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Abstract

This paper provides sufficient conditions to guarantee the existence, non-existence and
multiplicity of solutions for a third order eigenvalue fully differential equation, coupled with
three point boundary value conditions.

Although the change of sign, it is obtained some bounds for the second derivative of
the Green’s function, which allow to define a different kind of cone that, as far as we know,
has not been previously used in the literature.

The main arguments are based on fixed point index theory for bounded and unbounded
sets. Some examples are presented to show that the different existence theorems proved
are not comparable.

1 Introduction

In this work we study the existence of solution of the third order nonlinear differential equation
—ul(t) = A f(t, u(t), o' (1), u"(1), te[0,1], (1)

with A > 0 a parameter and f: [0,1] x R3 — [0, 00) a L!-Carathéodory function, coupled with
three point boundary value conditions

u(0) =u'(0) =0, /(1) =au'(n), (2)
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project MTM2013-43014-P. Third author was partially suported by National Founds through FCT-Fundagao
para a Ciéncia e a Tecnologia as part of project: SFRH/BSAB/114246/2016



where 0 < p < land 1 < a < % are given constants. Moreover, sufficient conditions for

non-existence and multiplicity of solutions are given.
A precedent problem

u®(t) +a(t) f(u(t)) =0, te]0,1],

u(0) ='(0) =0, /(1) =au'(n),
was considered in [5]. There, the authors constructed the Green’s function related to the
problem and established some of their properties. From them, they built a suitable cone and

applied Guo-Krasnoselskii theorem to assure the existence of a positive solution of the problem.
Recently, in [9], the authors considered the following system

—u®(t) = f(t, v(t), v'(t)), te0,1],
—oB)(t) = f(t, ult), (1), te€0,1],
w(0) =u'(0) =0, (1) =au'(n),
v(0) =v'(0) =0, (1) =ad(n).

There, they studied the properties of the first derivative of the Green’s function related
to the problem and used them to construct a cone K such that there exist u, v € K which
constitute a positive solution of the system. To do this, they also use Guo-Krasnoselskii
Theorem [4].

A similar nonlinear fourth-order boundary value problem is treated in [8], where the authors
study the existence of nonzero and positive solutions by means of monotone iterative techniques
and lower and upper solutions.

In this paper, we pretend to study a generalization of the previous equations by considering
that the nonlinearity f depends on the solution and its first and second order derivatives.
Because of this, we need to study the properties of the second derivative of the Green’s function.
However, as we will see along the paper, contrarily to what happened with the Green’s function
and its first derivative, in this case it is not possible to find a function ® such that

2
‘aatf(tvs) < ®(s), V(ts)el0,1]x][0,1],
and 2
S (15) > c®(s) Y(ts) € [a,0] x [0,1],

for some [a,b] C [0,1] and ¢ € (0,1).

This makes necessary to construct a different kind of cone that, as far as we know, has not
been previously used in the literature. With this cone, we will give some conditions to assure
the existence of a positive and increasing solution to problem (1)-(2), which will also be convex
in a certain subset of its interval of definition.

The paper is organized in the following way: In Section 2 we compiled the known properties
for the Green’s function related to the problem and its first derivative, and we study its second



one. In Section 3 we define our cone and give some existence results by means of the fixed point
index for unbounded sets (see [3]). In Section 4, we consider the fixed point index theory for
bounded sets in order to obtain some results regarding existence and multiplicity of solutions.
We follow the line of results given in [2,6,7]. In Section 5, we give some conditions under
which there is not any solution for the considered problem. Finally, in Section 6, we give
some examples which show that the existence results obtained in Sections 3 and 4 are not
comparable.

2 Preliminary results

The Green’s function related to the homogeneous problem
—u® () =0, telo,1],
u(0) =v/'(0) =0, (1) =auv(n),
is given by the following expression ([5])

(2ts—s)(1—an)+ts(a—1), s<min{n, t},

G(t ) 1 752(1—0”7)4‘1523(04—1), t<s<m,
yS) = 5
2(L—an) | @2ts—s?)(1—an) +t*(an—s), n<s<t,
t2 (1 - s), max{n, t} <s.

Next lemmas establish some properties of the Green’s function and its first and second
order derivatives.

Lemma 2.1. ([5, Lemma 2.2]) Let 0 <n <1l and1l < a < % Then,

1+a
1—-—an

0 < G(t,s) <gols) = s(1—s) V(ts)e€][0,1] x[0,1].

Lemma 2.2. ([5, Lemma 2.3]) Let 0 <n <1l and1l < a < % Then,
n
Glt,5) = rogo(s) V(t.s) € | L,m] x [0,1],

with 0 < Ko = min{a — 1,1} < 1.

n?
202 (1+a)

The first derivative of G is given by

s(l—an)+ts(a—1), s<min{ny, t},
a—G(ts): 1 t(l—an)+ts(a—1), t<s<mn,
ot (I—an) | s@—an)+tlan—1s), n<s<t,

t(l—s), max{n, t} <s,

and satisfies the following properties.



