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Abstract

Tracking the thermal evolution of plasmas, characterized by an n-distribution, using numerical simulations,
requires the determination of the emission spectra and of the radiative losses due to free–free emission from the
corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and
associated with n-distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–
Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward
those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma
evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and
Fe ions, are presented. These losses decrease with a decrease in the parameter n, reaching a minimum when n=1,
and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors
calculated for n-distributions, and a wide range of electron and photon energies, are presented.

Key words: atomic data – atomic processes – ISM: general – plasmas – radio continuum: general – radiation
mechanisms: general
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1. Introduction

Non-thermal electron distributions, e.g., κ (Vasyliunas 1968),
n (Hares et al. 1979; Seely et al. 1987), depleted high-energy
tails (Druyvesteyn 1930; Behringer & Fantz 1994), and hybrid
Maxwell–Boltzmann/power-law tails (Berezhko & Ellison
1999; Porquet et al. 2001; Dzifčáková et al. 2011), can occur
frequently in the low-density plasma. In principle, this may
arise in any place where a high temperature or density gradient
exists, or when energy is deposited into the tail of the
distribution at a rate that is sufficiently high to overcome
the establishment of thermal equilibrium described by the
Maxwell–Boltzmann distribution (hereafter MB).

In the astrophysical context, κ- and n-distributions have been
used to describe the evolution of electrons, e.g., during a solar
flare event, and to interpret spectral lines. It is possible that
microscopic instabilities like a two-stream or Farley-Buneman
instability (Buneman 1963; Farley 1963) can occur under these
conditions, which drive the electron distribution strongly into
non-equilibrium (Karlický et al. 2012). Events of magnetic
reconnection, in which topological field changes force magn-
etic energy to be released impulsively and dissipated into heat,
accompanied by particle acceleration and steep gradients in
temperature, should be ubiquitous in the interstellar medium
(ISM). However, they can be difficult to observe individually
due to the small extension of the regions in which they happen.
Hence, observed free–free emission might often contain a
contribution from n-distribution electrons.

The emission spectra and the radiative losses due to free–free
emission by an astrophysical plasma are calculated by means of
the temperature-averaged and total free–free Gaunt factor3 (see
discussions in, e.g., Karzas & Latter (1961, hereafter KL1961),
Carson (1988), Hummer (1988), Janicki (1990), Sutherland

(1998), Nozawa et al. (1998), Itoh et al. (2000), van Hoof et al.
(2014), and de Avillez & Breitschwerdt (2015, hereafter
AB2015, and references therein).
Here, we continue our previous work (AB2015) by carrying

out detailed calculations (and producing look-up tables to be
used in any emission software through interpolation) of the
non-relativistic temperature-averaged and total free–free Gaunt
factors for the interaction of electrons (having an n-distribution)
with a Coulomb field, which is found, for instance, when
electrons interact with ions in an astrophysical plasma.
The structure of this paper is as follows. Section 2 presents the

theoretical derivation of the temperature-averaged and total free–
free Gaunt factors. Section 3 deals with the methods and results
of the present calculations for n-distributed electrons. In
Section 4 a detailed comparison between our results and those
previously published by other authors is made. Section 5
describes the tabulated data, the paper is concluded in Section 6,
and final remarks are provided in Section 7.

2. Temperature-averaged and Total Gaunt Factor

The energy emitted per unit time and unit volume by free–
free emission from electrons with an energy distribution f (E) is
given by (see, e.g., KL1961)
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where ν is the frequency of the emitted photon, Eo=hν is the
minimum allowed energy of the electrons in order to emit a
photon of frequency ν, me is the electron mass, ne is the
electron density, n Z z, is the number density of an ion with
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3 The Gaunt factor is a measure of the quantum mechanical correction to the
semiclassical cross section of Kramers (1923).
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atomic number Z and ionization stage z, and Ry denotes the
Rydberg constant.

