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Abstract. This paper addresses a stochastic mixed-integer linear programming 

model for solving the self-scheduling problem of a thermal and wind power 

producer acting in an electricity market. Uncertainty on market prices and on 

wind power is modelled via a scenarios set. The mathematical formulation of 

thermal units takes into account variable and start-up costs and operational 

constraints like: ramp up/down limits and minimum up/down time limits. A 

mixed-integer linear formulation is used to obtain the offering strategies of the 

coordinated production of thermal and wind energy generation, aiming the 

profit maximization. Finally, a case study is presented and results are discussed. 

Keywords: Mixed-integer linear programming; stochastic optimization; wind-

thermal coordination; offering strategies. 

1 Introduction 

The adverse environmental impact of fossil fuel burning and the desire to reach 

energy supply sustainability promote exploitation of renewable sources. Mechanisms 

and policies provide subsidy and incentive for renewable energy conversion into 

electric energy [1], for instance, wind power conversion. But as the wind power 

technology matures and achieves breakeven costs, subsidy is due to be less  

significant and wind power conversion has to face the electricity markets for better 

profit [2]. Also, the incentives for wind power exploitation are feasible for low 

penetration levels but will become flawed as wind power integration rises [3]. EU in 

2014 has of all new renewable installations a 43.7% based on wind power and is the 

seventh year running that over 55% of all additional power capacity is form 

renewable energy [4]. The growing worldwide usage of renewable energy is a fact, 

but electricity supply is still significantly dependent on fossil fuel burning, for 

instance, statistics for electricity supply in 2012 accounts that the usage of fossil    

fuel burning is more than 60% [5]. 

Deregulation of electricity market imposes that a generation company     

(GENCO) has to face competition to obtain the economic revenue. Periodic nodal 
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variations of electricity prices [6] have to be taken into consideration. The wind 

power producer (WiPP) has to address wind power and electricity price uncertainties 

to decide for realistic bids, because cost is owed either in case of high bids due          

to the fact that other power producers must decrease or augment production to offset        

the deviation [7]. Thermal power producer has to address only electricity price 

uncertainty. 

This paper focus on the coordinated trading of wind and thermal energy in order to 

achieve the optimal bidding strategies that provides the maximum profit. In the case 

study are matched the results from uncoordinated model with the results from the 

coordinated model.  

2 Technological Innovation for Cyber-Physical Systems 

Cyber-physical systems (CyPS) are systems whose operation is managed by a 

computing and communication core [8]. CyPS can be defined as smart systems that 

include computational and physical modules, effortlessly combined and strictly 

cooperating to sense the changing state of the real world [9]. 

On a first stage, cloud-based solutions can support the processing of models for 

helping trading in a pool-based electricity market so as to take more benefits of bids. 

Among these models the ones for the solution of the problems concerning with energy 

management and energy offers are specific vital for safeguarding a Wind-Thermal 

Power Producer (WTPP) business. The models for solving these problems are 

restricted by the computational resources, i.e., details about some reality are not 

considered in view of the extreme usage of computational requirements. 

On a second stage, CyPS will make possible to connect the physical world, 

actuators and sensors, allowing the execution of the outputs of the systems decisions 

operating at a higher level. The strategy defined concerning with the commitment of 

thermal units (ThU) or the offers to the energy market can be implemented in real 

time with the CyPS. 

3 State of the Art 

Thermal energy conversion into electric energy has a significant state of art on 

optimization methods for solving the thermal scheduling problem (ScP), ranging from 

the old priorities list method to the traditional mathematical methods up to the more 

lately reported artificial intelligence methods [10]. The priority list method is easily 

implemented and requires a small processing time, but does not guarantee an 

appropriate solution near the global optimal one [11]. In the classical methods are 

considered dynamic programming (DyP) and Lagrangian relaxation-based (LR) 

methods [12]. DyP method is a flexible one but has a limitation known by the    

"curse of dimensionality". The LR can overwhelmed the aforementioned limitation, 

but does not necessarily lead to a feasible solution, implying further processing for 
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satisfying the violated constraints so as find a feasible solution, which does not ensure 

optimal solution. The mixed integer linear programming (MILP) method is used with 

success for solving the thermal ScP [13]. MILP is a widely used method for ScPs due 

to the tractability and extensive modeling capability [14]. Although, artificial 

intelligence methods based on neural networks, evolutionary algorithms and 

simulating annealing have been used, the main drawback of the artificial intelligence 

methods concerning with the possibility to obtain a solution near the global optimum 

one is a disadvantage. So, classical methods are the main methods in use as long as 

the functions describing the mathematical model have conveniently smoothness. 

Deregulated market and variability of the source of wind power impose 

uncertainties to WiPP. These uncertainties have to be conveniently considered, i.e., 

processed into the variables of the problems [15] to be treated by a WiPP in order to 

identify how much to produce and the price for bidding. 