Lemma 2.3. (/9, Lemma 3]) Let 0 <n <1 and 1 < a < % Then,

0G 1-s
0< Th(ts) Sole) = 7 ¥(h9) €[0.1] x (0.1

Lemma 2.4. ([9, Lemma 4]) Let 0 <n <1 and 1 < a < % Then,

8665(75, s) 2 Kk1gi(s) V(¢ s)€ [gﬂ]} x [0,1],

with 0 < k1 =1 < 1.

The second derivative of G is given by

s(a—1), s < min{n, t},
0?G 1 l—an+s(a—1), t<s<m,
W(t7s):1—@77 an—s, n<s<t,

1—s, max{n, t} <s.

It is immediate to verify that it satisfies the following conditions:

Lemma 2.5. Let0<n<landl <a< % Then,

2
%(@ s)>0 Y(ts)e ([0,1] x[0,1])\ A,

where
A={(ts)€[0,1]] x[0,1];an<t<1,an<s<t}.

Remark 2.6. Note that, in particular, %2—5(75, s) > 0 for all (¢,s) € [0,an] x [0,1].
Next two results will allow us to define a suitable cone in C?[0, 1].

Lemma 2.7. Let 0 <n<landl <a< % Then,

2
%g(t, s) < ga2(s) V(t,s) € [21} * [0,1]
and
2 _
1< %g(t,s) < max {92(8), 11_0777} Vv (t,s) € [0,1] x [0, 1],

with

_a(l—an) +n(a-1) &G _a(—an+nle—1 [ sla=1), Oss<n
92(s) = n(a—1) at2(n’8)_ n(a—1)(1—-an) {1—3, n<s<l



Proof. First, we will prove that %g(t s) < ga(s) for all (¢, ) € [Z,1] x[0,1].

For s < min{n, t} and s > max{n, t} we have that Z 8t2 S(t,s) =
an((laf‘g) +1 > 1, it is obvious that %tg (t,s) < ga(s).
For t < s <7, we have that

825(77, s) and, since

a(l—an) a(l—an)
OQG(t 8)_1—an+s(a—1)_(O‘_l)<nan(a17; +3)<3(0‘_1)(n(a$ +1)_
o2

1—-—an N 1—an - 1-—an
Finally, for n < s <'t,

%G an—s 1—s 0?a
W(ta 5) = < = 012 (”7’ S) < 92(8)'

l—an ™~ 1—-an

Now, we will prove that Z 8t2 $(t,s) > —1 for all (t,s) € [0,1] x [0,1]. It is immediate to

verify that %g (t,s) > 0 for s < min{n, t}, t < s < n and max{n, t} < s. On the other hand,

we have that for n < s <,

?G a77—5>a77—1

W(t,s): =-1

l—an ~ 1—an
and so the result holds.

Finally, we will prove that %g(t s) < max {gg(s), 11__0777} for all (¢,s) € [0,1] x [0, 1].
Obviously, it is enough to prove it for (¢,s) € [0, 2] x [0,1].

For s <t and s > 7, we have just seen that %ﬁc(t s) = atQ E(n,s) < gals).

On the other hand, for ¢t < s <5, the following inequality holds

82G(t ) 1—a77+s(a—1) l—an+n(a—-1) 1-9

Z T tg) =

o2’ 1—an - 1—an C1-an

and so the result is proved. ]

Remark 2.8. We note that for any ¢ > 0 it would be possible to find a continuous function
g # go such that

0?G

o (69) < g(s) V(ts) € e 1] x [0,1]

Lemma 2.9. Let0<n<landl <a< % Then, for all (t,s) € [g,n] x [0,1],

Sz () = 57 (1,5) = R2.ga(s)

with0</£2:a"%



Proof. For s <t and s > 1, we have that %275’(15, s) = K2 ga(s).

On the other hand, for t < s < n, it holds that

0*G l—an+s(a—1)
7(1575) =
ot?

Zs(a—l)

1—an I—an :5292(3)

O

Remark 2.10. We note that for any [a,b] C (0,an) it would be possible to find a constant ~
such that

62

W(tv 8) > KZQQ(S) v(tv 3) € [a’vb] x [07 1]
However, for the sake of simplicity, we have chosen the interval [g,n] to maintain the same
interval than in Lemmas 2.2 and 2.4.

Remark 2.11. We point out that, on the contrary to function G and %—?, it is not possible
to find a continuous function gs(s) such that

0*G

W(tz 5)

< §2(3) V(t, S) € [Oa 1] X [07 1]

and
——(t,s) > Raga(s) VY (t,s) € [a,b] x [0,1],

with [a,b] C [0,1] and &2 € (0,1).
This is due to the fact that for s > an,

s—amn
82G(t S) _ T—an’ s <t,
8t2 ’ 1178 , t< S
—an >~

As a consequence, if there exists go satisfying the previous conditions, it would necessarily

verify that
1— 1+
PRV EPR U (= N
g2(s) > max =9 o

n
) —
l—an 1—an 170[27 82%7

for s > an and so ga(1) > 1.
On the other hand, we have that ‘%Q—tg(t, 1) = 0 so, if there exists go in the previous
conditions, it would happen that

which is a contradiction.