The integral on the RHS of (1) is the thermally averaged
Gaunt factor, denoted by gá ñ( )g u,2

emff
(with u= hν/kBT and

γ2= z2Ry/kB T), multiplied by a normalization constant Nem
defined such that gá ñ =( )g u, 12

emff
when =g 1

ff
. Here, T is

the temperature and kB is the Boltzmann constant.
With a suitable change of variables (x= E/kBT and

y= x−u) the thermally averaged Gaunt factor can be written as
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2.1. Maxwell–Boltzmann Distribution of Electrons

For the Maxwell–Boltzmann distribution of electrons, (2)
becomes
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as defined by, e.g., KL1961. The energy emitted per unit time
and unit volume is then given by
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which can be written as
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2.2. n-distribution of Electrons

For electrons with an n-distribution (see the Appendix)
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, the thermally averaged Gaunt factor
given by (2), is
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Noting that the incomplete Gamma function (Olver et al. 2010)

òG
+

= +-
+¥

- -⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )( )n

u e y u e dy
1

2
, , 9u n y

0

1 2

the boundary condition for the thermally averaged Gaunt factor
implies that

p
= G

+⎜ ⎟⎛
⎝

⎞
⎠( )

( )N
B

k T
n

u
2 1

2
, 10n

em
B

1 2

and

� �

òg

g g

á ñ =
G

+

´ =
+

=

+

+¥
- -

⎛
⎝⎜

⎞
⎠⎟

( )( ) ( )

( )

( )g u
e u

y u e g

y u y
dy

,
1

,

, .

11

u n
n y

i f

2
em 1

2
0

1 2

2 2

ff ff

The amount of energy emitted per unit time and unit volume is
then given by
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2.3. Total Power

Integration of (6) and (12) over the photon frequency spectrum
gives the total free–free power associated to an ion (Z, z)

gL = á ñ - -( ) ( ) ( )T C z n n T g erg cm s , 13e
2 1 2 2 3 1

Z zff , ff

where gá ñ( )g 2
ff

is the total free–free Gaunt factor given by
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for the n-distribution of electrons.
From (11) and (15) with n=1 and noting that

G = -( )u e1, u and B1=1, both the thermally averaged and
the total free–free Gaunt factors for a Maxwellian distribution
of electrons are recovered.

2.4. Photoemission versus Photoabsorption

Similar to the definition for the thermally averaged Gaunt
factors for photoemission, we can define the thermally

2
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averaged Gaunt factor for photoabsorption as
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the boundary condition gá ñ =( )g u, 1a
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. Using
the change of variables x=E/kBT and after determining the
normalization coefficient, the thermally averaged Gaunt factor
for photoabsorption is given by

� �òg
g g

á ñ = = =
++¥

-
⎛
⎝⎜

⎞
⎠⎟( ) ( )g u e g

x x u
dx, , 17a

x
i f

2

0 2 2ff ff

for the Maxwell–Boltzmann distribution and

� �

òg

g g

á ñ =
G

´ = =
+

+

+¥
- -

⎛
⎝⎜

⎞
⎠⎟

( )( )

( )

( )g u x e g

x x u
dx

,
1

, 18

a n
n x

i f

2
1

2
0

1 2

2 2

ff ff

for the n-distribution. The Maxwellian temperature-averaged
Gaunt factors for photoemission and photoabsorption,
Equations (4) and (17), yield the same result. This is a
consequence of the principle of detailed balance that is required
for thermodynamic equilibrium to be reached (see, e.g.,
Armstrong 1971), a condition that is not verified for the
n-distribution with n>1. Thus, Equations (11) and (18) have
different results.

3. Calculations and Results

We calculated numerically the temperature-averaged,
gá ñ( )g u,2

emff
, and total, gá ñ( )g 2

ff
, free–free Gaunt factors for

an n-distribution of electrons (n ranging from 1 (Maxwell–
Boltzmann distribution) to 100) for g Î -[ ]10 , 102 5 10 and
Î -[ ]u 10 , 1012 11 using the Gaunt factors associated with free–

free absorption by an electron in the presence of a Coulomb field
of an ion. For completeness, the range in γ2 is limited to 10−5,
corresponding to an upper temperature of Te/Z

2=1.578×
1010 K, although at this temperature relativistic effects are seen
and electron–electron bremsstrahlung dominates (see, e.g., Itoh
et al. 1985).
The calculations proceeded as follows. First, the free–free

Gaunt factors for the absorption of photons of frequency hν by

Figure 1. Thermally averaged Gaunt factors for electrons with an n-distribution with n=1, 1.2, and 5 (left panel), and n=1, 10, and 50 (right panel). The curves are
displayed for ( )ulog10 , varying from −5 to 6 from top to bottom in each panel.

