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Padrões temporais de mortalidade por atropelamento de aves no 

sul de Portugal 

Resumo 

 

Milhões de aves morrem atropeladas todos os anos mas pouca atenção foi dada às 

suas tendências populacionais ao longo do tempo. Nesta tese pretendo avaliar como 

as taxas de mortalidade por atropelamento de aves variam ao longo do tempo e quais 

as variáveis meteorológicas que contribuem para as tendências observadas. As minhas 

espécies-alvo são o pintassilgo Carduelis carduelis, o chapim azul Parus caeruleus, a 

toutinegra Sylvia atricapilla, o pardal comum Passer domesticus, o trigueirão Emberiza 

calandra e a coruja do mato Strix aluco. Quatro estradas foram monitorizadas no 

distrito de Évora de 2005 a 2013 e as estimativas de mortalidades foram corrigidas 

para ter em conta a persistência e detectabilidade das carcaças, tendo o número de 

atropelamentos aumentado consideravelmente. Modelos GAMM foram ajustados a 

todas as espécies como forma de incorporar a dependência temporal dos dados. Os 

resultados obtidos mostram que, em geral, a mortalidade diminuiu ao longo do tempo 

e foi geralmente maior durante os meses de primavera e verão. Os efeitos das 

variáveis meteorológicas nos padrões de mortalidade obtidos não foram óbvios, 

quando comparados com tempo e estação, e variaram entre as espécies, o que sugere 

a existência de factores adicionais para explicar as tendências observadas. Este estudo 

fornece dados concretos de que a mortalidade devido a colisões com veículos pode 

mudar ao longo do tempo, o que pode ter consequências demográficas e pôr em risco 

a eficácia de medidas de mitigação, destacando a necessidade de abordar maiores 

escalas temporais em investigação. 
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Temporal patterns of bird roadkills in southern Portugal 

Abstract 

 

Millions of birds are roadkilled every year but little attention has been given to its 

population trends overtime.  In this thesis I intend to assess how the rates of bird 

mortality from vehicle collisions change overtime and which weather variables 

contribute to the observed trends and patterns. My target species are the goldfinch 

Carduelis carduelis, the blue tit Parus caeruleus, the blackcap Sylvia atricapilla, the 

house sparrow Passer domesticus, the corn bunting Emberiza calandra and the tawny 

owl Strix aluco. Four roads were monitored in the district of Évora between 2005 and 

2013 and mortality estimations were corrected for carcass persistence and 

detectability, which significantly increased the number of roadkills. GAMM models 

were fit to all species as a way to incorporate the temporal dependence of the data. 

The results show that, overall, mortality decreased over time and was generally higher 

during spring and summer months. The effects of weather variables on the resulting 

mortality patterns were less obvious, when compared to time and season, and differed 

across the species, which may suggest the existence of additional factors important to 

explain the observed trends. This study provides concrete data that mortality due to 

car collisions may change overtime, which can have demographical consequences and 

risk the effectiveness of mitigation measures, highlighting the need to further address 

large temporal scales in research.   
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Introduction 

Roads are important routes of transport and connectivity for people, and have become 

an increasingly common feature of our world as a result of human development and 

economic growth. However, roads also have numerous negative effects on adjacent 

habitats, wildlife and ecosystems and have become an issue of great concern in many 

countries worldwide (Coffin, 2007). They affect all kinds of living beings, from small 

invertebrates to large mammals, and both terrestrial and aquatic ecosystems 

(Trombulak & Frissel, 2000; Smith-Patten & Patten, 2008; Speziale et al. 2008). Being 

one of the main causes of fragmentation and loss of habitat; roads are also sources of 

pollution with chemicals, light and sound; and help the spread of invasive species 

(Trombulak & Frissell, 2000; Forman et al. 2003). Roads act as a barrier to animal 

movement in three ways: (i) physical, as it prevents individuals from crossing the road; 

(ii) behavioural, when animals avoid it; and (iii) by mortality due to collision with 

vehicles (i.e., roadkills). This way, they can alter the structure of populations in 

adjacent areas and may influence the genetic flow of species (Forman & Alexander, 

1998; Trombulak & Frissell, 2000; Forman et al. 2003). The growing interest in 

quantifying and qualifying the ecological impacts of roads ultimately led to the 

emergence of Road Ecology, which in the end aims to avoid, minimize and compensate 

the damaging effects of roads on species and environment (Coffin, 2007; van der Ree 

et al. 2011).  

Birds occupy a high diversity of ecological niches and play numerous vital roles in 

structuring and functioning of ecosystems, such as pollination and seed dispersal, 

therefore acting as bio-indicators of ecosystem health (Şekercioğlu et al. 2004). There 

are many reasons why birds use roads: (i) they provide foraging habitats for many 

species, such as scavenging raptors (capturing prey or taking advantage of roadkills) 

and insectivorous birds (the heat of the road attracts insects); (ii) they reduce 

predation pressure (e.g., offering hiding places, and enemy-free areas); (iii) the warm 

surface helps conserve metabolic energy; (iv) street lights prolong diurnal activity; (v) 

shrubs, trees, powerlines and other anthropogenic structures along roadsides are used 

as perching spots for birds of prey and songbirds, or nesting sites; and (vi) many birds 

use roads as ecological corridors or migration routes, etc. (Erritzoe et al. 2003; 
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Lambertucci et al. 2009; Morelli et al. 2014). But in spite of their attractiveness, roads 

pose a great risk of collision with vehicles for birds, with many millions of individuals 

dying every year in roads across the globe (Erritzoe et al. 2003).  

Birds, common species in particular, are currently facing widespread declines in range 

and abundance due to human-driven changes (e.g., agriculture intensification; Donald 

et al. 2001; Fuller et al. 2005; IUCN, 2014; Loss et al. 2015; Inger et al. 2015), which is 

cause of growing concern. This could be exacerbated (or be an explanation) if local 

populations are suffering declines where the roadkill rate far exceeds recruitment rate, 

through reproduction and immigration. On the other hand, large numbers of casualties 

may not necessarily imply a threat to the survival of a species, but merely be a mirror 

of its abundance and distribution. There is however a clear lack of information in this 

respect, and also if mortality has changed for a species overtime (Erritzoe et al. 2003). 

Current research is mostly conducted at the spatial scale level and during short time 

periods (1-2 years; Garriga et al. 2017), targeting other road effects over roadkills (such 

as behaviour modifications, decrease in breeding success, etc.; Reijnen & Foppen, 

2006) or the identification of factors affecting occurrence of roadkills (like habitat type, 

traffic disturbance, etc.; Reijnen & Foppen, 1994; Rosa & Bager, 2012). This situation, 

where we have many small scale independent studies, can’t provide information 

necessary to quantify or mitigate the effect of roads on higher orders (e.g., 

populations, communities, ecosystems; Roedenbeck et al. 2007; van der Ree et al. 

2011). To do so, road ecology studies need to address larger scales and, in the 

particular case of this thesis, a temporal one. 