3 Main results
Let’s consider E = C?([0, 1], R) equipped with the norm

lull = max{[ufloo, [u'lloos [[u" oo},

where ||v]|co = sup |v(t)]. It is very well known that (E, || - ||) is a Banach space.
t€[0,1]
Taking into account the properties satisfied by the Green’s function and its derivatives, we
define
K = {ueC*[0,1],R): u(t) >0, t€[0,1], u'(t) >0,t€[0,1], u"(t) > 0, t € [0,an),
min u(t) > ko [[u)|eo, min v’ (t) > k1 ||[t/]|co, min u”’(t) > ko ||Ju”||
te| 1.y te[g,n te[g,n

2}

where

//”

|| (2]} = max [u” (t)]

and kg, k1 and k9 are defined in previous section.

It is obvious that K is a cone in E.

It is very well known that the solutions of the problem (1)-(2) correspond with the fixed
points of the integral operator

1
Tu(t) = A /0 G(t,s) f(s,u(s),u'(s),u"(s))ds, te][0,1]. (3)

We make the following assumptions on the elements that take part in the previous expres-
sion:

(H1) X is a positive parameter.
(H2) The nonlinearity f: [0,1] x R® — [0, 00) satisfies L!-Carathéodory conditions, that is,

— f(-,u,v,w) is measurable for each (u,v,w) fixed.
— f(t,-,-,-) is continuous for a.e. t € [0, 1].

— For each r > 0 there exists ¢, € L'[0, 1] such that

ft,u,v,w) < ¢p(t) YV (u,v,w) € (=r,7) X (—=r,7) X (=r,7), a.e. t €[0,1].

Under these assumptions, coupled with additional properties on the function f, we will
ensure the existence of solutions of the considered problem (1)-(2). Before doing that, we
obtain some previous technical results.

Lemma 3.1. T: K — K 1is a completely continuous operator.



Proof. We divide the proof into several steps.

Step 1. T is well defined in K.

Let u € K. We will prove that Tu € K.
It is obvious that Tu(t) > 0 for all ¢t € [0,T]. Moreover, using Lemma 2.1, we have

u(t) = A /1 G(t,s) f(s,u(s),u'(s),u"(s))ds < A /1 go(s) f(s,u(s),u'(s),u”(s))ds,
0 0
and, taking the supremum for ¢ € [0, 1], we deduce that
1
Tl <0 [ a(s) F(s.u(s). 0 (5).0 () .

So, for ¢ € [1, 7], from Lemma 2.2, we have

1
=AAG@»MW@m%mmmw

1
ZAAmwww@mww@wwnwz@wwm

and we deduce that
min Tu(t) > ko || Tu| co-
re(2 )

Analogously, since a ©(t,s) > 0on [0,1] x [0,1], it is immediate to verify that
oag
(Tu)'(t) = X /0 W(t’ s) f(s,u(s),u'(s),u"(s))ds > 0.
Moreover, Lemma 2.3 implies
(Tu)'(t) < )\/ g1(s u(s),u'(s),u"(s)) ds,
and, taking the supremum for ¢ € [0, 1],
1
I(Tu) oo < A/ 91(5) f(s,u(s),u'(s), u"(s)) ds.
0
So, for t € [g,n], Lemma 2.4 gives us

1
(Tu)'(t) = A /O k191(s) f(s,uls),u/(s),u"(s)) ds = k1 [|(Tw) o

and we can affirm that
min (Tu) (t) > k1 [|(Tw) || co-
teldm]



Finally, from Lemma 2.5, we have that for t € [0, an],

2
(Tw)"( _A/ 885 8) F(s,u(s), w/(s), u"(s)) ds > 0.

In addition, for ¢t € [g, 77], Lemma 2.7 assures that

1
(Tu)(t) < A / 92(5) £ (5, u(s), u'(5), u" (5)) ds,

and, taking the supremum for ¢ € [, ],

1
0 g <0 [ a(o) Fsvu(s).0 (). (5) s

a’

So, for t € [Z,7], from Lemma 2.9 we know that

1
(Tu)"(t) > X /0 k2 go(s) f(s,u(s),u'(s),u”"(s)) ds > ka ||(Tu)"\|[£m]

and we deduce that
min (Tu)"(t) = ko [(Tw)'l|[2 -
el &

Therefore, we can conclude that Tu € K.

Step 2. T is a compact operator.

Let’s consider
B={u€E; |ul| <r}.
First, we will prove that T'(B) is uniformly bounded in C2[0,1]. We find the following
bounds for u € B:

|ITulloc = sup
t€[0,1]

1
<A /0 o(s) (s, u(s), / (s), 1" () ds < A /0 6o(s) 6,(s) ds = M.

