent that generated the first proposal, reviews the feedback.
Based on the reviewing of the feedback, the proponent may generate a proposal
to lead to an agreement. In addition of generating proposals, counter-proposals,



5.3. ARGUMENT-BASED NEGOTIATIO,Iü 151

and critiques, the agents can make the proposal more attractive by providing ad-

ditional meta-level information in the form of an argument. The process is then
repeated. It is assumed that a proposal becomes a solution when it is accepted

by all agents. Furthermore, argumentation may be used both at the level of an

agent's internal reasoning and at the level of negotiation between the agents, and
where preferences can change. Therefore, argumentation can be seen as a more

sophisticated exchange of information in a negotiation protocol, or as a model for
reasoning based on the construction and comparison of arguments.

According to [RRJ+04], an argumentation-based negotiation is viewed as a
form of interaction in which a group of agents, with conflicting interests and a de-

sire to cooperate, try to come to a mutually acceptable agreement on the division
of scarce resources, not all of which can be simultaneously satisfied. A resource
is understood as commodities, services, time, money, etc. In short, anything that
is required to achieve something. According to Argumentat'ion in Multi,-Agent
Systems (ArgMAS 2010), argumentation can be abstractly defined as the formal
interaction of different arguments for and against some conclusion ("g., u propG-

sition, an action intention, a preference, etc.). An agent may use argumentation
techniques to perform individual reasoning, in order to resolve conflicting evidence
or to decide between conflicting goals. Multiple agents may also use dialectical
argumentation in order to identify and reconcile differences between themselves,

through interactions such as negotiation, persuasion, and joint deliberation. In
Computat'ional Models for Argumentat'ion i,n Multiagent Systems (2005), a multi-
agent system consists of a number of agents, which interact with one-another. In
the most general ca,se, agents will be acting on behalf of users with different goals

and motivations. To successfully interact, they will require the ability to cooperate,

coordi,nate, and negot'iate wfth each other, much as people do. We can conclude
that argumentation provides tools for designing, implementing, and analyzing so-
phisticated forms of interaction in multiagent systems. Moreover, a single agent
may use argumentation techniques to perform its individual reasoning because it
needs to make decisions under complex preferences policies, in a highly dynamic
environment. Therefore, argumentation has made solid contributions to the prac-
tice of negotiation in multi-agent systems.

According to [AC02], the argumentation encopasses two views of arguments:
(i) a local view that intends to give support in favor or against a conclusion,
and (ii) a global view that intends to define acceptable arguments. We follow the
second view, and so we focus our attention on that. Formal argumentation systems
(e.g. [SL92b, \Àe97, Pol01, Dun93, Dun95, PS97]) are characterized by representing
precisely some of these features of argumentation via formal languages, and by
applying formal inferences techniques. The different approaches, which have been

developed for reasoning within an argumentation system, use one of the following



152 CHAPTER 5. RELATED WORK

kinds of acceptability: (i) individual acceptability [EGH95] where an acceptability
level is assigned to a given argument on the basis of the existence of direct defeaters;
or (ii) joint acceptability [Dun93, Dun95] where the set of the accepted arguments
must defend itself against any defeater. These two notions of acceptability have
been most often defined purely on the basis of defeaters. The resulting evaluation of
arguments is only based on the interactions between (direct or indirect) defeaters.
However, other criteria may be taken into account for comparing arguments such
as for instance, preference [AC02], specifity [SL92b], or explicit priorities [PS97].
Below we give a brief overview of proposals that define acceptable arguments, and
draw some comparisons with our work.

The preference-based argumentation approach shows that it is not realistic
to assume that arguments have all the same strength (e.g. [Dun95]'s abstract
argumentation framework) since it may be the case that an argument relies on
certain information, while another argument is built from less certain ones. The
former argument has to be stronger than the latter. Therefore, preferences have
been introduced into argumentation theory to solve conflicts where a preference
relation captures differences in arguments' strengths. An extension of Dung's
framework [AC02] is proposed as a preference-based argumentation approach. The
idea behind this extension is that an attack from an argument a to an argument
b fails if b is stronger than o. To do so, it takes as input a set Arg of arguments,
an attack relation R, and a (partial or total) preordere ). This preorder is a

preference relation between arguments. The expression (a, b) €> or a ) b means
that the argument a is at least as strong as b. The symbol > denotes the strict
relationassociatedwith2. Indeed, a>b iffo) bandnot (b> 

").Fromthe two relations R and ), â new binary relation, Def , is defined as follows:
a Def b ifr aRb and not (b > "). This means that among all the attacks in
7?, only the ones that hold between incomparable and indifferent arguments and
the ones that agree with the preference relation are kept. In order to evaluate
the acceptability of arguments, Dung's acceptability semantics are applied to the
framework 1 Arg,DeÍ >. [AV09] shows that this proposal gives unintended
results with the following example:

Example 42 Let us to consider the case of an agent uho wants to buE a gi,uen u'i-

olin. An erpert saEs that the ui,oli,n'in quest'ion i,s produced by Strad'iuari. (s), that's
whE it is erpensiue(e <- s). Thi,s agent has thus an argument a1 whose conclus'ion
'is "the ui,olin 'is erpensiue". Suppose now that the ?-Eears old son of thi,s agent
says that the utol'in was not produced bE Stradi,uari, (-s). Thus, an argument a2

whi,ch attacks a1 r,s gr,uen. In sum, Arg: {ar,az} andR: {(ar,a1)}. Accord'ing
to Dung's framework, argurnent a2 w'ins. This i,s 'inadmi,ssi,ble, espec'iallE s'ince i,t

eA binary relation is a preorder iff it is reflexive and transitive



5.3, ARGUMENT-BASED NEGOTIA?IOIú 153

i,s clear that an argument of an erpert'is stronger than an argument gi'uen by a 3-

years old chi.ld. In the framework presented 'in [AC02], the fact that q is stronger
than a2 'is taken into account. Thus, the relati,on )-- {(or, rr), (or,or),(a1,a2)} i,s

auai,lable. Howeuer, i,n th'is framework the relati,on Def is empty. Consequently,
the arguments a1 and a2 are in the unique preferred ertensionro. Thi.s means that
thi,s ertensi,on is not confl"i,ct-freer1. Moreouer, both s and -s are deduced.

We can further evaluate the above example by assuming an argument a3 for
stradi,uari,. We then obtain anew Arg : {or,or,a3} such that R : {(az,ar),
(az,as), (or,or)\. According to Dung's framework, no argument wins. This is an

inadmissible result because the argument a2 (from a child) invalidates both argu-
ments 01 ând a3 (from an expert). That is also our result if we apply a (centralized)
consistent way of reasoning, F;'- , over an ELP program P : {s; -s;e <- s}. If we

apply a (centralized) paraconsistent way of reasoning, Fl- , all arguments are ac-

ceptable which is also an inadmissible result because it assigns all those arguments
the same "strength". However, we may represent such a problem as a MAS:

{ < erpert,{s; e <- s}, {erpert},{erpert,child} >,
< chi,ld,{-t}, {chi,td, erpert}, {chi'ld, erpert} > }

we define a preference between expert and child, i.e. the child must argue with the
expert, but not vice-versa. Moreover, we model that both agents cooperate with
each other and so they deduce the same truth value for every literal in}l(A). In
aparaconsistent way of reasoning, e, s and -s are trueli (Ag: {chi.ld,erpert})
which are inadmissible results. However, in a consistent way of reasoning, e and
s are truelf, and -s is false-e'í (Ag: {chi,ld,erpert}). Therefore, we solve the
problem presented in [4V09]'s example by modelling cooperative and argumenta-
tive agents to obtain preference over rules from an expert.