The question I intend to assess in this thesis is how birds’ roadkill rates vary over time 

(annually and seasonally) and which weather variables contribute to the observed 

variations or trends. My target species are five passerines -  goldfinch (Carduelis 

carduelis), blue tit (Parus caeruleus), blackcap (Sylvia atricapilla), house sparrow 

(Passer domesticus) and corn bunting (Emberiza calandra); and a strigiforme - tawny 

owl (Strix aluco). Data was obtained from a nine year survey of four road sections in 

the district of Évora, southern Portugal. 
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The goldfinch is a common passerine, mainly granivorous, that can be found in a wide 

variety of habitats, from parks and urban gardens, open or sparse forested areas, 

edges, streams and riverine areas, to orchards or cultivated lands. Breeding takes place 

between April and early August (Clement, 2016). This species is widely distributed 

across Europe and central Asia and the population seems to have undergone a 

moderate increase in Europe, thus being evaluated as least concern (LC) according to 

the global IUCN Red list category (EBCC, 2015; BirdLife International, 2017).  

The blue tit is a forest bird, inhabiting a variety of woodland habitats, parks and 

gardens. The breeding season is from April to June. It feeds mainly on insects and 

spiders, plus fruits and seeds, nectar and pollen, although the diet can vary depending 

on food abundance (Gosler et al. 2013). This is a common European species, mostly 

resident, with populations showing a moderate increase across its range, and 

therefore considered to be of least concern by the IUCN (EBCC, 2015; BirdLife 

International, 2017).  

The blackcap can be found in almost all kinds of forested areas and breeding mainly 

occurs from mid-April to August (Aymí et al. 2013). It is a typically insectivorous bird, 

but during autumn and winter, it feeds mostly on fruits, which can influence seasonal 

habitat occupation (Jordano & Herrera, 1981; De Los Santos et al. 1986). The blackcap 

has an extremely large range and can be found all over Europe and also in some areas 

of the north of Africa and sub-Saharan regions, where it migrates to (EBCC, 2015; 

BirdLife International, 2017). In the north and eastern parts of its range, this species is 

a long-distance migrant, while in the Mediterranean basin and some parts of Western 

Europe, it is partially migratory (Aymí et al. 2013). The population is suspected to be 

increasing globally; hence it’s classified as least concern by the IUCN Red list (EBCC, 

2015; BirdLife International, 2017).  

The house sparrow is a species very closely associated with humans, easily found 

around man-made structures, from farms to urban centres. Breeding occurs from 

February to September, but timing may vary with altitude. It feeds mainly on seeds 

from grasses, cultivated cereals and low herbs, but also buds, berries and a variety of 

household scraps (Summers-Smith et al. 2015). Although this species is native to 
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Eurasia and North of Africa, it can now be found in most parts of the world, having 

been introduced to North and South America, South of Africa and Oceania (BirdLife 

International, 2017). In Portugal, house sparrow populations are considered stable, but 

in Europe, the population trend seems to be declining, which is mostly attributed to 

changes in agricultural practices. However, there has also been a significant decline in 

urban house sparrows but the causes are not properly understood (De Laet & 

Summers-Smith, 2007; Meirinho et al. 2013; EBCC, 2015). Nonetheless, due to its large 

range and general population size, house sparrow is classified as least concern 

acoording to the IUCN Red list (BirdLife International, 2017).   

The corn bunting lives in open grasslands, both in natural steppe and agricultural 

lands. It feeds primarily on seeds but during the breeding season small invertebrates 

are a large part of its diet. On north-western populations, breeding starts from late 

May onward, but it probably starts sooner in the south of its range. North and western 

populations are mostly sedentary whilst the population from Central and Eastern 

Europe are partially migratory (Madge & de Juana, 2017). This species show a 

moderate decline across Europe, which is particularly accentuated in the northwest 

and is attributed to agricultural intensification (Donald & Forrest, 1995; EBCC, 2015; 

BirdLife International, 2017). In Portugal, on the other hand, the population is 

considered stable and because it has a large distribution across Europe and western 

and central Asia, corn bunting is classified as least concern by the IUCN (Meirinho et al. 

2013, BirdLife International, 2017). 

A highly sedentary and territorial species, the tawny owl is a forest bird, although it can 

be found in urban and clear-felled areas and intensive agricultural areas. The   

breeding season of this species goes from February to July. It feeds on small mammals 

and birds but will also consume amphibians, reptiles, occasionally fish and a variety of 

invertebrates (Hagemeijer & Blair, 1997; Holt et al. 1999). The tawny owl can be found 

all over Europe and some parts of the west and central Asia and is considered to be of 

least concern by the IUCN Red list (BirdLife International, 2017). 
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Abstract 

Despite mortality by collision with vehicles being a big source of mortality for many 
bird species worldwide, very little attention has been given to its temporal trends. We 
assessed how the roadkill mortality patterns of common bird species changed over a 
period of nine years in southern Portugal and which weather factors influence the 
observed patterns. We corrected mortality estimations and fitted GAMM models to all 
species. Roadkills’ numbers increased substantially after correcting for survey 
frequency, and carcass persistence and detectability. Our results show that, overall, 
mortality decreased over time and was generally higher during spring and summer 
months. The lack of a clear relationship between the weather variables and the 
observed mortality patterns suggests the existence of additional factors important to 
explain the observed trends. Our study provides concrete data that mortality due to 
car collisions may change overtime, which can have demographical consequences and 
risk the effectiveness of mitigation measures, highlighting the need to further address 
large temporal scales in research. 

 

Key words: Temporal trends, passerines, tawny owl, common species, mortality, 

annual patterns. 

 

1. Introduction 

Biodiversity worldwide is currently facing unprecedented declines due to human 

activity. For the past 500 years, there has been an increase in extinction rates that far 

exceeds the expected rate based on geological record (Dirzo & Raven, 2003; Hoffmann 
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et al. 2010; Dirzo et al. 2014; Ceballos et al. 2015). Such trends are linked to the major 

causes of biodiversity loss: habitat change, climate change, spread of invasive alien 

species, over-exploitation and pollution (Butchart et al. 2010). Much of the 

conservation efforts are focused on rare species, since theoretically they are the ones 

facing greater risk of extinction, but common species on the other hand have received 

far less attention (Inger et al. 2015; Gaston, 2010; 2011). Their sheer numbers make 

them significant ecosystem shapers – creating, maintaining and modifying habitats; 

they are involved in many biotic interactions and act as the support of many 

ecosystem services. But despite playing key roles in terrestrial and marine ecosystems, 

common species are greatly affected by habitat loss and degradation, over-

exploitation and invasive species, often suffering big population and distribution losses 

(Gaston, 2010; 2011). Birds in particular, are experiencing widespread declines in range 

and abundance as a result of human-driven changes (Donald et al. 2001; Fuller et al. 