/Gts (s,u(s),u'(s),u”(s))ds

rre

PN )
0 a1

(Tu)' s = sup s) f(s,u(s),u'(s),u"(s)) ds

t€[0,1]

1 1
<A /0 g1(s) f(s,u(s),u'(s),u"(s))ds < A /0 91(8) ¢r(s) ds := My.




2
A "o G(t s) f(s,u(s),u'(s),u"(s))ds

"
(7w oe = sup X [ 50

tel0,1]
< sup A /
te[0,1] 0
! 1—n / "
<A [ max L g2(5) L f(s,uls), u/(s), 0" (s) ds
0 l—an
1 1— n
<A [ max . , 92(8) ¢ &r(8) ds := Ms.
0

Ho*a

i (t8)| F(su(s),w/(5), () d

So, it is deduced that
HT’U,H < maX{Ml, Mo, Mg} Yu € B.

Now, we will prove that T'(B) is equicontinuous in C2[0, 1].

Let t1, t2 € [0,1]. Without loss of generality, suppose that ¢; < t3. Then,
1
[Tu(ty) — Tu(tz)| < )\/ G(t1,s) — Gtz, 5)| f(s,u(s)u'(s), u"(s)) ds
0

1
gA/O G(t1, 5) — Glt, 5)| br(s) ds

and, since G(-, s) is continuous, we have that for all ¢ > 0 there exists d(¢) > 0 such that if
|ta — t1] < d then |Tu(ty) — Tu(tz)| < € for all u € B.

Analogously,
e - ] < [ 5% 009 - 5 0| stsutei (1,00 ds
0G oG

57 (t18) = 5 (t2,5)] ¢r(s) ds

S)\/
0
oG

and, since %7 (-, s) is also continuous, we reason as in the previous case and conclude that
[(Tu) (t1) — (Tuw) (t2)| < € for all u € B.

10



Finally, we have that

" " 82 G 62 G !/ i
|(Tu) (t1) — (Tu) (tg)‘ <A S (t1,s) — W(tg,s) f(s,u(s)u'(s),u"(s))ds
2 2
[ |2 00 - T )] o)
hora 9*G
|G 9 - G )| erl)ds
2162 G 0*G
+A ] W(tla ) atg (t27 ) ng(S) ds

82 G 82 G
+ A t1,s to, s
In this case, we have that % t§(~, s) is continuous in [0, s) U (s, 1] and has a jump discontinuity
at t = s. Because of this, we can apply the same reasoning that in previous cases to assure
that the first and last terms in the previous 1nequahty tend to zero with independence of the

function w € B. On the other hand, we have that ‘ Gz (t1,8) — 8t2 ¢ (ta, )’ o, (s) € L0,1] so
it is obvious that .
2
!
t1

with independence of the function u € B.
Therefore we conclude that T'(B) is equicontinuous in C2[0, 1].

or(s)ds

02G 9’ G

S (t,8) = S (t2,8)| dn(s)ds —— 0

t1—to

As a consequence, by Ascoli-Arzela theorem, we can affirm that 7'(B) is relatively compact
in C2[0,1] and so T is a completely continuous operator. O

We introduce now the following notation (see Remark 3.4 for details)

1 1 1 1—1
Ay :/ go(s)ds, Ag :/ g1(s)ds, As :/ max {92(8), } ds,
0 0 0 1—an

n n
m:ﬁ@%@m Mzﬁmm®®

and we define
A =3 max{Aj, Ay, A3} and A = max{rgAy, k1 As5}.

We also denote:

lim f(t,x,y,2)
 Jellylhlzl—0 0] 2] + [y] + |2]
0o __ lm m f(taxvyaz)

X —.
2] lyl,|2l—oo t€(0,1] || + |y| + |2]

We will give now our first existence result.

11



Theorem 3.2. Assume that hypothesis (H1) — (H2) hold. If A f> < A fo, then for all

1 1
Ae (mw)

problem (1)-(2) has at least a positive solution that belongs to the cone K.

Proof. Let X\ € (ﬁ? ﬁ) and choose € € (0, fy) such that

B O S
A(fo—e) = — A(f*+e)

Taking into account the definition of fj, we know that there exists d; > 0 such that when
[ull < 61,

Fltu(®), (), u" (1) > (fo—e) (lu@®)| + [/ @) + ["(B)]), Vte[0,1].

Let
Qs, ={ue K; ||lu|| <1}

and choose u € 0€)s,. We will prove that Tu 2 u. We have that
1 1
Tu(t) :)\/0 G(t,s) f(s,u(s),u(s),u"(s))ds > )\/0 ko go(s) f(s,u(s),u'(s),u”"(s)) ds
20 [ o g0(s) 1G5, uls). ' (5) ' (5)) ds
o
> rgals) (o = ) (ju(s)| + ()] + (5] ds
: U
>\ (fo—e¢) (Ho [ulloc + K1 [ ]loc + K2 HUHH[g,n]> /T, io go(s) ds

=A(fo =) (o lullos + 1 [llow + 2 16”211 ) Aa = A(fo = £) Aakou(t) VEe[0,1]

and
1

1
(6 = [ G 05) fls.ue) ' (s) @) ds = A [k n(6) Fsvuls) ol o). () ds

0
>\ / 1 91(5) £(5,u(s), o (5), 0 (s)) ds
=\ / "1 a1(5) (fo — ) (ju(s)| + [ ()] + [u(s)]) ds
> X (fo <) (o llulloe + s oo + 2 "2 1) / " 1 ga(s) ds

@

=)\ (f() — 6) (/‘io ||u||oo + K1 ||U,||oo —+ Ko Hu//H[ng A5 2 A (fo — 5) A5 K1 u'(t) Vte [0, 1].