A WiPP in a deregulated market can benefit without depending on third-parties 

from: a coordination of wind power production with energy storage technology [16]; 

a financial options as a tool for WiPP to hedge against wind power Unc [17]; a 

stochastic model envisioned to determine optimal offer strategies for WiPP 

participating in a day-ahead (DaH) electricity market [18]. The stochastic model is a 

formulation explicitly taking into account the uncertainties tackled by the ScP of a 

WiPP [19], using multiple scenarios obtained by computer applications for wind 

power and market price forecasts [20].  

4 Problem Formulation  

4.1   Wind Power Producer 

The uncertainties about the availability of wind power may imply differences between 

the energy traded with a WiPP and the actual quantity of energy supplied by the 

WiPP. The revenue xH  of the GENCO for period x  is stated as: 

x
offer
x

D
xx RIH       (1) 

In (1), 
D
x is the energy price at period x  ,

offer
xI  is the power at the close of the 

DaH electricity market accepted to be traded and xR is the imbalance income derived 

from the balancing penalty of not acting in accordance with the accepted trade. The 

total deviation for period t is stated as: 

offer
x

act
xx II       (2) 

Where
act
xI  is the actual power for period x . 

In (2), a positive deviation corresponds to the actual power traded higher than the 

traded in the DaH electricity market and a negative deviation corresponds to the 



490   R. Laia et al. 

 

power lower than the traded. Let 

x be the price paid for surplus of production and 


t the price to be charged for scarcity of production. Consider the price ratios given 

by the equalities stated as: 

1,  



xD

x

x
x hh




     and     1,  




xD
x

x
x hh




 (3) 

In (3), the inequalities at the right of the equalities mean, respectively, that the 

positive deviation never has a higher price of penalization and the negative one never 

has a lower price of penalization in comparison with the value of the closing price. 

4.2   Thermal Power Producer 

The operating cost, xrA , for a ThU is stated as: 

xrcZdbvFA xrrxrxrxrrxr  ,,  (4) 

  

In (4), xrA  is the operational cost for scenario  of the ThU i at period x . xrA  

is the sum of: the fixed production cost, rF , a fixed associated with the unit state of 

operation; the added variable cost, xrb , part of this cost is associated with the 

quantity of fossil fuel used by the unit; and the start-up (SU) and shut-down (SD) 

costs, respectively, xrd   and rZ , of the unit. The last three costs are in general 

described by nonlinear function and worse than that some of the functions are non- 

convex and non-differentiable functions, but some kind of smoothness is expected 

and required to use MILP, for instance, as being subdifferentiable functions.  

The functions used to quantify the variable, the SU and SD costs of ThU in (4) are 

considered to be such that is possible to approximate those function by a piecewise 

linear or step functions. The variable cost, xrb , is stated as: 

xrAb

Q

q

q
r

q
rxr 



,,

1

 x      (5) 

xrvii

Q
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,,

1

   r  
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 x    (6) 

xrxiX xrxrrr  ,,)(
1

  
1

  
min1    (7) 



Optimal Bidding Strategies of Wind-Thermal Power Producers    491 

 

xrviX xrrrxr  ,,) (   
min11

     (8) 
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In (5), the variable cost function is given by the sum of the product of the slope of 

each block, q
rA , by the block power q

xr . In (6), the power of the ThU is given by 

the minimum power production plus the summation of the block powers related with 

each block. The 0/1 variable xrv  guarantees that the power production is 0 if the 

ThU is in the state offline. In (7), if the 0/1 variable q
xrx  is equal to 0, then the block 

power 1
xr  can be lower than the block 1 maximum power; otherwise and in 

conjunction with (8), if the ThU is in the state on, then 1
xr  is equal to the block 1 

maximum power. In (9), from the second bock to the second last one, if the 0/1 q
xrx  

is 0, then the block power q
xr  can be lower than the block q maximum power; 

otherwise and in conjunction with (10), if the ThU is in the state on, then q
xr  is 

equal to the block q maximum power. In (11), the block power must be between 0 and 

the last block maximum power. 

The nonlinearities of the start-up costs, xrd  , is normally considered to be 

described by an exponential function. This exponential function is estimated by a 

piecewise linear formulation as in [2] stated as:  

xrvvKd

h

hxrxrrxr 













 



 ,,

1

   






  (12) 

In (12), the second term models the lost of ThU, i.e., if the unit is a case of being 

in the state online at period x and has been in the state offline in the   preceding 

periods, the term in parentheses is 1. So, in such a case a SU cost is incurred for the 

thermal energy that are not accountable for added value in a sense of that energy has 

not been converted into electric energy. The maximum number for   is given by the 

number of periods need to cool down, i.e., completely lose all thermal energy. So, for 

every period at cooling and until total cooling one inequality like (12) is considered.  