2005; Loss et al. 2015; IUCN, 2014). The decline of common birds is of growing 

concern, as more studies suggest that they play vital roles in structuring and 

functioning of ecosystems. A drop in their numbers will have negative consequences in 

many ecosystem processes and services, such as decomposition, pollination, pest 

control and seed dispersal (Şekercioğlu et al. 2004; Inger et al. 2015). According to the 

2015 report of the British Trust for Ornithology (BTO), 29 bird species show a 

population decline of more than 50% in recent years (Robinson et al. 2015), among 

which are species considered common such as house sparrow (Passer domesticus), 

common starling (Sturnus vulgaris), common house martin (Delichon urbicum) or corn 

bunting (Emberiza calandra). Among the most reported ecological causes to explain 

some of these declines are agricultural intensification and habitat changes (Robinson 

et al. 2015; Donald et al. 2001). But there are additional anthropogenic factors that 

negatively affect hundreds of millions of individuals every year. 

Roads have numerous direct and indirect impacts on birds and have become an issue 

of great concern in many countries worldwide. The most visible impact of roads on 

birds is mortality by collision with vehicles (Forman et al. 2003). It is estimated that 

between 89 to 340 million birds are road-killed each year in the United States (Loss et 

al. 2014) and in some European countries estimates vary from 653 000 in the 
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Netherlands, 1.1 million in Denmark, more than 7 million in Bulgaria, 8.5 million in 

Sweden, 9.4 million in Germany and 27 million in England (Erritzoe et al. 2003). These 

are impressive numbers and yet, very little attention has been given to the temporal 

trends of these numbers. Most studies focus on documenting spatial patterns of 

roadkills, concentrating on mortality ‘hotspots’, which are useful for defining location 

of mitigation measures. On the other hand, they are normally conducted over fairly 

short time periods (1-2 years) and only report on seasonal variations in roadkills. 

Therefore, it is fundamental to assess if this source of mortality has been changing 

over the years so we can understand its influence and possible impact on the 

persistence and viability of populations. 

Passerines (Passeriformes) and owls (Strigiformes) are among the taxonomic groups 

more often referred to in studies documenting roadkills (Erritzoe et al. 2003; Benitez-

Lopez et al. 2010; Grilo et al. 2014). Some studies show that species with the highest 

mortality rates are the more common ones, although some behavioural and ecological 

characteristics contribute to a higher vulnerability of some of these species to roadkills 

(Moller et al. 2011; D'Amico et al. 2015). In southern Portugal, a recent research was 

conducted to see if mortality of passeriformes is associated with abundance near roads 

and morphological, ecological and behavioural traits (Santos et al. 2016). Results 

showed a strong relation between vulnerability to roadkills and foraging behaviour and 

habitat type, with the most vulnerable birds being the small woodland species that 

feed in shrubs and trees. It was also shown that there was a higher than expected 

mortality for goldfinch (Carduelis carduelis), blue tit (Parus caeruleus) and blackcap 

(Sylvia atricapilla), considering their abundance near roads. Besides passerines, owls 

are also subject of high roadkill rates, particularly tawny owl (Strix aluco; Silva et al. 

2008; Silva et al. 2012; Santos et al. 2013). There has been evidence that road 

mortality contributed to reduce barn owl populations in the UK (Ramsden, 2003) and 

in view of that, a high mortality in tawny owl, especially if it leads to a population 

decline, could be a cause for worrying since this species is a top predator. Thus, if 

reproduction and immigration are unable to offset the number of roadkills, this could 

lead to a decline in local abundances and compromise the long-term survival of 

populations. On the other hand, it is well known that there are warmer years and more 
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humid and cold years. It is possible that the variation in annual mortality patterns may 

be partially explained by changes in weather conditions. For example, weather 

variations may explain differences in food availability for wildlife, which in turn limit 

animal populations (White, 2008). Less rainfall translates into lower vegetation growth 

and consequently lower reproductive success of primary consumers (herbivorous). 

With lesser availability of prey, predators have to move more and may face larger risk 

of mortality, such as roadkills. Also, long-term shifts in average weather, i.e. climate 

change, are already having effects on animals, such as earlier breeding, changes in 

timing of migration and breeding performance, changes in population sizes, etc. (Crick, 

2004), which could potentially influence mortality over time.    

In this study we intend to assess how the roadkill rates of six bird species vary over 

time (annually and seasonally) and which weather variables contribute to the observed 

variations or trends. Besides the three species with a higher than expected mortality – 

goldfinch (Carduelis carduelis), blue tit (Parus caeruleus) and blackcap (Sylvia 

atricapilla), and the tawny owl which is the strigiforme with highest casualties in roads 

near woodlands (Santos et al. 2013) – we will also consider the house sparrow (Passer 

domesticus) and corn bunting (Emberiza calandra), which are subject to high mortality 

rates, but in proportion to their local abundance (Santos et al. 2016). Thus, we intend 

to verify if there are different patterns between the species that die more than 

expected and the species that die as expected according to their abundances. For the 

tawny owl, it is not known whether mortality is higher or lower than expected. It is 

hypothesized that, should a decline of roadkills occur through the years, it is more 

likely in goldfinch, blue tit or blackcap (due to their greater vulnerability; Santos et al. 

2016) when compared with remaining studied species. 

 

2. Methods 

2.1. Study area 

The study area is located in southern Portugal, in the district of Évora (38o32'24'' to 

38o47'33''N; -08o13'33'' to -07o55'45''W). The landscape is characterized by woodlands 
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of cork and holm oaks (Quercus suber and Q. rotundifolia) and agricultural areas 

(arable land, olive groves, and vineyards), with a smooth and undulating relief (under 

400 m above sea level). The climate is typically Mediterranean with hot, dry summers 

and mild winters with annual rainfall averaging 609.4 mm. During summer (in July), 

mean temperature varies from 16.3oC to 30.2oC and in winter (January) it fluctuates 

between 5.8oC and 12.8 C (Évora 1981-2000; IPMA, 2017). 

The roadkill surveys were performed on four road sections (N4 and N114, M529 and 

M370), totalling 37 km between Évora and Montemor-o-Novo (Fig. 1). 

 

 

2.2. Roadkill dataset 

A dataset of 2 533 road-killed birds, recorded between 1st January 2005 to 31th 

December 2013 (nine years) was obtained from the UBC database (Conservation 

Biology Unit, Department of Biology, University of Évora). Considering the above value, 

26.6% of these birds were blue tit (n=674), 19.5% blackcap (n=494), 15.7% goldfinch 

(n=398), 14.5% tawny owl (n=368), 12.2% house sparrow (n=308), and 11.5% corn 

bunting (n=291). 

Fig. 1 Location of the four studied roads (N114, N4, M529 and M370) in southern Portugal. 
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Road surveys were performed by an experienced observer driving a car at low speed 

(20-40 km/h) and starting at sunrise. The frequency of surveys varied between daily 

(2005; 16th March 2009 to 31th October 2009; 16th March 2010 to 22nd March 2013) 

and weekly (2006-2008; November 2009 to 15th March 2010). No surveys were done 

during the month of April 2013. Every carcass found was identified to the lowest 

taxonomic level and taken its GPS position. For more survey details see Santos et al. 