12



As a consequence we have that either Tu(t) > u(t) Vt € [0,1] or (Tw)'(t) > u/(t) Vt € [0,1]
so it is proved that Tu A u. We deduce (see [4, Theorem 2.3.3]) that

ix(T, Qs,) = 0.

On the other hand, due to the definition of f°°, we know that there exists b5 > 0 such that
when min{|u(t)], [u/'(t)], |u"(t)|} > 2,

Fltu(t), (1), u" (1) < (f +e) (Ju(®)] + [/ (@) + [u"(O)]) <3 (> +e)[lull, Vtelo,1].

Let 9 > {61, 52} and define

Qs, = {u € K; min |u(t)| < 52}U{u € K; min |u/(t)] < 52}U{u € K; min |u"(t)] < 52} .
t€[0,1] te[0,1] te[0,1]

We note that €25, is an unbounded subset of the cone K. Because of this, the fixed point
index of operator T' with respect to Qs,, ix (T, Qs,), is only defined in the case that the set
of fixed points of operator T in (2s,, that is, (I — T)~1({0}) N Qs,, is compact (see [3] for the
details). We will see that ix (7, €s,) can be defined in this case.

First of all, since (I —T) is a continuous operator, it is obvious that (I —7)~1({0}) N s,
is closed.

Moreover, we can assume that (I — T)~1({0}) N s, is bounded. Indeed, on the contrary,
we would have infinite fixed points of operator 7" on €25, and it would be immediately deduced
that problem (1)-(2) has an infinite number of positive solutions. Therefore we may assume
that there exists a constant M > 0 such that |lu| < M for all u € (I —T)~1({0}) N Qy,.

Finally, we will see that (I —T)~1({0}) N, is equicontinuous. This property follows from
the fact that (I — T)~1({0}) N s, is bounded. The proof is totally analogous to Step 2 in the
proof of Lemma 3.1.

Now, we will calculate ix (T, Qs,). In particular, we will prove that ||[Tu| < ||u| for all
u € 08s,. Let u € 0Qs,, that is, u € K such that

. . . / . " _
min {trer[%g] lu(t)], tre%ﬁ] [’ (t)], tre%ﬁ] | (75)|} = 03.

Then,

1
Tu(t)] = Tut) = A /O G(t,5) F(s,u(s), v (s), 1" (s)) ds
1

1
<) /0 go(s) (s u(s), u(s), u"(s)) ds < 3\ /0 g0(s) (F + ) [[ul] ds
Z3A( 4 ) Jul At < A + &) ull & < [l

13



1
@y )] = @y @) = A [ 9%1,5) Fs,uls), ol (5), 0 (5)) ds
0

1 1
<A / g1(s) £(s,u(s), o (s), u"(s)) ds < 3 / g1(8) (F> +€) [Jul ds
0 B 0
Z3A( 42 full As < A + &) lull & < Ju]
and

0?G

1
(ol <x [ |Gz

f(s,u(s),u'(s),u"(s))ds

< [ max {gao), Y ool 006 s

1 1 _
<3 [ on(o), [ (4 2 s
=3 ) Jull As < A7 +9) Jull A < ]

We deduce that
| Tul| < Jlull

and as a consequence ([3, Corollary 7.4]) we have that
iK(T, 952) =1.

Then, we conclude that T has a fixed point in Q(;Q \ Qs,, that is, there exists at least a
positive solution for problem (1)-(2). O

Consequently, we obtain the following
Corollary 3.3. Assume that hypothesis (H1) — (H3) hold. Then,

(i) If fo = oo and f> =0, then for all A € (0,00), problem (1)-(2) has at least a positive
solution.

(ii) If fo = 00 and 0 < f* < oo, then for all A € (O, /—\%), problem (1)-(2) has at least a
positive solution.

i) If 0 < fo < co and f* =0, then for all X € (i, 00, problem (1)-(2) has at least a
A fo
positive solution.
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Remark 3.4. For the sake of completeness, we will give the exact expression of A;, i =1,...,5:

a+1
M=ga"an
1
M=oy
A _a2—2a(a2+1)n+(a4—|—3a3—|—a+1)n2—2(a(a(a(2a—3)—|—5)—3)—|—1)773
i 2(a—1nlan—1)(@(a—-1n-1)+n
a?(a((a—2)a+3) - )n?
2(@=Dn(an—1(a((a=1)n-1)+n)
YP2n—3)+3a—-2 .
Ay 1 ( §27;5 (a)n—l) 1) min{a — 1, 1},
A, oz D’ (aln=2) + )

202 (an—1)

4 Existence and multiplicity of solutions

In this section we will give some conditions to ensure the existence of multiple solutions of
the boundary problem (1)-(2). To do that, we will use the fixed point index theory. Similar
arguments have been applied in [2] to functional equations that only depends on the values of
the solution u. First of all, we will compile some classical results regarding to this theory (see
[1,4] for more details).