[4V09] proposes a new preference-relation argumentation framework that en-

sures being conflict-free w.r.t. the attack relation and so solves the problem pre-

sented in Example 42. The proposal has similar results to the ones to those
presented above. Thus, this framework recovers Dung's acceptability extensions,
viz. preferred extensions and grounded extension. Since we follow the grounded
extension, we will focus our attention on that. The framework takes as input three
elements: a set of arguments Arg, an attack relation R, and a (partial or total)
preorder ). It returns extensions that are subsets t of Arg. These extensions

104 set of arguments is a preferred extension iff it is a maximal (w.r.t. Ç) admissible set. A set

of arguments is admissible iff it defends all its elements. A set of arguments defends an argument
o iffVà € Arg if bRa, then lc € B such ihat cRb whether the framework < Arg,Def >. For
details see Section 2.2

114 set 6 of arguments is conflict-free iff -)a,b f 6 such that aRb.

A



154 CHAPTER 5. RELATED WORK

satisfy the two following basic requirements, viz. conflict-freedom and generaliza-
tion. The former ensures safe results in the sense that inconsistent conclusions
in t are avoided. The latter captures the idea that an attack fails in case the
attacker is weaker than its target. Moreover, it states that the proposed approach
extends Dung's framework, i.e. it refines its acceptability semantics. Preferences
relations, denoted by ts, between the different conflict-free sets á of arguments are
defined: I > t' 1tr t > €' andnot (t'> t). Then matimal elements and the new
preference-based argumentatton (PAF) are defined as follows:

Definition 70 (Maximal Elements) Let t be a conflí,ct-free set of arguments.
t is maximal w.r.t. \ i,ff:

1. (Vt' c Arg) ((t u confl,r,ct-free) + (€ > t'))

2. No strict superset of E is confli,ct-free and uerr,fies (1)

Let )-o, denote the set of mari,mal sets w.r.t. l.

Definition 71 (PAF) ,4 PAF i,s a tuple (Arg,R,>), where Arg i,s a set of ar-
guments, R is an attack relat'ion, and2 i,s a (parti,al or total) preorder on Arg.
Ertensions of (Arg,R,>) are the malimal elements of a relation \ç 2Ars * 2Ars
that sati,sfi,es the two basi,c requ'irements.

Then, a relation which generalizes grounded semantics [Dun95] is defined. The
basic idea behind this relation is that a set is not worse than another if it can
strongly defend all its arguments against all attacks that come from the other
set. The notion of. strong defense is generalized by taking into account preference
between arguments: an argument has either to be preferred to its attacker or has
to be defended by arguments that themselves can be strongly defended without
using the argument in question.

Definition 72 (Strong Defense) Let 5' c Arg. á' strongly defends an aT-gu-

ment r from attacks of a set t, denoted by sd(r,t',t) itr NA Ç t) ,Í (((g,") e
R A (r,y) 4 >) o, ((r,,y) e R A (8,*) e>)) then ((=z e ,'\{r}) such that
(Q,a) ÇR A (y,r) l> A sd(2,á'\{r}, t))) IÍ the third arsument of sd i,s not
speci.fied, then sd(r, t) :- sd(r, t, Ar g).

Example 43 Thi,s erample is taken from [AV09]. Let Arg : {a,b, c} , }: {(a, a),
(b,b),(o,b)) andR: {(o,b),(b,a), (b,c),(c,b)}. The confi,i,ct-free sets of argu-
ments are: t1 : A, tz: {o}, Ez: {b}, ta: {c}, and, €5: {a,c}. The relations
are: €2) tt, €s\ tr, tsl tr, tsl €r, tsY ts, tsl tz, tsl ts, tsy tz,
€zr ta, and t2Y €3. Therefore, Y^o,: tv. It holds that sd(a,{a},{b)) since
a i,s str'ictly prefered to b thus'it can defend i,tself. Howeuer, -sd,(b,{b}, {.}) holds



5, 3. ARGUMENT-BASED NEGOTIATIO.NI 155

because b cannot defend i,tself agar,nst c. On the other hand, i,t does hold that
sd(c,{a,.},{b}) since a can defend c againstb and a i,s protected fromb si'nce'it
i,s stri,ctly prefered to 'it. Therefore, a and c are acceptable arguments, whereas b i,s

not.
To compare PAF wi,th our proposal, we need to adapt the proposed argumenta-

tion set of arguments Arg to an MAS. First, ue assurne that the aboue argument a
(resp. b, c) is Ao: la +- not b) (resp A6: lb <- not a,not c), A.: [c <- not b)).

Then, we spec'ify a mult'i-agent set A: {Agr, Agr) such that

Agr: < 1, {o <- not b}, {1}, {1,2} >
Ag, : < 2, {b <- not a,not c; c <- not b}, {1,2}, {L,2} >

Th,is erample has no erpl'ici,t negati,on whi,ch means that there are no contradic-
tory li,terals, and so both consistent and paraconsistent ways of reasoning haae the

same result. In the following we show, step by step, how ue obtain the lfp(F)"),
i,.e. the set of acceptable arguments. First of all, we determine the set of strong
local arguments of A:

1, [), (1, la <- not b)),

2,1)), (2,1c <- not b))

2,lb <- not a,not cl) )

and the set of auai,lable arguments of A g'iuen LA" (A) i,s

Arss(A) : LA"(A) u { (2,1a <- not b)) }

c Let,SO:0. Since Attso:4, the set of opposi,ng arguments is

DeÍo : Def ","(So): Args(A)

The set of proposed arguments i,s LA'(A), result'ing from Au(50). Then we

determine the followi,ng attacks

oppos'ing argument ed argument
1, a<-not b

A"(LA )

(1, [o <- not b))

(2,1a <- not b))

(2,1b <- not a,not cl)

(2,1b <- not a,not c))

(2,1b <- not a,not cl)
(2,1c <- not b))

Therefore,

s1 f1'(^90) : { (1, [o +- not b]), (1, [), (2, []) ]



156 CHAPTER 5. RELATED WORK

Remark that (2,1b <- not a,not c)) i,s attacked by arguments for a of both
agents, and that (2,1a <- not b)) is bui,lt by cooperation w,ith l. Furthermore,
(1, [a <- not b)) 'is not attacked because agent2 does not argue wlth agentl.
Such si,tuati,on permits that euery argument of agent t has preference oaer
arguments of agent 2.

o Si,nce Attsr: {(1, la <- not b)),(2,1a <- not bD,(2,1b <- not a,not c)),(2 <-
not b)j, the argument (2,1b <- not a,not cl) in Args(A) i.s rejected and so

D"Í' : Def","(S') : { (1, [a <- not b)),(Z,[a <- not b)) ]

The proposed arguments are obta'ined from Au(Sr), the attacks are

oTtposing argument proposed argument
(1, [o <- not b))

(2,1a <- not b))

(2,1b <- not a,not cl)
(2,1b * not a,not c))

(2,1c <- not b))

(1, [o <- not b))

(2,1a <- not bl)

and so

52 : F|"(S') : { (1, la +- not b)),(2,1a +- not b)),

(2,1c <- not b)), (1, !), (2, []) ]

. Si.nce F1"6') - S', we then obtai,n the lfp(F)"). We can further say
the justifiefflf arguments are in 52, the ouerculeffl" argument i,s (2,1b <-
not a,not cl), andthere'is no defensi,ble"l" argument. Therefore, we obta,in
re sults s'imi,l ar t o th e ( centrah, z ed ) p ref eren ce- relat'ion argum entat'ion fram e-

work from [AV09]

We show in the above example that we can specify preference rules between
two agents by defining that the agent with less priority has to argue with the other
one. If both agents cooperate with each other, we garantee that the conclusions
will be the same. The preference relation between arguments has to be individually
specified in [AV09] whereas we globaly define the preference relation for differents
(cooperative and argumentative) agents in the same multlagent setting. So each
agent has some level of preference rules over the others ones.