3
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electrons with a range of possible initial energies Ei were
explicitly calculated (see AB2015), followed by the determina-
tion of the temperature-averaged and total Gaunt factors
(Equations (4) and (6), respectively). The Gaunt factor
calculation involved double- and quadruple precisions (see
the discussion in AB2015), while the numerical integrations
were performed with a precision of 10−15 using the double-
exponential over the semi-finite interval method of Takahasi &
Mori (1974) and Mori & Sugihara (2001). We use a modified
version (parallelized version) of the Numerical Automatic
Integrator for Improper Integral package developed by
T. Ooura.4

Figure 1 displays the temperature-averaged Gaunt factors
calculated for electrons with an n-distribution with n=1
(displayed in the two panels by black dotted lines), 1.2, 5, 10,
and 50. The curves are displayed for ( )ulog10 , varying from −5
to 6 from top to bottom in each panel, although our calculations
consider a wider range in n, γ2, and u (see Section 5). Figure 2
details gá ñ( )g u,2

emff
as a function of γ2 for =ulog 210 (left

panel) and 3 (right panel) in a logarithmic scale to show the
deviations of gá ñ( )g u,2

emff
for different n at these frequencies.

The temperature-averaged Gaunt factors for n>1 deviate
from those calculated for the Maxwell–Boltzmann distribution
(n= 1). As n increases, the deviations increase with the
decrease of ulog10 (Figure 1). For >ulog 110 gá ñ( )g u,2

emff

converges to the Maxwell–Boltzmann value (Figure 1),
overlapping it when >ulog 310 . There are still small
differences at =ulog 310 for g < 02 (Figure 2).

Figure 3 displays the total Gaunt factor, gá ñ( )g 2
ff

, variation
with γ2 calculated for n=1, 1.2, 2, 3, 5, and 10 (bottom panel)
and 15, 25, 50, and 100 (top panel). For each n the total Gaunt
factor has a similar profile as n=1 but with the peak shifted to

the right. In addition, and as expected from the thermally
averaged Gaunt factors’ evolutions with γ2, gá ñ( )g 2

ff
increases

with increasing n.

4. Validation of the Maxwellian Thermally Averaged and
Total Gaunt Factors

In order to validate our results, we carried out a detailed
comparison of the temperature-averaged and total free–free
Gaunt factors, calculated for electrons with a Maxwellian
temperature, with those published by van Hoof et al. (2014).
The top panels ofFigures 4 and 5 compare the temperature-
averaged and total free–free Gaunt factors determined for the
Maxwell–Boltzmann distribution in the present work (red dots)
and those calculated by van Hoof et al. (2014, solid lines).
The bottom panel of Figure 4 displays the relative difference

between the two calculations of the temperature-averaged Gaunt
factor in the ranges - -g- ( )5 log 62 and - -- ( )u5 log 4.
At first sight there seems to be no variation between the solid
lines and the dots overlaying them. In fact, the two calculations
have relative differences (in percentage) smaller than 0.12% for

= -( )ulog 5 and −4 and smaller than 0.04% for . -( )ulog 1.
The relative difference between the total Gaunt factors obtained
in the two calculations is smaller than 0.233% (bottom panel of
Figure 5).
These relative differences result from the different numerical

techniques for calculating the hypergeometric functions and
machine precision adopted for the calculations of the Gaunt
factors (see the discussions in the abovementioned papers and
in AB2015), as well as the adopted integrating method used in
the calculations of the thermally averaged and total Gaunt
factors. While in the present work the double-exponential
quadrature method extended to any real function (Mori &
Sugihara 2001) was used to calculate the different integrals,
van Hoof et al. used an adaptive step-size algorithm for the

Figure 2. Details of the thermally averaged Gaunt factors (in logarithmic scale) for electrons with an n-distribution (n varying from 1 to 100) as a function of γ2 for
=ulog 210 and 3. Although it appears from the previous figure that gá ñ( )g u,2

emff overlaps for >ulog 110 , there are still small differences at =ulog 310 for γ2<0
(inset plot in the right panel).