Lemma 4.1. Let D be an open bounded set with D = DN K # () and Dg # K. Assume
that F: Dy — K is a compact map such that x # Fx for v € ODy. Then the fized point
index i (F, D) has the following properties:

(1) If there exists e € K \ {0} such that x # Fx + e for all x € 0Dk and all o > 0, then
ix(F,Dg)=0.

(2) If pe # Fx for all x € 0Dk and for every p > 1, then ix(F, Dg) = 1.

(3) Let D' be open in X with D' ¢ Dk. Ifix(F,Dk) =1 and ix(F, D% ) =0, then F has
a fived point in D \ Dk.. The same result holds if ix (F,Dk) = 0 and iy (F, D)) = 1.

We will consider the following sets:

Ky, ={u € K; ||ull <p},

V,=qu€ K; min u(t) <p, min u'(t) <p, [[u"[|cc <py-
te[ 2] teldm]

15



It is clear that
K,CV,CK»

where ¢ = min{kg, k1, K2 }.
In the two following lemmas we give some sufficient conditions to ensure that the index is
either 1 or 0.

Lemma 4.2. Let (see Remark 4.5)

1 1 1 2
- = max {tz%ﬁ]/o G(t,s)ds, tzl[(l)I,)l]/o %(t, s)ds, tzl[?)l,)l]/o %tf(t s)| ds }
and
o= sup { LB, ) € 0.1 % 0,00 % (0,1 % [=pusl |
If there exists p > 0 such that )
Wy (1))

then ig (T, K,) =1

Proof. We will prove that Tu # pu for all w € 0K, and for every p > 1.
Suppose, on the contrary, that there exist some v € 0K, and p > 1 such that

1
u(t) = )\/O G(t,s) f(s,u(s),u'(s),u”(s))ds.

Taking the supremum for ¢ € [0, 1], we obtain that

1 1
pllulle =X sup [ Gt.s) f(s,ulo).wl(s) () ds < Xpf* sup [ Gilts)ds

t€[0,1] J0 te[0,1] JO
< )\p ﬁ <p.
On the other hand, we have that
a0 =3 [ 0% 0,0) o060 s

and so

plle o = A sup/ (%ts (s,u(s),u'(s),u"(s))ds < Xp fP sup/ (%ts

te[0,1] te[0,1]

<>\p—<p
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Finally, it holds that

Lo2a
pal' () =X [ S5 09) Fls ()0 (5),u(s) ds
0
and so
R 2re. Hoza
il <3 sup [ D2 00)| S (o)l (), ") ds < Apg” sup |5 E )| ds
te[0,1] Jo te[0,1] Jo
p
§)\pf—<p.
m

As a consequence, it can be deduced that

pp = pmax{|ufoo, [t/]loo, [[u"lloc} < p,

which is a contradiction with the assumption that p > 1. Therefore, the result is proved. O

Lemma 4.3. Let (see Remark 4.5)

1 . " , TG , 192G
7 = max {temf / G(t,s)ds, inf / W(t’ s)ds, mfn] ; W(t’ s) ds}

[Gm] /2 te[dm] J2 te[2,
and .
fpziﬂf{f(’u’v’w); (t,u,v,w) € {ﬁ,n} X [07 p} X [07 p] X [ij]}
p (6% RO K1
If there exists p > 0 such that
J
A Mp > 1, (19)

then ig(T,V,) = 0.

Proof. We will prove that there exists e € K \ {0} such that u # Tu + ace for all u € 9V, and
all a > 0.

Let us take e(t) = 1 and suppose that there exists some v € 0V, and a > 0 such that
u = Tu + a. Then,

! 1
u(t) _)\/O G(t, S) f(S,u(S), u’(s),u//(s)) ds +a > )\/(; G(t’ 3) f(S, U(3>,Ul(s),uu(s)) ds
! n
> )\ﬁ G(t,s) f(s,u(s),u'(s),u"(s)) ds > >\pf,,/7 G(t,s)ds,

rre , " "G / "
; W(t,s) f(s,u(s),u'(s),u"(s))ds > A ; W(t’ s) f(s,u(s),u'(s),u"(s))ds

T0G
Z/\pr[7 W(t,s)ds

u'(t) =\

17



and for ¢ € [Z1,1],

192 N 52
u’(t) =\ ; %t(;(t,s) f(s,u(s),u'(s),u"(s))ds > X ; %tf(t,s) f(s,u(s),u'(s),u"(s))ds
n 92
apdy [0S 4s) ds

Consequently, either u(t) > p, u'(t) > poru”(t) > pfort € [Z,n], which is a contradiction.
Therefore, we conclude the veracity of the result. O

From the previous lemmas, it is possible to formulate the following theorem, in which we
give some conditions under which problem (3) has multiple solutions. In this case, we establish
conditions to ensure the existence of one, two or three solutions. However, it must be pointed
out that similar results can be formulated to ensure the existence of four or more solutions.