(2011, 2013, 2016). Due to the temporal extension of these surveys, it was not always 

possible to guarantee the same observer, however, there was always care to 

standardize procedures and minimize the error caused by different observer skills. 

 

2.3. Explanatory Variables 

In order to assess the influence of weather conditions on roadkill temporal patterns, 

we selected the following variables: year, month, mean monthly maximum 

temperature (oC) (mtmax), mean monthly minimum temperature (oC) (mtmin), total 

monthly rainfall (rainfall), the sum of rainfall for the first 4 months of the year (January 

- April) and the difference in monthly rainfall in relation to mean annual value. Values 

for all weather variables were obtained from Instituto Português do Mar e da 

Atmosfera (IPMA, 2017). 

 

2.4. Data Analyses 

2.4.1 Data organization 

The roadkill dataset was first organized as a time series data, being each observation a 

unique month count of observed roadkills and starting in January 2005. Thus, we built 

six datasets, each one belonging to a different species. When assessing mortality rates 

there are a number of factors that affect the probability of finding a carcass and, 

ultimately, can lead to an underestimation of mortality numbers (Santos et al. 2011; 

Teixeira et al. 2013). Considering that the surveying periodicity varied over the years 

and smaller birds quickly disappear from roads (Santos et al. 2011; Teixeira et al. 

2013), it was necessary to correct the roadkill counts. Carcass detection probability 
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was obtained with Huso estimator that combines the carcass persistence probability, 

the searcher efficiency and the survey interval (Korner-Nievergelt et al. 2015). Then it 

is possible to estimate the number of animals that have died from the number of 

carcasses counted and the estimate for carcass detection probability. We defined daily 

persistence probability of 0.366 for passerine and 0.745 for owl carcasses (Santos et al. 

2011). There was no experimental data for searcher efficiency, but we considered 0.8 

for passerines and 1.0 for owls, meaning that, being present on the road, passerines 

are harder to find than owls due to its smaller size. We used two functions within Huso 

estimator to estimate the number of carcasses: the median of posterior distribution of 

number of carcasses (posteriorN) and the Horvitz-Thompson estimator (HT; equals the 

number of carcasses found divided by the detection probability) (Korner-Nievergelt et 

al. 2015). To choose the best approach, a Wilcoxon rank test was calculated to verify if 

different survey frequencies (daily vs. weekly) had different estimates. The HT 

equation was considered more adequate because no differences between survey 

frequencies were found (W = 8, p = 0.730), while the posteriorN equation yielded 

significant differences between survey frequencies (W = 20, p = 0.016) giving higher 

estimates of mortality for months with weekly surveys. In further analyses, the HT 

approach was used (see Appendix figures). 

 

2.4.2. General roadkill trends 

To characterize mortality patterns of species, temporal trend graphics were done for 

each species and generalized linear models (with Poisson link) were adjusted to 

visualize the significance of the tendencies. 

 

2.4.3. The influence of variables on roadkills 

A preliminary selection of explanatory variables was done with exploratory plots and 

Pearson correlations that were calculated to check for collinearity problems (Zuur et al. 

2007, 2010). “Minimum mean temperature” was discarded due to high correlation 

with “maximum mean temperature” (r > 0.70). Concerning rainfall-related variables, 
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only total rainfall was kept (due to high correlation) and a logarithmic transformation 

was applied to remove outliers and improve normality. 

Exploratory analysis of the data showed that the response variable (mortality 

numbers) did not have a normal distribution nor a linear relationship with all predictor 

variables and, being count data, we would have to model it with a Poisson distribution. 

Furthermore, we had a temporal data series and a probable lack of statistical 

independence between observations. This led us to use Generalized Additive Mixed 

Models (GAMM) as a way to incorporate the temporal correlation component of the 

data and also include a Poisson link and non-linear effects (Zuur et al. 2007, 2009).  We 

used auto-regressive (AR) and auto-regressive moving average (ARMA) models with a 

residual correlation structure (using alternatively, year or month) to determine the 

influence of year, season, and weather conditions on mortality trends (Zuur et al. 

2009). The correlation structure that yielded a model with the lowest Akaike’s 

Information Criteria (AIC) was selected. All explanatory variables were initially entered 

as smoothing terms and only remained in the model as such if significant (P < 0.05) and 

non-linear (edf > 2). The significant explanatory variables with linear effects (edf < 2) 

were maintained in the model but defined as linear terms (without the smoothing 

term). Models with lower AIC were considered to be superior to the remaining (Zuur et 

al. 2009). The final model for each species was selected using AIC and an assessment of 

goodness of fit was done with residual plots and amount of explained deviation. 

Estimates and calculations of carcass detection probability were conducted with 

‘carcass’ R package (Korner-Nievergelt et al. 2014, Korner-Nievergelt et al. 2015). 

Mixed models were applied using ‘mgcv’ package (Wood, 2017). All analyses and 

graphical outputs were performed with R version 3.3.0 (R Development Core Team 

2011). 
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Fig. 2 Annual trends of the estimated mortality caused by roadkills for goldfinch, corn bunting, blue tit, 
house sparrow, blackcap and tawny owl for nine years (2005-13). A GLM model was fitted for each 
species and the respective coefficient is presented. 

3. Results 

From 2005 to 2013 a total of 2 533 road-killed birds belonging to the six target species 

were recorded. This number increased substantially to 7 438 carcasses after applying 

the Huso estimator that accounts with survey frequency, mean carcass persistence 

time and observer detectability (Korner-Nievergelt et al. 2014). After correcting for 

roadkill estimates, blue tit and blackcap were the species with highest mortality 

numbers, accounting for 27.7% (n = 2060) and 25.8% (n = 1918) of the total number of 

roadkills, respectively. The goldfinch, corn bunting, and the house sparrow had 

intermediate levels of mortality with 14.9% (n = 1106), 12.7% (n = 942) and 12.6% (n = 

935) of total mortality, respectively. Among the species considered for this study, the 

tawny owl had the lowest mortality rates, but still accounting with 6.4% (n = 477) of 

roadkills. 

 

3.1. General Roadkill Trends 

There is a general decreasing trend of the number of roadkills for all species studied 

from 2005 to 2013 (Fig. 2). This decreasing trend seems highest in the blackcap (GLM 

coefficient = -0.016) and lowest in the blue tit and goldfinch (GLM coefficient = - 

0.008), although the difference between the two coefficients is small. 
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The roadkill patterns were not regular within years and there was some seasonality in 

roadkills for all species (some months with very high roadkill rates and other months 

with minimum roadkill rates). Figure 3 shows how mortality varied along the year for 

each species. In general, roadkills increase during spring and summer months, except 

for the blackcap. The mortality pattern of this species peaks in winter months, 

reaching its highest value in our study in January. The goldfinch, corn bunting and 

house sparrow show similar patterns, dying more between March and July, with much 

lower numbers of roadkills during the remaining months. Comparatively to the other 

species, the mortality in the blue tit was rather constant throughout the year, slightly 

increasing in spring and summer.  Roadkills of tawny owls were higher during summer, 

peaking in July and August, though there was also a slight increase in January. 