By defining sets of (cooperative and argumentative) agents, we apply our pro-
posal in different aproaches such as those presented in the Section 4.5. On that, we
can model a situation where arguments have to be deduced without a "global view
of theworld". Forinstance) assume amulti-agent settingA: {Agr,Agr,...,Ag,}



5.3. ARGUMENT-BASED NEGOTIA?IOAI 157

and an âgent Ag; thatdoes not argue with agent Agi 0 < i <n and i t i). Ag,

deduces the truth value of any literal ,L without consider the fact that the argu-

ments for L might be attacked by arguments in some Á3. [4V09]'s framework
needs to define a preference relation over all arguments of both Aga and Agi to
obtain the same result as our. Therefore, we consider our proposal easier to model
such situation.

[BC03] also extends [Dun95]'s argumentation framework. It assumes that each

argument promotes a value, and a preference between two arguments comes from
importance of the respective values that are promoted by two arguments. In

[BCA09], an (abstract) Value-based argumentation framework is presented as fol-
lows:

Definition 73 A value-based argumentation framework (V AF ) i,s a í-tuple:

V AF :1 Arg,R,V,ual, P >

where Arg i,s a finite set of argurnents, R i,s an i,rrefi,eri'ue bi,nary relati,on on Arg,
V i,s a non-empty set of ualues, ual is a function which nxaps elements of A to

elements of Y, and P i.s the set of possi.ble audi,ences (i.e. total orders onV). An
argument a relates to ualue u i,f accepti,ng Arg promotes or defends u: the ualue i,n

quest'ion is giuen by ual(a). For euery a e Arg, ual(a) e V .

When the V AF is considered by a particular audience, the ordering of values

is fixed. Then an Audzence Speci,fic VAF is as following:

Definition 74 An audience specific value-based argumentation framework (AV AF )
'is a 5-tuple:

V AF":1 Arg,R,Y,ual,ValPref o )
where Arg, R, V, and ual are as for aV AF, a'is an audience i'n P, andV alPref" C
V xV is a preference relat'ion (transi,ti,ue,'irrefl,etiue, and asymmetric), refiect-
ing the ualue preferences of audience a. The AVAF relates to theVAF in that
Arg,R,V, andual are'ident'ical, andValPref, i,s the set of preferences deriuable

from the ordering a e P i,n the V AF.

The purpose of introducing V AFs is to distinguish between one argument
attack'ing another, and that attack succeed'ing, so that lhe attacked argument may

or may not be defeated. Whether the attack succeeds depends on the value order
of the audience considering fhe V AF. Then the notion of. defeat is defined as

follows:

Definition 75 An argument Aç AVAF def eatsa an argurnent B e AVAF for
an aud'ience a i,ff both R(A, B) and not (ual(A),ual(B)) e ValPref".



158 CHAPTER 5. RELATED WORK

Then, various notions of the status of arguments are defined as:

Definition 76 An argument A e Arg'ds acceptable-to-audience-a (acceptable,)
w.r.t. a set of arguments S (acceptable"(A, S)) ,Í

(Vz)((z €A A defeats"(r,A))-+(=y)(a e S A defeats"(y,"))).

Definition 77 A set S of arguments is conflict-free-for-audience-a i/

(Vu)(VE)((r € S A a e S) -+ (-R(r,y) v (ual(E),ual(r)) e ValPref")).

Definition 78 A confiict-free-for-audr,ence-a set of arguments ,S is admissible-
for-an-audience-a z/

(Vr)(r e ,S -+ acceptable"(r, S))

Definition 79 A set of arguments S in a ualue-based argumentatr,on framework
VAF 'is a prefered-extension-for-audience-â (pref ered") iÍ it,is a marimal (w.r.t.
set of i,nclusi,on) admissi,ble-for-audi,ence-a subset of A.

Example 44 Let A: {Agatu", Ag,.a} such that each agent 'is

atu",{

,"a, 
{

a <- not d; d <- not c;

g<-not Í; h<-not g

b <- not o,; c +- not b;

f <-not e; e<-not h

Th'is erample 'is adapted from [BCA09], a V AF wi,th ualues red and blue. On that,
there are two prefered ertens'ions, accord'ing to whether red > blue, or blue ) red.
If red ) blue, the preferred ertensi.on 'is {e, g, a,b} ; and i,f blue ) red, {e, g, d,b} .

Moreouer, e and g are objectively acceptable, and c, f and h are indefensible. f
red > blue (resp. blue > blue) then a (resp. d) zs subjectively acceptable, and b

(resp a) is defensible.
Fi,rst of all, we determ'ine the set of strong local arguments of A:

LA"(A): { (blue,ll), (blue,la +- not d)), (blue,ld <- not cl),
(blue,lg <- not fl), (blue,lh <- not g)),
(red,ll), (red,lb +- not a)), (red,lc <- not d)),
(red,lf <- not e)), (red,[e +- not h]) ]

and the set of aua'ilable arguments of A g'iuen LA" (A) is

Arss(A): LA"(A) U{ (red,la<-not d)),(red,ld<-not c)),
(red,lg +- not f)),(red,lh <- not gl) )



5.3. ARGUMENT-BASED NEGOTIA?IO.Iú 159

o Let So : 0. Since Aftso : A, the set of oppos'ing arguments 'is

D"Ío : DeÍ","(So): Args(A)

The set of proposed arguments'is LA'(A), resulti'ng from Áu(S0) . Then we

determ'ine the followi,ng attacks

oppos'ing argument proposed argument
(blue,ld <- not blue, a <- not d))c

(blue,ld <- not c))
(blue,la <- not dl)
(red,la <- not dl)
(red,lb <- not a))

(red,lc <- not bl)
(blue,lh <- not g))
(red,fh <- not g))
(red,le <- not h))

(red,ff <- not e))

(blue,ls <- not f))
(blue,lg +- not f))

(red,la <- not dl)
(red,lb <- not a))
(red,fb <- not a))

(red,fc <- not bl)
(blue,ld <- not c))

(red,ld <- not c))
(red,le <- not hl)
(red,le <- not h))
(red,lf <- not e))

(blue,fg <- not fl)
(red,lg +- not f))
(blue,fh +- not g))

(red,lh <- not g))

and so

{ (blue,ld <- not c)), (blue,lg <- not f)),
(r ed , l)) , (blue, l)) )

Remark that some arguments of red are attacked by both arguments of blue

and arguments of red (i,n this case, built by cooperat'ion wi,th blue, e.g.