Theorem 4.4. The integral equation (3) has at least one non trivial solution in K if one of
the following conditions hold

(C1) There exist p1, p2 € (0,00), 22 < pa, such that (Igl) and (I),) are verified.
(C2) There exist p1, p2 € (0,00), p1 < p2, such that (I;l) and (122) are verified.

The integral equation (3) has at least two non trivial solutions in K if one of the following
conditions hold

(C3) There exist p1, p2, p3 € (0,00), & < py < p3, such that (I3)), (I},) and (I),) are verified.

(C4) There exist p1, pa, p3 € (0,00), with p1 < py and 22 < p3, such that (1), (I22) and (I},)
are verified.

The integral equation (3) has at least three non trivial solutions in K if one of the following
conditions hold

C5) There exist p1, p2, p3, pa € (0,00), with 22 < py < p3 and 22 < py, such that (I9), (I1),
p1, P2, P3, P L <p : o)r U,
(183) and (134) are verified.

(C6) There exist p1, pa, p3, pa € (0,00), with py < p2 and 22 < p3 < p4, such that (Ipll), (1/92),
(1[1,3) and (124) are verified.
The proof of the previous result is an immediate consequence of the properties of the fixed

point index.

Remark 4.5. For the sake of completeness, we give the exact expression of the components
which take part in the formulas of % and ﬁ:

1 2
_ 1L 3 (an?—1)

18



and

1 1 2 _ 1
sup / G(t,s)ds:/ G(1,s) ds:an( 3n) + .
0 0

te0.1] 12(1 —an)
Moreover,
! t —t)+t—1
87G(t,s)d8: (an(n—t)+t—-1)
o Ot 2(an—1)
and ) Laa
1
sup / %(t,s) ds = —(1,s) ds = M.
tef0,1]Jo Ot o Ot 2(1—an)
Finally,
an(n—2t)+2¢t—1
ey s)ds{ T 2@n-n b= am
2\ B —2a? n?fan(n+2t)—2(t—1)t-1
o Ot U] gggn_l)) , t>an
and 1 82G 1 82G 1 2
—an
su t,s)ds = 0,8) ds = ————.
te[OI,)l} 0 8t2( ) 0 8752( ) 2(1—an)

Now, it is easy to verify that

1 o an(2-3n)+1 an(l—-n) 1—an? 1—an?
p—— X R = .
m 121—an) "2(1—-an)’ 2(1—an) 2(1—an)

On the other hand, for t € [g, ?7],

" 129 6n*t  3nt’(a(alan+n=2)+n)—n) 3
- _ — 2t
/n Gt s) ds 12 < a3 PR a?(an—1)

and

inf /IUG(t’S)dSZ/:G(Z’S) gs — (=D’ (a(2—an) —n)

te[2,1] 404 (1 —an)

In addition,

[e3

naGt i —a?nt(at+2)+ o497 (P +a?+a—1)t+1) —an’
n W(’S) o= 202 (an—1)
and
inf "Bﬁ(t S)ds—/naG (Q 3) ds_(a—l)UQ(a(Q—an)—n)
tel[nm] n Ot ~Ja ot \a’ N 2a3(1—an) '
Finally,
"G n(alalan+n=2)+n) —n)
—1
n Ot? (t,5) ds 202 (an—1)
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and
92 G (a—1)2(a+1)n?

f (t,s)ds = — ds =
tem / 3t2 s) 1 t? (n,5) ds 202 (1—an)

Now we can calculate

1 {(a—l) ”@@2-an) —n) (a-n*@2-an —n) (a—l)Q(aJrl)nQ}

Mo 40 (1 —an) ’ 203 (1 —an) T 2a2(1—an)
_(@—-1)n*(a(2—an) —n)
203 (1 —an) '

5 Results of non existence of solution

If the following theorem we give some conditions to ensure that the integral equation (3) has
not non trivial solution in K.

Theorem 5.1. If one of the following conditions hold

(i) f(t,xz,y,z) <m max{x, y, |z|} for every t € [0,1], x, y > 0 and z € R, where

1 1
= max{ sup )\/ G(t,s)ds, sup )\/ a—G(t, s)ds, sup /\/ ds
tefo,1] Jo tefo,1] Jo Ot tefo,1] Jo

(i) f(t,z,y,z) > Mz for every t € [a,b] C [g,n], with a #b, x,y >0 and z € R, where
U inf )\/ G(t,s)
t€(a,b]

(iii) f(t,z,y,2) > My for everyt e [a,b] C [g,n], with a # b, x,y >0 and z € R, where

1 boa
TRy A DL

then the integral equation (3) has not non trivial solution in K.