4 http://www.kurims.kyoto-u.ac.jp/~ooura/intde.html
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integrations, with an estimate of the remainder of the integral to
infinity being smaller than 10−7 times the total integral up to
that point. The relative differences shown above are indicative
of the adequacy of our results.

5. Tables

In the supplementary material tar.gz archive, a set of 11
tables referring to the temperature-averaged ( gá ñ( )g u,2

emff

versus γ2 for different u) and the total ( g( )g 2
ff

versus γ2) free–
free Gaunt factor is provided. The parameter space comprises
1�n�100, γ2 ∈ [10−5, 1010], and u ∈ [10−12, 1011].

6. Application to an Optically thin Plasma

We calculated the electron–ion5 free–free contribution to the
radiative losses of a plasma composed of H, He, C, N, O, Ne,
Mg, Si, S, and Fe and having solar abundances (Asplund et al.
2009) by considering the evolution of a gas parcel freely cooling
from 109 K and evolving under collisional ionization equilibrium
(CIE). In addition to the free–free emission, the other physical
processes included in this calculation comprise electron impact
ionization, inner-shell excitation, auto-ionization, radiative, and
dielectronic recombination. The internal energy of the gas parcel
includes the contributions due to the thermal translational energy
plus the energy stored in ionization.
The atomic data used in the present calculations include the

electron impact ionization cross sections discussed in Dere
(2007) and those available in the Chianti database (see, e.g.,
Dere et al. 2009). From these cross sections we calculate the
ionization rates associated with an ion of atomic number Z and
ionic charge z by averaging the product s ( )E v over the
impacting particle kinetic energy distribution f (E)

òs sá ñ =
+¥

-( )( ) ( ) ( )v E E m f E dE2 cm s , 19
I

e
1 2 3 1

Z z,

where me is the electron mass, and IZ z, is the threshold energy
in eV.
The radiative and dielectronic recombination rates for the n-

distribution are calculated from the fit coefficients to the

Figure 3. Total free–free Gaunt factor calculated for the n-distributed electrons
with n=1, 1.2, 2, 3, 5, and 10 (bottom panel) and n=15, 25, 50, and 100
(top panel). With increasing n, the total Gaunt increases and its peak maximum
moves to the right.

Figure 4. Top panel: comparison between the temperature-averaged free–free
Gaunt factors for a thermal distribution of electrons published by van Hoof
et al. (2014, solid lines) and those calculated in the present work (magenta
dots). Bottom panel: relative differences between the temperature-averaged
Gaunt factors obtained in the present work and those of van Hoof et al. (2014).

5 Note that electron–electron bremsstrahlung, although important at 109 K, is
not included in the present calculation.
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Maxwellian rates (Dzifčáková 1998), that is, the radiative
recombination rates for the n-distribution are determined from

a a
h
h
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G - +
G -
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n 2 1

3 2
, 20n

nRR
MB
Z z,

where aRR
MB is the Maxwellian radiative recombination rate, and

η is a parameter of the power-law fit of the Maxwellian rate
(see, e.g., Woods et al. 1981)
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The dielectronic recombination rates for the n-distribution of
electrons are determined from coefficients of the Maxwellian
rates given by the Burgess (1965) general formula,
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The Maxwellian radiative recombination rate coefficients are
taken from Badnell (2006a) 6 for all bare nuclei through Na-like
ions recombining to H through Mg-like ions, Altun et al. (2007)
for Mg-like ions, Abdel-Naby et al. (2012) for Al-like ions,
Nikolić et al. (2010) for Ar-like ions, and Badnell (2006b) for
Fe XIII-Fe X ions. The Maxwellian dielectronic recombination
rates are taken from Badnell (2006c) for H-like ions, Bautista &
Badnell (2007) for He-like ions, Colgan et al. (2004, 2003) for

Li and Be-like ions, Altun et al. (2004, 2006, 2007) for B,7 Na,
and Mg-like ions, Zatsarinny et al. (2003, 2004a, 2004b, 2006)
for C,8 O,9 F, and Ne-like ions, Mitnik & Badnell (2004) for
N-like ions, Abdel-Naby et al. (2012) for Al-like ions, and
Nikolić et al. (2010) for Ar-like ions. Radiative and dielectronic
recombination rates for S II, S III, and Fe VII are adopted from
Mazzotta et al. (1998), while for the remaining ions we adopt the
radiative and dielectronic recombination rates derived with the
unified electron–ion recombination method (Nahar & Prad-
han 1994) and those available at NORAD-Atomic-Data.10