(red,fa <- not d,))) Howeuer, arguments of blue are only attacked by ar-

guments of blue. Such s'ituation permits that eaery argument of blue has

preference ouer argun'Lents of red.

o S'ince Attsl:,S1 - {(red,l)),(btue,l])}, the arguments (blue,la +- not dl),

(red,,fa <- not d)), (blue,lh <- not gl), (red,lh <- not gl) i" Args(A) are

rejected and so

D"Í' : Def ","(S'): DeÍo - { (blue,fa <- not d),(red,la <- not
(blue,lh <- not g), (red,lh <- not

51 :FI s s0 )

dl,

sl)



160 CHAPTER 5. RELATED WORK

Then proposed arguments are obta,ined from Au(51), and the attacks are

oppos?,ng argument proposed argument
red, b<-not a )

(red,fb <- not a)) (red,lc <- not b))

(blue,ld <- not c))

(red,fd <- not cl)
(red,le <- not h])
(red,lf <- not e))
(blue,lg +- not f))
(red,lg <- not f))

(red,lc <- not b))

(red,le <- not h))

(red,lf +- not e))

and so

52:F"Á"(S') :{ (r ed , lb <- not al) , (blue , ld <- not c)) , (r ed , le +- not hl) ,

(blue,ls <- not f)),(red, []), (blze, []) ]

o Si,nce Atts2 : 52 - {(red,l),(blue,ll)}, the arguments (red,fc ç- not b]),
(red,lf <- not e)) in Args(A) are rejected and so

D"Í' : Def 
","(S') 

: DeÍt - { (blue,ld <- not c]),(red,le +- not hl),
(blue,ls <- not f)) )

Then proposed arguments are obtai,ned from Au(51). Since no attack is de-
termi,ned for the proposed arguments, then

,S' : F1"(S') : { (red,lb <- not a)),(blue,fd +- not c)),(red,ld +- not c)),
(red,le <- not h)),(blue,fg <- not f)),(red,lg <- not f)),
(red,l)), (blue,l)) )

o Fi,nally, f}"(S') : ,S3. We can say that the acceptable arguments of A are
'in Ss , the lf p(F)").

Moreouer, the justi,fieffl' arguments are i,n 53, the ouerruleÊ;" are in the set

{(blue,la <- not d,)), (red,la +- not d,)), (blue,fh +- not sl),(red,lh <-
not gl),(red,lc <- not b)), (red,ff <- not e))j, and there i,s no defensible)"
argument.

Therefore, we obta'in similar results as the (centralized) Bench-Caporr, pro-
posal [8C03]. Note that we cannot determ'ine whi,ch argument 'is subjecti,uely/objec-
ti,uely acceptable because we follows the un'ique-status approach. Howeuer, we could
deduce that both arguments for d and g of blue are acceptable gi,uen the preference
relat'ion between both agents.



5.4. SOME COI\ICLUSIO^rS 161

We show in the above example that we specify preference rules between two
agents by defining that both agents cooperate with each other, and only the agent

with less priority has to argue with the other agent. Since both agents cooperate

with each other, the truth value of any literal will be the same. Similar to the pre-

vious approach, [8C03]'s approach cannot be applied for obtainning a conclusion
in an agent without considering the knowlegde of other agents.

5.4 Some conclusions

We relate our work with proposals in semantics of abstract argumentation systems,

defeasible reasoning, and argumentation-based negotiation. On that, we show that

o the ideal semantics[DMT06] aliows the acceptance of a set of arguments
possibiy larger that our (distributed) argumentation-based negotiation when

every agent cooperates with all agents in A. However, we obtain different
results for any other configuration of sets of argumentative and cooperative
agents;

o we do not deal with 'indirect attack', and so the centralized prudent seman-

tics [CMDMO5] is more restrictive than our characteristic function;

. we generalized the [PS97]'s proposal;

o our results are more intuitive than DeLP [Gar00] when in presence of con-

tradiction; and

o we are able to deal with preferences as in the preference-based argumentation
framework [AV09], and the value-based argumentation framework [BC03].
These frameworks define a preference relation between arguments, and we

show that we can model prefence relation between set of rules ranging from
consistent to a paraconsistent way of reasoning.

Therefore, our proposal is general enough to capture some of these approaches,

without losing the opportunity of having some other results when

o two agents (1) neither argue nor cooperate with each other, or (2) both argue

with each other. In this case there is no preference between agents' rules and

so every argument has the same "sttength";

o an âgent Ag, has to argue with agent Ag2, brt not vice-versa. In this case

the rules of Ag2 have more "strength" than Ág1, and so we model preference

relation between those sets of rules; and



762 CHAPTER 5. RELATED WORK

o two agents do not cooperate with each other, and so the truth value of a
literal tr is different, depending on who I is infered.

All of these câses can be applied in the same multi-agent setting with different
(cooperative and argumentative) sets of agents. Moreover, since our argumentation
is parameterized by the kind of interaction between arguments, we obtain results
ranging from a consistent way of reasoning to a paraconsistent way of reasoning;
the former is more sceptical than the latter. We assume, in a consistent way, that
every contradictory literal has to be undefined. However, in a paraconsistent way,
we deal with contradiction and a literal may be true and contradictory, based on
contradiction, or non contradictory (for details see Def. 49). None of the above
aproaches present such a distinction when in presence of contradiction.



Chapter 6

Conclusions and Fbture Work

Thi,s chapter goes back to the objecti,ues drawn'in the 'introduct'ion, sgnthes'izing the

way how the work wh'ich unfolded throughout th'is dissertation has fulfilled them.

Then, it outli,nes some future research aspects that emerged from the work presented

herei.n

The main goal of this dissertation was to define an argumentation-based nego-

tiation for agent's knowledge bases. The agent's beliefs are characterized by the
relations between its "internal" arguments supporting its beliefs and the "exter-
na}" arguments supporting the contradictory beliefs of other agents. So in a certain
sense, argumentative reasoning is based on the "external stability" of acceptable

arguments in a multi-agent setting. It was also a goal to have an argumentation-
based semantics that can deduce the acceptability of agent's arguments in a para-

consistent way of reasoning. Moreover, in some applications it may be interesting
to easily change from a paraconsistent to a consistent way of reasoning (or vice-

versa). Furthermore, the Argumentation-based semantics should be as simple as

possible because its definitions will be used in the Argumentation-based Nego
tiation semantics. Therefore, we first defined a Self-argumentation framework,
upon which most of the definitions of the Argument-based Negotiations seman-

tics were constructed. Consequently, we first present the contributions from the

Self-argumentation framework, followed by the Argumentation-based Negotiation
framework.

Self-Argumentation Flamework Our self-argumentation semantics is based

on the argumentation metaphor, in the line of the work developed in [Dun95,

163



164 CHAPTER 6. CONCLUSIOIúS A.IüD FUTURE WORK

PS97, BDKT97, SS02b] for defining semantics of single extended logic pro-
grams. In these argumentation-based semantics, rules of a logic program âre
viewed as encoding arguments of an agent. More precisely, an argument for
an objective literal -L is a sequence of rules that "proves" L, if all default
literals (of the formnot L') in the body of those rules are assumed true. In
other words, arguments encoded by a program can attack - by undercut

- each other. Moreover, an argument for tr attacks - by rebut - another
argument if this other argument assumes its explicit negation (of the form
-L). The meaning of the program is then determined by those arguments
that somehow (depending on the specific semantics) can defend themselves
from the attacks of other arguments.

We generalize [PS97]'s definition of argument by proposing two kinds of
arguments, viz. strong arguments and weak arguments. Having two kinds
of arguments, attacks by undercut do not need to be considered. Simply
note that rebut is undercut against weak arguments. Therefore, rebut is not
considered in our proposal since, as already shown in [SdAMA97, dAMAg8b,
SS02b], it can be reduced to undercut by considering weaker versions of
arguments. We further extend [PS97]'s argumentation-based semantics for
ertended logic programs lPA92] to deal with denials.

Similarly to [Dun95, PS97] we formalize the concept of acceptable arguments
with a fixpoint operator. However, the acceptability of an argument may
have different results and it depends on which kind of interaction between
(strong and weak) arguments is chosen. Therefore, our ârgumentation se-

mantics assigns different levels of acceptability to an argument and so it can
be justified, overruled, or defensible. Moreover) a justified argument can be
contradictory, based on contradiction, or non contradictory. Consequently,
the truth value of an literal can be true (and either contradictory, based on
contradiction, or non contradictory), false, or undefined.