02G

oz bs)

S\H

Proof. We will prove just (7) and (i7) since item (i) is totally analogous to (i7).
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(i) Suppose, on the contrary, that there exists u € K such that u = T'u. Let tg € [0,1] be
such that ||u||cc = u(tg). Then,

1
e = A [ Glta:5) (s, u(s).0/(s). () s
1
< /0 Glto, s)m max{u(s), u'(s), |u"(s)|} ds

1
v / Glto, ) ds < [lull.
0

Now, let t1 € [0, 1] such that ||u||cc = ©/(¢1). Then,

rre

ot (tlv )f(S, u(s)vu/(s)7u”(8)) ds

oo = A
0
0G -
Al [0 01,5yt ), 1)1 s
- loa
<l [ 5 ) ds < .
0

Finally, let to € [0,1] such that ||u”||e = |u”(t2)|. Then,

Lo2a

7z (t2,8) f(s,u(s), ' (5), u"(s)) ds

oo = \A
0

62G / "
<A YR (t27 ) f(s,u(s),u (8)7u (S)) ds
0 8t
tz, (s), W(s), [u"(s)|} ds
82G
a / O (t2,5)] ds < [ul.
Consequently, we reach to
lull = max{lulloc, [u'lloc l[u"[lsc} < [[ull,

which is a contradiction.

(ii) Suppose, on the contrary, that there exists u € K such that v = Tu. Let ¢y € [0, 1] be
such that u(to) = minggpqp u(t). Then, for ¢ € [a,b] we have that

1 b
i\ /0 Gt s) f(s,uls), o (s), " (s)) ds > A / G(t,5) f(s,u(s), o (), " (s)) ds
b
>M)\/ G(t,s)u(s)ds.
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Therefore, we arrive at

u(tp) = min wu(t) > M inf )\/ G(t,s)u(s)ds > M u(ty) 1nf )\/ G(t,s)ds = u(to),
tela,b| te(a,b| t€(a,b]

which is a contradiction.

6 Examples

In this section we will consider several examples which show that the existence results proved
in Theorems 3.2 and 4.4 are not comparable.

Example 6.1. Let’s consider the problem with f(¢,z,y,2) = %, where ¢; > h(t) >

co > 0 for all ¢t € [0,1], and n and « arbitrarily chosen, that is,

3 () = h(t)
u?(t) = A morrworrwer: e 0]
uw(0) =4/(0) =0, /(1) =au(n).

In this case,

lim f(t T,Y,z ) B lim mil’ltem,l] h(t) — 10
T el o0 e 2]+l 2] Jeblloo (22 + 52 + 22) (2] + [yl + 12)

and

0 f(t,z,y,2) ) maxye(o,1) h(t)
— 1 ma. _— = hm 3 3 5 —
 Jallyhlzlsoo t€l0] [+ [yl F 12 leblyhizlooe (@2 + 42 + 22) (2] + [y] + |2])

so Theorem 3.2 assures that there exists at least a positive solution of the problem for all
A>0.
On the other hand, let p > 0. Then,

h(t)
p(a? +y? + 2%)

f = sup{  (txy,2) € 0,1] x [0,p] x [0.] X [p, p]} -

so it is not possible to find a positive p such that A % < 1 and, consequently, Theorem 4.4 can
not be applied in this case.

Example 6.2. Let’s consider the problem with f(¢,z,y, z) = h(t) (2% + y* + 22 + 1), where
c1 > h(t)>ca>0forallte|01],n= % and o = %, that is,

{ —u®)(t) = Nh(t) ((u(t)? + (') + (" ()2 + 1), te0,1]
u(0) =u/'(0) =0, /(1)=3u(})
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In this case,

i i LGy 2) - (mingepo, b)) (2% + 9% + 22 + 1)
fo= lim min — 222" —  [im — o0
2l lyl lz1=0 telo.1) |z + [yl + 2] fel Iyl lsl—0 2] + [yl + |=]
and
© —  lim ax fry,z) - (maxepo ) h(t)) (22 +y* + 22 + 1) .
[zl lyllzl=o0 t€l01] 2] + [y| + |2]  lal.lyllzl>o0 |z + [yl + 12|

so Theorem 3.2 can not be applied.

However, we will see that Theorem 4.4 lets us ensure the existence of at least one positive
solution for certain values of A.

Let p1, p2 > 0. Then,

fn = i, b0
and
fr? = LSP% sup h(t).
P2 t€[o,1]
Moreover, % = % and ﬁ = %. As a consequence of (C1) in Theorem 4.4, for any

p1, p2 > 0 such that p; < cps = £2 and

108p1 4 py
11 infte[%é] h(t) ) (1 + 3p%) SUD¢e(0,1] h(t),

there exists at least a non trivial solution of problem (1)-(2) for all

\e 108 py 4 p2
11 inf h(t)’ 5(1+3p3) sup h(t)
te[5.3] te[0,1]

In particular, it can be deduced that there exists at least a non trivial solution of problem
(1)-(2) for all
2

0, —F——m—
5v3 sup h(t)
t€[0,1]

A€
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