The calculation was carried out with the Collisional + Photo
Ionization Plasma Emission Software (CPIPES; M. A. de
Avillez 2017, in preparation), which is a complete rewrite of
the E+AMPEC code (de Avillez et al. 2012). The ionization
structures due to the 102 ions and 10 atoms (for a total of 112
linear equations) of the gas parcel evolving under CIE
conditions were calculated at each temperature using a Gauss
elimination method with scaled partial pivoting (Cheney &
Kincaid 2008) and a tolerance of 10−15. Having calculated the
ionization structure of the gas parcel at each temperature, the
losses of energy due to free–free emission were calculated
using Equation (7) and assuming the hydrogenic
approximation.
Figure 6 displays the free–free emission resulting from the

CIE calculation for electrons described by the n-distribution with
n ranging from 1 (Maxwell–Boltzmann distribution) through
100. The free–free emission increases with n as expected from
the variation of the total Gaunt factor with n as shown in

Figure 5. Top panel: comparison of the total free–free Gaunt factors for a
thermal distribution of electrons calculated in the present work (red dots) with
those pf van Hoof et al. (2014; black line). Bottom panel: relative difference
between the total Gaunt factor obtained in the present work and those of van
Hoof et al. (2014).

Figure 6. Normalized (to nenH) radiative losses due to free–free emission by an
optically thin plasma evolving under collisional ionization equilibrium and for
electrons having n-distributions (n = 1, 1.2, 2, 3, 5, 10, 15, 25, 50, and 100).

6 amdpp.phys.strath.ac.uk/tamoc/DATA/

7 For Ne VI and Mg VII we use the erratum; Altun et al. (2005).
8 For N II we follow the erratum Zatsarinny et al. (2005a).
9 For Ne III, Mg V, and Fe XIX we use the erratum Zatsarinny et al. (2005b).
10 http://www.astronomy.ohio-state.edu/~nahar
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Figure 3. This loss of radiation has its minimum when electrons
relax to thermal equilibrium, that is, when n becomes 1.

7. Final Remarks

We carried out a detailed calculation of the temperature-
averaged and total free–free Gaunt factors that are useful for the
determination of the free–free emission power spectrum and
losses of radiation in astrophysical plasmas. Bremsstrahlung is
in many situations the most important electromagnetic
information we can obtain, e.g., in clusters of galaxies with
plasma temperatures in the keV range. It is well-known that
galaxy cluster or group mergers can generate large-scale shock
waves (see, e.g., Russell et al. 2014) and/or high temperature
gradients at the interface of different intracluster gases, both of
which could drive the electron population, responsible for the
emission, out of equilibrium. It is therefore desirable to provide
tables of free–free Gaunt factors over a wide range in
temperatures for a variety of n-distributions.
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of the Computational Astrophysics Group, University of Évora.

Appendix
The n-distribution

The n-distribution has a steeper decrease at the high-energy tail
than the Maxwell–Boltzmann (MB) distribution, which in turn is
an n-distribution with n=1. In energy space, the distribution has

the analytical form

p
=

-
-

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )
f E dE

k T
B E

E
k T

e dE
2

,

24

n n

n
E k T

B
3 2

1 2

B

1 2
B

where = p
G +( )Bn n2 2 1

, E is the electron energy, kB is the

Boltzmann constant, Γ is the Gamma function, and Î +¥[ ]n 1,
and T are the parameters of the distribution. When n=1 the MB
distribution is recovered. The mean energy of the distribution is
given by

tá ñ = ( )E k
3
2

, 25B

where t = + Tn 2
3

is the pseudo-temperature, meaning that it is
the temperature of the MB distribution with the same mean
energy as the mean energy of the n-distribution; thus, τ has the
same physical meaning as T in the MB distribution. Figure 7
compares the n-distribution for different n values with the MB
for the same parameter T (top panel) and τ (bottom panel).
The n-distributions with the same τ have higher and

narrower peaks than the MB distributions, that is, they have
less electrons with both high and low energies, but have an
increased number of electrons with intermediate energies.
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