Since our argumentation semantics is parametrised by the kind of interac-
tion between arguments, we obtain results ranging from a consistent way of
reasoning to a paraconsistent way of reasoning. In the presence of rules for
both literals I and -L: a consistent way of reasoning neither concludes -L

nor -.L as true (even if one of these is a fact); a paraconsistent way of rea-
soning can conclude that tr is true even if it also concludes that -I is true.
Given that we consider denials in the agent's knowledge base, a consistent
way of reasoning does not conclude a given ,L as true if .L is related with the
presence oÍ falsitg; a paraconsistent way of reasoning may conclude Z even
if it is related with falsitE.

[CS05] states that "some researchers say that the difference between the



165

two approaches can be compared with the skepti,cal vs credulous attitude
towards drawing defeasible conclusions. The multi-status assignment (MSA)
is more convenient for identifying sets of arguments that are compatible
with each other, and an argument is genui.nely justi,fied if and only if it is
justified in all possible assignments. The unique-status assignment (USA)
considers arguments on an individual basis, and so undecided conflicts get

the status not justified (i.e. overruled or defensible)". Our proposal is an
USA approach. However, since our argumentation semantics is parametrised
by the kind of interaction between arguments, we obtain results ranging from
a consistent way of reasoning to a paraconsistent way of reasoning and, as

shown above, the latter is more credulous than the former.

The results obtained through the characteristic function p o of. a logic pro-
gram P (cf. Def. a3) coincide with well-founded semantics:

o WFSXp semantics [ADP95] and FB- (cf. Theorem 33),

o Grounded ertensi,on [Dun95] and Ff'- (cf. Theorem 36),

o WFSX [P492] and fH'" (cf. Theorem 34),

o WFS semantics [Prz90] and Fi'" (cf. Theorem 37).

Argumentation-based Negotiation Flamework As already said, we extend
the Self-argumentation semantics to an Argumentation-based Negotiation
semantics. The goal of this semantics is to define a framework such that
agents negotiate by exchanging parts of their knowledge (i.e. arguments)
and obtain a consensus concerning their beliefs. In other words, the agents

evaluate arguments to obtain a consensus about a common knowledge by
either proposing arguments, or trying to built opposing arguments against
them. As in the centralized version, the proposed framework is able to
deal with mutually inconsistent, and even inconsistent, knowledge bases.

Moreover, when in presence of contradiction, it obtains ways of multi-agent
setting reasoning, ranging from consistent (in which inconsistencies lead to
no result) to paraconsistent.

The argumentation-based negotiation deals with incomplete knowledge (i.e.
partial arguments) and so cooperation grants arguments to achieve knowl-
edge completeness. The declarative semantics for Argumentation-based Ne-
gotiation is composed by argumentation and cooperation. The former im-
poses that every agent should argue with other agents to evaiuate its knowl-
edge. The iatter allows an agent to handle its incomplete knowledge with
the 'help' of other agents. Therefore, each agent o has both sets of argu-
mentative and cooperative agents - Argueo and Cooperateo, respectively

- and o must reach â consensus of its arguments with agents in Argueo and



166 CHAPTER 6. CONCLUSIOAIS AAID FUTURE WORK

CI may ask for arguments from agents it Cooperateo to complete its partial
arguments.

We introduce cooperation by defining auai,lable arguments: (1) every (com-
plete or partial) argument of a is considered an available argument of a; (2)
if a partial argument for L of o may be further completed with arguments
from Cooperateo, this further completed argument is also an available argu-
ment of a. Furthermore) an agent in a multi-agent setting A may be able
to build a (partial or complete) argument for any L in ?1(A) even though
a has no knowledge about such an tr: it will depend upon the arguments
Írom Cooperateo. We further propose "indirect cooperation": it may occur
between argumentative agents when a proposed argument A can be used to
complete a partial opposing argument B, and so the resulting argument from
A + B is used to attack A.

We propose the idea that every argument A of. an agent a can be used in
a cooperation process if and only if Á is initially evaluated by Argueo, í.e.
cooperation and argumentation are interlaced processes. As with other ar-
gumentation based frameworks the semantics is defined based on a notion of
acceptable arguments, where a set of arguments is acceptable if any argument
attacking it is itself attacked by the set. In this distributed setting, we had to
define which arguments can be used to attack a set of arguments, and which
arguments are available for being used to defend the attacks. We define that
for a given agent o in a multi-agent setting A, an agent 0 e Coryperateo co-
operates with an avaiiable argument A under one of the following conditions:
(i) Á is not attacked by any argument from ArgueB, or (ii) Á is attacked,
but every attacking argument B against Á is attacked by some argument
from ArgueB. We propose (ii) by considering lhat Argued càrr evaluate ,4 as

defensible, and such an argument might be evaluated as justified by other set
of argumentative agents. Therefore, an agent cooperates with both justified
and defensible arguments.

Any agent in an MAS can be queried regarding the truth value of a con-
clusion. Moreover, the truth value of an agent's belief depends on from
which agent such a belief is inferred, and also on the specification of both
sels Argueo and Cooperateo. Nevertheless, such answer is always consis-
tent/paraconsistent with the knowledge base of the involved agents. Assum-
ing that every agent argues and cooperates with all agents in an argumentation-
based negotiation process, the results from such a process and the argumentation-
based process (over the set of a1l agent's knowledge base coincide (cf. proof of
Theorem 51). However) our proposal allows modelling a multi-agent setting
with different kinds of representation, such as when a multi-agent setting
stands for a kind of hierarchy of knowledge found in an organization, where



6.1, FUTURE WORK t67

each agent has only partial knowledge of the overall process (see Examples 26

and 36); or when each agent represents "acquired knowledge" in a different
period of the time and we want to know the truth value of some agent's belief

in a specific period of time (see Examples 37 and 38).

We improve the idea of 'automated negotiation' by proposing a negotiation
without a 'meta-agent' that controls and evaluates the overall negotiation
process. Moreover, we propose an architecture to be implemented over a

reliable network communication layer. The network communication layer

permits the agents communication in a LAN or WAN network, the delivery

of messages to every involved agents, and new agents or crashed agents are

handled in the sets of argumentative and cooperative agents. It provides a

fault tolerance in a negotiation process, i.e. such a process can continue if an

agent crashes. In other words, if an agent Ag1 knows that an involved agent

Ág2 crashed, Ag,, will not wait for any answer from Ag2 and will continue its
(argumentative or cooperative) process by considering only the active agents.

This is important because it releases an agent from a pending answer from
a crashed agent, thus avoiding deadlocks.

6.1 F uture Work
During the work performed in the preparation of this dissertation, namely in its
fina} period, we were able to identify a set of open research aspects that we plan

to tackle in the future and that will be described in this section.

Sets of Strict and Defeasible rules We may extend our proposal to express

defeasible/strict rules. A DelP-program [GS04]'s is denoted by a pair (II, A)
distinguishing the subset II of facts and strict rules (that represent non-

defeasible knowledge), and the subset A of defeasible rules. Intuitively, we

could model (n, A) by defining a multi-agent setting "4 with two agents, viz.

a strict agent Agy and a defeas'ible agent Agt. Agl does not argue with any

agent (not even itself if we âssume that the set of facts and strict rules is non

contradictory, as DeLP), and Agll only cooperates with Á96 with "facts".
Intuitively, rf. Agl cooperates with arguments ( II, [r] ) then no argument

can attack it.