 

 

 

3.2. The influence of weather variables on roadkill trends 

The best GAMM model for the blue tit, corn bunting, and house sparrow was an auto-

regressive model incorporating dependence between consecutive months (phi=-0.05 

for the blue tit; phi=-0.04 for the corn bunting; and phi=-0.07 for the house sparrow). 

Fig. 3 Seasonal trends of the estimated mortality caused by roadkills for goldfinch, corn bunting, blue tit, 
house sparrow, blackcap and tawny owl. 
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The best model for the tawny owl incorporated a temporal dependence between years 

(phi=0.16), while the best model for the goldfinch and blackcap was an auto-regressive 

moving average (ARIMA) model (phi1=0.06, phi2=-0.06 for the goldfinch; phi1=-0.08, 

phi2=0.86 for the blackcap) (Table 1). 

The models built showed good fit to the roadkill time series data after inspection of 

residual plots. The amount of variance explained was quite good for the blackcap, corn 

bunting and goldfinch (between 53.2% and 68.7%) but lower for the blue tit, house 

sparrow and tawny owl (between 23.8% and 33.6%; Table 1). 

 

Table 1 Summary of GAMM results with parameters of explanatory variables included in final models for 
each species (EDF: estimated degrees of freedom of non-linear terms, F: F test of non-linear terms, p-
value: significance of F test of non-linear terms; Coef.: regression coefficient of linear terms, t: t test for 
significance of coefficient, p-value: significance of t test of linear terms; Phi: parameters referring to the 
residual correlation structure, R

2
 adj.: proportion of explained deviation of model). 

 
Variables 

Smooth terms Linear Terms Phi 

Edf F p-value Coef. T p-value  

Goldfinch 

Year 3.930 56.013 <0.001    
0.06; -

0.06 
(a) 

Month 3.868 105.267 <0.001    

Rainfall 3.277 8.571 <0.001    

Mtmax 3.895 26.630 <0.001    

Blue tit 

Year 3.718   28.660   <0.001    

-0.05 
(c) 

Month 3.851   67.080   <0.001     

Rainfall 3.826   8.724 <0.001     

Mtmax 3.531   3.262   0.00989     

Blackcap 

Year 3.847   95.990   <0.001     
-0.08; 

0.86 
(b) 

Month 3.686   43.115   <0.001    

Rainfall 3.730   9.662 <0.001     

Mtmax 3.975   47.416   <0.001     

House 
sparrow 

Year 3.933 66.541 <0.001    
-0.07 

(c) 
Month 3.636   51.747   <0.001     

Rainfall 2.896   9.805 <0.001     

Corn bunting 

Year    -0.12 -6.340 <0.001 

-0.04 
(c) 

Month 3.937 164.62 <0.001    

Rainfall 3.886 11.87 <0.001    

Mtmax    -0.06 -3.085 0.00266 

Tawny owl 

Year 3.060   13.076 <0.001     

0.16 
(c) 

Month 3.745   6.757 <0.001    

Rainfall    -0.08 -1.703 0.0917 

Mtmax    -0.05 -2.013 0.0469 

*Correlation structures: (a) ARMA (2,0); (b) ARMA(1,0); (c) AR(1). 
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Mortality rates of the goldfinch through time were best explained by year, month, 

temperature and rainfall. From 2005 to 2007 there was a steep decrease in mortality, 

although reaching high values in 2010, and decreasing again from 2011 onward. There 

was also a seasonal effect within the year, with mortality peaking in March- June. 

Months with temperatures around 15-20oC and higher than 30oC had higher 

probability of increased mortality. The effect of rainfall was less clear but indicates that 

mortality was higher for more than 50 mm of monthly rainfall (Fig. 4).  

 

The trend in mortality rates of the blue tit were best explained by year, month, 

temperature and rainfall. Mortality for this species was highest in 2005 and decreased 

afterwards up till 2008. From here on, it slightly increased until 2011, which was 

followed by another decrease. There is also a seasonal effect within the year, with 

higher levels of mortality in March-April and again in September-October. The effects 

of temperature and rainfall are more subtle, but results indicate that mortality is 

higher at temperatures lower than 17oC and higher than 30oC, while rainfall has the 

same effect at monthly values around 2-7 mm and 50-90 mm (Fig. 5).  

 

Fig. 4 Non-linear factors affecting the temporal distribution of roadkills for goldfinch. Fitted smooth 
terms (written as s(name of variable, number of degrees of freedom)) for goldfinch’s mortality (solid 
lines) and confidence intervals (dashed lines); top left panel: year, top right panel: month, bottom left 
panel: rainfall, bottom right panel: maximum temperature. 
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Roadkills of the blackcap were best explained by year, month, temperature and 

rainfall. Mortality decreased along the years, being highest between 2005 and 2007. 

There is evident seasonality in the mortality pattern of blackcaps, with individuals 

dying more in winter months. In respect to the weather variables, mortality increases 

between 2-7 mm and for more than 55 mm of rainfall/per month; and when 

temperatures are between 10-17oC and 27-34oC (Fig. 6). 

Fig. 5 Non-linear factors affecting the temporal distribution of roadkills for blue tit. Fitted smooth terms 
(written as s(name of variable, number of degrees of freedom)) for blue tit’s mortality (solid lines) and 
confidence intervals (dashed lines); top left panel: year, top right panel: month, bottom left panel: 
rainfall, bottom right panel: maximum temperature. 
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Mortality of the house sparrow was best explained by year, month and rainfall. There 

was a decrease in mortality from 2005 to 2006, followed by a peak between 2008 and 

2010, after which it decreases again. Mortality was also highest from March to August. 

The effect of rainfall on the number of roadkills of house sparrows was not very 

obvious, but for values lower than 55 mm, mortality seemed to decrease (Fig. 7). 

Fig. 6 Non-linear factors affecting the temporal distribution of roadkills for blackcap. Fitted smooth 
terms (written as s(name of variable, number of degrees of freedom)) for blackcap’s mortality (solid 
lines) and confidence intervals (dashed lines); top left panel: year, top right panel: month, bottom left 
panel: rainfall, bottom right panel: maximum temperature. 
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The mortality of the corn bunting was best explained by year, month, temperature and 

rainfall. Mortality decreased linearly through the time period considered (negative 

coefficient), the same occurring with higher temperatures (Table 1). Within the year, 

mortality started to increase in the beginning of the year, peaking from April to June 

and decreasing afterwards. For monthly values of rainfall between 2-7 mm and 55-148 

mm, the number of roadkills of corn buntings increased (Fig. 8).  

