

Environmental Microbiology and Biotechnology

P-108 - EVALUATION OF DIFFERENT SAMPLING METHODS IN COMBINATION WITH RNA-FISH FOR DETECTING BIODETERIOGENIC MICROORGANISMS IN WOOD ARTWORKS

Vieira^{1,2}; Marina González-Pérez²; António Candeias^{2,3}; Ana Caldeira^{2,3}

1 - ; 2 - HERCULES Laboratory, Évora University; 3 - Chemistry Department, School of Sciences and Technology, Évora University

Background

Artworks are inhabited by microorganisms that can cause biodeterioration. For developing proper safeguard strategies, it is fundamental to identify the microbial communities that are metabolically-active [1]. Depending on the materials used in the creation of artworks the various types of microorganisms adhere differently due to their different characteristics and to their state of conservation [2]. Thus, the selection of a proper sampling method as well as of an effective detection/identification technique, that allow reliable detection and identification of metabolically active microorganisms, is extremely important. RNA-FISH is one of the promising techniques that has been previously applied with this end [3]. Therefore, the aim of this work was to determine the effectiveness of various sampling methods for their combination with RNA-FISH to detect microbial cells involved in artworks biodeterioration. Our attention was specifically focused on wood artworks.

Method

Wood slabs were artificially inoculated with bacteria, yeasts and filamentous fungi usually found in artworks (*Bacillus* sp., *Rhodotorula* sp. and *Penicillium* sp. respectively). They were incubated for two weeks and then, various sampling methods were applied for collecting the cells: (i) a swabbing method (with cotton swab); (ii) three impression methods (with filter paper, nitrocellulose and nylon membranes); and (iii) a destructive method. The collected cells were fixed, recovered in suspension and counted. Four different RNA-FISH assays were performed with each sample following the protocol previously described by us [3]: a blank and three assays with addition of probes (of an equimolar mixture of EUB338-Cy3 and EUK516-6-FAM and of the individual probes separately). The analysis were carried out by epifluorescence microscopy.

Results & Conclusions

The results showed that independently of the sampling method applied it was possible to: i) recover the three types of microorganisms present in the samples, even though the majority of the cells recovered were filamentous fungi cells; and ii) observe fluorescent signals that allowed to identify each one after the application of the RNA-FISH technique. Among the sampling methods tested, the impression method with nylon membrane was the best in terms of number of cells recovered.

This work was co-financed by ALT20-03-0246-FEDER-000004-ALENTEJO 2020 project and by FCT through the project PTDC/BBB-IMG/0046/2014 and grants SFRH/BD/118028/2016 and SFRH/BPD/100754/2014.

References & Acknowledgments

- [1] Bottari B. et al. Appl. Microbiol. Biotechnol. 73, (2006): 485–494.
- [2] Ismaïl R. et al. Int. J. Environ. Res. Public Health 10 (2013): 6169-83.
- [3] Vieira, R. et al. Conservar Património 23 (2016): 71–77.

Keywords: sampling methods, RNA-FISH, biodeteriogenic, microorganisms, artworks