Updates It seems clear that the flexibility offered by the sets of cooperative and

argumentative agents allows for giving priority to sets of rules over other sets

of rules. This is somehow similar to logic progrâmming updates. Example

38 suggests how our framework can be used for modelling updates. In this
example, the results coincide with those of [ALP+00], but we need a study
on how general this equivalence is.



168 CHAPTER 6. CONCLUSIOI.IS AI{D FUTURE WORK

Belief Revision We intend to introduce the capability of the agents to revise
their knowledge as a consequerce of internal or external events. In case of
no agreement in a negotiation process, the agents wouid be able to discuss
(or negotiate again) how and when they got their knowledge, and try to find
a way to reach an agreement.

If an objective literal .L leads to falsi,ty, tr is also contradictory because there
is an argument A7 such that ,41 is built based on such an argument, e.g.
A1: A1+ [I <- L,not.L']. However) we should point out that this solution
may not be complete in the sense that we only consider the conclusions
directly involved wilh falsity (cf. Def. 40). It would be better to define a
new status) e.g. generate contradicti,on, for the conclusions that are involved
with any case of contradiction. However, to define this new status is as
complex as defining a method of "belief revision", e.g. [DP97, DPS9T].

Solving conflicts among Object Constraint Language's restrictions
The Unified Modelling Language (UML) is designed specifically to represent
object-oriented (OO) systems (for details see [Pen03]). Object-oriented de-
velopment techniques describe software as a set of cooperating blocks of infor-
mation and behavior. The standardized architecture of UML is based on the
Meta Object Facility (MOF) Core [OMG06]. The MOF defines standard for-
mats for the key elements of a model so that they can be stored in a common
repository and exchanged between modelling too1s, e.g. UModel2005 [Alt],
Together2006 [Bor], Rational [IBM], Objecteering [SOF], and System Archi-
tect [SPA]

The Object Constraint Language (OCL) [WK] is a notational language for
analysis and design of software systems, which is used in conjunction with
UML to specify the semantics of the building blocks precisely. OCL has been
defined to impose restrictions over UML's diagrams. OCL can be used both
at the UML metamodel and model levels. At the metamodel level if is used
to specify well-formedness rules, that is, rules that must be complied to by
models built upon the specified metamodel. At the model level it can be
used to specify domain constraints (e.g. contract rules).

The meta-model of UML has been used by the Object Management Group
(OMG) as the standard for Software Engineering support tools. Support
tools are aimed at making UML easier to use such as UModet2005, Ratio-
nal and Objecteering. However, these support tools still accept an OCL
expression as 'simple text', i.e. without validating it. Nevertheless, both
support tools Together2006 and System Architect validate OCL expressions.
Furthermore, there are some special tools to validate OCL expressions, for
instance IBM OCL Parser v0.31 , OCLE 2 , and USE3.



6.1. FUTURE WORK

The above checking tools do not verify conflicts between restrictions. By
conflicting restrictions we mean that a conflict might occur because two

restrictions cannot be true at the same time, or some restriction is concluded

as true and so it causes that other one will be false. Furthermore, restrictions

might be conflicting in a domain's modelling level, but also in both metal-

level of UML and OCL. In the following we illustrate a situation of conflicting

restrictions:

,,call processing systems are large, distributed systems. Tradi-

tionally, they were either telephone exchanges or private branch

exchanges under the control of a single provider or owner. Recent

developments have shifted the whole area of call processing to-
wards an open market and a more unified view of communications,

considered more than Plain Old Telephone System (POTS) calls.

Furthermore, the functionality has been largely enhanced by the
provisioning of features. Features are extensions to the basic ser-

vice, developed independently of the basic service. The last devel-

opments allow operators/providers to develop their own features.

With the growing number of features that might be developed by

different providers, a problem known as 'feature interaction' gains

importance. Features that work independently as expected, cause

some unexpected/undesired behavior when combined in a system.

A typical example is a user subscribing to a Call Forwarding on

Busy feature (which redirects incoming calls to a busy line to a
different phone) and a call waiting feature (which plays a tone

when a call comes into a busy line). Assume the user is busy and

an incoming call arrives. This raises the question of which of the
feature,s behavior should be activated, as both together do not
provide sensible behavior..." [RMT]

Based on such a description we are motivated to solve the following questions:

o How can conflicting restrictions be detected?

o How to solve conflicting restrictions? Can we determine which restric-

tion should be preferred?

Therefore, the main goal would be to solve conflicts between OCL restric-

tions by dynamically determining preferences among such restrictions. The

aim would be to develop a comprehensive approach to the engineering of

software systems for service-oriented overlay computers where foundational

theories, techniques and methods are fully integrated in a software engineer-

ing approach.

169



170 CHAPTER 6. CONCLUSIOI{S AI{D FUTURE WORK



lACo2l

lADPesl

[ALP+oo]

lArtl

lAPe6l

Bibliography

Leila Amgoud and claudette cayrol. A reasoning model based on

the production of acceptable arguments. Ann. Math. Artii. Intell.,

34( 1-3) : 197 -215, 2002.

José Júlio Alferes, Carlos Viegas Damásio, and Luís Moniz Pereira.

A logic programming system for nonmonotonic reasoning. J. Autom.

Reas oni,ng 14(1) :93-147, 1995.

José Júlio Alferes, João Alexandre Leite, Luís Moniz Pereira, Halina

Przymusinska, and Teodor c. Przymusinski. Dynamic updates of

non-monotonic knowledge bases. J. Log- Program., 45(1-3):43-70,

2000.

Altanova. Umodel 2005. Available at http:f f www.altanova.com'

lAPSo4l

José Júlio Alferes and Luís N4oniz Pereira. Reasoni,ng with Logic

Programm,ing, voltjirne 1111 of. Lecture Notes i,n Computer science.

Springer, 1996.

José Júlio Alferes, Luís Moniz Pereira, and Terrance Swift. Abduction
in well-founded semantics and generalized stable models via tabled

dual progr ams. TPLP, 4(4) :383-428, 2004.

Argument and computation ejournal. Taylor and Francis, 2010. Avail-

able at http: I I www.tandf . co.uk/j ournals/tarc.

Leila Amgoud and Srdjan Vesic. Repairing preference-based algumen-

tation frameworks. In Craig Boutilier, editor, IJCAI, pages 665-670,

2009.

Trevor J. M. Bench-capon. Persuasion in practical argument using

value-based argumentation frameworks. J. Log. Comput-, 13(3):429-

449,2003.

farg10]

lAV0el

lBCo3l

17r



172

[BCAoe]

lBDr(re7l

[Bea02]

[BG0e]

IBor]

ICal0a]

lcMDMo5l

IcMLoo]

lcsosl

lcwe6l

ldAAo6l

BIBLIOGRAPHY

Trevor Bench-capon and Katie Atkinson. Argumentation i,n Artifici,al
Intelligence, chapter Abstract Argumentation and values. In Rahwan
and Simari [RS09] ,2009.

Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach to
default reasoning. Art Í. Intell.,93:63-101, 1997.

B. Ben and et al. Jgroups - a toolkit for reaiiable multicast commu-
nication. Technical report, Jgroups project, 2002. Toolkit available
at http:l f www.jgroups.org.

Pietro Baroni and Massimiliano Giacomin. Argumentation in Arti,fi-
c'ial Intelli,gence, chapter semantics of Abstract Argument systems.
In Rahwan and Simari [RS09] ,2009.

Borland. Together 2006 fo, ecli,pse. Available at
www.borland. com/us/products/together/.