Fig. 7 Non-linear factors affecting the temporal distribution of roadkills for house sparrow. Fitted 
smooth terms (written as s(name of variable, number of degrees of freedom)) for house sparrow’s 
mortality (solid lines) and confidence intervals (dashed lines); top left panel: year, top right panel: 
month, bottom left panel: rainfall. 
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Mortality of the tawny owl through the study period was best explained by year, 

month, temperature and rainfall, the last two with linear effects. Mortality lightly 

decreased from 2005 to 2007, remaining stable until 2010, when a steep decrease 

occurred. There is a seasonal effect within the year with mortality increasing in March 

and peaking between June and August, followed by a decline (Fig. 9). Rainfall and 

maximum temperature are negatively correlated with mortality (-0.08 and -0.05 

respectively; Table 1), so roadkills are increased during cold and dry months.  

Fig. 8 Non-linear factors affecting the temporal distribution of roadkills for corn bunting. Fitted smooth 
terms (written as s(name of variable, number of degrees of freedom)) for corn bunting’s mortality (solid 
lines) and confidence intervals (dashed lines); left panel: month, right panel: rainfall. 
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4. Discussion 

Our study revealed an overall decreasing trend in the number of roadkills from 2005 to 

2013 for all studied species, although slightly more evident in some of them. However, 

the differences detected did not support our proposed hypothesis: the three most 

vulnerable species to roadkills (i.e., higher than expected mortality: goldfinch, blue tit, 

and blackcap) did not show a stronger decline when compared to species that die in 

proportion to their abundance (house sparrow and corn bunting). Although the 

decreasing trend was stronger for blackcap, the same was not observed for goldfinch 

or blue tit, and all species presented a decreasing trend.  

While the mortality pattern was not the same throughout the years, all species 

showed marked seasonality in the number of roadkills. The effects of weather 

variables were less obvious, when compared to time and season, and differed across 

the species, which may suggest the existence of additional factors important to explain 

the observed trends. 

Fig. 9 Non-linear factors affecting the temporal distribution of roadkills for tawny owl. Fitted smooth 
terms (written as s(name of variable, number of degrees of freedom)) for tawny owl’s mortality (solid 
lines) and confidence intervals (dashed lines); left panel: year, right panel: month. 
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4.1. The declining trend of roadkills 

In the specific case of the blackcap, a potential explanation for the observed reduction 

in mortality throughout the years could be differences in migration flows, which may 

be related to worldwide species trends and climate change. Many studies report an 

association between bird migratory phenology and weather variables, with the recent 

shifts in migration periods being a response to climate change (Gordo, 2007; Jonzén et 

al. 2007).  

However, the number of road-killed individuals should be mainly a consequence of 

bird abundances near roads (Moller et al. 2011). Thus, the decrease in mortality from 

collision with vehicles that we witnessed in this study, could be a consequence of a 

local or regional decline in the populations of the resident species, probably influenced 

to some degree by years of cumulative roadkills. The house sparrow is one of the most 

frequently reported road-killed species, both in neotropical and temperate zones 

(Erritzoe et al. 2003; Rosa & Bager, 2012). Despite its large range, in Europe, house 

sparrows have been declining since 1980, with this trend explained by the 

intensification of agricultural practices (De Laet & Summers-Smith, 2007; BirdLife 

International, 2017). Reports from Spain indicate the same decline for this species, 

while in Portugal, the house sparrow is considered to have a stable population trend. 

The european trend of the corn bunting also shows a population decline, attributed as 

well to changes in agriculture, but all other target-species are either stable or show 

moderate increases in their numbers across Europe and Portugal (Meirinho et al. 2013; 

SEO/BirdLife, 2014; GTAN-SPEA, 2016; BirdLife International, 2017). Thus, a decreasing 

trend in roadkills seems unexpected, unless the regional trend of populations is 

somewhat different than the national trend. Still, one should consider the possibility 

that population trends near and far from main roads may have opposite directions – 

despite a general population increase, abundance near main roads might be declining 

from continuous and accumulated effect of mortality and disturbance. 

Bird abundance near roads could also be affected by the surrounding habitats and 

their quality (Orlowski, 2008; Erritzoe et al. 2008; Rosa & Bager, 2012; Santos et al. 

2016). There are contradictory approaches to the value of roadside vegetation and 
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hedgerows for birds. Some studies show their positive role in transforming roadsides 

into suitable habitats (Morelli et al. 2014; Morelli et al. 2015), while others highlight 

the higher mortality in such areas (Orlowski, 2008). Roadside vegetation is used by 

many bird species as a breeding, foraging and resting area, but its presence could 

potentially act as an ecological trap. This is of particular importance when certain 

habitat types (e.g. woody vegetation in cropland borders) are only present along the 

communication routes, attracting birds to the area and potentially making them more 

vulnerable to roadkills (Orlowski, 2005, 2008). Orlowski (2005) found that, in an 

agricultural landscape, barn swallows (Hirundo rustica) were attracted to treebelts and 

hedgerows along roads due to a higher density of insects and especially during severe 

weather conditions (as a way to reduce the energetic cost of flight), thus being at risk 

of colliding with oncoming vehicles. However, this seems to be an unlikely explanation 

in our case as habitat quality is overall high and did not change significantly over the 

last nine years. In the last years, especially since the forest fires of 2005, the 

management of road verges has increased in Portugal. This implies a more regular and 

intensive cut of the vegetation along road verges. This fact may have contributed to 

reduce the attractiveness of roads to most birds, because of a decrease of food 

availability, which in turn reduced the number of road casualties. 

Many studies mention road characteristics (e.g. traffic density, speed and road width) 

playing a key role in shaping road casualties and populations’ density near roads 

(Erritzoe et al. 2003; Clevenger et al. 2003). Tawny owl was reported to be less 

abundant or more absent in the proximity of roads with high traffic density due to such 

factors as traffic disturbance, loss of habitat quality and fragmentation (Silva et al. 

2012). Holm & Laursen (2011) found that the number of fledglings per breeding 

attempt of great tit (Parus major) was much lower in areas adjacent with fast and 

frequent traffic and attributed it to the death of the parent birds due to collision with 

vehicles. The probability of collision between a bird and a vehicle is likely to increase 

with traffic volume (Clevenger et al. 2003), and thereby reducing the survival rate of 

birds in roadside habitats. In Portugal no estimate is available for the evolution of 

traffic volume (ITF, Road Safety Annual Report 2016), so we cannot accurately assess 

its influence on shaping mortality throughout the years in our study area. However, 
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between 1990 and 2014, the number of motorized vehicles more than doubled, rising 

from about 2.2 million vehicles in 1990 to 5.7 million in 2014 (+161%) (ITF, Road Safety 

Annual Report 2016), potentially increasing general traffic volume. From 2008-2010 

almost all species showed a decline in mortality (figures 4, 5, 6, 7 and 9) which could 

be related to a decrease in traffic volume due to the recent economic crisis. In Spain, 

there was a decrease by 14% of the traffic volume between 2007 and 2013, which until 

then had been increasing, and the number of registered vehicles and vehicle fleet also 

slightly decreased as a result of the economic downturn (ITF, Road Safety Annual 

Report 2016). Portugal was also affected by this crisis so it’s possible the same traffic 

drop occurred at the time, which in turn may have led to a decrease in roadkills. 