The units have to perform in accordance with technical constraints that limit the 

power between successive hours stated as: 

xriivi xrxrxrr  ,,max
 

min   (13) 
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xrcSDcvii xrxrxrrxr   ,,)( 11
maxmax   (14) 

xrySUvRUii xrxrrxr   ,,1
max

1 x
max   (15) 

xrcSDvRDii xrxrxrxr  ,,   1   (16) 

In (13) and (14), the upper bound of 
max

xri  is defined as being the maximum 

available power of the ThU. This variable is used to consider: actual capacity of the 

ThU, SU/SD ramp rate and ramp-up limits. In (16), the ramps-down and SD ramp rate 

limits are defined. In (14)–(16), the relation between the SU and SD variables of the 

ThU are provided, using 0/1 variables for describing the states and data parameters 

for ramp-down, SD and ramp-up rate limits. 

The minimum down time (DT) constraint is stated as: 

rv
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In (17), if the minimum DX is reached, then the unit will be offline at initial 

period. In (18), the minimum DX will be satisfied for all the sets of sequential periods 

of size rDX . In (19), the minimum DX will be satisfied for the last 1rDX  periods. 

The minimum up time (UX) constraint is also forced by constraints stated as: 
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In (20), if the minimum UX is not reached, then the unit will be offline at initial 

period. In (21), the minimum UX will be satisfied for all the sets of sequential periods 

of size rUX . In (22), the minimum UX will be satisfied for the last 1rUX  periods. 

The operational status of the ThU is stated as: 

xrvvcy xrxrxrxr   ,,1      (23) 

xrcy xrxr  ,,1    (24) 

The total power produced by the ThU is stated as: 

xii

R

r

xr
g

x 


,

1

   (25) 

In (25), note by (13) to (16) and (23), (24) that if the unit is not in the state of 

online then the power of the unit is null. 

4.3   Objective Function 

The offer submitted by the GENCO, WTPP, is the summation of the power offered 

from the ThU and the power offered from the wind farm (WiF). The offer is stated as: 

xiii D
x

th
x

offer
x  ,  (26) 

 

The actual power produced by the GENCO is the summation of the power 

produced by ThU and the power produced by the WF. The actual power is stated as: 

xiii
d
x

g
x

act
x  ,

  (27) 

In (27),
g

xi  is the actual power produced by ThU and
d
xi


  is the actual power 

produced by the WF for scenario . 

Consequently, the expected revenue of the GENCO is stated as: 
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Subject to: 
 

xii M
x

offer
x  ,0   (29) 

  xii
offer

x
act
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xdI xxx   ,0   (32) 

 

In (29),
M

xi  is maximum available power, limited by the sum of the installed 

capacity in the WF, maxEi , with the maximum thermal production stated as: 

xiii E
R

r

xr
M

x 


,max

1

max
   (33) 

Some system operators require non-decreasing offers to be submitted by the 

GENCO. Non-decreasing offers is considered by a constraint stated as: 

xii D
x

D
x

offer
x

offer
x  ,',0))((  '  '    (34) 

In (29), if the increment in price in two successive hours is not null, then the 

increment in offers in the two successive hours has two be of the same sign of the 

increment in price or a null value. 

 

5 Case Study 

The proposed SMILP model is applied to a case study of a GENCO with a WTPP, 

having 8 units with a total installed capacity of 1440 MW, the data is in [22]. Data 

from the Iberian electricity market for 10 days of June 2014 [21] are used for the 

energy prices and the energy produced from WF. This data is depicted in Fig. 1. 
 

 

               
Fig 1. Iberian electricity market June 2014 (ten days); left: prices, right: energy. 

 

The non-decreasing offer is required. The energy produced is achieved through the 

total energy produced from wind scaled to the installed capacity in the WF, 360 MW. 

The expected results with and without coordination are depicted in Table 3. 
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Table 3. Results with and without coordination 

Case Expected profit (€) Execution Time (sec.) 

Wind uncoordinated 119 200 0.02 

Thermal uncoordinated 516 848 0.13 

Coordinated wind and thermal 642 326 0.13 

Gain (%) 0,99 - 

 

 

The non-decreasing energy offer for hours 5 and 20 is depicted in Fig. 2. 

 
 

 
 

Fig 2. Bidding energy offers. 

In Fig. 2, the coordination allows for a minimum value of power offered higher 

than the one offered without coordination and allows for a lower price of the offering, 

which is a potential benefit to into operation. 

6 Conclusion 

Cyber-physical systems can be a great advantage for helping power systems to 

accommodate the changing state of the real world. Particularly, a contribution is given 

in this paper in what concerns the biding in the day-ahead electricity market for a 

thermal and wind power producer. A SMILP model for solving the offering strategy 

and the self-ScP of a thermal and wind power producer is settled in this paper. A 

mixed-integer linear program is considered to formulate the operational features of 

ThU. The coordinated offer of thermal and wind power proved to provide better 

revenue results than the sum of the isolated offers. The stochastic programming is a 

appropriate model to address Unc in modeling through scenarios. So, the SMILP 

model demonstrated to be accurate as well computationally acceptable. Since the bids 

are made in the DaH electricity market, this proposed SMILP model is a useful tool 

for the power producer. 
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