Miguel Caiejo. Interprolog: Towards a declarative embedding of
logic programming in java. In José Júlio Alferes and João Alexan-
dre Leite, editors, JELIA, volume 322g of Lecture Notes ,in Com-
puter Sc'ience, pages 714-717. Springer, 2004. Toolkit available at
http: I I www. declarativa. com/InterProlog/.

Sylvie coste-Marquis, caroline Devred, and Pierre Marquis. Prudent
semantics for argumentation frameworks. ln ICTAd pages 568-5T2.
IEEE Computer Society, 2005.

Carlos Iván Chesflevar, Ana Gabriela Maguitman, and
Ronald Prescott Loui. Logical models of argument. ACM Comput.
Suru., 32@) :337 -383, 2000.

Carlos Iván Chesflevar and Guillermo R. Simari. A tu-
torial on computational models for argumentation in mas,
2005. in the EASSS 2005 (Utrecht, NL). Available at
http: //www.cs.uns.edu .ar I grs I Publications/index-publications.htmr.

W. Chen and D. S. Warren. Tabled evaluation with delaying for
general logic programs. Journal of ACM, a3(1):20-34,1996.

Iara Carnevale de Almeida and José Júlio Alferes. An argumentation-
based negotiation framework. In K. Inoue, K. Satoh, and F Toni, ed-
itors, vII Internati,onal workshop on Computational Logic i,n Multi-



BIBLIOGRAPHY

ldAMAeTl

[dAMAe8a]

ldAMAesbl

ldAMAeel

ldAMASeTl

[DMT02a]

lDMro2bl

IDM106]

773

agent Systems (CLIMA), volume 4371 of- LNAI, pages 191-210'

Springer, 2006. Revised Selected and Invited Papers'

Iara de Almeida N{óra and José Júlio Alferes. Credulous and sceptical

argumentation for extended logic programming. Technical report,

CENTRIA, Universidade Nova de Lisboa, Portugal, 1997'

Iara de Almeida Móra and José Júlio Alferes. Argumentation and

cooperation for distributed extended logic programs. In Juergen Dix

and Jorge Lobo, editors, 7th International workshop on Nonmono-

tonic Reason'ing ( NMRW), 7998.

Iara de Almeida Móra and José Júlio Alferes. Argumentative and

cooperative multi-agent system for extended logic programming. In

Flávio Moreira de oliveira, editor, ]BIA, volume 1515 of Lecture

Notes i,n Computer Sc'ience, pages 161-170. Springer, 1998'

Iara de Almeida Móra and José Júlio Alferes. Conflict resolution

between argumentative agents. Technicai report, CENTRIA, Univer-

sidade Nova de Lisboa, Portugal, 1999.

Iara de Almeida Móra, José Júlio Alferes, and Michael schroeder.

Argumentation for distributed extended logic programs. In Multi,

Agents and Logi'c Programm'ing, Letxen, Belgium , 7997 '

Phan Minh Dung, Paolo Mancarella, and Francesca Toni.

Argumentation-based proof procedures for credulous and sceptical

non-monotonic reasoning. ln computational Log'ic: Logic Program-

ming and Beyond, pages 289-310, 2002.

Phan Minh Dung, Paolo Mancarella, and Francesca Toni.

Argumentation-based proof procedures for credulous and sceptical

non-monotonic reasoning. In Antonis C. Kakas and Fariba Sadri, ed-

rtors, Computational Logi,c: Logi,c Programming and Begond, volume

2408 of Lecture Notes i,n computer sc,ience, pages 289-310. springer,

2002.

Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectic

procedure for sceptical, assumption-based argumentation. In Paul E'

Dunne and Trevor J. M. Bench-Capon, editors, COMMA, volume 144

of. Frontiers i,n Arti,ficial Intelli,gence and Appli,cat'io?zs, pages 145-156.

IOS Press, 2006.



774

lDPeTl

[DPPe8]

lDPSeTl

IDun93]

[Dun95]

[EGHe5]

lFKrS0el

IGarO0]

lGDSoel

lGLeol

BIBLIOGRAPHY

Carlos Viegas Damásio and Luís N4oniz pereira. A paraconsistent
semantics with contradiction support detection. In Jürgen Dix, Ulrich
Furbach, and Anil Nerode, editors, LpNMR, volume 1265 of Lecture
Notes in Computer Science, pages 224-24J. Springer, 1997.

Jürgen Dix, Luís l\loniz Pereira, and reodor c. przymusinski, edi-
tors. Logi,c Programmi,ng and Knowledge Representation, Thi,rd" In-
ternat'ional Workshop, LPKR 'gT, Port Jefferson, New york, (JSA,
october 17, 1997, selected Papers, volume l47l of Lecture Notes ,in

Computer Sci,ence. Springer, 1998.

carlos viegas Damásio, Luís Moniz Pereira, and Michael schroeder.
Revise: Logic programming and diagnosis. In Jürgen Dix, ulrich
Furbach, and Anil Nerode, editors, LPNMR, volume 1265 of Lecture
Notes'in Computer Sc'ience, pages 3b4-363. Springer, 19g7.

Phan Minh Dung. An argumentation semantics for logic programming
with expiicit negation. In ICLP, pâges 616-630, 1993.

Phan Minh Dung. on the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic progrâmming and
n-person games. Arti,Í. Intell., 77 (2):321-358, 1995.

Morten Elvang-Goransson and Anthony Hunter. Argumentative log-
ics: Reasoning with classically inconsistent information. Data Knowl.
8n9., 76(2) :125-145, 1995.

Marcelo A. Falappa, Gabriele Kern-Isberner, and Guilhermo R.
simari. Argumentatzon i,n Arti,fi,ci,al Intelligence, chapter Belief Re-
vision and Argumentation Theory. In Rahwan and simari [RSO9],
2009.

Alejandro Javier García. Defeasible Logic Programmi,ng: Definition,
operat'ional semant'ics and Paraleli,sm. PhD thesis, computer science
and Engineering Department of universidad Nacional del sur, Bahía
Blanca, Argentina, 2000.

Alejandro Javier García, Jürgen Dix, and Guillermo Ricardo Simari.
Argumentation i,n Arti,ficial Intellzgence, chapter Argument-based
Logic Programming. In Rahwan and Simari [RS0g] ,2OOg.

M. Gelfond and v. Lifschitz. Logrc programs with classical negation.
In warren and szeredi, editors, Tth International conference on Lp
(ICLP), pages 579-597. MIT Press, 1990.



BIBLIOGRAPHY

lGSo4l

175

[rBM]

Alejandro Javier García and Guillermo Ricardo Simari. Defeasible

logic programming: An argumentative approach. TPLP, a$-2):95-
138,2004.

IBM. Rat'ional software arch'itecture an modeler. Available at
http : / / www- 306. ibm. com/ software/ awdtools/ develop er f r ose f .

Nicholas R. Jennings, Peyman Faratin, M. J. Johnson, Timothy J.

Norman, P. O'Brien, and M. E. Wiegand. Agent-based business

process management. Int. J. Cooperatiue Inf. Syst.,5(2&3):105-130,
1996.

Vladimir Lifschitz. Foundations of logic programming. pages 69-127,
1996.

R. P. Loui. Defeat among arguments: a system of defeasible inference.

J ournal of C omputati.onal Intell'ig ence, 3(2) : 100-106, 1987.

R. P. Loui. Process and policy: Resource-bounded non-demonstrative

reasoning. Journal of Computati,onal Intelli,gence, 14:1-38, May 1998.