Nonetheless, an increase in traffic numbers may also translate into a depletion of 

individuals, not just because of an increasing number of roadkills, but also due to a 

disturbance factor (e.g., pollution, traffic noise, visual disturbance, etc.; Kociolek & 

Clevenger, 2009). Disturbance caused by roads has been reported to lead Andean 

condors (Vultur gryphus) to avoid the area, choosing to feed far from roads (Speziale et 

al. 2008; Lambertucci et al. 2009). Pinto and collaborators (2005) reported that great 

bustard (Otis tarda) populations in Portugal are concentrating themselves 

geographically, and one of the reasons for the local population declines was road 

building. Traffic volume and traffic noise have been reported to lead birds to avoid 

roads, with many species of woodland and open habitat showing strong declines in 

density, by reducing habitat quality and affecting the breeding ability of many species 

(Reijnen & Foppen, 1994, 1997, 2006; Brotons & Herrando, 2001; Parris & Schneider, 

2008; Kociolek et al. 2011; Arévalo & Newhard, 2011; Polak et al. 2013). Traffic noise 

and traffic volume are highly correlated, and may act in synergy to exclude birds from 

habitats next to noisy, busy roads (Parris & Schneider, 2008). Because birds heavily rely 

on sound to attract mates, defend territories or avoid predation, traffic noise has been 

identified as the most critical disturbance factor (Reijnen & Foppen, 1997, 2006). In an 

experimental study in the United States, traffic noise was applied to a roadless area, 

creating a “phantom road” in a stopover site for autumn migratory birds (McClure et 

al. 2013). The observed decline of bird densities by over one-quarter and almost 

complete avoidance of some species of a high-quality site, showed that traffic noise 

alone was enough to lead birds away from an area (McClure et al. 2013). Species with 
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low frequency calls that nest near the ground are especially sensitive to this type of 

disturbance (Polak et al. 2013), so ultimately the impact of traffic noise may depend on 

species-specific traits. Studies have shown that bird population densities decline as we 

get closer to roads and this effect could extend over distances up to 1 Km (Benítez-

Lopez et al. 2010), therefore, it’s possible that the decline in mortality observed may 

have come as a result of birds avoiding the area due to road disturbance.  

The role mortality itself plays in reducing bird densities near roads is sometimes 

dismissed (Reijnen & Foppen, 2006), probably because it’s correlated with traffic 

volume, which in turn is correlated with traffic noise (Summers et al. 2011), and this 

effects are often difficult to disentangle. But some studies have shown that traffic 

mortality is the main factor contributing to the decline in bird abundances (Summers 

et al. 2011; Jack, 2013). Nonetheless, considering that mortality rates can be quite high 

for some species, it is possible that after a while, roadkills may exert selection, 

favouring individuals that either learn to avoid roads or exhibit characteristics that 

allow them to do so, and thus reduce the number of casualties. During a 30 year 

survey of the cliff swallow (Petrochelidon pyrrhonota) in southwestern Nebraska, 

Brown and Brown (2013) reported a significant decline in the frequency of road-killed 

individuals and at the same time observed that the wing-length of the animals found 

on roads was longer than in the population more distant from the road. They 

hypothesized that the observed decline in mortality could not be explained by factors 

such as decreases in abundance or traffic volume, and was therefore the result of 

selective mortality favouring individuals whose wing morphology allows for a better 

escape from vehicles. Mumme et al. (2000) also reported a decline in roadkills for the 

Florida scrub-jay (Aphelocoma caerulescens) after nine years, with mortality being 

higher for 30-90 days old juveniles and in the first two years of immigrant jays without 

previous experience living in road territories. Thus, the decline in roadkills was 

experience-dependent, being the result of surviving jays learning to avoid cars or 

selective mortality (Mumme et al. 2000).  However, this experience with roads and 

ability to avoid cars did not seem to pass from the parents to their offspring, which 

may mean that roadside habitats could be potentially acting as a population sink for 

this species (Mumme et al. 2000). Legagneux & Ducatez (2013) found that birds 
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standing on the road or on road edges initiated flight sooner or later depending on the 

speed limit (although the actual speed of the vehicles had no effect on escape 

response) and thus, attributing it to learned behaviour. However, it seems that not all 

species are be able to properly assess the risk of high-speed vehicles and consequently 

are unable to adjust their escape response and avoid collision (DeVault et al. 2015). 

Furthermore, on a study with rock pigeons (Columba livia), DeVault and collaborators 

(2017) argue that continual exposure to vehicles triggers a habituation-like effect 

which could lead to an ineffective avoidance response to car collisions. In that case, we 

would expect to observe an increase in mortality over time, which does not 

correspond to our results. So, the ability of a bird to avoid collision with oncoming 

vehicles might be dependent of species sensitivity to collision risk and ability to adapt 

their avoidance behaviour, and thus we can’t assume that all species are able to safely 

recognize and avoid the dangers that roadside habitats pose.  

 

4.2. Seasonality of roadkills 

The seasonal patterns of roadkills observed for the six species are similar to those 

reported in previous studies and are mainly associated with ecological needs and the 

life cycle of the species – phenology (Rosa & Bager, 2012; Carvalho & Mira, 2011; 

Garriga et al. 2017), which may make them more vulnerable to vehicle collisions. For 

the five species that are resident in the study area, mortality generally peaked in 

spring-summer, generally between April and September. This corresponds to the 

periods of breeding activity (incubation and fledging) and juvenile dispersion (Erritzoe 

et al. 2003; del Hoyo et al. 2015). This last period results in an increase in abundance of 

individuals (especially inexperienced ones), which may explain increased mortality for 

these species (Erritzoe et al. 2003; Grilo et al. 2014). Particularly in the case of the 

tawny owl, the number of roadkills seems greater during the post-natal dispersal, 

suggesting that the juvenile individuals are more vulnerable to collision with vehicles 

than adults. Santos and collaborators (2013) found that juveniles represented 56% of 

the casualties along the year. During the fledging period, adults make many and longer 

movements to be able to feed the young, which may cause birds to cross roads more 
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frequently, or use road verges to search for food, that would explain an increase in 

roadkills (Kuitunen et al. 2003; Holm & Laursen, 2011).  

Another possible explanation for higher mortality on roads during spring-summer is 

the intensification of traffic volume during the holidays or the increase of food 

availability near roads for seed-eating birds due to agricultural crops and harvest 

during summer months (Erritzoe et al. 2003; Rosa & Bager, 2012). During winter, on 

the other hand, there is a shorter length of daylight and generally less traffic (Erritzoe 

et al. 2003). When considering the whole bird species, from November to January 

there may be fewer individuals killed as the migratory species head south. However, 

when the majority of trans-Saharan migrants are already in Africa, a large number of 

birds of common species coming from higher altitudes arrive (Elphick, 2007). In many 

cases, this wintering contingent increases the ranks of the resident population. Such is 

the case for the blackcap which our results show to die more during the winter 

months, a period when the population registers a large increase by the arrival of birds 

breeding in central and northern Europe and wintering in southern Europe (Cramp & 

Brooks, 1992). Lastly, when comparing roadkills from different countries for specific 

species, it is important to take into account that seasonal patterns of avian mortality 

may vary from place to place as a result of geographical variations in their ecology and 

phenology (Erritzoe et al. 2003). 