R. Moore. Semantics considerations on nonmonotonic logic. Artificial
Intelli,g ence, (25) :7 5-94, 1985.

D. N. Nute. Handbook of Logi,c i'n Arti,ficial Intelli,gence and Logi'c

ProgrammtJng, volume 3 of Nonmonoton'ic Reasoni'ng and Uncerta'in

Reasoning, chapter Defeasible Logic, pages 355-395. Oxford Univer-
sity Press, 1994.

OMG. Object Management Group. Meta object facility (mof ) core

speci,ficati,on, 2.0 edition, 2006. Document "formal/06-01-01". Avail-
able at http: //www. omg.org/docs/formal/06-0 1-01 .pdf.

Luís Moniz Pereira and José Júlio Alferes. Well founded semantics

for logic programs with explicit negation. In ECAI, pages 102-106,

7992.

Tom Pender. UML Bi,ble. Wiley Publishing, Inc., 2003

J. L. Pollock. Knowledge and justification. 7974. Princeton University
Press.

John L. Pollock. Defeasible reasoning. Cogni,ti,ue Science, 11(a):481-
518, 1987.

UFJ+e6l

[Lou87]

[Life6]

[Loue8]

[Moos5]

INutea]

loMG06l

lPAe2l

[Pen03]

IPol7a]

IPol87]



[Pole2]

[Pole6]

1,76

[Po]e1]

[Pole5]

[Po101]

lPPe0l

IPra93]

[Pra09]

[Prz90]

lPSJesl

BIBLIOGRAPHY

J. L. Pollock. A theory of defeasible reasoning. Internat'ional Journal
of Intelli,gent Systems, 6:33-54, 1991.

J. L. Pollock. How to reason defeasibly. Journal of Arti,fici,al Intelti,-
g ence, 57 (I) :7-a2, September lgg2.

J. L. Pollock. Cogni,ti,ue Carpentry: A Blueprint for How to Build a
Person. MIT Press, 1995.

John L. Pollock. A general-purpose defeasible reasoner. Journal of
Appli,ed Non-Classical Logi,cq 6(1), 1996.

John L. Pollock. Defeasible reasoning with variable degrees of justi-
fication. ArÍi,f . Intell., 133 ( 1-2) :23 3-282, 2007.

H. Przymusinska and T. Przymusinski. Semanti,c tssues in deducti,ue
databases and logi,c programs, pages 321-367. 1990.

Henry Prakken. An argumentation framework in default logic. Ann.
Math. ArtiÍ. Intell., 9(1-2):93-132, 1993.

Henry Prakken. An abstract framework for argumentation with
structured arguments. Technical report, Department of Informa-
tion and Computing Sciences, Utrecht University,2009. Available at
http : //www. cs.uu. nl/research/techreps/repo/CS-2009/2009-0 1 9. pdf.

T. Przymusinski. Extended stable semantics for normal and disjunc-
tive programs. In Warren and Szeredi, editors, 7th International Con-
ference on Log'ic Programming (ICLP), pages 459-477. MIT Press,
1990.

Henry Prakken and Giovanni Sartor. Argument-based extended logic
programming with defeasible priorities. Journal of Applied Non-
Classi,cal Log'ics, 7 (7), 1,997 .

S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and
negotiate by arguing. Journal of Logic and Computati,onal, S(8):261-
292, tggg.

H. Prakken and G. A. W. Vreeswijk. Handbook of Phi.Losoph,ical Log,ic,
volume 4, chapter Logics for Defeasible Argumentation, pages 218-
319. Kluwer Academic, 2 edition,2002.

R. Reiter. A logic for default reasoning. Arti,fici,al Intelltgence, 13:81-
132, 1990.

lPSeTl

[PV02]

[Rei80]



BIBLIOGRAPHY

lRMrl

IRRJ+o4l

t77

[RSoe]

s. Reiff-Marganiec and K. J. Turner. Use of logic to describe enhanced

communications services. In Formal Techni,ques for Networked and

Di,stri,buted Systems ( F O Rf E )

I. Rahwan, S.D.Ramchurn, N.R. Jennings, P. McBurney, S. Parsons,

and L. sonenberg. Argumentation-based negotiation. Joumal of The

Knowledge Engi,neering Reui,ew, 2004.

Iyad Rahwan and Guilhermo R. Simari, editors. Argumentati,on in
Arti,fici,al Intell'igence. Springer, 2009.

[Sch99] Michael Schroeder. An efficient argumentation framework for negti-

ating autonomous agents. In Francisco J. Garijo and Magnus Boman,

editors, MAAMAW, volume 7647 of Lecture Notes in Computer Sci-

encq pages 140-149. Springer, 1999.

[SdAMA97] Michael Schroeder, Iara de Almeida Móra, and José Júlio Alferes.

Vivid agents arguing about distributed extended logic programs.

In Ernesto Costa and Amilcar Cardoso, editors, Progress i'n Arti,fi-

ci,al Intelli,gence, ?th Portuguese Conference on Artifici,al Intelligence

(EPIA), volume 1323 of LNAI, pages 217-228. Springer, 1997'

ISLe2a] Guillermo Ricardo Simari and Ronald Prescott Loui. A mathemati
cal treatment of defeasible reasoning and its implementation. Arfü.
Intell., 53(2-3) :125-157, 1992.

Guillermo Ricardo Simari and Ronald Prescott Loui. A mathemati-

cal treatment of defeasible reasoning and its implementation. ArlxÍ.

Intell., 53 (2-3) :125-157, 7992.

SOFTEAM. Objecteering uml enterprise ed'iti,on u5.3.0. Available at

http : / /www. obj ecteering. com/.

SPARX. Enterprise arch'itect's uml 2.0. Available at

http : I I www. sparxsystems. com/products/ea. html.

Michael schroeder, Daniela Alina Plewe, and Andreas Raab. ultima
ratio: Should hamlet kill claudius? In Agents, pages 467-468, 1998'

lsLe2bl

lsoFl

IsPA]

lsPResl

ISS02a] Michael Schroeder and Ralf Schweimeier. Arguments and misunder-

standings: Ftzzy unification for negotiating agents. Electr. Notes

Theor. Comput. Sci., 70(5), 2002.

.-i t.1ffi.: *, çri.i;1:



178

lsso2bl

lsw07l

ISwiee]

ITar55]

[Vre93]

[Vre97]

[vRSe1]

BIBLIOGRAPHY

Ralf Schweimeier and Michael Schroeder. Notions of attack and justi-
fied arguments for extended logic programs. In Frank van Harmelen,
editor, ECAI, pages 536-540. IOS Press, 2002.

Terrance swift and David S. warren. The xsb logic programming sys-
tem. Ássoc'iation for Logi,c Programmi,ng Newsletter,2007. Summary
of recent develpments in XSB.

Terrance swift. A new formulation of tabled resolution with delay. In
Pedro Barahona and José Júlio Alferes, editors , E?IA, volume 1695
of. Lecture Notes in Computer Sc,ience, pages l6J-lTT. Springer, 199g.

A. Tarski. A lattice-theoretic fixpoint theorem and its applications.
Paci,fic J ournal of Mathernatics, 5:285-309, 1955.

G. A. W. Vreeswijk. Studies ,in Defeasible Argumentation. phD thesis,
Free university Amsterdam, Departament of computer science, 1993.

G. A. W. Vreeswijk. Abstract argumentation systems. Journal of
Arti,fi ci, al I nt elli g en ce, 90 (L-2) :225-27 g, t9g7 .

Allen van Gelder, Kenneth Ross, and John S. Schlipf. The well-
founded semantics for general iogic programs. ACM,38(3):620-6b0,
1991.

J. B. Warmer and A. G. Klepe. The Object Constraint Language:
precise modell'ing ui.th UML Addison-Wesley, 2 edition.

IWK]