 

4.3. Relationship between roadkills and weather variables 

Despite the role weather plays in many aspects of the life traits and activity patterns of 

birds, very few studies considered its influence in road fatalities. One would expect 

that more extreme weather conditions, such as the severe drought verified in Portugal 

in 2005 (Climatic characterization of the year 2005, IPMA, 2017), would have a 

considerable impact on population density and space use due to limited resources and, 

thus, enhance road casualties (Erritzoe et al. 2003). Weather conditions affect the 

metabolic rate of birds (e.g. cold weather requires more energy to maintain body 

functions) and can influence foraging conditions (Crick, 2004). Therefore, roads could 

be attractive to animals during more extreme weather conditions, increasing their 
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likelihood of being hit, by offering cover and food as a result of moister conditions and 

more abundant vegetation on verges, in contrast to the surrounding areas (Erritzoe et 

al. 2003; Orlowski, 2005; Morelli et al. 2014).  

Our results suggest a correlation between roadkills, and rainfall and temperature for 

most species, particularly for high or low values of these predictors. Garriga et al. 

(2017) reported similar results in northeastern Iberia, with bird roadkills being 

positively associated with temperature and negatively related to humidity and 

irradiation. However, the lack of a clear relationship with rainfall and temperature in 

our study may suggest that there are other factors with greater influence in the 

number of roadkills for this taxonomic group. 

 

4.4 Study limitations 

The weather variables we used to describe temporal trends in bird roadkills did not 

explain a high amount of variability in data. Additional variables would have been 

helpful, such as yearly traffic volume for the studied roads or for the region. However, 

there is no information on traffic trends in Portugal (ITF, Road Safety Annual Report 

2016). On the other hand, yearly data on bird local abundances should also help to 

explain the patterns observed. Also, the patterns may result from a complex 

interaction of variables which is difficult to disentangle using simple mathematical 

models. Information to overcome this limitation, however, may be difficult to acquire, 

particularly at large temporal scales, if continuous accurate measures and monitoring 

programs are not in place. 

 

4.5. Conclusions and conservation implications 

The decline in roadkills over nine years we observed for our six common species, 

provides concrete data that mortality due to car collisions may change over time. 

Although, we do not have enough information to claim with certainty the cause of our 

results, these may be a consequence of a cumulative effect of different factors over 

time and learning ability of our target species. 
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Although road mortality is a significant source of mortality for birds and a serious 

conservation issue, the lack of information on its demographic consequences poses a 

severe threat to the long-term survival of animals in road habitats and can jeopardize 

the effectiveness of mitigation measures, especially if we do not fully understand the 

driving forces behind it and their actual impact. This requires continuous monitoring of 

roadside populations and road features. The overall impact of roadkills in the long-

term survival of a population may depend of particular circumstances, species and 

other road factors, which can act in synergy with each other, and therefore future 

research should take that into account. 

In conclusion, there is a need to assess the possible impact that roadkills have on 

abundance, dynamics and even viability of wildlife populations. Future research should 

focus on addressing large temporal scales to increase inferential strength in its results 

to properly assess population changes. 
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Final Considerations 

The present study evaluated the temporal pattern in the roadkills of common bird 

species and the effect of weather predictors. Considering the impact roads have on 

birds, particularly in the amount of direct mortality caused through collisions with 

vehicles, and the current decline of common species, it is important to understand 

how mortality varies over the years and seasons, know which factors influence it, and 

its importance on the long-term persistence of species. Some studies have already 

shown that direct mortality due to collision with vehicles, over time, has major effects 

on bird populations (Mumme et al. 2000; Ramsden, 2003; Brown & Brown, 2013). 

Thus, bearing in mind the vast network of roads worldwide in combination with other 

anthropogenic factors (e.g., habitat loss and fragmentation, invasive species, climate 

change), the potential impact of road mortality on the long-term persistence and 

viability of bird populations should be assessed (Erritzoe et al. 2003; Kociolek & 

Clevenger, 2009). However, such issues can only be tackled with long-term studies 

which require systematic compilation of data on population sizes, vital rates, etc., 

which are often not compatible with most MSc or PhD theses or short-term research 

contracts (Roedenbeck et al. 2007; van der Ree et al. 2011). The results obtained in 

this thesis should address partially this question (i.e., long-term viability), because a 

decreasing trend in roadkill numbers may be perceived as a first sign of local 

population depletions (Lesbarrères & Fahrig, 2012). 

A novelty which our study introduced is the use of carcass persistence time and survey 

frequency to provide a correction of roadkill numbers. Many studies underestimate 

the actual amount of mortality, because carcasses quickly disappear from roads, which 

can have important implications to road mitigation programs and the design of 

mitigation measures (Santos et al. 2011). 

Although we failed to find a clear association between weather variables and temporal 

patterns of roadkills, it does not imply that weather has a negligent effect on mortality, 

only that other road-related factors may have a stronger influence. Therefore future 

research should focus in exploring how all these elements come into play and their 

significance on the number of bird roadkills. We hope that the present study may help 
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to shed some light on how roadkills can impact and shape wildlife populations over 

time and alert to the need of more knowledge about this phenomenon. 

If clear relationships are established in the future between regional trends in 

population density and regional trends in roadkill frequency, then monitoring 

programs of road-killed fauna may be used also to inform about population status. This 

can represent a useful conservation tool, as very often monitoring wildlife populations 

has larger costs than monitoring road casualties. 
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Appendix 

 

 

 

Fig. 10 Sum of the mortality of the six species in annual totals, with no correction for roadkill counts. 

Fig. 11 Boxplot of roadkill counts (with no correction) for daily and weekly surveys. Mortality 

counts are higher in the years where surveys were performed daily, which means that survey 
frequency may be influencing the results and thus, must be corrected. 
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Fig. 12 Sum of the mortality of the six species in annual totals, correcting the roadkill counts with the 
Huso estimator and posteriorN function. 

Fig. 13 Boxplot of corrected roadkill counts for daily and weekly surveys, using the Huso estimator 
and posteriorN function. The plot suggests that in the years where surveys were performed weekly, 
the roadkill estimations were higher. This suggests that the posteriorN function may be 
overestimating the calculated values. 
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Fig. 14 Sum of the mortality of the six species in annual totals, correcting the roadkill counts with 
the Huso estimator and Horvitz-Thompson function. 

Fig. 15 Boxplot of corrected roadkill counts for daily and weekly surveys, using the Huso estimator and 
Horvitz-Thompson function. In this case there are no significant differences in the mortality estimations 
between the frequencies of surveys. Considering these results we may assume that the Horvitz-
Thompson function gives more accurate roadkill estimates. 


